International Journal of

Contemporary Advanced Mathematics (IJCM)

ISSN : 2180-0030

Volume 1, Issue 2

Number of issues per year: 6

INTERNATIONAL JOURNAL OF CONTEMPORARY ADVANCD MATHEMATICS (IJCM)

VOLUME 1, ISSUE 2, 2011

EDITED BY DR. NABEEL TAHIR

ISSN (Online): 2180-1266
International Journal of Contemporary Advanced Mathematics (IJCM) is published both in traditional paper form and in Internet. This journal is published at the website http://www.cscjournals.org, maintained by Computer Science Journals (CSC Journals), Malaysia.

IJCM Journal is a part of CSC Publishers
Computer Science Journals
http://www.cscjournals.org

INTERNATIONAL JOURNAL OF COMPUTATIONAL LINGUISTICS (IJCM)

Book: Volume 1, Issue 2, January / February 2011
Publishing Date: 08-02-2011
ISSN (Online): 2180-1266

This work is subjected to copyright. All rights are reserved whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illusions, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication of parts thereof is permitted only under the provision of the copyright law 1965, in its current version, and permission of use must always be obtained from CSC Publishers.

IJCM Journal is a part of CSC Publishers
http://www.cscjournals.org
© IJCM Journal
Published in Malaysia

Typesetting: Camera-ready by author, data conversation by CSC Publishing Services - CSC Journals, Malaysia

EDITORIAL PREFACE

The International Journal of Contemporary Advanced Mathematics (IJCM) is an effective medium for interchange of high quality theoretical and applied research in Computational Linguistics from theoretical research to application development. This is the Second Issue of Volume One of IJCM. The Journal is published bi-monthly, with papers being peer reviewed to high international standards. International Journal of Contemporary Advanced Mathematics (IJCM) publish papers that describe state of the art techniques, scientific research studies and results in computational linguistics in general but on theoretical linguistics, psycholinguistics, natural language processing, grammatical inference, machine learning and cognitive science computational models of linguistic theorizing: standard and enriched context free models, principles and parameters models, optimality theory and researchers working within the minimalist program, and other approaches.

IJCM give an opportunity to scientists, researchers, and vendors from different disciplines of Artificial Intelligence to share the ideas, identify problems, investigate relevant issues, share common interests, explore new approaches, and initiate possible collaborative research and system development. This journal is helpful for the researchers and R\&D engineers, scientists all those persons who are involve in Contemporary Advanced Mathematics.

Highly professional scholars give their efforts, valuable time, expertise and motivation to IJCM as Editorial board members. All submissions are evaluated by the International Editorial Board. The International Editorial Board ensures that significant developments in image processing from around the world are reflected in the IJCM publications.

IJCM editors understand that how much it is important for authors and researchers to have their work published with a minimum delay after submission of their papers. They also strongly believe that the direct communication between the editors and authors are important for the welfare, quality and wellbeing of the Journal and its readers. Therefore, all activities from paper submission to paper publication are controlled through electronic systems that include electronic submission, editorial panel and review system that ensures rapid decision with least delays in the publication processes.

To build its international reputation, we are disseminating the publication information through Google Books, Google Scholar, Directory of Open Access Journals (DOAJ), Open J Gate, ScientificCommons, Scribd, CiteSeerX Docstoc and many more. Our International Editors are working on establishing ISI listing and a good impact factor for IJCM. We would like to remind you that the success of our journal depends directly on the number of quality articles submitted for review. Accordingly, we would like to request your participation by submitting quality manuscripts for review and encouraging your colleagues to submit quality manuscripts for review. One of the great benefits we can provide to our prospective authors is the mentoring nature of our review process. IJCM provides authors with high quality, helpful reviews that are shaped to assist authors in improving their manuscripts.

Editorial Board Members

International Journal of Contemporary Advanced Mathematics (IJCM)

EDITORIAL BOARD

Editor-in-Chief (EiC)
Professor En-Bing Lin
Central Michigan University (United States of America)

ASSOCIATE EDITORS (AEiCS)

Dr. Yang Wang
Michigan State University
United States of America

EDITORIAL BOARD MEMBERS (EBMs)

Dr. Armen G. Bagdasaryan
V.A. Trapeznikov Institute for Control Sciences

Russia
Dr. Taher Abualrub
American University of Sharjah
United Arab Emirates

Table of Content

Volume 1, Issue 2, January / February 2011

Pages

16-22 On the Dimension of the Quotient Ring R/K Where K is a Complement Satyanarayana Bhavanari, Nagaraju Dasari, Babu Prasad Munagala, Mohiddin Shaw Shaik

On the Dimension of the Quotient Ring R/K Where K is a Complement

Satyanarayana Bhavanari
bhavanari2002@yahoo.co.in
Department of Mathematics, Acharya Nagarjuna University, Nagarjuna Nagar-522 510, AP, India.
Nagaraju Dasari
dasari.nagaraju@gmail.com
Department of Science \& Humanities (Mathematics Division), HITS, Hindustan University, OMR,
Padur, Chennai - 603 103, India.

