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EDITORIAL PREFACE 

 
The International Journal of Computer Networks (IJCN) is an effective medium to interchange 
high quality theoretical and applied research in the field of computer networks from theoretical 
research to application development. This is the second issue of volume four of IJCN. The 
Journal is published bi-monthly, with papers being peer reviewed to high international 
standards. IJCN emphasizes on efficient and effective image technologies, and provides a central 
for a deeper understanding in the discipline by encouraging the quantitative comparison and 
performance evaluation of the emerging components of computer networks. Some of the 
important topics are ad-hoc wireless networks, congestion and flow control, cooperative 
networks, delay tolerant networks, mobile satellite networks, multicast and broadcast networks, 
multimedia networks, network architectures and protocols etc. 

 
The initial efforts helped to shape the editorial policy and to sharpen the focus of the journal. 
Starting with volume 4, 2012, IJCN appears in more focused issues. Besides normal publications, 
IJCN intend to organized special issues on more focused topics. Each special issue will have a 
designated editor (editors) – either member of the editorial board or another recognized specialist 
in the respective field. 
 
IJCN give an opportunity to scientists, researchers, engineers and vendors to share the ideas, 
identify problems, investigate relevant issues, share common interests, explore new approaches, 
and initiate possible collaborative research and system development. This journal is helpful for 
the researchers and R&D engineers, scientists all those persons who are involve in computer 
networks in any shape.  
 
Highly professional scholars give their efforts, valuable time, expertise and motivation to IJCN as 
Editorial board members. All submissions are evaluated by the International Editorial Board. The 
International Editorial Board ensures that significant developments in computer networks from 
around the world are reflected in the IJCN publications. 
 
 
IJCN editors understand that how much it is important for authors and researchers to have their 
work published with a minimum delay after submission of their papers. They also strongly believe 
that the direct communication between the editors and authors are important for the welfare, 
quality and wellbeing of the journal and its readers. Therefore, all activities from paper submission 
to paper publication are controlled through electronic systems that include electronic submission, 
editorial panel and review system that ensures rapid decision with least delays in the publication 
processes.  
 
To build its international reputation, we are disseminating the publication information through 
Google Books, Google Scholar, Directory of Open Access Journals (DOAJ), Open J Gate, 
ScientificCommons, Docstoc and many more. Our International Editors are working on 
establishing ISI listing and a good impact factor for IJCN. We would like to remind you that the 
success of our journal depends directly on the number of quality articles submitted for review. 
Accordingly, we would like to request your participation by submitting quality manuscripts for 
review and encouraging your colleagues to submit quality manuscripts for review. One of the 
great benefits we can provide to our prospective authors is the mentoring nature of our review 
process. IJCN provides authors with high quality, helpful reviews that are shaped to assist 

authors in improving their manuscripts.  
 
 
Editorial Board Members 
International Journal of Computer Networks (IJCN) 



EDITORIAL BOARD 
 

EDITOR-in-CHIEF (EiC) 
 

Dr. Min Song   

University of Toledo, Ohio (United States of America) 

 
 
ASSOCIATE EDITORS (AEiCs) 
 

 
Dr. Qun Li 
The College of William and Mary  
United States of America 

 
  
Dr. Sachin Shetty 
Tennessee State University  
United States of America 

 
 

Dr. Liran Ma 
Michigan Technological University  
United States of America 

 
[ 

Dr. Benyuan Liu 
University of Massachusetts Lowell  
United States of America 

 
Assistant Professor Tommaso Melodia 
University at Buffalo  
United States of America 
 

 

 
EDITORIAL BOARD MEMBERS (EBMs) 
 

 
Dr. Wei Cheng 
George Washington University  
United States of America 

 
Dr. Yu Cai 
Michigan Technological University  
United States of America 

 
Dr. Ravi Prakash Ramachandran 
Rowan University  
United States of America 

 
Dr. Bin Wu 
University of Waterloo  
Canada 

 
Dr. Jian Ren 
Michigan State University  
United States of America 

 

 



Dr. Guangming Song 
Southeast University  
China 

 
Dr. Jiang Li 
Howard University  
China 

 
Dr. Fang Liu 
University of Texas at Pan American  
United States of America 

 
Dr. Enyue Lu 
Salisbury University  
United States of America 

 
Dr. Chunsheng Xin 
Norfolk State University  
United States of America 
 
Dr. Imad Jawhar 
United Arab Emirates University 
United Arab Emirates 

 
Dr. Yong Cui 
Tsinghua University 
China 
 
Dr. Zhong Zhou 
University of Connecticut 
United States of America 
 
Associate Professor Cunqing Hua 
Zhejiang University 
China 
 
Dr. Manish Wadhwa 
South University 
United States of America 
 
Associate Professor Paulo de Figueiredo Pires 
Federal University of Rio de Janeiro 
Brazil 
 
Associate Professor Vijay Devabhaktuni 
University of Toledo 
United States of America 
 
Dr. Mukaddim Pathan 
CSIRO-Commonwealth Scientific and Industrial Research Organization 
Australia 
 
Dr. Bo Yang 
Shanghai Jiao Tong University 
China 



 
Assistant Professor Yi Gu 
University of Tennessee at Martin 
United States of America 
 
Assistant Professor Tarek Guesmi 
University of Nizwa 
Oman 
 
Dr Yan Sun 
Washington State University 
United States of America 
 
Associate Professor Flavia C. Delicato 
Federal University of Rio de Janeiro 
Brazil 
 
Dr. Rik Sarkar 
Free University of Berlin 
Germany 
 
Associate Professor Mohamed Younis 
University of Maryland, Baltimore County 
United States of America 
 
Dr. Jinhua Guo 
University of Michigan 
United States of America 
 
Associate Professor Habib M. Ammari 
University of Michigan Dearborn 
United States of America 
 



International Journal of Computer Networks (IJCN), Volume (4): Issue (3): 2012 

TABLE OF CONTENTS 

 
 
 
 
Volume 4, Issue 3, June 2012 

 
 
Pages 

 

53 - 71 Packet Payload Inspection Classifier in the Network Flow Level 

N.Kannaiya Raja, Dr. K.Arulanandam, P.Umadevi & D.S.Praveen 

  

  

 



N.Kannaiya Raja, Dr. K.Arulanandam, P.Umadevi & D.S.Praveen 

International Journal of Computer Networks (IJCN), Volume (4) : Issue (3) : 2012  53 

Packet Payload Inspection Classifier in the Network Flow Level 
 
 
N.Kannaiya Raja,                      Kanniya13@hotmail.co.in 
Assistant Prof/ CSE Department 
Arulmigu Meenakshi Amman College of Engg, 
Thiruvannamalai Dt-604410, 
Tamilnadu, India 
 
Dr. K.Arulanandam,         sakthisivamkva@gmail.com                                                                      
Professor/CSE Department 
Ganadipathy Tulsi’s Jain Engg college, 
Vellore, Tamilnadu, India. 
 
