

INTERNATIONAL JOURNAL OF COMPUTER
SCIENCE AND SECURITY (IJCSS)

VOLUME 13, ISSUE 6, 2019

EDITED BY

DR. NABEEL TAHIR

ISSN (Online): 1985-1553

International Journal of Computer Science and Security is published both in traditional paper form

and in Internet. This journal is published at the website http://www.cscjournals.org, maintained by

Computer Science Journals (CSC Journals), Malaysia.

IJCSS Journal is a part of CSC Publishers

Computer Science Journals

http://www.cscjournals.org

http://www.cscjournals.org/
http://www.cscjournals.org/

INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND

SECURITY (IJCSS)

Book: Volume 13, Issue 6, December 2019

Publishing Date: 31-12-2019

ISSN (Online): 1985 -1553

This work is subjected to copyright. All rights are reserved whether the whole or

part of the material is concerned, specifically the rights of translation, reprinting,

re-use of illusions, recitation, broadcasting, reproduction on microfilms or in any

other way, and storage in data banks. Duplication of this publication of parts

thereof is permitted only under the provision of the copyright law 1965, in its

current version, and permission of use must always be obtained from CSC

Publishers.

IJCSS Journal is a part of CSC Publishers

http://www.cscjournals.org

© IJCSS Journal

Published in Malaysia

Typesetting: Camera-ready by author, data conversation by CSC Publishing Services – CSC Journals,

Malaysia

CSC Publishers, 2019

http://www.cscjournals.org/

EDITORIAL PREFACE

This is Sixth Issue of Volume Thirteen of the International Journal of Computer Science and
Security (IJCSS). IJCSS is an International refereed journal for publication of current research in
computer science and computer security technologies. IJCSS publishes research papers dealing
primarily with the technological aspects of computer science in general and computer security in
particular. Publications of IJCSS are beneficial for researchers, academics, scholars, advanced
students, practitioners, and those seeking an update on current experience, state of the art
research theories and future prospects in relation to computer science in general but specific to
computer security studies. Some important topics cover by IJCSS are databases, electronic
commerce, multimedia, bioinformatics, signal processing, image processing, access control,
computer security, cryptography, communications and data security, etc.

The initial efforts helped to shape the editorial policy and to sharpen the focus of the journal.
Started with Volume 14, 2020, IJCSS appears with more focused issues. Besides normal
publications, IJCSS intend to organized special issues on more focused topics. Each special
issue will have a designated editor (editors) – either member of the editorial board or another
recognized specialist in the respective field.

This journal publishes new dissertations and state of the art research to target its readership that
not only includes researchers, industrialists and scientist but also advanced students and
practitioners. The aim of IJCSS is to publish research which is not only technically proficient, but
contains innovation or information for our international readers. In order to position IJCSS as one
of the top International journal in computer science and security, a group of highly valuable and
senior International scholars are serving its Editorial Board who ensures that each issue must
publish qualitative research articles from International research communities relevant to
Computer science and security fields.

IJCSS editors understand that how much it is important for authors and researchers to have their
work published with a minimum delay after submission of their papers. They also strongly believe
that the direct communication between the editors and authors are important for the welfare,
quality and wellbeing of the Journal and its readers. Therefore, all activities from paper
submission to paper publication are controlled through electronic systems that include electronic
submission, editorial panel and review system that ensures rapid decision with least delays in the
publication processes.

To build its international reputation, we are disseminating the publication information through
Google Books, Google Scholar, Directory of Open Access Journals (DOAJ), Open J Gate,
ScientificCommons, Docstoc and many more. Our International Editors are working on
establishing ISI listing and a good impact factor for IJCSS. We would like to remind you that the
success of our journal depends directly on the number of quality articles submitted for review.
Accordingly, we would like to request your participation by submitting quality manuscripts for
review and encouraging your colleagues to submit quality manuscripts for review. One of the
great benefits we can provide to our prospective authors is the mentoring nature of our review
process. IJCSS provides authors with high quality, helpful reviews that are shaped to assist
authors in improving their manuscripts.

Editorial Board Members
International Journal of Computer Science and Security (IJCSS)

EDITORIAL BOARD

EDITOR-in-CHIEF (EiC)

Dr. Chen-Chi Shing
Radford University (United States of America)

EDITORIAL BOARD MEMBERS (EBMs)

