

INTERNATIONAL JOURNAL OF COMPUTER

NETWORKS (IJCN)

VOLUME 4, ISSUE 3, 2012

EDITED BY

DR. NABEEL TAHIR

ISSN (Online): 1985-4129

International Journal of Computer Networks (IJCN) is published both in traditional paper form and

in Internet. This journal is published at the website http://www.cscjournals.org, maintained by

Computer Science Journals (CSC Journals), Malaysia.

IJCN Journal is a part of CSC Publishers

Computer Science Journals

http://www.cscjournals.org

INTERNATIONAL JOURNAL OF COMPUTER NETWORKS (IJCN)

Book: Volume 4, Issue 3, June 2012

Publishing Date: 20-06-2012

ISSN (Online): 1985-4129

This work is subjected to copyright. All rights are reserved whether the whole or

part of the material is concerned, specifically the rights of translation, reprinting,

re-use of illusions, recitation, broadcasting, reproduction on microfilms or in any

other way, and storage in data banks. Duplication of this publication of parts

thereof is permitted only under the provision of the copyright law 1965, in its

current version, and permission of use must always be obtained from CSC

Publishers.

IJCN Journal is a part of CSC Publishers

http://www.cscjournals.org

© IJCN Journal

Published in Malaysia

Typesetting: Camera-ready by author, data conversation by CSC Publishing Services – CSC Journals,

Malaysia

CSC Publishers, 2012

EDITORIAL PREFACE

The International Journal of Computer Networks (IJCN) is an effective medium to interchange
high quality theoretical and applied research in the field of computer networks from theoretical
research to application development. This is the second issue of volume four of IJCN. The
Journal is published bi-monthly, with papers being peer reviewed to high international
standards. IJCN emphasizes on efficient and effective image technologies, and provides a central
for a deeper understanding in the discipline by encouraging the quantitative comparison and
performance evaluation of the emerging components of computer networks. Some of the
important topics are ad-hoc wireless networks, congestion and flow control, cooperative
networks, delay tolerant networks, mobile satellite networks, multicast and broadcast networks,
multimedia networks, network architectures and protocols etc.

The initial efforts helped to shape the editorial policy and to sharpen the focus of the journal.
Starting with volume 4, 2012, IJCN appears in more focused issues. Besides normal publications,
IJCN intend to organized special issues on more focused topics. Each special issue will have a
designated editor (editors) – either member of the editorial board or another recognized specialist
in the respective field.

IJCN give an opportunity to scientists, researchers, engineers and vendors to share the ideas,
identify problems, investigate relevant issues, share common interests, explore new approaches,
and initiate possible collaborative research and system development. This journal is helpful for
the researchers and R&D engineers, scientists all those persons who are involve in computer
networks in any shape.

Highly professional scholars give their efforts, valuable time, expertise and motivation to IJCN as
Editorial board members. All submissions are evaluated by the International Editorial Board. The
International Editorial Board ensures that significant developments in computer networks from
around the world are reflected in the IJCN publications.

IJCN editors understand that how much it is important for authors and researchers to have their
work published with a minimum delay after submission of their papers. They also strongly believe
that the direct communication between the editors and authors are important for the welfare,
quality and wellbeing of the journal and its readers. Therefore, all activities from paper submission
to paper publication are controlled through electronic systems that include electronic submission,
editorial panel and review system that ensures rapid decision with least delays in the publication
processes.

To build its international reputation, we are disseminating the publication information through
Google Books, Google Scholar, Directory of Open Access Journals (DOAJ), Open J Gate,
ScientificCommons, Docstoc and many more. Our International Editors are working on
establishing ISI listing and a good impact factor for IJCN. We would like to remind you that the
success of our journal depends directly on the number of quality articles submitted for review.
Accordingly, we would like to request your participation by submitting quality manuscripts for
review and encouraging your colleagues to submit quality manuscripts for review. One of the
great benefits we can provide to our prospective authors is the mentoring nature of our review
process. IJCN provides authors with high quality, helpful reviews that are shaped to assist

authors in improving their manuscripts.

Editorial Board Members
International Journal of Computer Networks (IJCN)

EDITORIAL BOARD

EDITOR-in-CHIEF (EiC)

Dr. Min Song

University of Toledo, Ohio (United States of America)

ASSOCIATE EDITORS (AEiCs)

Dr. Qun Li
The College of William and Mary
United States of America

Dr. Sachin Shetty
Tennessee State University
United States of America

Dr. Liran Ma
Michigan Technological University
United States of America

[

Dr. Benyuan Liu
University of Massachusetts Lowell
United States of America

Assistant Professor Tommaso Melodia
University at Buffalo
United States of America

EDITORIAL BOARD MEMBERS (EBMs)

Dr. Wei Cheng
George Washington University
United States of America

Dr. Yu Cai
Michigan Technological University
United States of America

Dr. Ravi Prakash Ramachandran
Rowan University
United States of America

Dr. Bin Wu
University of Waterloo
Canada

Dr. Jian Ren
Michigan State University
United States of America

Dr. Guangming Song
Southeast University
China

Dr. Jiang Li
Howard University
China

Dr. Fang Liu
University of Texas at Pan American
United States of America

Dr. Enyue Lu
Salisbury University
United States of America

Dr. Chunsheng Xin
Norfolk State University
United States of America

Dr. Imad Jawhar
United Arab Emirates University
United Arab Emirates

Dr. Yong Cui
Tsinghua University
China

Dr. Zhong Zhou
University of Connecticut
United States of America

Associate Professor Cunqing Hua
Zhejiang University
China

Dr. Manish Wadhwa
South University
United States of America

Associate Professor Paulo de Figueiredo Pires
Federal University of Rio de Janeiro
Brazil

Associate Professor Vijay Devabhaktuni
University of Toledo
United States of America

Dr. Mukaddim Pathan
CSIRO-Commonwealth Scientific and Industrial Research Organization
Australia

Dr. Bo Yang
Shanghai Jiao Tong University
China

Assistant Professor Yi Gu
University of Tennessee at Martin
United States of America

Assistant Professor Tarek Guesmi
University of Nizwa
Oman

Dr Yan Sun
Washington State University
United States of America

Associate Professor Flavia C. Delicato
Federal University of Rio de Janeiro
Brazil

Dr. Rik Sarkar
Free University of Berlin
Germany

Associate Professor Mohamed Younis
University of Maryland, Baltimore County
United States of America

Dr. Jinhua Guo
University of Michigan
United States of America

Associate Professor Habib M. Ammari
University of Michigan Dearborn
United States of America

International Journal of Computer Networks (IJCN), Volume (4): Issue (3): 2012

TABLE OF CONTENTS

Volume 4, Issue 3, June 2012

Pages

53 - 71 Packet Payload Inspection Classifier in the Network Flow Level

N.Kannaiya Raja, Dr. K.Arulanandam, P.Umadevi & D.S.Praveen

N.Kannaiya Raja, Dr. K.Arulanandam, P.Umadevi & D.S.Praveen

International Journal of Computer Networks (IJCN), Volume (4) : Issue (3) : 2012 53

Packet Payload Inspection Classifier in the Network Flow Level

N.Kannaiya Raja, Kanniya13@hotmail.co.in
Assistant Prof/ CSE Department
Arulmigu Meenakshi Amman College of Engg,
Thiruvannamalai Dt-604410,
Tamilnadu, India

Dr. K.Arulanandam, sakthisivamkva@gmail.com
Professor/CSE Department
Ganadipathy Tulsi’s Jain Engg college,
Vellore, Tamilnadu, India.