P.Umadevi,    umasri05@yahoo.co.in 
Assistant Prof/ CSE Department 
Arulmigu Meenakshi Amman College of Engg,  
Thiruvannamalai Dt-604410, 
Tamilnadu, India. 
 
D.S.Praveen,                praveencse37@gmail.com 
Arulmigu Meenakshi Amman College of Engg, 
Thiruvannamalai Dt-604410, 
Tamilnadu, India. 

 
Abstract 

 
The network have in the world highly congested channels and topology which was dynamically 
created with high risk. In this we need flow classifier to find the packet movement in the network. 
In this paper we have to be developed and evaluated TCP/UDP/FTP/ICMP based on payload 
information and port numbers and number of flags in the packet for highly flow of packets in the 
network. The primary motivations of this paper all the valuable protocols are used legally to 
process find out the end user by using payload packet inspection, and also used evaluations 
hypothesis testing approach. The effective use of tamper resistant flow classifier has used in one 
network contexts domain and developed in a different Berkeley and Cambridge, the classification 
and accuracy was easily found through the packet inspection by using different flags in the 
packets. While supervised classifier training specific to the new domain results in much better 
classification accuracy, we also formed a new approach to determine malicious packet and find a 
packet flow classifier and send correct packet to destination address. 
 
Keywords: Flow Classification, Packet Inspection, Traffic Classification, Packet Processing, 
Bloom Filter. 

 
 
1. INTRODUCTION 
The main problems are found and generated in the online classification of observed traffic flows 
in to the application types. The flow classification is a problematic issue because resources used 
for both routing, switching and bridge. Flow refers to sequences number of packets with having 
five tuples. They are namely source IP address, destination IP address, source port number, 
destination port number and protocol. Thus eliminating the approximation. 
 
 A flow classification organizes packets with different characteristics in to different classes using 
certain criteria. It is the basis for providing flow classification techniques. It can be applied to 
network and end-host security, for e.g., consider a sequence of flow, whose “server” port number 
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indicates one type of application, but its features reflect another that contains a anomaly, means 
to indicate malicious activity. At the same time, network planners may provide the quantities and 
types of number of packet flows could be offered. So that the users in the network decide how to 
expand their network to better accommodate them. Mostly, those internet users have, as they use 
the network to conduct their legal terms of use of policies that may need to be enforced by the 
foundation for this legal administrative privacy laws and internet service providers. 
 
Flow classification schemes containing many key elements that are shown to perform well also in 
terms of processing flows. From the online classification First, performance of flow classifiers we 
created are found by features. It is the basis for providing computationally and memory wise. 
However, in more general usage, the features are feasible to identify in manually and which are 
robust and at the same time that are re4adily susceptible to obfuscation or tampering. Deep 
Packet Inspection(DPI) (also called complete packet inspection and information extraction-IX) is a 
form of computer network packet filtering that will not examines features based on packet payload 
information acquired online classification. Examining packet payload information may changes 
the terms-use-of privacy laws and additionally, difficult to examine. Also, provide simple 
encryption methods (e.g., a randomized substitution cipher) can render from packet payload 
information not considering for classification purposes. Additionally, eliminate [1], the classifier 
thus developed can be eliminate, and also able to be readily tampered with one set of port 
numbers or protocol-specific information in the payload header information e.g., push-pkts-server 
feature applied in the classifier of [1].which is a technique based on computing number of packets 
with the push bit set in the TCP option field of the layer 4-header. 
  
On optimizing the performance and usage of port numbers, notify the flow and congestion control 
mechanisms of TCP, can be extended through the application can be essentially constitutes the 
arbitrary port numbers and UDP. There exists a QOS e.g., interactive real time applications. 
However, in more general usages, to solve this, the UDP based utorrent client [2] we use the 
UDP Bit Torrent. 
 
Congestion control mechanism of TCP makes it possible to find missing of packets. Due to 
frequently large immune system to session termination by third parties via forged TCP RST 
(reset) or FIN packet transmission, flow classification is complicated, when and there may be a 
merging of additional measures that is said to be not connection orient in layer4. 
 
Including the major problems, the second one is the problem arising by considering the port 
numbers as feature problem, applications are engaging in port-number “spoofing”, present 
increasing problems for features which employs standard port numbers requiring to nominally 
allowed application types leads ensuring obfuscate their activity and allow  through firewalls that 
block certain port number ranges (which consider unwanted Application types).assumption we 
can emphasizes also deleterious effects of port number spoofing on the performance of 
classifiers that rely on ports as features. We can also able to found and develop methodology for 
detecting port-number spoofing. 
 
We illustrate this method as the most important, notably issues based on the current study that 
corresponds to the porting of a classifier from one domain (the first domain we use supervised 
machine learning to a train a classifiers) that will labels(provided if supervised training is to be 
well performed on the new domain), the packet traces may be employed and evaluated by having 
contemporary publicly available packet traces with the domains, the packet traces are recorded 
initially one at the Cambridge, UK [2], and the second one at the at U.C. Berkeley’s Lawrence 
Berkeley National Laboratory (LBNL or now just LBL) [3]. The classification accuracy of over 
100% when training and testing on first domain and also that accuracy of classification is applied 
to the second domain. 
              