Babu Prasad Munagala

Vijayawada, Andhra Pradesh, India.

Mohiddin Shaw Shaik

mohiddin_shaw26@yahoo.co.in
Department of Mathematics, Acharya Nagarjuna University, Nagarjuna Nagar-522 510, AP, India.

Abstract

The aim of the present paper is to obtain some interesting results related to the concept "finite dimension" in the theory of associative rings R with respect to two sided ideals. It is known that if an ideal H of R has finite dimension, then there exist uniform ideals $U_{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$ of R such that the sum $U_{1} \oplus \mathrm{U}_{2} \oplus \ldots \oplus \mathrm{U}_{\mathrm{n}}$ is essential in H . This n is independent of choice of uniform ideals and we call it as dimension of H (we write $\operatorname{dim} \mathrm{H}$, in short). We obtain some important relations between the concepts complement ideals and essential ideals. Finally, we proved that $\operatorname{dim}(R / K)=\operatorname{dim} R-\operatorname{dim} K$ for a complement ideal K of R. We include some necessary examples.

Keywords: Ring, Two Sided Ideal, Essential Ideal, Uniform Ideal, Finite Dimension, Complement Ideal.

1. INTRODUCTION

The dimension of a vector space is defined as the number of elements in the basis. One can define a basis of a vector space as a maximal set of linearly independent vectors or a minimal set of vectors which span the space. The former when generalized to modules over rings becomes the concept of Goldie dimension. Goldie proved a structure theorem for modules which states that "a module with finite Goldie dimension (FGD, in short) contains a finite number of uniform submodules $U_{1}, U_{2}, \ldots, U_{n}$ whose sum is direct and essential in M ". The number n obtained here is independent of the choice of $U_{1}, U_{2}, \ldots, U_{n}$ and it is called as Goldie dimension of M. The concept Goldie dimension in Modules was studied by several authors like Satyanarayana, Mohiddin Shaw.

If we consider ring as a module over itself, then the existing literature tells about dimension theory for ideals (i.e., two sided ideals) in case of commutative rings; and left (or right) ideals in case of associative (but not commutative) rings. So we can understand the structure theorem for associative rings in terms of one sided ideals only (that is, if R has FGD with respect to left (right) ideals, then there exist n uniform left (or right) ideals of R whose sum is direct and essential in R). This result cannot say about the structure theorem for associative rings in terms of two sided ideals.

To fill this gap, Satyanarayana, Nagaraju, Balamurugan \& Godloza [4] started studying the concepts: complement, essential, uniform, finite dimension with respect to two sided ideals of R. We say a ring R has finite dimension on ideals (FDI, in short) if R does not contain an infinite number of non-zero ideals of R whose sum is direct. A non- zero ideal K of R is said to have finite dimension on ideals of R (FDIR, in short) if K does not contain an infinite number of non-zero ideals of R whose sum is direct. It is clear that if R has FDI, then every non-zero ideal of R has FDIR.