P.Umadevi, umasri05@yahoo.co.in
Assistant Prof/ CSE Department
Arulmigu Meenakshi Amman College of Engg,
Thiruvannamalai Dt-604410,
Tamilnadu, India.

D.S.Praveen, praveencse37@gmail.com
Arulmigu Meenakshi Amman College of Engg,
Thiruvannamalai Dt-604410,
Tamilnadu, India.

Abstract

The network have in the world highly congested channels and topology which was dynamically
created with high risk. In this we need flow classifier to find the packet movement in the network.
In this paper we have to be developed and evaluated TCP/UDP/FTP/ICMP based on payload
information and port numbers and number of flags in the packet for highly flow of packets in the
network. The primary motivations of this paper all the valuable protocols are used legally to
process find out the end user by using payload packet inspection, and also used evaluations
hypothesis testing approach. The effective use of tamper resistant flow classifier has used in one
network contexts domain and developed in a different Berkeley and Cambridge, the classification
and accuracy was easily found through the packet inspection by using different flags in the
packets. While supervised classifier training specific to the new domain results in much better
classification accuracy, we also formed a new approach to determine malicious packet and find a
packet flow classifier and send correct packet to destination address.

Keywords: Flow Classification, Packet Inspection, Traffic Classification, Packet Processing,
Bloom Filter.

1. INTRODUCTION
The main problems are found and generated in the online classification of observed traffic flows
in to the application types. The flow classification is a problematic issue because resources used
for both routing, switching and bridge. Flow refers to sequences number of packets with having
five tuples. They are namely source IP address, destination IP address, source port number,
destination port number and protocol. Thus eliminating the approximation.

 A flow classification organizes packets with different characteristics in to different classes using
certain criteria. It is the basis for providing flow classification techniques. It can be applied to
network and end-host security, for e.g., consider a sequence of flow, whose “server” port number

N.Kannaiya Raja, Dr. K.Arulanandam, P.Umadevi & D.S.Praveen

International Journal of Computer Networks (IJCN), Volume (4) : Issue (3) : 2012 54

indicates one type of application, but its features reflect another that contains a anomaly, means
to indicate malicious activity. At the same time, network planners may provide the quantities and
types of number of packet flows could be offered. So that the users in the network decide how to
expand their network to better accommodate them. Mostly, those internet users have, as they use
the network to conduct their legal terms of use of policies that may need to be enforced by the
foundation for this legal administrative privacy laws and internet service providers.

Flow classification schemes containing many key elements that are shown to perform well also in
terms of processing flows. From the online classification First, performance of flow classifiers we
created are found by features. It is the basis for providing computationally and memory wise.
However, in more general usage, the features are feasible to identify in manually and which are
robust and at the same time that are re4adily susceptible to obfuscation or tampering. Deep
Packet Inspection(DPI) (also called complete packet inspection and information extraction-IX) is a
form of computer network packet filtering that will not examines features based on packet payload
information acquired online classification. Examining packet payload information may changes
the terms-use-of privacy laws and additionally, difficult to examine. Also, provide simple
encryption methods (e.g., a randomized substitution cipher) can render from packet payload
information not considering for classification purposes. Additionally, eliminate [1], the classifier
thus developed can be eliminate, and also able to be readily tampered with one set of port
numbers or protocol-specific information in the payload header information e.g., push-pkts-server
feature applied in the classifier of [1].which is a technique based on computing number of packets
with the push bit set in the TCP option field of the layer 4-header.

On optimizing the performance and usage of port numbers, notify the flow and congestion control
mechanisms of TCP, can be extended through the application can be essentially constitutes the
arbitrary port numbers and UDP. There exists a QOS e.g., interactive real time applications.
However, in more general usages, to solve this, the UDP based utorrent client [2] we use the
UDP Bit Torrent.

Congestion control mechanism of TCP makes it possible to find missing of packets. Due to
frequently large immune system to session termination by third parties via forged TCP RST
(reset) or FIN packet transmission, flow classification is complicated, when and there may be a
merging of additional measures that is said to be not connection orient in layer4.

Including the major problems, the second one is the problem arising by considering the port
numbers as feature problem, applications are engaging in port-number “spoofing”, present
increasing problems for features which employs standard port numbers requiring to nominally
allowed application types leads ensuring obfuscate their activity and allow through firewalls that
block certain port number ranges (which consider unwanted Application types).assumption we
can emphasizes also deleterious effects of port number spoofing on the performance of
classifiers that rely on ports as features. We can also able to found and develop methodology for
detecting port-number spoofing.

We illustrate this method as the most important, notably issues based on the current study that
corresponds to the porting of a classifier from one domain (the first domain we use supervised
machine learning to a train a classifiers) that will labels(provided if supervised training is to be
well performed on the new domain), the packet traces may be employed and evaluated by having
contemporary publicly available packet traces with the domains, the packet traces are recorded
initially one at the Cambridge, UK [2], and the second one at the at U.C. Berkeley’s Lawrence
Berkeley National Laboratory (LBNL or now just LBL) [3]. The classification accuracy of over
100% when training and testing on first domain and also that accuracy of classification is applied
to the second domain.

We document the features of flow by improving the measurement of this study, illustrations with
publicly available network data from multiple domains, indicating and identifying most problems
endemic to work. Analyze the main goal of building classifiers that can be submitted on all such,

N.Kannaiya Raja, Dr. K.Arulanandam, P.Umadevi & D.S.Praveen

International Journal of Computer Networks (IJCN), Volume (4) : Issue (3) : 2012 55

and the classifier accuracy needs to assess on each domain. Not only obtained network traces at
different sites may not include the same applications, or may not define classes in the correct way
for e.g., identifying and presenting Bit Torrent traffic at one site while other site may not involve.
However, the evaluation result basically group one site mi9ght define a “Database” class, where
as another might group “Database” traffic with in a larger class. In order to perform, we limited
less problematic, same traffic is presented at the classes defined at the two different sites e.g.,
mail and “email” requires its own set of protocols and there are a variety, both for sending and for
receiving mail. It is increasingly popularly the class nomenclature used at the two sites will in
basically differ.

Accurately, porting a classifier is said to problematic issues source site itself, which was trained to
illustrate its defined classes, that may corresponds to operate on a different target site, In
common with classes, where there is a different set of defined classes we use in the sequel to
encounter this problem might have working with the Cambridge and Berkeley traces. We plan to
address it, each of the site may be defined by a set of “consensus” classes, and we attained a
significance that aims to best reconcile the different sites of evaluated consensus classes used by
the two sites. These two sites may be defined different sets of defined classes.

Second, it is crucial, not only for supervised classifier training but also for classifier accuracy
evaluation, to have ground-truth class labels for each flow. However, classifier porting is needed
in the first place because there are no labeled flows for directly training a classifier for the target
site. Thus, both in practice and in this study, the absence of ground truth labels for the target site,
even for evaluating classifier porting accuracy, is a problem that must be overcome. In this paper,
since we study classifier porting, even if class labels are not assumed to be available for
supervised classifier training at the target site, we still need labels for (test) flows from this domain
in order to evaluate the classification accuracy of the classifier ported from the source site.
Indeed, the Cambridge trace provided ground-truth label information for all flows which was
obtained via DPI (e.g., the Wireshark tool can be used for this purpose) Unfortunately, no flow-
class labels or packet payloads were provided for the Berkeley trace; thus, some procedure for
establishing ground-truth was needed for this trace in order to evaluate accuracy of a classifier
ported to this domain. To obtain the necessary ground truth, we applied a port-to-application
mapping approach that will be detailed in the sequel. For example, absent port spoofing (which is
assumed in performing this mapping for the Berkeley traces), flows with destination port numbers
25, 53, and 80 are reliably bound to the applications “email”, “dns”, and “web”, respectively.