We document the features of flow by improving the measurement of this study, illustrations with 
publicly available network data from multiple domains, indicating and identifying most problems 
endemic to work. Analyze the main goal of building classifiers that can be submitted on all such, 
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and the classifier accuracy needs to assess on each domain. Not only obtained network traces at 
different sites may not include the same applications, or may not define classes in the correct way 
for e.g., identifying and presenting Bit Torrent traffic at one site while other site may not involve. 
However, the evaluation result basically group one site mi9ght define a “Database” class, where 
as another might group “Database” traffic with in a larger class. In order to perform, we limited 
less problematic, same traffic is presented at the classes defined at the two different sites e.g., 
mail and “email” requires its own set of protocols and there are a variety, both for sending and for 
receiving mail. It is increasingly popularly the class nomenclature used at the two sites will in 
basically differ. 
 
Accurately, porting a classifier is said to problematic issues source site itself, which was trained to 
illustrate its defined classes, that may corresponds to operate on a different target site, In 
common with classes, where there is a different set of defined classes we use in the sequel to 
encounter this problem might have working with the Cambridge and Berkeley traces. We plan to 
address it, each of the site may be defined by a set of “consensus” classes, and we attained a 
significance that aims to best reconcile the different sites of evaluated consensus classes used by 
the two sites. These two sites may be defined different sets of defined classes. 
  
Second, it is crucial, not only for supervised classifier training but also for classifier accuracy 
evaluation, to have ground-truth class labels for each flow. However, classifier porting is needed 
in the first place because there are no labeled flows for directly training a classifier for the target 
site. Thus, both in practice and in this study, the absence of ground truth labels for the target site, 
even for evaluating classifier porting accuracy, is a problem that must be overcome. In this paper, 
since we study classifier porting, even if class labels are not assumed to be available for 
supervised classifier training at the target site, we still need labels for (test) flows from this domain 
in order to evaluate the classification accuracy of the classifier ported from the source site. 
Indeed, the Cambridge trace provided ground-truth label information for all flows which was 
obtained via DPI (e.g., the Wireshark tool can be used for this purpose) Unfortunately, no flow-
class labels or packet payloads were provided for the Berkeley trace; thus, some procedure for 
establishing ground-truth was needed for this trace in order to evaluate accuracy of a classifier 
ported to this domain. To obtain the necessary ground truth, we applied a port-to-application 
mapping approach that will be detailed in the sequel. For example, absent port spoofing (which is 
assumed in performing this mapping for the Berkeley traces), flows with destination port numbers 
25, 53, and 80 are reliably bound to the applications “email”, “dns”, and “web”,  respectively. 
            
Once we resolved the issues of heterogeneity in class definitions and missing ground truth 
discussed above, we were ready to evaluate the accuracy of a classifier trained on one domain 
(Cambridge) but now operating on another (Berkeley).It is not surprising (as will be seen by our 
results) that accuracy may degrade when operating in a different domain. One possible reason is 
that different traces may predominantly capture different traffic types.  
 
For example, one data set may come from a traffic monitor deployed close to a mail server, with 
another coming from a gateway router; email traffic will not predominate the latter dataset, while 
the former may not have as much inters-enterprise network management traffic. In addition to 
differences in class priors, there may be (even subtle) differences between class-conditional 
feature distributions measured at two different sites, which can degrade accuracy when a 
classifier trained at the source site is ported to the target site. 
 
In summary, the contributions of this article are as follows: 
   
• a study of classifier porting from one site to another 
• network flow classification based on robust features; and 
• a port-spoofing detection methodology and its evaluation. 
 
Intrusion detection systems (IDSs) that rely on packet inspection, e.g., Snort [3] and Bro, use 
deterministic and simple statistical signatures to determine known threats and highly suspicious 
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behavior, respectively. Intrusion detection based on packet payload information has also been 
extensively studied, e.g., detection based on “prevalent content”. Some of the decisions made by 
network-based IDSs clearly amount to packet-flow classification decisions. Network flow 
classification based on a flow’s statistical features was proposed in. Using, e.g., average packet 
size and flow duration, they applied two supervised machine learning approaches: K-nearest 
neighbor (KNN) and Linear Discriminant Analysis. As typically done for packet traces recorded 
prior to 2005, they obtained ground-truth application labels from the standard IANA port-
application mapping list. 
            
A naive Bayes classifier combined with kernel estimation and a correlation-based feature 
selection strategy was used in to solve offline TCP flow classification. Using twelve different 
features (given in Section III-B below), they achieved a classification accuracy of 96%. One 
difficulty with this classifier is that it is based on both port features and TCP-dependent features, 
both of which can be easily tampered with to trick the classifier. 
           
Following this investigation, reduced the complexity of the approach in to one suitable for on-line 
deployment by limiting the “observation window” of inspected packets per flow. This approach 
used C4.5 decision trees and achieved a precision greater than 92% for every application. We 
note that did consider classifier portability both temporally and to another (spatial) domain. 
However, the classifiers evaluated in used port numbers as features, which we already noted 
can be easily tampered with. We will demonstrate fragility of such classifiers in the presence of 
port spoofing in the sequel. Another limitation of is that it did not consider the case where 
different class definitions are used at the source and target sites. This is a genuine problem, as 
we note that different definitions were in fact used in defining the Cambridge and Berkeley 
classes. Subsequently in, the Cambridge researchers developed a ground-truth derivation tool 
.This tool is backed by the L7-filter, i.e., it requires layer-7 information from the packet payloads. 
So it has limited usage when packet payload information is not available because of laws 
protecting privacy, which is the case for available, publicly disseminated packet-trace data. 
            

Recently, correlated packet-level alarms with a feature vector derived from corresponding flow-
level statistics not involving payload information. Their flow-level classifier exploited ground-truth 
labels derived with the help of packet inspection by intrusion detection devices. Their 
experimental results showed little impairment of classifier performance in deployment over 
periods of several weeks. 
              