Now we state some definitions and results from [4 \& 5] that are useful in the later part of this paper. We write " $\unlhd R$ " to denote "I is an ideal (two sided ideal) of R ".
1.1 Definitions: Let $I \unlhd R, J \unlhd R$ such that $I \subseteq J$.
(i). We say that I is essential (or ideal essentia) in J if it satisfies the following condition: $K \unlhd R$, $K \subseteq J, I \cap K=(0)$ imply $K=(0)$.
(ii). If I is essential in J and $I \neq J$, then we say that J is a proper essential extension of I. If I is essential in J , then we denote this fact by $\mathrm{I} \leq_{\mathrm{e}} \mathrm{J}$.
(iii). If $K \unlhd R, A \unlhd R$ and K is a maximal element in $\{I / I \unlhd R, I \cap A=(0)\}$, then we say that K is a complement of A (or a complement in R).
1.2 Note: If A, B, C are ideals of $R, A \subseteq C, A \cap B=(0)$ and C is a complement of B, then $C \oplus B \leq_{e} R$, and C is an essential extension of A.
1.3 Result (2.4 of [4]): (i) If $\mathrm{I} \unlhd \mathrm{R}, \mathrm{J} \unlhd \mathrm{R}, \mathrm{K} \unlhd \mathrm{R}$ such that $\mathrm{I} \leq_{\mathrm{e}} \mathrm{J}$, and $\mathrm{J} \leq_{\mathrm{e}} \mathrm{K}$, then $\mathrm{I} \leq_{e} \mathrm{~K}$;
(ii) If $I \subseteq J \subseteq K$, then $I \leq_{e} K$ if and only if $I \leq_{e} J$, and $J \leq_{e} K$; and
(iii) If R, S are two rings, $f: R \rightarrow S$ is a ring isomorphism, and A is an ideal of R, then $A \leq_{e} R \Leftrightarrow$ $f(A) \leq_{e} S$.
1.4 Lemma (2.7 of [4]): Let $K_{1}, K_{2}, \ldots K_{t}, L_{1}, L_{2}, \ldots L_{t}$ are ideals of R such that the sum $\mathrm{K}_{1}+\mathrm{K}_{2}+\ldots+\mathrm{K}_{\mathrm{t}}$ is direct and $\mathrm{L}_{\mathrm{i}} \subseteq \mathrm{K}_{\mathrm{i}}$ for $1 \leq \mathrm{i} \leq \mathrm{t}$. Then $\mathrm{L}_{1}+\mathrm{L}_{2}+\ldots+\mathrm{L}_{\mathrm{t}} \leq_{e} \mathrm{~K}_{1}+\mathrm{K}_{2}+\ldots+\mathrm{K}_{\mathrm{t}}$ $\Leftrightarrow \mathrm{L}_{\mathrm{i}} \leq_{\mathrm{e}} \mathrm{K}_{\mathrm{i}}$ for $1 \leq \mathrm{i} \leq \mathrm{t}$.
1.5 Definition: A non-zero ideal I of R is said to be uniform if $(0) \neq J \unlhd R$, and $J \subseteq I \Rightarrow J \leq \leq_{e} I$.
1.6 Theorem (3.3 of [4]): (i) I is an uniform ideal $\Leftrightarrow L \unlhd R, K \unlhd R, L \subseteq I, K \subseteq I, L \cap K=(0) \Rightarrow$ $\mathrm{L}=(0)$ or $\mathrm{K}=(0)$.
(ii) Let R and S be two rings and f: $R \rightarrow S$ be ring isomorphism. If $U \unlhd R$, then U is uniform in $R \Leftrightarrow f(U)$ is uniform in S.
(iii) If U and K are two ideals of R such that $U \cap K=(0)$, then U is uniform in $R \Leftrightarrow(U+K) / K$ is uniform in R / K.
(iv). If R has FDI and $(0) \neq K \unlhd R$, then K contains an uniform ideal of R.

Now we state the main theorem on [4].
1.7 Theorem (4.4 of [4]): Suppose $0 \neq \mathrm{H} \unlhd \mathrm{R}$ and H has FDIR. Then the following conditions hold.
(i) (Existence) There exist uniform ideals $U_{1}, U_{2}, \ldots U_{n}$ of R whose sum is direct and essential in H;
(ii) (Uniqueness) If $\mathrm{V}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{k}$ are uniform ideals of R whose sum is direct and essential in H , then $\mathrm{k}=\mathrm{n}$.

The number is independent of the choice of the uniform ideals $U_{i}, 1 \leq i \leq n$. This number n is called the dimension of H and it is denoted by $\operatorname{dim} \mathrm{H}$.
1.8 Theorem (2.2 of [5]): Suppose R has FDI.
(i). If $H \unlhd R, K \unlhd R$ and $H \subseteq K$, then $\operatorname{dim} H \leq \operatorname{dim} K$;
(ii) If $(0) \neq A_{i}$ is an ideal of R for all $i, 1 \leq i \leq t$ whose sum is direct, and $A_{i} \subseteq H, 1 \leq i \leq t$, then $\operatorname{dim} \mathrm{H} \geq \mathrm{t}$;
(iii) H is uniform $\Leftrightarrow \operatorname{dim} \mathrm{H}=1$;
(iv) If H is a non-zero ideal of R , then $\operatorname{dim} \mathrm{H} \geq 1$;
(v) If $\mathrm{I}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{k}$ are uniform ideals of R whose sum is direct, then $\mathrm{k} \leq \operatorname{dim} \mathrm{R}$. Moreover $\operatorname{dim} H=\max \left\{k /\right.$ there exist uniform ideals $\mathrm{l}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{k}$ of R whose sum is direct, $\left.\mathrm{l}_{\mathrm{i}} \subseteq \mathrm{H}, 1 \leq \mathrm{i} \leq \mathrm{k}\right\}$; (vi). If $\mathrm{n}=\operatorname{dim} \mathrm{R}$, then the number of summands in any decomposition of a given ideal I of R as a direct sum of non-zero ideals of R is at most n.; and
(vii) If $f: R \rightarrow S$ is an isomorphism and R has FDI, then S has $F D I$ and $\operatorname{dim} R=\operatorname{dim} S$.
1.9 Result (2.3 of [5]): If H and K are ideals of R with $H \cap K=(0)$, then $\operatorname{dim}(\mathrm{K}+\mathrm{H})=\operatorname{dim} \mathrm{K}+\operatorname{dim} \mathrm{H}$.
1.10 Theorem (3.1 of [5]): If R has FDI with $\operatorname{dim} R=n$ and $H \unlhd R$, then the following conditions are equivalent:
(i). $H \leq_{e} R$; (ii). $\operatorname{dim} H=\operatorname{dim} R$; and (iii). H contains a direct sum of n uniform ideals.
1.11 Proposition (3.4 of [5]): Suppose R has FDI and $\mathrm{K} \unlhd \mathrm{R}$.
(i) K is a complement ideal $\Leftrightarrow \mathrm{K}$ has no proper essential extensions; and
(ii) If K is a complement, then R / K has $F D I$, and $\operatorname{dim}(R / K) \leq \operatorname{dim} R$.