Once we resolved the issues of heterogeneity in class definitions and missing ground truth
discussed above, we were ready to evaluate the accuracy of a classifier trained on one domain
(Cambridge) but now operating on another (Berkeley).It is not surprising (as will be seen by our
results) that accuracy may degrade when operating in a different domain. One possible reason is
that different traces may predominantly capture different traffic types.

For example, one data set may come from a traffic monitor deployed close to a mail server, with
another coming from a gateway router; email traffic will not predominate the latter dataset, while
the former may not have as much inters-enterprise network management traffic. In addition to
differences in class priors, there may be (even subtle) differences between class-conditional
feature distributions measured at two different sites, which can degrade accuracy when a
classifier trained at the source site is ported to the target site.

In summary, the contributions of this article are as follows:

• a study of classifier porting from one site to another
• network flow classification based on robust features; and
• a port-spoofing detection methodology and its evaluation.

Intrusion detection systems (IDSs) that rely on packet inspection, e.g., Snort [3] and Bro, use
deterministic and simple statistical signatures to determine known threats and highly suspicious

N.Kannaiya Raja, Dr. K.Arulanandam, P.Umadevi & D.S.Praveen

International Journal of Computer Networks (IJCN), Volume (4) : Issue (3) : 2012 56

behavior, respectively. Intrusion detection based on packet payload information has also been
extensively studied, e.g., detection based on “prevalent content”. Some of the decisions made by
network-based IDSs clearly amount to packet-flow classification decisions. Network flow
classification based on a flow’s statistical features was proposed in. Using, e.g., average packet
size and flow duration, they applied two supervised machine learning approaches: K-nearest
neighbor (KNN) and Linear Discriminant Analysis. As typically done for packet traces recorded
prior to 2005, they obtained ground-truth application labels from the standard IANA port-
application mapping list.

A naive Bayes classifier combined with kernel estimation and a correlation-based feature
selection strategy was used in to solve offline TCP flow classification. Using twelve different
features (given in Section III-B below), they achieved a classification accuracy of 96%. One
difficulty with this classifier is that it is based on both port features and TCP-dependent features,
both of which can be easily tampered with to trick the classifier.

Following this investigation, reduced the complexity of the approach in to one suitable for on-line
deployment by limiting the “observation window” of inspected packets per flow. This approach
used C4.5 decision trees and achieved a precision greater than 92% for every application. We
note that did consider classifier portability both temporally and to another (spatial) domain.
However, the classifiers evaluated in used port numbers as features, which we already noted
can be easily tampered with. We will demonstrate fragility of such classifiers in the presence of
port spoofing in the sequel. Another limitation of is that it did not consider the case where
different class definitions are used at the source and target sites. This is a genuine problem, as
we note that different definitions were in fact used in defining the Cambridge and Berkeley
classes. Subsequently in, the Cambridge researchers developed a ground-truth derivation tool
.This tool is backed by the L7-filter, i.e., it requires layer-7 information from the packet payloads.
So it has limited usage when packet payload information is not available because of laws
protecting privacy, which is the case for available, publicly disseminated packet-trace data.

Recently, correlated packet-level alarms with a feature vector derived from corresponding flow-
level statistics not involving payload information. Their flow-level classifier exploited ground-truth
labels derived with the help of packet inspection by intrusion detection devices. Their
experimental results showed little impairment of classifier performance in deployment over
periods of several weeks.

The Proposed an approach to TCP flow classification based on a flow representation using the
statistical properties of an application protocol. The features they used included payload size
statistics of packets composing the flows. Preliminary results for a support vector machine (SVM)
classifier confirmed the effectiveness of such representation. All these previous research results
demonstrate the effectiveness of classification based on extracted flow statistics; however, all
these methods with the exception of, have a common

2. RELATED WORK
We briefly summarize the key ideas behind classification tools and the methodologies to test
them and evaluate their performance. wherever the classifier on the network we need to change
payload packet in the network eg., a,b,c are mention below.

N.Kannaiya Raja, Dr. K.Arulanandam, P.Umadevi & D.S.Praveen

International Journal of Computer Networks (IJCN), Volume (4) : Issue (3) : 2012 57

 (a)

 (b)

 (c)

A .Classifiers
Classifiers are defined by two main processes.
 • Feature extraction: the process of extracting the subset of information that summarizes a
large set of data or samples.
 • Decision process: the algorithm that assigns a suitable class to an observed sample.

Examples of features are specific strings in the payload (as in DPI), packet size, or amount of
exchanged bytes. Potentially, any summary of a packet stream can be used, and its choice has a
deep impact on the classifier performance. In our tool, features are defined from the statistical
observation of the values taken by portions of the payload.

For the decision process, any machine learning technique can be adopted. In this paper, we
focus on supervised learning algorithms, in which a training set composed of known traffic is used
to build a model; the model is then used during the classification task. Given a geometric
representation of features in a multidimensional space, during the training phase, labeled
samples are used to identify and to define the “volume” into which samples of the considered
class fall. During the classification process instead, the sample to be classified has to be labeled
with the most likely class according to the volume it falls into. For example, assuming that there
are two classes of objects, i.e., red and yellow apples, if the features of a sample place it in a
volume dense of red apples, we are inclined to classify it as a red apple, too. However, defining
the surface that delimits the volumes (to later take the decision) is tricky since training points can
be spread out on the multidimensional space and complex surfaces must be described. In this
paper, we consider both simple geometric decision process and SVM based algorithm, which is
considered to be among the most powerful supervised learning.

B-

D

A

B-

S

A

B-

VI

D

I-

TA

G

C-

D

A

C-

S

A

Ethe

r

type

S-

VI

D

Ethe

r

type

C-

VI

D

Et

he

r

ty

pe

ver Type Packet

Length

 Router ID(1.2)

Router ID(3.4) Area ID(1.2)

Area ID(3-4) Checksum

 Authentication type

 Authentication

 Data(variable)

Classification

(RCAM)

Hashing Packet

Parser

10Gb

Ethernet

frame Result

S.IP D.IP prot SP

DP

N.Kannaiya Raja, Dr. K.Arulanandam, P.Umadevi & D.S.Praveen

International Journal of Computer Networks (IJCN), Volume (4) : Issue (3) : 2012 58

TABLE 1.DEFINITION OF FALSE/TRUE POSITIVE AND FALSE/TRUENEGATIVE

B. Testing Methodology
Once a classifier has been designed, its performance must be evaluated and proper metrics must
be defined. Assessing the performance of Internet traffic classifiers is not a trivial task due to the
difficulty in knowing the “ground truth,” i.e., what was the actual application that generated the
traffic; for the ground truth, an “oracle” is needed. Testing the classification engine by means of
artificial traffic (e.g., by generating traffic in a test bed) solves the problem of knowing the ground
truth (you are the oracle), but reduces the representativeness of the experiments since synthetic
traces are hardly representative of real-world traffic. Assessing the performance against traffic
traces collected from operative networks is therefore mandatory. To extract the ground truth from
the real traces, we developed an ad hoc oracle, based on DPI mechanisms, and we manually
tuned and checked those results. However, the oracle may still be fooled.