Professor Ren-Junn Hwang
Tamkang University
Taiwan

Dr. Yean-Fu Wen
National Taipei University
Taiwan

Dr. Riccardo Colella
University of Salento
Italy

Dr. Anissa BOUZALMAT
Sidi Mohamed Ben Abdellah University
Morocco

Associate Professor Gulustan Dogan
Yildiz Technical University
Turkey

Dr. Teng li Lynn
University of Hong Kong
Hong Kong

Dr. Alfonso Rodriguez
University of Bio-Bio
Chile

Dr. Li Qiuying
China

Professor Abdel-Badeeh M. Salem
Ain Shams University
Egyptian

Professor Mostafa Abd-El-Barr
Kuwait University
Kuwait

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019

TABLE OF CONTENTS

Volume 13, Issue 6, December 2019

Pages

221 - 230 IOT Power Management For Reducing The Dependency On Batteries

Ahmed Abdulmanea, Lutfi Khanbari

231 - 243 Dynamic Taint Analysis Tools: A Review

Abdullah Mujawib Alashjaee, Salahaldeen Duraibi , Jia Song

244 - 254 A Survey of Symbolic Execution Tools

Salahaldeen Duraibi, Abdullah Alashjaee, Jia Song

255 - 265 Discovering and Understanding The Security Issues In IoT Cloud

Nawaf A Almolhis, Michael Haney, Fahad Alqahtani, Khalid Al Makdi

266 - 274 Web Based Access Control of Smart Home Security System

Khalid Saleh Aloufi, Ahmed Alharbi, Anwar Redwan, Yousif AbuTarboush

275 - 293 A Comparison of Queueing Algorithms Over TCP Protocol

Mahmud Milud Mansour, Ahmed Hmeed

Ahmed Abdulmanea & Lutfi Khanbari

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 221

IOT Power Management For Reducing The
Dependency On Batteries

Ahmed Abdulmanea ahmed_abdulmanea@adeneng-faculty.edu.ye
Faculty of Engineering / University of Aden /
Information Technology
Aden, Yemen

Lutfi Khanbari llkhanbari@gmail.com
Faculty of Engineering / University of Aden
 / Computer science and Engineering
Aden, Yemen

Abstract

Various reports and studies projects that, by 2020, about to 50 billion devices will be connect to
internet of things and the global market value will reach $7.1 trillion, which will give the engineers
the opportunity to design solutions to several problems such as healthcare, industry,
transportation, agriculture, smart homes, etc.

The Internet of Things (IoT) is the network of physical devices, vehicles, home appliances and
other items embedded with electronics, software, sensors, actuators, and connectivity which
enables these objects to connect and exchange data. Each thing is uniquely identifiable through
its embedded computing system but is able to interoperate within the existing Internet
infrastructure.

Sensors are the core of the IoT as its collect the data from the environment and then exchange it
with a web cloud server through the network (internet) and then send a response to the things
(devices) to take actions.

Most of the devices will be connect wirelessly due to the inconvenience, expense or infeasibility
of wiring it, and many of them have size constrains with limited battery space and no power cord,
so powering these devices (to achieve several months of functioning) become serious challenge.
This paper highlights focusing in this challenge and addressing some solutions by using
environmental energy to make IoT self-powered such as solar energy, these will decrease and, in
some cases, eliminating their dependence on batteries.

Keywords: Internet of Things, Wireless Power Management, Energy Harvesting, Low Power,
Solar Energy.

1. INTRODUCTION
By 2020, there will be around 50 billion smart objects connected to the Internet of Things (more
than six times the world’s projected population at the time), making the IoT one of the fastest
growing technology across all of computing [24]. These smart devices will change all aspects of
our daily lives and fundamentally change the way we interact with our physical environment,
thereby revolutionizing a number of application domains such as telemetry, healthcare, home
automation, energy conservation, security, wearable computing, asset tracking, maintenance of
public infrastructure, etc., as shown in Figure 1.

One of the biggest challenges to realizing this IoT vision is the problem of powering these tens
of millions of IoT devices. Most of these devices will be battery-powered for reasons of cost,
convenience, or the need for untethered operation. Despite tight constraints on size and, hence,
battery capacity, many IoT devices will be required to have long operational lifetimes (from a few

Ahmed Abdulmanea & Lutfi Khanbari

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 222

months to possibly several years) without the need for battery replacement, because frequent
battery replacement at scale is not only expensive, but often not even feasible in addition to the
Alkali effect of the battery on the environment. For example, the Environment Protection Agency
reports that more than 3 billion batteries are discarded in the USA every year and that, placed
end to end, discarded AA batteries would circle the earth six times. The rapid proliferation of IoT
devices will only exacerbate this problem, making the need to address it an urgent priority.

This paper highlights some promising directions for addressing this challenge and makes a case
for focusing on two main building blocks: (a) the development of intelligent system-level power
management techniques that allow an IoT device to adjust its power consumption in a context-
aware manner, and (b) the use of environmental energy harvesting to make IoT devices self-
powered, thus decreasing in some cases, even eliminating their dependence on batteries. These
building blocks are illustrated using examples of IoT devices, including the QUBE wireless
platform, which exploits the characteristics of emerging non-volatile memory technologies to
seamlessly and efficiently enable long-running computations in systems that have an intermittent
and unreliable power supply.