The Proposed an approach to TCP flow classification based on a flow representation using the 
statistical properties of an application protocol. The features they used included payload size 
statistics of packets composing the flows. Preliminary results for a support vector machine (SVM) 
classifier confirmed the effectiveness of such representation. All these previous research results 
demonstrate the effectiveness of classification based on extracted flow statistics; however, all 
these methods with the exception of, have a common  
 
2. RELATED WORK 
We briefly summarize the key ideas behind classification tools and the methodologies to test 
them and evaluate their performance. wherever the classifier on the network we need to change 
payload packet in the network eg., a,b,c are mention below. 
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     (a) 

 
 
 
 
  

   (b) 
 
 
 
 
 
 
 
 
 
 
  
  

  (c) 
 
A .Classifiers 
Classifiers are defined by two main processes. 
           • Feature extraction: the process of extracting the subset of information that summarizes a 
large set of data or samples. 
           • Decision process: the algorithm that assigns a suitable class to an observed sample. 
 
Examples of features are specific strings in the payload (as in DPI), packet size, or amount of 
exchanged bytes. Potentially, any summary of a packet stream can be used, and its choice has a 
deep impact on the classifier performance. In our tool, features are defined from the statistical 
observation of the values taken by portions of the payload. 
 
For the decision process, any machine learning technique can be adopted. In this paper, we 
focus on supervised learning algorithms, in which a training set composed of known traffic is used 
to build a model; the model is then used during the classification task. Given a geometric 
representation of features in a multidimensional space, during the training phase, labeled 
samples are used to identify and to define the “volume” into which samples of the considered 
class fall. During the classification process instead, the sample to be classified has to be labeled 
with the most likely class according to the volume it falls into. For example, assuming that there 
are two classes of objects, i.e., red and yellow apples, if the features of a sample place it in a 
volume dense of red apples, we are inclined to classify it as a red apple, too. However, defining 
the surface that delimits the volumes (to later take the decision) is tricky since training points can 
be spread out on the multidimensional space and complex surfaces must be described. In this 
paper, we consider both simple geometric decision process and SVM based algorithm, which is 
considered to be among the most powerful   supervised    learning.  
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TABLE 1.DEFINITION OF FALSE/TRUE POSITIVE AND FALSE/TRUENEGATIVE 

 
B. Testing Methodology 
Once a classifier has been designed, its performance must be evaluated and proper metrics must 
be defined. Assessing the performance of Internet traffic classifiers is not a trivial task due to the 
difficulty in knowing the “ground truth,” i.e., what was the actual application that generated the 
traffic; for the ground truth, an “oracle” is needed. Testing the classification engine by means of 
artificial traffic (e.g., by generating traffic in a test bed) solves the problem of knowing the ground 
truth (you are the oracle), but reduces the representativeness of the experiments since synthetic 
traces are hardly representative of real-world traffic. Assessing the performance against traffic 
traces collected from operative networks is therefore mandatory. To extract the ground truth from 
the real traces, we developed an ad hoc oracle, based on DPI mechanisms, and we manually 
tuned and checked those results. However, the oracle may still be fooled.  
 
Classification accuracy is often reported in terms of False Positive (FP) and True Positive (TP), 
and the False Negative (FN) and True Negative (TN). A test is said to be “True” if the 
classification result and the oracle are in agreement. A test is said “False” on the contrary. The 
result of a test is “Positive” if the classifier accepts the sample as belonging to the specific class. 
On the contrary, a test is “Negative.” For example, consider a flow. The oracle states that this flow 
is an eMule flow. If the flow is classified as an eMule flow, then we have a True Positive. If not, 
then we have a False Negative. Consider instead a flow that is not an eMule flow according to the 
oracle. If the flow is classified as an eMule flow, then we have a False Positive. If not, then we 
have a True Negative. Table I summarizes the definitions. 
                
The corresponding percentages must be evaluated as the following. 
               • False Positive percentage (%FP) is the percentage of negative samples that were 
erroneously reported as being positive. 

 
False Negative percentage (%FN) is the proportion of positive samples that were erroneously 
reported as negative. 

 
• True Positive percentage (%TP) is 100-%FN. 
• True Negative percentage (%TN) is 100-%FP. 
 
 Indeed, if there are 100 e Mule flows and the classifier misses 10 of them, we have 
%FN=10%(%TP=90%).Similarly, if there are 500 non e Mule flows and the classifier returns all of 
them as eMule, we have  %FP=100%(%TN=0%). 
 
Finally, results are often expressed by means of a confusion matrix. In the field of artificial 
intelligence, a confusion matrix is a visualization tool typically used in supervised learning. Each 
column of the matrix represents the instances in a predicted class, while each row represents the 
instances in an actual class. One benefit of a confusion matrix is that it is easy to see if the 
system is confusing two classes (i.e., commonly mislabeling one as another). 
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In this section, we enumerate BF literature on high-power and throughput efficiencies. Also, a list 
of packet processing applications using BFs is discussed with advantages and disadvantages. 
 
2.1  A Power-Efficient BF 
An m-bit vector memory for a BF has k0 read ports despite the number of hash functions in a BF 
is k). For a pipelining scheme [5], let k/ k0 1⁄4 3 and there are three pipeline stages as shown in 
the example in Fig. 1. Among the three look ups in a BF, look up L1 does not need stage S2 and 
S3, because probing a BF in S1 reveals that a key is not a BF member. Although this prevention 
of unnecessary memory accesses in these stages reduces power, the pipelining scheme needs 
three clock cycles in the worst case. This is observed in a true or false positive lookup, when a 
lookup requires all the stages. Since  them  Â 1 memory supports only k0 read ports, the over 
lapped access to the memory in stage S2 for lookup L2 and stage S1 for lookup L3 causes a 
structural hazard, as shown in Fig. 1a. Although, having k read ports can resolve this hazard, the 
provision of a larger number of k read ports is not efficient in terms of the necessary hardware 
implementation. The other solution is to utilize “stall” twice, as shown in Fig. 1b. However, these 
stalls cause to decrease the throughput in processing the three lookups. In contrast, our MPC 
takes one clock to process a lookup, and an MPC of n BFs in a multitiering and pipelining 
configuration is designed to process multiple lookups in a clock cycle. 
 