Classification accuracy is often reported in terms of False Positive (FP) and True Positive (TP),
and the False Negative (FN) and True Negative (TN). A test is said to be “True” if the
classification result and the oracle are in agreement. A test is said “False” on the contrary. The
result of a test is “Positive” if the classifier accepts the sample as belonging to the specific class.
On the contrary, a test is “Negative.” For example, consider a flow. The oracle states that this flow
is an eMule flow. If the flow is classified as an eMule flow, then we have a True Positive. If not,
then we have a False Negative. Consider instead a flow that is not an eMule flow according to the
oracle. If the flow is classified as an eMule flow, then we have a False Positive. If not, then we
have a True Negative. Table I summarizes the definitions.

The corresponding percentages must be evaluated as the following.
 • False Positive percentage (%FP) is the percentage of negative samples that were
erroneously reported as being positive.

False Negative percentage (%FN) is the proportion of positive samples that were erroneously
reported as negative.

• True Positive percentage (%TP) is 100-%FN.
• True Negative percentage (%TN) is 100-%FP.

 Indeed, if there are 100 e Mule flows and the classifier misses 10 of them, we have
%FN=10%(%TP=90%).Similarly, if there are 500 non e Mule flows and the classifier returns all of
them as eMule, we have %FP=100%(%TN=0%).

Finally, results are often expressed by means of a confusion matrix. In the field of artificial
intelligence, a confusion matrix is a visualization tool typically used in supervised learning. Each
column of the matrix represents the instances in a predicted class, while each row represents the
instances in an actual class. One benefit of a confusion matrix is that it is easy to see if the
system is confusing two classes (i.e., commonly mislabeling one as another).

N.Kannaiya Raja, Dr. K.Arulanandam, P.Umadevi & D.S.Praveen

International Journal of Computer Networks (IJCN), Volume (4) : Issue (3) : 2012 59

In this section, we enumerate BF literature on high-power and throughput efficiencies. Also, a list
of packet processing applications using BFs is discussed with advantages and disadvantages.

2.1 A Power-Efficient BF
An m-bit vector memory for a BF has k0 read ports despite the number of hash functions in a BF
is k). For a pipelining scheme [5], let k/ k0 1⁄4 3 and there are three pipeline stages as shown in
the example in Fig. 1. Among the three look ups in a BF, look up L1 does not need stage S2 and
S3, because probing a BF in S1 reveals that a key is not a BF member. Although this prevention
of unnecessary memory accesses in these stages reduces power, the pipelining scheme needs
three clock cycles in the worst case. This is observed in a true or false positive lookup, when a
lookup requires all the stages. Since them Â 1 memory supports only k0 read ports, the over
lapped access to the memory in stage S2 for lookup L2 and stage S1 for lookup L3 causes a
structural hazard, as shown in Fig. 1a. Although, having k read ports can resolve this hazard, the
provision of a larger number of k read ports is not efficient in terms of the necessary hardware
implementation. The other solution is to utilize “stall” twice, as shown in Fig. 1b. However, these
stalls cause to decrease the throughput in processing the three lookups. In contrast, our MPC
takes one clock to process a lookup, and an MPC of n BFs in a multitiering and pipelining
configuration is designed to process multiple lookups in a clock cycle.

2.2 Fast Packet Classifier with n PIs
The packet classification goal is to identify a flow that is characterized with a five-tuple (source IP
(SIP), destination IP (DIP), protocol, source port (SP), destination port (DP), and a protocol), and
then to forward the flow to a corresponding output port. Several types of packet classifiers are
suggested to meet this goal like those that are TCAM-based and SRAM-based. In a hash-based
approach, a packet classifier in uses PIs in parallel, so that for a given packet lookup all PIs need
to be checked in order to find the packet-associated flow and this packet is forwarded to a
corresponding port where PIs returns “yes.” However, in a high-speed lookup performed on a PI,
the number of memory read ports in the PI can sufficiently provide a significantly low f-positive.
Also, the number of PIs to be probed is as large as the number of a high-speed router’s ports,
and this means we need to access all PIs in a brute-force way. Unlike, the above schemes of the
θ (n) PI access complexity among n PIs, our MPC demands probabilistically less complexity than
θ (n)for a lookup, and this implies that we can save on power, which is otherwise consumed for
unnecessary PI accesses.

In addition to the power saving through a sub θ (n) PI access complexity per lookup, our MPC
also provides multiple lookup throughputs per clock cycle. Besides the PI applications used for
packet processing, applications of other domains have utilized the benefit of PIs just as well, such
as dynamic PI for data management, wide-area web caching [26],content delivery across overlay
networks, IP traceback, and query routing in peer-to-peer networks. Even in a wireless sensor
networks the power saving is a paramount issue; a coordinated packet traceback mechanism in
is introduced with the concept of dimensions in hash algorithms in which a dimension can be
expanded by the number of either hash functions, hash tables, or both. However, all these
applications simply process one lookup to n PIs in parallel and are resulting in the θ (n) lookup
complexity, while our MPC processes several lookups in a clock cycle for a high throughput.

2.3 System Architecture Design
Our scheme provides a flexible framework for hardware implementations, from memory
minimized to performance maximized. In this section, we will explore the details of the hardware
architecture of each part of the scheme, and will give two possible configurations for different
requirements. In our memory size calculation, Snort (including more than 4000 patterns) is used
as the experiment library.

A. Design of Overlapped Packet Flag Classifier
The most appropriate data structure for implementing OSC is Packet Inspection, which is very
efficient for membership inquiry operations. By employing 2 PIs each for a packet flag set, we can

N.Kannaiya Raja, Dr. K.Arulanandam, P.Umadevi & D.S.Praveen

International Journal of Computer Networks (IJCN), Volume (4) : Issue (3) : 2012 60

build a simple 2-set classifier. According to the match results of s, we can encode them to 0, 1 or
x. A digest without any x is called a proper digest. To obtain a very small false positive rate
(FPR), generally we still need much memory to build PIs. Fortunately, for parallel (or iterative)
classifiers functioning upon overlapped packet flag, a very good property holds:

Theorem 2: Using the OSC approach, with f as the FPR of each OSC, the false positive rate of a
proper generated flag digest (no “x”) length of L is bounded by: f L ≤ f

 L .This indicates that we can
build very low FPR system with relatively high FPR Bloom Filters, which will save even more
memory. A possible yet rare hash collision may occur when both of the Packet Inspection in the
OSC return “match”, and a digest digit assignment is impossible. In case of this, a configurable
rehash table can be accessed for final arbitration. The rehash function is described in depth in
[5].The Stamping online-check functions can also be implemented using Packet Inspection.

FIGURE 1. Architecture of an OSC, with on-line checker and rehashing for classification failure.
Note that the 2 Packet Inspection for each set can share hash functions array.

Contribute a multiplicative factor to the whole system FPR; a relative high FPR is also acceptable,
which makes its memory usage trivial. The Stamping check will be activated or deactivated
according to the matched state. To combine all these techniques above, a digest encode module
is illustrated in Fig.1. Note the two Packet Inspection can share the hash function array. More
implementation techniques on Packet Inspection can be found in [6].