It is important to recognize that IoT devices have very diverse power requirements and longevity
requirements, which have a profound influence on how they are designed. One group of devices,
henceforth referred to as Type I devices, are wearable devices.

FIGURE 1: A summary of the envisioned applications and growth application for the Internet of Things.

(e.g., smart watches, fitness monitors, connected glasses), which have a longevity requirement of
several days because a user is likely to own only a few such devices and can recharge them
regularly, particularly with the advent of wireless charging technologies. A second group of
devices, henceforth referred to as Type II devices, are set-and-forget devices (e.g., home security
and automation sensors, water leak sensors) that a user wants to deploy and then not tinker
with for several (2 to 5) years. A user is likely to own dozens of such devices, therefore frequent
battery replacement would be very inconvenient and hamper the user experience. A third group
of devices, henceforth referred to as Type III devices, are semi-permanent devices (e.g., wireless
sensors that monitor public infrastructure such as bridges, highways, and parking structures),
where the device is installed and needs to operate for more than a decade. The scale of these
devices makes frequent battery replacement simply infeasible. A fourth group of devices,
henceforth referred to as Type IV devices, are battery less and passively powered (e.g., RFID
tags, smartcards), drawing their power from an external source such as a tag reader. Finally, a
fifth group of devices, henceforth referred to as Type V devices, are powered appliances (e.g.,
smart refrigerators, microwaves, smart TVs) that will always be plugged into a power outlet,
eliminating the need for a battery.

Ahmed Abdulmanea & Lutfi Khanbari

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 223

2. SELF-POWERED SYSTEMS USING ENERGY HARVESTING
Over the past, energy harvesting has emerged as an attractive and increasingly feasible option
to address the power supply challenge in a variety low power systems. The use of energy
harvesting significantly prolongs over all system lifetime and has the potential to result in self
powered, perpetual system operation, particularly for Type II and Type III IoT devices. Figure 2
shows the power supply subsystem of an energy harvesting device. In this section, we discuss
recent advances in the design of each constituent component, namely, the energy harvester (or
transducer), the power conditioning unit, and the energy storage element.

FIGURE 2: The power supply subsystem of an energy harvesting IoT device.

2.1 Harvesting Ambient Energy
An energy harvester, in our context, is a device that converts power from ambient sources, such
as electromagnetic radiation (including light and RF waves), thermal gradients, mechanical
motion, etc., into electrical power. Of these modalities, solar energy harvesting through
photovoltaic conversion is the most mature and well-studied, in part because it has a higher
power density (output power per unit area or volume) than other ambient power sources. Solar
harvesting is well suited for IoT devices that have substantial exposure to light, such as the Flood
Beacon [5], which is an outdoor environment monitor. Flexible photovoltaic cells [34] could
possibly also be integrated into clothing and used to recharge wearable IoT devices.

Kinetic energy harvesting converts the mechanical energy of motion or vibration into electrical
energy through electromagnetic induction [28] or the piezoelectric effect [39]. It is particularly
attractive for wearable IoT devices that are powered by human motion and for devices attached
to vibrating objects such as engines or motors. For example, the Pavegen [6] is an energy
harvesting floor tile that can be installed on a sidewalk to gather energy from footsteps, which
could be used for advertising, way finding solutions, etc. Intelligently scavenging energy from
routine human activities could play a prominent role in improving the battery lifetime of IoT
devices. RF energy harvesting uses the power received from incident RF waves for powering
a device. This technique is commonly used in passive RFID systems. The source of the power
can either be dedicated RF waves generated for wireless charging (e.g., the Qi wireless charging
standard) [31], or ambient RF signals that are transmitted for wireless data transfer (e.g., WiFi or
TV signals) [14]. Energy harvesting from ambient WiFi signals has been demonstrated [30],
although the amount of harvested power that can be harvested is often minuscule.

Thermoelectric generators (TEGs) translate a thermal gradient between two surfaces into an
electrical potential [51]. TEGs are suitable for powering IoT devices that are in contact with hot
surfaces. Wearable IoT devices, such as smartwatches, can also use TEGs as a power source
by exploiting the difference between the body’s surface temperature and the ambient
temperature.

Ahmed Abdulmanea & Lutfi Khanbari

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 224

In summary, the choice of harvesting modality for a particular IoT device is dependent on its
operating environment, form factor constraints, as well as its power budget.