2.2 Fast Packet Classifier with  n PIs 
The packet classification goal is to identify a flow that is characterized with a five-tuple (source IP 
(SIP), destination IP (DIP), protocol, source port (SP), destination port (DP), and a protocol), and 
then to forward the flow to a  corresponding output port. Several types of packet classifiers are 
suggested to meet this goal like those that are TCAM-based and SRAM-based. In a hash-based 
approach, a packet classifier in uses PIs in parallel, so that for a given packet lookup all PIs need 
to be checked in order to find the packet-associated flow and this packet is forwarded to a 
corresponding port where PIs returns “yes.” However, in a high-speed lookup performed on a PI, 
the number of memory read ports in the PI can sufficiently provide a significantly low f-positive. 
Also, the number of PIs to be probed is as large as the number of a high-speed router’s ports, 
and this means we need to access all PIs in a brute-force way. Unlike, the above schemes of the 
θ (n) PI access complexity among n PIs, our MPC demands probabilistically less complexity than 
θ (n)for a lookup, and this implies that we can save on power, which is otherwise consumed for 
unnecessary PI accesses. 
                  
In addition to the power saving through a sub θ (n) PI access complexity per lookup, our MPC 
also provides multiple lookup throughputs per clock cycle. Besides the PI applications used for 
packet processing, applications of other domains have utilized the benefit of PIs just as well, such 
as dynamic PI for data management, wide-area web caching [26],content delivery across overlay 
networks, IP traceback, and query routing in peer-to-peer networks. Even in a wireless sensor 
networks the power saving is a paramount issue; a coordinated packet traceback mechanism in 
is introduced with the concept of dimensions in hash algorithms in which a dimension can be 
expanded by the number of either hash functions, hash tables, or both. However, all these 
applications simply process one lookup to n PIs in parallel and are resulting in the θ (n) lookup 
complexity, while our MPC processes several lookups in a clock cycle for a high throughput. 
 
2.3 System Architecture Design 
Our scheme provides a flexible framework for hardware implementations, from memory 
minimized to performance maximized. In this section, we will explore the details of the hardware 
architecture of each part of the scheme, and will give two possible configurations for different 
requirements. In our memory size calculation, Snort (including more than 4000 patterns) is used 
as the experiment library. 
 
A. Design of Overlapped Packet Flag Classifier 
The most appropriate data structure for implementing OSC is Packet Inspection, which is very 
efficient for membership inquiry operations. By employing 2 PIs each for a packet flag set, we can 
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build a simple 2-set classifier. According to the match results of s, we can encode them to 0, 1 or 
x. A digest without any x is called a proper digest. To obtain a very small false positive rate 
(FPR), generally we still need much memory to build PIs. Fortunately, for parallel (or iterative) 
classifiers functioning upon overlapped packet flag, a very good property holds: 
 
Theorem 2: Using the OSC approach, with f as the FPR of each OSC, the false positive rate of a 
proper generated flag digest (no “x”) length of L is bounded by: f L ≤ f

 L  .This indicates that we can 
build very low FPR system with relatively high FPR Bloom Filters, which will save even more 
memory. A possible yet rare hash collision may occur when both of the Packet Inspection in the 
OSC return “match”, and a digest digit assignment is impossible. In case of this, a configurable 
rehash table can be accessed for final arbitration. The rehash function is described in depth in 
[5].The Stamping online-check functions can also be implemented using Packet Inspection.  
 

 
 

FIGURE 1. Architecture of an OSC, with on-line checker and rehashing for classification failure. 
Note that the 2 Packet Inspection for each set can share hash functions array. 

 
Contribute a multiplicative factor to the whole system FPR; a relative high FPR is also acceptable, 
which makes its memory usage trivial. The Stamping check will be activated or deactivated 
according to the matched state. To combine all these techniques above, a digest encode module 
is illustrated in Fig.1. Note the two Packet Inspection can share the hash function array. More 
implementation techniques on Packet Inspection can be found in [6]. 
 
B. Matching On Flags Digest 
To locate the exact match (or match set) according to the Flags digest generated using previously 
described approach; we can use DFA-style architecture for constant speed processing. First of all 
we can generate the DFA using the new” pattern set” composed of the digests of the original 
pattern strings. This DFA is much compact since only b-bit characters (with 2b as the set number) 
are accepted. The rest of the architecture design is very similar to DFA-based scheme, in which 
next state of the matching is fetched at every cycle from the transition memory using the current 
state and the input b bits as index. Optimization for this procedure has been one of the main 
focus of recent research; many of them are applied in our scheme [23][24][25]. Basically, it is a 
trivial matter to design a DFA based architecture with 1-bit processing step; and the memory 
consumption is also very small(with our Snort example, no more than 50KB is needed). On the 
other hand, building hardware for DFA which takes multiple bits as input will need more careful 
design. First of all, to match at all offset within a step, multiple DFAs have to be accessed; 
second, since wildcard “x” can occur at the end of a digest match (for instance, for digest 
“10010001011x”, a “011x” could be matched at the last step), wildcard need well support; third, to 
minimize the memory usage, more sophisticated techniques need to be employed for next state 
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lookup.As in Fig. 2(a), transitions in a typical DFA are imbalanced. In fact, all the transitions of the 
DFA can be divided to three parts with degrading priorities: normal transitions, partial match 
transitions (with wildcards), and Fail-Back-To-Layer1 (FBTL) transitions. The isolation the FBTL 
transitions reduce the transition number dramatically since many original transitions   are 
combined. In addition, we can assign a “default” transition. 
 

 
 

FIGURE 2. Digest DFA optimization  intuitions. (a) Demonstrate how a DFA Can be detached to 
different parts with different priorities; note the FBTL Transitions use wildcard as starting states; 

(b) demonstrates that the non-leaf Node of a DFA can assign a “default” transition (the red dotted 
arrows), so that the next-state lookup can be omitted by using current-state + 1 instead. 

 

 
 

FIGURE:3 Architecture of the DFA next state logic, corresponding to Fig.2. 
 

For each state by carefully numbering the states, as shown in Fig.2(b) so that a number of 
transitions are “computed” rather than “looked up”, saving more storage. Using these two 
techniques, Fig.3 illustrates architecture for DFA taking 4-bit step. For normal and partial match 
transitions, set associative style memory layout [23], as shown in Fig.4, can result in even better 
storage efficiency. 
 