The aim of the present paper is to continue the study of rings with FDI. Section-2, deals with the concepts: Complement and Essential Ideals. In Section-3, we include an example of an ideal K of R with $\operatorname{dim} R / K \neq \operatorname{dim} R-\operatorname{dim} K$. Finally, we proved that if K is a complement ideal of R, then $\operatorname{dim} R / K=\operatorname{dim} R-\operatorname{dim} K$.

Throughout this paper R stands for a fixed (not necessarily commutative) ring with FDI.

2. COMPLEMENT AND ESSENTIAL IDEALS

2.1 Lemma: Let K be an ideal of R and $\pi: R \rightarrow R / K$ be the canonical epimorphism. Then the following two conditions are equivalent:
(i) K is a complement; and
(ii) For any ideal K^{1} of R containing K, we have that K^{1} is a complement in R if and only if $\pi\left(\mathrm{K}^{1}\right)$ is complement in R / K.
Proof: (i) \Rightarrow (ii): Suppose that K is a complement of an ideal Z of R . Suppose K^{1} is a complement ideal of R containing K. Now K^{1} is a complement of some ideal S of R. To show $\pi\left(\mathrm{K}^{1}\right)$ is a complement of $\pi(\mathrm{S})$, it is enough to verify that $\pi\left(\mathrm{K}^{1}\right)$ is maximal with respect to the property $\pi\left(\mathrm{K}^{1}\right) \cap \pi(\mathrm{S})=(0)$.

Let $x \in \pi\left(K^{1}\right) \cap \pi(S) \Rightarrow x \in \pi\left(K^{1}\right)$ and $x \in \pi(S) \Rightarrow x=k^{1}+K$ and $x=s+K$, for some $k^{1} \in K^{1}$ and $s \in S \Rightarrow s-k^{1} \in K \subseteq K^{1} \Rightarrow s \in K^{1}$ (since $k^{1} \in K^{1}$) $\Rightarrow s \in K^{1} \cap S$ (since $s \in S$) $\Rightarrow s=0$ (since $\left.K^{1} \cap S=(0)\right) \Rightarrow x=s+K=0$. Therefore $\pi\left(K^{1}\right) \cap \pi(S)=(0)$.
Let A be an ideal of R / K such that $A \supsetneq \pi\left(K^{1}\right)$. It is obvious that $A=\pi\left(K^{*}\right)$ for some ideal K^{*} of R with $K^{*} \supseteq K^{1}$. If $K^{*}=K^{1}$, then $A=\pi\left(K^{*}\right)=\pi\left(K^{1}\right)$, a contradiction. So $K^{*} \supsetneq K^{1}$. Since K^{1} is a complement of S, we have that $K^{*} \cap S \neq(0)$. Let $0 \neq y \in K^{*} \cap S$. Now $y+K \in \pi\left(K^{*}\right) \cap \pi(S)$. If $y+K=0$, then $y \in K \Rightarrow y \in K \cap S \subseteq K^{*} \cap S=(0)$, a contradiction. Hence $0 \neq \mathrm{y}+\mathrm{K} \in \pi\left(\mathrm{K}^{*}\right) \cap \pi(\mathrm{S})$. This shows that $\pi\left(\mathrm{K}^{1}\right)$ is a complement of $\pi(\mathrm{S})$.
Conversely suppose that $\pi\left(K^{1}\right)=K^{1} / K$ is a complement of an ideal $\pi(I)=I / K$ of R / K. Now we have to verify that K^{1} is a complement ideal in R. By Note 1.2, there exists a complement X of K such that $Z \subseteq X$. Since $K^{1} \cap I=K$, we have that $K^{1} \cap(I \cap Z)=\left(K^{1} \cap I\right) \cap Z=K \cap Z=(0)$ and so $K^{1} \cap(I \cap Z)=(0)$. Let Y be a complement of $I \cap Z$ with $Y \supseteq K^{1}$. Now since $Y \supseteq K^{1} \supseteq K$ and $\mathrm{I} \supseteq \mathrm{K}$, we have $\mathrm{Y} \cap \mathrm{I} \supseteq \mathrm{K}$. Also $(\mathrm{Y} \cap \mathrm{I}) \cap \mathrm{Z}=\mathrm{Y} \cap(\mathrm{I} \cap \mathrm{Z})=(0)$. Since $\mathrm{Y} \cap \mathrm{I} \supseteq \mathrm{K},(\mathrm{Y} \cap \mathrm{I}) \cap \mathrm{Z}=$ (0) and K is a complement of Z, it follows that $Y \cap I=K$. So $\pi(Y) \cap \pi(I)=(0)$. Since $Y \supseteq K^{1}$, we have $\pi(\mathrm{Y}) \supseteq \pi\left(\mathrm{K}^{1}\right)$. Now $\pi(\mathrm{Y}) \supseteq \pi\left(\mathrm{K}^{1}\right), \pi(\mathrm{Y}) \cap \pi(\mathrm{I})=(0)$ and $\pi\left(\mathrm{K}^{1}\right)$ is a complement of $\pi(\mathrm{I})$, it follows that $\pi(\mathrm{Y})=\pi\left(\mathrm{K}^{1}\right)$. Now we have that $\mathrm{Y}=\mathrm{K}^{1}$. [Verification: We know that $\mathrm{Y} \supseteq \mathrm{K}^{1}$. Let $x \in Y$. Then $\pi(x) \in \pi(Y)=\pi\left(K^{1}\right) \Rightarrow x+K \in \pi\left(K^{1}\right) \Rightarrow x+K=y+K$, for some $y \in K^{1}$ $\Rightarrow x-y \in K \subseteq K^{1}$ and $y \in K^{1} \Rightarrow x-y \in K^{1}$ and $y \in K^{1} \Rightarrow x \in K^{1}$. Therefore $\left.Y=K^{1}\right]$. Since Y is a complement, we conclude that K^{1} is a complement.
(ii) \Rightarrow (i : Since K is an ideal of R containing K, and since $\pi(K)=0$ is a complement in R / K, it follows that K is complement in R.
2.2 Lemma: Let $\mathrm{K} \unlhd \mathrm{R}$ and π : $\mathrm{R} \rightarrow \mathrm{R} / \mathrm{K}$ be the canonical epimorphism. Then the following two conditions are equivalent:
(i) K is a complement; and
(ii) For any essential ideal S of $R, \pi(S)$ is essential in R / K.