B. Matching On Flags Digest
To locate the exact match (or match set) according to the Flags digest generated using previously
described approach; we can use DFA-style architecture for constant speed processing. First of all
we can generate the DFA using the new” pattern set” composed of the digests of the original
pattern strings. This DFA is much compact since only b-bit characters (with 2b as the set number)
are accepted. The rest of the architecture design is very similar to DFA-based scheme, in which
next state of the matching is fetched at every cycle from the transition memory using the current
state and the input b bits as index. Optimization for this procedure has been one of the main
focus of recent research; many of them are applied in our scheme [23][24][25]. Basically, it is a
trivial matter to design a DFA based architecture with 1-bit processing step; and the memory
consumption is also very small(with our Snort example, no more than 50KB is needed). On the
other hand, building hardware for DFA which takes multiple bits as input will need more careful
design. First of all, to match at all offset within a step, multiple DFAs have to be accessed;
second, since wildcard “x” can occur at the end of a digest match (for instance, for digest
“10010001011x”, a “011x” could be matched at the last step), wildcard need well support; third, to
minimize the memory usage, more sophisticated techniques need to be employed for next state

N.Kannaiya Raja, Dr. K.Arulanandam, P.Umadevi & D.S.Praveen

International Journal of Computer Networks (IJCN), Volume (4) : Issue (3) : 2012 61

lookup.As in Fig. 2(a), transitions in a typical DFA are imbalanced. In fact, all the transitions of the
DFA can be divided to three parts with degrading priorities: normal transitions, partial match
transitions (with wildcards), and Fail-Back-To-Layer1 (FBTL) transitions. The isolation the FBTL
transitions reduce the transition number dramatically since many original transitions are
combined. In addition, we can assign a “default” transition.

FIGURE 2. Digest DFA optimization intuitions. (a) Demonstrate how a DFA Can be detached to
different parts with different priorities; note the FBTL Transitions use wildcard as starting states;

(b) demonstrates that the non-leaf Node of a DFA can assign a “default” transition (the red dotted
arrows), so that the next-state lookup can be omitted by using current-state + 1 instead.

FIGURE:3 Architecture of the DFA next state logic, corresponding to Fig.2.

For each state by carefully numbering the states, as shown in Fig.2(b) so that a number of
transitions are “computed” rather than “looked up”, saving more storage. Using these two
techniques, Fig.3 illustrates architecture for DFA taking 4-bit step. For normal and partial match
transitions, set associative style memory layout [23], as shown in Fig.4, can result in even better
storage efficiency.

C.System Configurations for Memory or Performance
With the efficiently implemented digest encoder and DFA match engine, the design of the whole
system is a straightforward task. We can configure the system at will, from the least memory
usage to ultra high throughput.

If the memory resources are critical, the design in Fig.5 (a) can be used. With the digest step s =
2, we have two matching systems accessing the same dual-ported memory. Running at 150MHz
and consuming less than 50KB memory, the system

N.Kannaiya Raja, Dr. K.Arulanandam, P.Umadevi & D.S.Praveen

International Journal of Computer Networks (IJCN), Volume (4) : Issue (3) : 2012 62

FIGURE:4.A cache - style memory access architecture for efficient memory use. States with
more out-bounded transitions can reside in the “fat” memory set, while most leaf states can reside

in the “thin” memory set since most of them only have one out-bounded transition. [23] details
similar design.

FIGURE:5 System designs with distinct requirement. (a) A 2-byte per cycle architecture; (b) A 8

byte per cycle scheme, which use multiple match engines searching on different offsets.

Has a constant scanning rate of about 2.4Gbps, which would suffice in many applications. In fact,
with simple duplicate of this scheme, it would be trivial matter to design a system supporting
10Gbps aggregated rate (multi-threaded i.e. against multiple simultaneous flows).

Under ultra high single-threaded throughput requirement where multiple bytes must be processed
in one cycle, both digest step larger than 1 and DFA step larger than 1 can be combined to
achieve higher performance. Fig.5 (b) shows such a configuration. In this architecture, 8 bytes
are processed per cycle. For the encoder part, two digest-encoder arrays each with step of 2 are
generating two 4-bit digest each cycle. Also, two DFA matching units, each of which consume 4
bits of digest and contains for parallel engines, are employed. Again with dual-ported memory, 4
memory blocks can support 8-way parallel processing. Running at 150MHz and consuming about
260 KB memories, the system can support a single threaded 10Gbps scanning rate.

3. CONSTRUCTION AND RESULTS

3.1 Problem Statement of Fast Packet Classification
The issue of how to reduce the number of expensive off chip accesses through n on-chip BFs is
a paramount concern in processing a packet [7], [8],[9],[10],[11] as well as network application
including wireless sensor network .However, in this section, we formalize and restrict this issue to
only addressable to the packet classification domain. A parallel lookup with n BFs is a common

N.Kannaiya Raja, Dr. K.Arulanandam, P.Umadevi & D.S.Praveen

International Journal of Computer Networks (IJCN), Volume (4) : Issue (3) : 2012 63

configuration in packet processing. This is shown in Fig. 2, where a five-tuple of SIP, DIP,
protocol, SP, and DP is extracted from a packet and a lookup of the five-tuple is composed
among the n BFs. Fast on-chip packet processing with n BFs is beneficial, because this approach
not only reduces the number of expensive off-chip hash probes but also enhance the load
balance in a set of off-chip hash tables [12],[13]. Due to f-positives from the BFs, all positives are
required to be confirmed by a hash table of the recorded flows. It is emphasized that providing a
perfect match in the off-chip hash table is necessary in packet classification for QoS and security
concern, and consequently, this produces a BFs’ access that is in contention to the n hash tables.
BFs can be fabricated on-chip due to their memory efficiency.

FIGURE:6 Parallel packet classifier engine of n BFs in a given packet.

Their hash tables are located off-chip due to large memory requirement as in other schemes
[14],[15],[16]. In this configuration of on/off chip separation, the packet lookup throughput is
bounded to the processing time in the off-chip hash table. We can calculate the worst-case
throughput of a parallel packet classifier engine in Fig. 6 in the following way: Given a lookup of a
minimum 40-byte packet, there are two kinds of lookups, an unsuccessful lookup (UL) in which a
key is relentlessly searched although it does not exist in BFs, and a successful but time-
consuming lookup (SL) in which a key is to be searched in PIs. Let ts and tu denote the
processing times in an off-chip hash table (HT) for an SL and a UL, respectively. Then, the packet
lookup throughput in n BFs is calculated as follows:

Where ps is an SL rate, and the nf and (n-1)f terms explain the expected numbers of f-positives,
which are based on the binomial distribution of identical and independent PIs in an SL and a UL,
respectively.Fig.7 shows the throughput where HT’s processing time in an SL,ts, is 1.001 times of
2 ns in a modern T-RAM and ts is set to 0.5 times of 2 ns. In the Worst case of ps =1, the lookup
throughput with PIs of k=10 read ports shows that this configuration can barely keep up with 160
Gbps, while PIs of k =15 read ports can Meet the bandwidth requirement. Thus, a large number
of read ports in a PI memory is required for obtaining a high throughput, and is also preferable for
avoiding accessing irrelevant PIs of such a large number of ports for a lookup is preferable. In the
following section, we present the aforementioned avoidance with an MPC by distributing lookups
through small-sized BFs of a few ports, so that a subset of the lookups is processed in large-
sized BFs in one clock cycle for higher power and throughput efficiencies.