C.System Configurations for Memory or Performance 
With the efficiently implemented digest encoder and DFA match engine, the design of the whole 
system is a straightforward task. We can configure the system at will, from the least memory 
usage to ultra high throughput. 
 
If the memory resources are critical, the design in Fig.5 (a) can be used. With the digest step s = 
2, we have two matching systems accessing the same dual-ported memory. Running at 150MHz 
and consuming less than 50KB memory, the system 
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FIGURE:4.A cache - style memory access architecture for efficient memory use. States with 
more out-bounded transitions can reside in the “fat” memory set, while most leaf states can reside 

in the “thin” memory set since most of them only have one out-bounded transition. [23] details 
similar design. 

 

 
      
FIGURE:5 System designs with distinct requirement. (a) A 2-byte per cycle architecture; (b) A 8 

byte per cycle scheme, which use multiple match engines searching on different offsets. 
 
Has a constant scanning rate of about 2.4Gbps, which would suffice in many applications. In fact, 
with simple duplicate of this scheme, it would be trivial matter to design a system supporting 
10Gbps aggregated   rate (multi-threaded i.e. against multiple simultaneous flows). 
 
Under ultra high single-threaded throughput requirement where multiple bytes must be processed 
in one cycle, both digest step larger than 1 and DFA step larger than 1 can be combined to 
achieve higher performance. Fig.5 (b) shows such a configuration. In this architecture, 8 bytes 
are processed per cycle. For the encoder part, two digest-encoder arrays each with step of 2 are 
generating two 4-bit digest each cycle. Also, two DFA matching units, each of which consume 4 
bits of digest and contains for parallel engines, are employed. Again with dual-ported memory, 4 
memory blocks can support 8-way parallel processing. Running at 150MHz and consuming about 
260 KB memories, the system can support a single threaded 10Gbps scanning rate. 

 
3. CONSTRUCTION  AND  RESULTS 
 
3.1 Problem Statement of Fast Packet Classification 
The issue of how to reduce the number of expensive off chip  accesses through n on-chip BFs is 
a paramount concern in processing a packet [7], [8],[9],[10],[11] as well as network application 
including wireless sensor network .However, in this section, we formalize and restrict this issue to 
only addressable to the packet classification domain. A parallel lookup with n BFs is a common 
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configuration in packet processing. This is shown in Fig. 2, where a five-tuple of SIP, DIP, 
protocol, SP, and DP is extracted from a packet and a lookup of the five-tuple is composed 
among the n BFs. Fast on-chip packet processing with n BFs is beneficial, because this approach 
not only reduces the number of expensive off-chip hash probes but also enhance the load 
balance in a set of off-chip hash tables [12],[13]. Due to f-positives from the BFs, all positives are 
required to be confirmed by a hash table of the recorded flows. It is emphasized that providing a 
perfect match in the off-chip hash table is necessary in packet classification for QoS and security 
concern, and consequently, this produces a BFs’ access that is in contention to the n hash tables. 
BFs can be fabricated on-chip due to their memory efficiency. 
 

 
 

FIGURE:6 Parallel packet classifier engine of n BFs in a given packet. 
 

Their hash tables are located off-chip due to large memory requirement as in other schemes 
[14],[15],[16]. In this configuration of on/off chip separation, the packet lookup throughput is 
bounded to the processing time in the off-chip hash table. We can calculate the worst-case 
throughput of a parallel packet classifier engine in Fig. 6 in the following way: Given a lookup of a 
minimum 40-byte packet, there are two kinds of lookups, an unsuccessful lookup (UL) in which a 
key is relentlessly searched although it does not exist in BFs, and a successful but time-
consuming lookup (SL) in which a key is to be searched in PIs. Let ts and tu denote the 
processing times in an off-chip hash table (HT) for an SL and a UL, respectively. Then, the packet 
lookup throughput in n BFs is calculated as follows: 
 

 
 

Where  ps  is an SL rate, and the nf and ( n-1)f terms explain the expected numbers of f-positives, 
which are based on the binomial distribution of identical and independent PIs in an SL and a UL, 
respectively.Fig.7 shows the throughput where HT’s processing time in an SL,ts, is 1.001 times of 
2 ns in a modern T-RAM and ts is set to 0.5 times of 2 ns. In the Worst case of ps =1, the lookup 
throughput with PIs of k=10 read ports shows that this configuration can barely keep up with 160 
Gbps, while PIs of k =15 read ports can Meet the bandwidth requirement. Thus, a large number 
of read ports in a PI memory is required for obtaining a high throughput, and is also preferable for 
avoiding accessing irrelevant PIs of such a large number of ports for a lookup is preferable. In the 
following section, we present the aforementioned avoidance with an MPC by distributing lookups 
through small-sized BFs of a few ports, so that a subset of the lookups is processed in large-
sized BFs in one clock cycle for higher power and throughput efficiencies.  
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3.2  A MULTITIERED PACKET CLASSIFIER WITH n BFS 
In this section, we first present a basic theory behind a BF and an f-positive. We then introduce 
the steps to build an MPC. 
 

 
 

FIGURE:7Throughput comparison with a different number of BFs, ps, and k. 
 
3.3 Packet Inspection Theory 
A legacy PI for representing a set S of ni items (or keys) is described by an m-bit array memory 
with each initially set to 0. A PI uses k independent hash functions h0; . . . ; hk-1 within the range of 
[0: m _ 1]. For mathematical convenience, we make a natural assumption that these hash 
functions map each key in the universe to a random number uniform over the range as the 
authors [17] claim. For insertion of each key ej

′, the bits indexed by hk
′ (ej

′) are set to 1 for 0 ≤ k′ ≤ 
k−1, 0 ≤ j′ ≤ ni −1. To query that key e0 is in S, k bits by k memory reads through hk′ (e′) should all 
be 1. If that is the case, a PI returns “yes” about a query of key e0. If that is not the case, then 
clearly e0 is not a member of S. Even if a PI returns “yes,” there exists a probability of an f-
positive, such that key y is falsely believed to belong to set S due to the random gathering of k 
bits of value 1 set by independent keys. 
 