Proof: (i) \Rightarrow (ii): Let S be an essential ideal of R. To show $\pi(S)$ is essential in R / K, take an ideal Z / K of R / K such that $\pi(S) \cap(Z / K)=(0)$. It is enough to show $Z=K$. In a contrary way, suppose $Z \neq K$. Then by Proposition 1.11 (i), K has no proper essential extensions. So K is not essential in Z and hence there exists an ideal $(0) \neq A$ of R such that $A \cap K=(0)$ and $A \subseteq Z$. Since S is essential in R, there exists $0 \neq x \in S \cap A \Rightarrow \pi(x) \in \pi(S) \cap \pi(A) \subseteq \pi(S) \cap \pi(Z)=(0)$ $\Rightarrow \pi(x)=0 \Rightarrow x+K=0 \Rightarrow x \in K \Rightarrow x \in K \cap A$ (since $x \in A)=(0) \Rightarrow x=0$, a contradiction. Thus $Z=K$. We proved that $\pi(S)$ is essential in R / K.
(ii) \Rightarrow (i): Assume the converse hypothesis. In a contrary way, suppose that K is not a complement. By Proposition 1.11 (i), K has a proper essential extension K^{*}. Let X be a complement of K^{*} in R. Then $K^{*} \oplus X$ is essential in R (by Note 1.2). Since K is essential in K^{*} by Lemma 1.4, $K \oplus X$ is essential in $K^{*} \oplus X$ and so $K \oplus X$ is essential in R (by Result 1.3 (i)). By the converse hypothesis, we get that $\pi(K+X)$ is essential in R / K. Since K^{*} contains K properly, $\pi\left(K^{*}\right)$ is a non-zero ideal of R / K. Now $(K+X) \cap K^{*}=K+\left(X \cap K^{*}\right)=K$, which shows that $\pi(\mathrm{K}+\mathrm{X}) \cap \pi\left(\mathrm{K}^{*}\right)=(0)$. This is a contradiction to the fact that $\pi(\mathrm{K}+\mathrm{X})$ is essential in R / K.

Combining Lemmas 2.1 and 2.2, we get the following Theorem.
2.3 Theorem: Let K be an ideal of R and $\pi: R \rightarrow R / K$ be the canonical epimorphism. Then the following three conditions are equivalent:
(i) K is a complement;
(ii) For any ideal K^{1} of R containing K, we have that K^{1} is a complement in R if and only if $\pi\left(\mathrm{K}^{1}\right)$ is complement in R / K; and
(iii) For any essential ideal S of $R, \pi(S)$ is essential in R / K.