N.Kannaiya Raja, Dr. K.Arulanandam, P.Umadevi & D.S.Praveen

International Journal of Computer Networks (IJCN), Volume (4) : Issue (3) : 2012 64

3.2 A MULTITIERED PACKET CLASSIFIER WITH n BFS
In this section, we first present a basic theory behind a BF and an f-positive. We then introduce
the steps to build an MPC.

FIGURE:7Throughput comparison with a different number of BFs, ps, and k.

3.3 Packet Inspection Theory
A legacy PI for representing a set S of ni items (or keys) is described by an m-bit array memory
with each initially set to 0. A PI uses k independent hash functions h0; . . . ; hk-1 within the range of
[0: m _ 1]. For mathematical convenience, we make a natural assumption that these hash
functions map each key in the universe to a random number uniform over the range as the
authors [17] claim. For insertion of each key ej

′, the bits indexed by hk
′ (ej

′) are set to 1 for 0 ≤ k′ ≤
k−1, 0 ≤ j′ ≤ ni −1. To query that key e0 is in S, k bits by k memory reads through hk′ (e′) should all
be 1. If that is the case, a PI returns “yes” about a query of key e0. If that is not the case, then
clearly e0 is not a member of S. Even if a PI returns “yes,” there exists a probability of an f-
positive, such that key y is falsely believed to belong to set S due to the random gathering of k
bits of value 1 set by independent keys.

The above probability f of an f-positive can be formulated in a straightforward way, given our
assumption that hash functions are perfectly random. Among m bits, the chance of a bit being
value 0 by one hk is 1/m. After all ni elements of S are hashed k times into the PI, i.e., totaling k.ni
times, the probability that a specific bit is still 0 is asymptotically p =(1-1/m)kn

i ≈ e−kn
i
/m. Then, the

probability of an f-positive by randomly choosing k bits among m bits is
f≥{1-(1-1/m)kn

4}
k
ε(1-p)k

≥(1/2)mln2/n
4

This probability is bounded, and the optimal k, the number of hash functions that

minimizes f, is easily found k = ln2 (m/ni). After some algebraic manipulation, it is clear that the
requirement of f≤ є=2−w where w is called lookup precision, suggests

m ≥ nilog2(1/ε)/ln2≈1.44nilog2(1/ε)=1.44niw.

N.Kannaiya Raja, Dr. K.Arulanandam, P.Umadevi & D.S.Praveen

International Journal of Computer Networks (IJCN), Volume (4) : Issue (3) : 2012 65

FIGURE:8 Power and area in multi memory read ports for 64K _1 bit memory.

From (7), the following important lemma can be derived: Lemma 1 (Linear Property). Linear
property between m and n exists in (7) because given f requires that variable ni is linearly
proportionate to variable m. Furthermore, in an optimal configuration, k becomes w according to
the following derivation:

and to be a scheme of a deterministic O(1) lookup processing 500 M packets a second for a 160
Gbps router, k needs to be at least 29 (_log2 1=500 M).Each hash function corresponds to one
random lookup in an m-bit PI. Thus, a PI having k hash functions for high throughput needs the
exact same k number of memory read ports in an m-bit memory module. Although, the state-of
the art VLSI technology can fabricate memory modules with multiple ports, supporting more than
ten ports is tremendously challenging to implement, as noted in a concise summary of the recent
embedded memory technologies [18]. Fig. 8 shows such a difficulty in terms of the power and
area costs measured by CACTI [19], according to the number of read ports in a single memory
module. The conclusion from the figure is that the power and area costs are super linear with
respect to the number of read ports. Thus, a PI is considered as a high computation element due
to the large value of k for the high-speed router, and, thereby, reconfiguring such PIs for a power
and throughput-efficient lookup is proven necessary.

3.4 Basic Principles of an MPC
Fig.9 shows the basic principles in constructing an MPC, and this layout demonstrates how an
MPC is superior in Power efficiency than a PPC. Suppose, there are four PIs in a PPC, as shown
in Fig. 9a and each PI is equipped with k memory read ports. In this parallel configuration, we
need to access k bits in each PI and the access is performed in one Clock cycle. Thus, the PPC’s
lookup throughput is one per clock cycle and the PPC needs a power for 4k-bit PI memory
access, in order to process one lookup.

N.Kannaiya Raja, Dr. K.Arulanandam, P.Umadevi & D.S.Praveen

International Journal of Computer Networks (IJCN), Volume (4) : Issue (3) : 2012 66

FIGURE: 9 Basic principle and two benefits (i.e., power and throughput) of an MPC in on-chip
memory. (a) PPC configuration. (b) MPC configuration for power efficiency. (c) MPC configuration

for throughput efficiency.

In contrast, our MPC can reduce the aforementioned power usage by probing only a subset of k
bits in a PI. Suppose, there are two smaller PIs of one read port and we put them in the prestage
of four larger PIs of k _ 1 read ports, as shown in Fig. 9b. Then, we conceptually connect each
smaller PI in a prestage to two larger PIs in a poststage via a tree relationship. That is, if a
smaller PI (or a parent PI) returns a positive in a lookup, we need to probe two larger PIs (or
children PIs) that are connected to the smaller PI. Suppose, a key A is encoded in a smaller PI
and a larger PI, as shown in Fig. 5b, and we search for the key from the prestage. Since there is
no false negative, a PI, which encodes the key A, should return “yes” in the key lookup. The
second smaller PI in the prestage may return “yes” with a false positive, and its probability is 1/2
based on (2). If there is no false positive in the second smaller PI, then the total number of probed
bits in our MPC is 1+ 1 +2(k _ 1). Even if there is a false positive, the bit count is (1+1+4(K−1).
Thus, our MPC configuration requires additional power to probe 2k bits if no false Positive shows
up, and 4k − 2 bits if it does. On average, our MPC probes 3k−1(=2k·1⁄2+4k −2·1⁄2) bits in order
to process a lookup while a PPC probes 4k bits, confirming that our MPC can reduce the power
usage for 4k-bit memory access in a PPC.

In addition to the power saving, our MPC can increase the lookup throughput by using dual read
ports for the two smaller PIs in the prestage, as shown in Fig. 9c. Suppose, we encode keys A
and B into the first and fourth larger PIs in the poststage and into both smaller PIs in the prestage.
Next, we assign one read port for a lookup A and the other read port for a lookup B. Since we can
process two lookups in two smaller PIs in one clock cycle, we can place two lookups for keys A

N.Kannaiya Raja, Dr. K.Arulanandam, P.Umadevi & D.S.Praveen

International Journal of Computer Networks (IJCN), Volume (4) : Issue (3) : 2012 67

and B in the four larger PIs during the next clock cycle under the condition that there is no false
positive in the smaller PIs. Thus, at the complementary probability of an f-positive, i.e., 1/2, our
MPC can increase the lookup throughput.

In a nutshell, our MPC reduces the power required for PI memory access by preprocessing a
lookup with the smaller PIs in the prestage and by confirming the lookup with the larger PIs in the
poststage. Note that if we increase the number of read ports in smaller PIs in the prestage, we
can further minimize the power consumption, since the f-positive probability decreases according
to (9).