The above probability f of an f-positive can be formulated in a straightforward way, given our 
assumption that hash functions are perfectly random. Among m bits, the chance of a bit being 
value 0 by one hk is 1/m. After all ni elements of S are hashed k times into the PI, i.e., totaling k.ni 
times, the probability that a specific bit is still 0 is asymptotically p =(1-1/m)kn

i ≈ e−kn
i
/m. Then, the 

probability of an f-positive by randomly choosing k bits among m bits is 
f≥{1-(1-1/m)kn

4}
k
ε(1-p)k

≥(1/2)mln2/n
4 

 
This probability is bounded, and the optimal k, the number of hash functions that 

minimizes f, is easily found k = ln2 (m/ni). After some algebraic manipulation, it is clear that the 
requirement of f≤ є=2−w   where w is called lookup precision, suggests 

 
m ≥ nilog2(1/ε)/ln2≈1.44nilog2(1/ε)=1.44niw. 
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FIGURE:8 Power and area in multi memory read ports for 64K _1 bit memory. 
 
From (7), the following important lemma can be derived: Lemma 1 (Linear Property). Linear 
property between m and n exists in (7) because given f requires that variable ni is linearly 
proportionate to variable m. Furthermore, in an optimal configuration, k becomes w according to 
the following derivation: 
 

 
 
and to be a scheme of a deterministic  O(1)  lookup processing 500 M packets a second for a 160 
Gbps router, k needs to be at least 29 (_log2 1=500 M).Each hash function corresponds to one 
random lookup in an m-bit PI. Thus, a PI  having k hash functions for high throughput needs the 
exact same k number of memory read ports in an m-bit memory module. Although, the state-of 
the art VLSI technology can fabricate memory modules with multiple ports, supporting more than 
ten ports is tremendously challenging to implement, as noted in a concise summary of the recent 
embedded memory technologies [18]. Fig. 8 shows such a difficulty in terms of the power and 
area costs measured by CACTI [19], according to the number of read ports in a single memory 
module. The conclusion from the figure is that the power and area costs are super linear with 
respect to the number of read ports. Thus, a PI is considered as a high computation element due 
to the large value of k for the high-speed router, and, thereby, reconfiguring such PIs for a power 
and throughput-efficient lookup is proven necessary. 
 
3.4  Basic Principles of an MPC 
Fig.9 shows the basic principles in constructing an MPC, and this layout demonstrates how an 
MPC is superior in Power efficiency than a PPC. Suppose, there are four PIs in a PPC, as shown 
in Fig. 9a and each PI is equipped with k memory read ports. In this parallel configuration, we 
need to access k bits in each PI and the access is performed in one Clock cycle. Thus, the PPC’s 
lookup throughput is one per clock cycle and the PPC needs a power for 4k-bit PI memory 
access, in order to process one lookup. 
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FIGURE: 9 Basic principle and two benefits (i.e., power and throughput) of an MPC in on-chip 
memory. (a) PPC configuration. (b) MPC configuration for power efficiency. (c) MPC configuration 

for throughput efficiency. 
 

In contrast, our MPC can reduce the aforementioned power usage by probing only a subset of k 
bits in a PI. Suppose, there are two smaller PIs of one read port and we  put them in the prestage  
of four larger PIs of k _ 1 read ports, as shown in Fig. 9b. Then, we conceptually connect each 
smaller PI in a prestage to two larger PIs in a poststage via a tree relationship. That is, if a 
smaller PI (or a parent PI) returns a positive in a lookup, we need to probe two larger PIs (or 
children PIs) that are connected to the smaller PI. Suppose, a key A is encoded in a smaller PI 
and a larger PI, as shown in Fig. 5b, and we search for the key from the prestage. Since there is 
no false negative, a PI, which encodes the key A, should return “yes” in the key lookup. The 
second smaller PI in the prestage may return “yes” with a false positive, and its probability is 1/2 
based on (2). If there is no false positive in the second smaller PI, then the total number of probed 
bits in our MPC is 1+ 1 +2(k _ 1). Even if there is a false positive, the bit count is (1+1+4(K−1). 
Thus, our MPC configuration requires additional power to probe 2k bits if no false Positive shows 
up, and 4k − 2 bits if it does. On average, our MPC probes 3k−1(=2k·1⁄2+4k −2·1⁄2)  bits in order 
to process a lookup while a PPC probes 4k bits, confirming that our MPC can reduce the power 
usage for 4k-bit memory access in a PPC. 
 
In addition to the power saving, our MPC can increase the lookup throughput by using dual read 
ports for the two smaller PIs in the prestage, as shown in Fig. 9c. Suppose, we encode keys A 
and B into the first and fourth larger PIs in the poststage and into both smaller PIs in the prestage. 
Next, we assign one read port for a lookup A and the other read port for a lookup B. Since we can 
process two lookups in two smaller PIs in one clock cycle, we can place two lookups for keys A 
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and B in the four larger PIs during the next clock cycle under the condition that there is no false 
positive in the smaller PIs. Thus, at the complementary probability of an f-positive, i.e., 1/2, our 
MPC can increase the lookup throughput. 
 
In a nutshell, our MPC reduces the power required for PI memory access by preprocessing a 
lookup with the smaller PIs in the prestage and by confirming the lookup with the larger PIs in the 
poststage. Note that if we increase the number of read ports in smaller PIs in the prestage, we 
can further minimize the power consumption, since the f-positive probability decreases according 
to (9).  

 

 
 

FIGURE: 10. Pipeline memory architecture of a 2TPC in a forest. S1 and S2 are pipeline stages. 
Bj

i means the j- th BF at layer i.n= 4.K= w due to (4). W2= 1, w1=k −1.b is a buffer size. 
  