3. DIMENSION OF THE QUOTIENT RING R/K

3.1 Lemma: Let R be a Ring with FDI. If A is an ideal of R such that $\operatorname{dim}(R / A)=1$ and A is not essential in R, then $\operatorname{dim}(R / A)=\operatorname{dim} R-\operatorname{dim} A$.
Proof: Since A is not essential, there is a non-zero ideal I of R such that $A \cap I=(0)$. Let K be a complement of A containing I. Suppose $\operatorname{dim} K \geq 2$. Then K contains a direct sum of two uniform ideals I_{1} and I_{2} of R. Clearly $I_{i} \cap A=(0)$ for $i=1$, 2. By Theorem 1.6 (iii), $\left(\frac{I_{1}+A}{A}\right)$, $\left(\frac{I_{2}+A}{A}\right)$ are two uniform ideals of R / A. It is easy to verify that the $\operatorname{sum}\left(\frac{I_{1}+A}{A}\right)+\left(\frac{I_{2}+A}{A}\right)$ is direct and hence $\operatorname{dim}(R / A) \geq 2$, a contradiction. Hence $\operatorname{dim} K \neq 2$. Since $K \neq(0)$, by Theorem 1.8 (iv), we have that $\operatorname{dim} K \geq 1$. Therefore $\operatorname{dim} K=1$. Since K is complement of A, the sum K +A is direct and essential in R . So $\operatorname{dim} \mathrm{R}=\operatorname{dim}(\mathrm{K}+\mathrm{A})($ by Theorem 1.10) $=\operatorname{dim} \mathrm{K}+\operatorname{dim} \mathrm{A}$ (by Result 1.9$)=1+\operatorname{dim} A=\operatorname{dim}(R / A)+\operatorname{dim} A$. Hence $\operatorname{dim}(R / A)=\operatorname{dim} R-\operatorname{dim} A$.

It is well known that if V is a finite dimensional vector space and W is a subspace of V , then $\operatorname{dim}(\mathrm{V} / \mathrm{W})=\operatorname{dim} \mathrm{V}-\operatorname{dim} \mathrm{W}$. This dimension condition may not hold for a general ideal W of a Ring V where "dim" denotes the "finite dimension". For this, observe the following examples.
3.2 Examples: Write $R=\mathbb{Z}$, the ring of integers. Since every ideal of \mathbb{Z} is essential in \mathbb{Z}, it follows that \mathbb{Z} is uniform and so $\operatorname{dim} R=1$.
(i) Write $K=6 \mathbb{Z}$. Now K is an uniform ideal of R. So $\operatorname{dim} K=1$ and $\operatorname{dim} R-\operatorname{dim} K=1-1=0$. Now $R / K=\mathbb{Z} / 6 \mathbb{Z} \cong \mathbb{Z}_{6} \cong \mathbb{Z}_{2}+\mathbb{Z}_{3}$ and so $\operatorname{dim}(R / K)=2$.
Thus $\operatorname{dim}(R / K)=2 \neq 0=\operatorname{dim} R-\operatorname{dim} K$.
(ii) Let p, q be distinct primes and consider H , the ideal of \mathbb{Z} generated by the product of these primes (that is, $H=p q \mathbb{Z}$). Now H is uniform ideal and so $\operatorname{dim} H=1$. It is known that $\mathbb{Z} / \mathrm{H}=\mathbb{Z}_{\mathrm{pq}} \cong \mathbb{Z}_{\mathrm{p}} \oplus \mathbb{Z}_{q}$, and $\mathbb{Z}_{\mathrm{p}}, \mathbb{Z}_{\mathrm{q}}$ are uniform ideals. $\operatorname{So} \operatorname{dim}(\mathbb{Z} / \mathrm{H})=2$. Thus $\operatorname{dim}(\mathbb{Z} / \mathrm{H})=2 \neq 0=$ $1-1=\operatorname{dim} \mathbb{Z}-\operatorname{dim} H$.

Hence, there arise a type of ideals K which satisfy the condition $\operatorname{dim}(R / K)=\operatorname{dim} R-\operatorname{dim} K$.
3.3 Theorem: If R has $F D I$ and K is a complement ideal, then $\operatorname{dim}(R / K)=\operatorname{dim} R-\operatorname{dim} K$.