FIGURE: 10. Pipeline memory architecture of a 2TPC in a forest. S1 and S2 are pipeline stages.
Bj

i means the j- th BF at layer i.n= 4.K= w due to (4). W2= 1, w1=k −1.b is a buffer size.

3.5 Building a Multitiered Packet Classifier
Fig. 6 shows the detailed configuration example of an MPC, a two-tiered PC (2TPC) built on top
of 4 PIs; this is in place of a PPC used in a dashed box of Fig. 10. Letters A and D denote the
address and data ports in a PI memory, respectively. A PI in the layer 2, i.e., the prestage, has
one read port while a PI in the layer 1, i.e., the poststage, has k− 1 read ports. Since, we organize
an MPC in a pipeline configuration; we can access two PIs in stage S2, if a parent PI in stage S1
returns “yes” in a lookup. Similarly, we follow the same lookup steps in a three-tiered PC (3TPC),
which is constructed on top of eight PIs, as shown in Fig. 11.Note that all small-sized PIs in S1
and S2 have one read port, while the large-sized PIs in S3 have k −2 read ports, and these
setups are purposely built this way in order to make a fair memory comparison with a PPC with
eight BFs of k read ports.

In addition to these two architecture examples, we derive one mathematical proof that an MPC
uses the same memory size as that of a PPC in a general case. For example, given desired f-
positive f =2−w, the total PPC memory in bits with n PIs is n·m, where m is a BF’s memory based
on (3). However, with the linear property between m and ni an additive operation on memory size
mt, we can reconfigure PIs in an (r+1)-tiered way, r> 0, while the same memory size, mM, for an
MPC is used as follows:

N.Kannaiya Raja, Dr. K.Arulanandam, P.Umadevi & D.S.Praveen

International Journal of Computer Networks (IJCN), Volume (4) : Issue (3) : 2012 68

n × m = n×{1.44.ni.log2(1/f)}

 =n × {1.44.ni.w} = n×{1.44.ni.(w-r + r)}

 =n.144. ni..(w-r)+ ni.1}

 = ni.(w-r))+ 1.44.(2tni).1)

 =m1+ M,

where mt is the total memory of PIs on layer t, r+1 is the number of tiers, 2tni is the number of
keys in , and the lookup precisions of a PI on layer 1 and t, w1, and wt, are w−r and 1,
respectively. Based on (3), the f-positives of PIs on layer 1 and 2 in a 3TPC are expected to be
2−(w-2) and 2−1, respectively, and the second term in (5a) is the sum of small-sized PIs from layer
2 to layer r+1. Also, a PI from layer 1 covers ni elements, and a PI from layer 2 covers 2ni keys. In
general, Bi

j covers all keys from, 1≤i≤n/2,1<j≤r in an MPC.In this multitiered and pipelined
configuration with b ¼ 1, power in accessing memory (or probing BFs) can be eliminated. For
example, B12 has a key, and there is a lookup.

FIGURE: 11 Memory architecture of a 3TPC in a forest and in pipeline. Bij means the j-th BF at
layer i. n ¼ 8. k ¼ w due to (10).

N.Kannaiya Raja, Dr. K.Arulanandam, P.Umadevi & D.S.Praveen

International Journal of Computer Networks (IJCN), Volume (4) : Issue (3) : 2012 69

FIGURE: 12 (a) The total number of read ports in different number of BFs. w3=w2=1, w1=3 for a

2TPC.w2=1, w1=14 for a 2TPC. f = 2−15.(b)2TPC and PPC die area costs with n= 8 in.13µm
process technology. (a) The read port number.(b)The area cost (w2 ¼).

Corresponding to the key.By preprocessing the lookup in stage S1 with B21 and B22, if B22
returns “no” in the lookup there is no need to probe B13 and B14. Thus, the power used to probe
them can be saved.In addition to the power concern, we design a throughput efficient scheme in
an MPC configuration. However, the higher throughput efficiency cannot be achieved in this setup
simply setting b to a value greater than 1. Although (5)’s derivation shows that an MPC has the
same memory size as a PPC, but processing a lookup in small-sized PIs of one read port does
not provide a higher throughput in large-sized PIs on a lower layer. For instance, even if b in Fig.
6 with w2 =1 is set to two, a one-read-port PI on layer 2 cannot process two lookups in one cycle.
Thus, the number of read ports in the small-sized PI needs to be the same as b. In general, the
number needs to be b·w2 for a throughput-efficient MPC. As suggested in [21], using mini- PIs
with fewer read ports is the solution without degrading lookup accuracy. However, even if a PI is
broken into several mini-PIs, the total number of read ports in the mini-PIs is the same as that of
a PPC. Thus, breaking a PI into mini-PIs only gives the possibility of fabricating PIs for packet
processing, but does not incur the benefit of high throughput. However, our MPC has two benefits
of fewer numbers of read ports and an area cost reduction, which can lead to fabricate small-
sized PIs of multiread ports for a high throughput without introducing area overhead.Figs. 12a
and 12b show such two benefits: the smaller number of fabricated read ports and the smaller die
area for a 2TPC. Fig. 12a shows the required read port numbers in fabricating different numbers
of BFs for a PPC, a 2TPC, and a 3TPC, respectively. In fabricating, a 2TPC and a 3TPC use 4
percent and 10 percent less read port count than a PPC in all cases. Fig. 12b shows 2TPC and
PPC area costs in different numbers of w and ni, and the area costs using four mini-PIs for a PI in
each case using CACTI model [22] are measured.

Now, we show how to fabricate multiport in a small sized PI without incurring hardware overhead.
There is a noticeable gap between dotted and solid meshes in Fig. 12b, and the reason is that
fabricating multiports in a small-sized memory does not require area as much as in a large-sized
memory. In the figure, there is a small area increase for the multiport memory, compared to a
PPC’s area. Thus, it is explained that the buffer size b can amount to five at most.Also, utilizing
dual reads on falling and rising edges in a clock [20] can double the memory read capacity and a
lookup throughput (i.e., double data rate scheme implemented in DRAM and AMD Athlon64).
Thus, the buffer size becomes twice larger and the maximum b is 10 without incurring the
memory overhead in an MPC.

4. CONCLUSION
This paper we have developed and evaluated TCP/UDP/FTP/ICMP and payload information and
port numbers. The primary motivations of our study are easily abfuscated by the enduser through
the payload encryption and port spoofing, we proposed and experiment the evaluated hypothesis

N.Kannaiya Raja, Dr. K.Arulanandam, P.Umadevi & D.S.Praveen

International Journal of Computer Networks (IJCN), Volume (4) : Issue (3) : 2012 70

testing approach , finally and most important we have discussed the issue of porting and packet
classifier from one domain to another and also investigated the performance of tamper resistant
classifier in the network domain. It was found that the classifier accuracy was highly graded the
new domain and sources of performance loss identifier while supervised classifier training in the
new domain result in much better classifier accuracy.

REFERENCES
[1] W. Li and A. Moore. A machine learning approach for efficient traffic classification.In

Proc.IEEE MASCOTS, 2007.

[2] utorrent.http://utorrent.en.softonic.com/.

[3] Wireshark Wireshark go deep.http ://www. wireshark.org/.

[4] “Skype testbed traces,” [Online]. Available: http://tstat.tlc.polito.it/ traces-skype.shtml

[5] A. W. Moore and D. Zuev, “Internet traffic classification using bayesian analysis

techniques” in Proc.ACM SIGMETRICS, Banff, Canada,Jun. 2005, pp. 50–60.