3.5  Building a Multitiered Packet Classifier 
Fig. 6 shows the detailed configuration example of an MPC, a two-tiered PC (2TPC) built on top 
of 4 PIs; this is in place of a PPC used in a dashed box of Fig. 10. Letters A and D denote the 
address and data ports in a PI memory, respectively. A PI in the layer 2, i.e., the prestage, has 
one read port while a PI in the layer 1, i.e., the poststage, has k− 1 read ports. Since, we organize 
an MPC in a pipeline configuration; we can access two PIs in stage S2, if a parent PI in stage S1 
returns “yes” in a lookup. Similarly, we follow the same lookup steps in a three-tiered PC (3TPC), 
which is constructed on top of eight PIs, as shown in Fig. 11.Note that all small-sized PIs in S1 
and S2 have one read port, while the large-sized PIs in S3 have k −2 read ports, and these 
setups are purposely built this way in order to make a fair memory comparison with a PPC with 
eight BFs of k read ports. 
 
In addition to these two architecture examples, we derive one mathematical proof that an MPC 
uses the same memory size as that of a PPC in a general case. For example, given desired f-
positive f =2−w, the total PPC memory in bits with n PIs is n·m, where m is a BF’s memory based 
on (3). However, with the linear property between m and ni an additive operation on memory size 
mt, we can reconfigure PIs in an (r+1)-tiered way, r> 0, while the same memory size, mM, for an 
MPC is used as follows: 
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n × m = n×{1.44.ni.log2(1/f)} 
 

                                     =n × {1.44.ni.w} = n×{1.44.ni.(w-r + r)} 

                              =n.144. ni..(w-r)+ ni.1} 
 

                                              =  ni.(w-r))+ 1.44.(2tni).1) 
 

            =m1+ M, 

 
where mt is the total memory of PIs on layer t, r+1 is the number of tiers, 2tni is the number of 
keys in  , and the lookup precisions of a PI on layer 1 and t, w1, and wt, are w−r and 1, 
respectively. Based on (3), the f-positives of PIs on layer 1 and 2 in a 3TPC are expected to be 
2−(w-2)  and 2−1, respectively, and the second term in (5a) is the sum of small-sized PIs from layer 
2 to layer r+1. Also, a PI from layer 1 covers ni elements, and a PI from layer 2 covers 2ni keys. In 
general, Bi

j covers all keys from, 1≤i≤n/2,1<j≤r in an MPC.In this multitiered and pipelined 
configuration with b ¼ 1, power in accessing memory (or probing BFs) can be eliminated. For 
example, B12 has a key, and there is a lookup. 
 

 
 

FIGURE: 11 Memory architecture of a 3TPC in a forest and in pipeline. Bij means the j-th BF at 
layer i. n ¼ 8. k ¼ w due to (10). 
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FIGURE: 12 (a) The total number of read ports in different number of BFs. w3=w2=1, w1=3 for a 

2TPC.w2=1, w1=14 for a 2TPC. f = 2−15.(b)2TPC and PPC die area costs with n= 8 in.13µm 
process technology. (a) The read port number.(b)The area cost (w2 ¼). 

 
Corresponding to the key.By preprocessing the lookup in stage S1 with B21 and B22, if B22 
returns “no” in the lookup there is no need to probe B13 and B14. Thus, the power used to probe 
them can be saved.In addition to the power concern, we design a throughput efficient scheme in 
an MPC configuration. However, the higher throughput efficiency cannot be achieved in this setup 
simply setting b to a value greater than 1. Although (5)’s derivation shows that an MPC has the 
same memory size as a PPC, but processing a lookup in small-sized PIs of one read port does 
not provide a higher throughput in large-sized PIs on a lower layer. For instance, even if b in Fig. 
6 with w2 =1 is set to two, a one-read-port PI on layer 2 cannot process two lookups in one cycle. 
Thus, the number of read ports in the small-sized PI needs to be the same as b. In general, the 
number needs to be b·w2 for a throughput-efficient MPC. As suggested in [21], using mini- PIs 
with fewer read ports is the solution without degrading lookup accuracy. However, even if a PI is 
broken into several mini-PIs, the total number of read ports in the mini-PIs is the same as that of 
a PPC. Thus, breaking a PI into mini-PIs only gives the possibility of fabricating PIs for packet 
processing, but does not incur the benefit of high throughput. However, our MPC has two benefits 
of fewer numbers of read ports and an area cost reduction, which can lead to fabricate small-
sized PIs of multiread ports for a high throughput without introducing area overhead.Figs. 12a 
and 12b show such two benefits: the smaller number of fabricated read ports and the smaller die 
area for a 2TPC. Fig. 12a shows the required read port numbers in fabricating different numbers 
of BFs for a PPC, a 2TPC, and a 3TPC, respectively. In fabricating, a 2TPC and a 3TPC use 4 
percent and 10 percent less read port count than a PPC in all cases. Fig. 12b shows 2TPC and 
PPC area costs in different numbers of w and ni, and the area costs using four mini-PIs for a PI in 
each case using CACTI model [22] are measured. 
 
Now, we show how to fabricate multiport in a small sized PI without incurring hardware overhead. 
There is a noticeable gap between dotted and solid meshes in Fig. 12b, and the reason is that 
fabricating multiports in a small-sized memory does not require area as much as in a large-sized 
memory. In the figure, there is a small area increase for the multiport memory, compared to a 
PPC’s area. Thus, it is explained that the buffer size b can amount to five at most.Also, utilizing 
dual reads on falling and rising edges in a clock [20] can double the memory read capacity and a 
lookup throughput (i.e., double data rate scheme implemented in DRAM and AMD Athlon64). 
Thus, the buffer size becomes twice larger and the maximum b is 10 without incurring the 
memory overhead in an MPC. 
                          
4. CONCLUSION 
This paper we have developed and evaluated TCP/UDP/FTP/ICMP and payload information and 
port numbers. The primary motivations of our study are easily abfuscated by the enduser through 
the payload encryption and port spoofing, we proposed and experiment the evaluated hypothesis 
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testing approach , finally and most important we have discussed the issue of porting and packet 
classifier from one domain to another and also investigated the performance of tamper resistant 
classifier in the network domain. It was found that the classifier accuracy was highly graded the 
new domain and sources of  performance loss identifier while supervised classifier training in the 
new domain result in much better classifier accuracy. 
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