Proof: By Proposition 1.11 (ii), we have that R / K has FDI. If $\operatorname{dim}(R / K)=1$, then by Lemma 3.1, $\operatorname{dim}(R / K)=\operatorname{dim} R-\operatorname{dim} K$. Suppose $\operatorname{dim}(R / K)=m$, where $m \geq 2$. Then by Theorem 1.7, there exist ideals $K_{1}, K_{2}, \ldots, K_{m}$ of R containing K properly such that K_{i} / K is an uniform ideal for $1 \leq \mathrm{i} \leq m$, the sum $\left(\mathrm{K}_{1} / \mathrm{K}\right)+\left(\mathrm{K}_{2} / \mathrm{K}\right)+\ldots+\left(\mathrm{K}_{\mathrm{m}} / \mathrm{K}\right)$ is direct and essential in R/K. Clearly $\mathrm{K}=\mathrm{K}_{\mathrm{i}} \cap \mathrm{K}_{\mathrm{j}}$, $i \neq j$ for $1 \leq i \leq m$ and $1 \leq j \leq m$. Since K is a complement ideal of R, by Proposition 1.11 (i), we have that K is not essential in $K_{i}, 1 \leq i \leq m$. So there exist uniform ideals $I_{i}(1 \leq i \leq m)$ of R such that $\mathrm{I}_{\mathrm{i}} \subseteq \mathrm{K}_{\mathrm{i}}$ and $\mathrm{I}_{\mathrm{i}} \cap \mathrm{K}=(0)$. By a straight forward verification, we get that the sum $\mathrm{K}+\mathrm{I}_{1}+\mathrm{I}_{2}+\ldots$ $+I_{m}$ is direct. Now we verify that $T=K+I_{1}+I_{2}+\ldots+I_{m}$ is essential in R. Let H be an ideal of R such that $T \cap H=(0)$. Then $T \cap(H+K)=(T \cap H)+K$ (by modular law) $=(0)+K=K$. So (T / K) $\cap \frac{(H+K)}{K}=(0)$. Since $\frac{\left(l_{i}+K\right)}{K}$ is a non-zero ideal of the uniform ideal K_{i} / K, it follows that $\frac{\left(I_{i}+K\right)}{K}$ is essential in K_{i} / K, for $1 \leq i \leq m$. By Lemma 1.4, $\frac{\left(I_{1}+K\right)}{K}+\frac{\left(I_{2}+K\right)}{K}+\ldots+\frac{\left(I_{m}+K\right)}{K}$ is essential in R/K. Therefore T / K is essential in R / K. Since $(T / K) \cap \frac{(H+K)}{K}=(0)$, we have
$\frac{(H+K)}{K}=(0)$ and so $H \subseteq K$. So $H=H \cap K \subseteq H \cap T=(0)$. This shows that the sum $T=K+I_{1}+$ $\ldots+I_{m}$ is essential in R. Now $\operatorname{dim} R=\operatorname{dim}\left(K+I_{1}+\ldots+I_{m}\right)(b y$ Theorem 1.10) $=$ $\operatorname{dim} K+\operatorname{dim} I_{1}+\operatorname{dim} I_{2}+\ldots+I_{m}$ (by Result 1.9) $=\operatorname{dimK}+\underbrace{1+\ldots+1}_{\text {m-tems }}$ (by Theorem 1.8 (iii)) $=\operatorname{dim} K$ $+m=\operatorname{dim} K+\operatorname{dim}(R / K)$. Therefore $\operatorname{dim}(R / K)=\operatorname{dim} R-\operatorname{dim} K$.

4. COMPARISON WITH THE PREVIOUS WORK DONE IN THE RELEVANT FIELDS

(i) A module is a generalized concept of vector space. If W is a subspace of a vector space V and $\operatorname{dim} \mathrm{W}=\operatorname{dim} \mathrm{V}$, then $\mathrm{V}=\mathrm{W}$. But in case of modules, if W is a submodule of a module M with $\operatorname{dim} \mathrm{W}=\operatorname{dim} \mathrm{M}$, then W is essential in M , but W may not be equal to M . Due to this fact the study of Goldie dimension in modules becomes important. A ring is a module over itself. So the theory developed in modules is also a contribution to the theory of Rings.
(ii) A ring R is a module R_{R}. The right ideals in R coincide with the submodules of R_{R}. So the dimension theory developed in modules speaks about the results related to the dimension of one sided "right ideals" of rings. But the results obtained in module theory can not speak about the dimension of two sided ideals of rings. To fill this gap, Satyanarayana, Nagaraju, Bala Murugan, and Godloza [4] started studying the concept 'dimension of two sided ideals' in rings. The study was continued in [5] and [7]. The further study on this concept formed the results of the present paper.'

5. CONCLUSION \& FUTURE WORK

This paper is the continuation of the published papers [4] and [5]. In this present paper, we are able to obtain several interesting results related to the concept dimension of rings with respect to two sided ideals. We proved fundamental and critical relations between complement ideals and essential ideals. In general the statement:
$\operatorname{dim}(R / K)=\operatorname{dim} R-\operatorname{dim} K$, is not true for two sided ideals K. To explain this fact, an example was presented. Finally we achieved the result and able to prove the important statement that $\operatorname{dim}(\mathrm{R} / \mathrm{K})=\operatorname{dim} \mathrm{R}-\operatorname{dim} \mathrm{K}$, for a particular type of submodule (namely, complement submodule). We continue this work, in near future, to get some more important dimension conditions in rings with respect to two sided ideals.

6. ACKNOWLEDGEMENT

The first and fourth authors are thankful to the UGC (New Delhi) for assistance under the grant No. F.34-136/2008 (SR), dt. 30 DEC 2008. First author also thank the Walter Sisulu University, South Africa for inviting him as a Visiting Professor (March $26^{\text {th }}$ - April $10^{\text {th }}$, 2007) during which period a part of the paper was initiated. The second author acknowledges the authorities of Hindustan University for their encouragement. The authors acknowledges the referees for their valuable comments for the improvement of the paper.