[6] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines and

Kernel-Based Learning Methods. New York: Cambridge Univ. Press, 1999.

[7] S. Dharmapurikar and J. Lockwood, “Fast and Scalable Pattern Matching for Network

Intrusion Detection Systems,” IEEE J. Selected Areas in Comm., vol. 24, no. 10,
pp.1781-1792, Oct. 2006.

[8] W.-C.F.F.Chang and K. Li,“ApproximateCaches for Packet Classific ati on
 ,”Proc.IEEE INFOCOM ’04, vol. 4, pp. 2196-2207, Mar. 2004.

[9] H.C. Deke Guo, J. Wu, and X. Luo,“Theory and NetworkApplications of Dynamic Bloom

Filters,”Proc.IEEE INFOCOM’06,pp. 1233-1242, 2006.

[10] M.Waldvogel, G.Varghese, J.Turner, and B.Plattner,“Scalable High Speed IP Routing

Lookups,”Proc.ACM SIGCOMM’97,pp. 25-36, 1997.

[11] I. Kaya and T. Kocak, “Energy-Efficient Pipelined Bloom Filters for Network Intrusion

Detection,” Proc. IEEE Int’l Conf. Comm.,pp. 2382-2387, 2006.

[12] J.T. Sailesh Kumar and P. Crowley,Peacock Hashing: Deterministic and Updatable

Hashing for High Performance Networking,”Proc. IEEE INFOCOM ’08, pp. 101-105,
2008.

[13] S.Kumar and P.Crowley,“Segmented Hash:An Efficient Hash Table Implementation for

High Performance Networking Subsystems,” Proc. ACM Symp. Architecture for
Networking and Comm.Systems (ANCS ’05), pp. 91-103, 2005

[14] S. Dharmapurikar, P. Krishnamurthy, and D.E. Taylor, “Longest Prefix Matching Using

Bloom Filters,” Proc. SIGCOMM ’03, pp. 201-212, 2003.

[15] T.S.SarangDharmapurikar,P.Krishnamurthy,andJ.Lockwood,“Deep Packet Inspection

Using Parallel Bloom Filters,”Proc. 37th Ann. AC M/IEEEI nt’lSymp .
Microarchitectuepp.52-61, 2004.

[16] H. Song, J. Turner, and S. Dharmapurikar, “Packet Classification Using Coarse-Grained

Tuple Spaces,” Proc. ACM/IEEE Symp.Architecture for Networking and Comm. Systems
(ANCS ’06), pp. 41-50, 2006.

N.Kannaiya Raja, Dr. K.Arulanandam, P.Umadevi & D.S.Praveen

International Journal of Computer Networks (IJCN), Volume (4) : Issue (3) : 2012 71

[17] M. Mitzenmacher and S. Vadhan, “Why Simple Hash Functions Work: Exploiting the

Entropy in a Data Stream,” Proc. 19th Ann.ACM-SIAMSymp.Discrete Algorithms (SODA
’08), pp. 746-755, 2008.

[18] B. Dipert, “Special Purpose SRAM Smooth the Ride,” June 1999.

[19] ACTIhttp://www.hpl.hp.co.uk/personal/Norm an_Jouppi/cacti5.html,2010

[20] D.A. Patterson and J.L. Hennessy, Computer Architecture: A Quantitative

Approach,Morgan Kaufmann Publishers Inc., 1990.

[21] S. Dharmapurikar, P. Krishnamurthy,and D.E. Taylor, “Longest Prefix Matching Using

Bloom Filters,” Proc. SIGCOMM’03, pp. 201-212, 2003.

[22] CACTI.http://www.hpl.hp.co.uk/persl/Nor an Jouppi/ cacti5.html, 2010.

[23] Tian Song, Wei Zhang, Dongsheng Wang,Yibo Xue, A Memory Efficient Multiple Pattern

Matching Architecture for Network Security.Proceedings of IEEE Infocom, 2008

[24] Jan.van.Lunteren,High performance pattern matching for intrusion

detection.Proceedings of Infocom’06, 2006.

[25] Hongbin Lu, Kai Zheng, Bin Liu, Xin Zhang, and Yunhao Liu, A Memory-Efficient

Parallel String Matching Architecture for High- Speed Intrusion Detection. IEEE
JOURNAL ON SELECTED AREAS IN COMMUNICATIONS,VOL.24,NO.10,OCTOBER
2006

[26] L. Fan, P. Cao, J. Almeida, and A.Z. Broder, “Summary Cache: A Scalable Wide-Area

Web Cache Sharing Protocol,” IEEE/ACM Trans. Networking, vol. 8, no. 3, pp. 281-
293,June 2000.

INSTRUCTIONS TO CONTRIBUTORS

The International Journal of Computer Networks (IJCN) is an archival, bimonthly journal
committed to the timely publications of peer-reviewed and original papers that advance the state-
of-the-art and practical applications of computer networks. It provides a publication vehicle for
complete coverage of all topics of interest to network professionals and brings to its readers the
latest and most important findings in computer networks.

To build its International reputation, we are disseminating the publication information through
Google Books, Google Scholar, Directory of Open Access Journals (DOAJ), Open J Gate,
ScientificCommons, Docstoc and many more. Our International Editors are working on
establishing ISI listing and a good impact factor for IJCN.

The initial efforts helped to shape the editorial policy and to sharpen the focus of the journal.
Starting with volume 4, 2012, IJCN appears in more focused issues. Besides normal publications,
IJCN intend to organized special issues on more focused topics. Each special issue will have a
designated editor (editors) – either member of the editorial board or another recognized specialist
in the respective field.

We are open to contributions, proposals for any topic as well as for editors and reviewers. We
understand that it is through the effort of volunteers that CSC Journals continues to grow and
flourish.

IJCN LIST OF TOPICS
The realm of International Journal of Computer Networks (IJCN) extends, but not limited, to the
following:

• Algorithms, Systems and Applications • Ad-hoc Wireless Networks

• ATM Networks • Body Sensor Networks

• Cellular Networks • Cognitive Radio Networks
• Congestion and Flow Control • Cooperative Networks

• Delay Tolerant Networks • Fault Tolerant Networks

• Information Theory • Local Area Networks

• Metropolitan Area Networks • MIMO Networks
• Mobile Computing • Mobile Satellite Networks

• Multicast and Broadcast Networks • Multimedia Networks

• Network Architectures and Protocols • Network Coding
• Network Modeling and Performance Analysis

Network
• Network Operation and Management

• Network Security and Privacy • Network Services and Applications

• Optical Networks • Peer-to-Peer Networks
• Personal Area Networks • Switching and Routing

• Telecommunication Networks • Trust Worth Computing

• Ubiquitous Computing • Web-based Services

• Wide Area Networks • Wireless Local Area Networks
• Wireless Mesh Networks • Wireless Sensor Networks

CALL FOR PAPERS

Volume: 4 - Issue: 5 - October 2012

i. Paper Submission: July 31, 2012 ii. Author Notification: September 15, 2012

iii. Issue Publication: October 2012

CONTACT INFORMATION

Computer Science Journals Sdn BhD

B-5-8 Plaza Mont Kiara, Mont Kiara
50480, Kuala Lumpur, MALAYSIA

Phone: 006 03 6207 1607
006 03 2782 6991

Fax: 006 03 6207 1697

Email: cscpress@cscjournals.org