7. REFERENCES

1. A. W. Goldie "The Structure of Noetherian Rings, Lectures on Rings and Modules", SpringerVerlag, New York (1972).
2. Bh. Satyanarayana "A note on E-direct and S-inverse Systems", Proc. of the Japan Academy, 64-A:292-295, 1988.
3. Bh. Satyanarayana and Sk. Mohiddin Shaw "Fuzzy Dimension of Modules over Rings (Monograph)", VDM Verlag Dr Muller, Germany, (2010) (ISBN: 978-3-639-23197-7).
4. Bh. Satyanarayana D. Nagaraju, K. S. Balamurugan and L. Godloza "Finite Dimension in Associative Rings", Kyungpook Mathematical Journal, 48:37-43, 2008.
5. Bh. Satyanarayna, D. Nagaraju, L. Godloza and S. Sreenadh "Some Dimension Conditions in Rings with Finite Dimension", The PMU Journal of Humanities and Sciences 1(1):69-75, 2010.
6. Bh. Satyanarayana, D. Nagaraju, Sk. Mohiddin Shaw and S. Eswaraiah Setty "E-irreducible Ideals and Some Equivalent Conditions", Proceedings of International Conference on Challenges and Applications of Mathematics in Science and Technology (CAMIST), NIT, Rourkela, India, January 11-13, 2010, PP 681-687, Macmillan Advanced Research Series, New Delhi, 2010 (ISBN: 978-0230-32875-4).
7. Bh. Satyanarayana, L. Godloza and D. Nagaraju "Ideals and Direct Product of Zero Square Rings", East Asian Mathematical Journal 24:377-387, 2008.
8. Bh. Satyanarayana and K. Syam Prasad "Discrete Mathematics and Graph Theory" Prentice Hall of India, New Delhi, (2009) (ISBN: 978-81-203-3842-5).

INSTRUCTIONS TO CONTRIBUTORS

The International Journal of Contemporary Advanced Mathematics (IJCM) brings together both of these aspects of biology and creates a platform for exploration and progress of these, relatively new disciplines by facilitating the exchange of information in the fields of computing and statistics, mathematics in the Technology sciences are expected to have a substantial impact on the scientific, engineering and economic development of the world. Together they are a comprehensive application of mathematics, statistics, science and computer science with an aim to understand living systems.

We invite specialists, researchers and scientists from the fields of computer science, mathematics, statistics, physics and such related sciences to share their understanding and contributions towards scientific applications that set scientific or policy objectives, motivate method development and demonstrate the operation of new methods in the field of Contemporary Advanced Mathematics.

To build its International reputation, we are disseminating the publication information through Google Books, Google Scholar, Directory of Open Access Journals (DOAJ), Open J Gate, ScientificCommons, Docstoc and many more. Our International Editors are working on establishing ISI listing and a good impact factor for IJCM.

The initial efforts helped to shape the editorial policy and to sharpen the focus of the journal. Started with Volume 1, 2010, IJCM appears in more focused issues. Besides normal publications, IJCM intend to organized special issues on more focused topics. Each special issue will have a designated editor (editors) - either member of the editorial board or another recognized specialist in the respective field.

We are open to contributions, proposals for any topic as well as for editors and reviewers. We understand that it is through the effort of volunteers that CSC Journals continues to grow and flourish.

LIST OF TOPICS

The realm of International Journal of Contemporary Advanced Mathematics extends, but not limited, to the following:

- Biomedical modelling and computer simulation
- Computational intelligence
- DNA assembly, clustering, and mapping
- Fuzzy logic
- Gene identification and annotation
- Hidden Markov models
- Molecular evolution and phylogeny
- Molecular sequence analysis
- Computational genomics
- Computational proteomics
- E-health
- Gene expression and microarrays
- Genetic algorithms
- High performance computing
- Molecular modelling and simulation
- Neural networks

CALL FOR PAPERS

Volume: 2 - Issue: 1
i. Paper Submission: April 30, 2011
ii. Author Notification: May 31, 2011
iii. Issue Publication: June 2011

CONTACT INFORMATION

Computer Science Journals Sdn BhD
M-3-19 Plaza Damas, Sri Hartamas
50480, Kuala Lumpur
Malaysia
Phone: 0060362071607 0060327826991

Fax: 0060362071697
Email: cscpress@cscjournals.org

CSC PUBLISHERS © 2011

COMPUTER SCIENCE JOURNALS SDN BHD
M-3-19 PLAZA DAMAS, SRI HARTAMAS
50480, KUALA LUMPUR

MALAYSIA

PHONE: 0060362071607

$$
00603 \quad 27826991
$$

FAX: 0060362071697

EMAIL: cscpress@cscjournals.org