2.2 Power Conditioning
Electronic circuit components require a stable DC power supply to operate reliably. However, the
output voltage of an energy harvester often varies significantly depending on the strength of the
ambient power source (e.g., the light intensity or the amplitude of vibration). Therefore, the
output of the harvester needs to be converted into an appropriate (and stable) voltage level
through the use of a power conditioning circuit before it can be fed to an IoT device or transferred
to an energy storage element. However, power conditioning for energy harvesting is not
straightforward. For example, due to the stringent form factor constraint in most IoT devices, the
output power of the harvester is very small, often only a few mW. The conditioning circuit should
deliver as much of this power as possible to the IoT device with minimal loss, which requires
extremely careful design. Further, some harvesters generate only tens of mV at their output,
such as TEGs in body worn devices. In such cases, a boost regulator that accepts an ultra low
input voltage is required [19].

In addition to voltage regulation, power conditioning also plays an important role in maximizing
harvesting efficiency. Most energy harvesters have an optimal operating point (called the
maximum power point or MPP) at which their power output is maximized. Since the MPP
changes dynamically based on ambient conditions, the power conditioning unit should
continuously maintain operation at the MPP, a process referred to as MPP tracking. MPP
tracking is a feature available in many commercial power conditioning ICs [55, 38]. Design
considerations for MPP tracking are described in [42, 36]. In [57], MPP tracking is done by
modulating the average power consumption of the device, without a dedicated power
conditioning unit.

2.3 Energy Storage
Since the amount of power available from an energy harvester is dynamic and unpredictable, an
energy storage element is needed in IoT devices for uninterrupted operation when ambient
power is not available. Often, the energy storage element is the bulkiest part of an embedded
system. Therefore, energy storage elements with a high energy density are highly desirable for
IoT devices to maximize lifetime and minimize device size.

Batteries are the most widely used energy storage element in untethered devices. A solid state
thin film battery that uses solid electrolytes is a promising battery technology for IoT devices [47].
It has low power density but high energy density, making it suitable for long lasting low power
IoT devices. Such a thin, bendable battery can also be easily integrated into small IoT devices
[27]. A solid state battery can be manufactured in conventional IC packages or even be integrated
with an IC in a single package, such as Cymbet’s EnerChip [22]. This enables a significant
reduction in size and system integration cost. Compared to batteries, super capacitors have a
much higher cycle efficiency and extremely long cycle life. However, they require the power
conditioning unit to be able to cope with their large voltage variation, in particular, the very low
voltage during cold boot. Dynamic reconfiguration of multiple supercapacitors can mitigate the
voltage variation issue and improve cold boot speed [20].

Ahmed Abdulmanea & Lutfi Khanbari

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 225

(a) (b) (c)

FIGURE 3: (a) Qube: A modular embedded platform (1” by 1”) that facilitates easy prototyping and

addition/removal of features through modules, (b) Time taken (11.12s) to complete RSA encryption of 128
characters on Qube in the presence of continuous power supply. The Done signal is raised at the end of

the computation, and (c) QuickRecall implemented on Qube. RSA encryption is successfully performed
across multiple power cycles with negligible overhead (19.28s − 2 × 4.08s = 11.12s).

Recent advances in nanotechnology have also enabled flexible supercapacitors on a thin film
substrate, which are well suited for wearable applications [44].

3. LOW POWER HARDWARE FOR THE IOT DEVICES
The most effective way to improve the battery life of an IoT device is to decrease the power
consumed by its constituent hardware components. Even in IoT devices such as Driblet [3] and
SPAN [10] that are powered through energy harvesting (discussed in Section 2), it is imperative
to use low power hardware to achieve near perpetual operation. It is useful to note that many
IoT devices are architecturally similar to wireless sensor node platforms [25, 45] and low power
design techniques used for these platforms are equally applicable to the design of IoT devices
[21, 49]. The following subsections discuss recent advances in low power hardware for the
computation and communication subsystems of an IoT device, respectively.

3.1 Computation Subsystem
Microcontrollers (MCUs) are at the heart of every embedded system that interfaces to (and
interacts with) the real world, including IoT devices. As described in Section 1, many of these
systems need to operate unattended for several years without the need for battery replacement
[43,46]. Achieving such long operational lifetime requires extreme levels of energy efficiency.
Fortunately, many sensing applications operate in a heavily duty cycled mode, wherein the
system is active only for very short bursts of time (of ten, only milliseconds) separated by long
idle intervals (of ten, many tens of seconds) during which the system can be placed in a low
power, sleep mode. Since the system spends greater than 90% of its time in the sleep mode, the
cumulative energy spent in this mode is often the bottleneck for battery lifetime. Therefore, it is
important to select an MCU that has a very low power consumption in idle state in addition to
being power efficient during active computation. To minimize idle mode power consumption, most
MCUs feature multiple low power (or sleep) modes. For example, the STM32L1 series of MCUs
(based on the ARM Cortex M3 core) supports up to 7 different sleep modes. The sleep modes
found in MCUs are of two types. The first is a shallow sleep mode, in which the MCU core is
stopped, peripherals are disabled, and clock sources are turned off. However, the MCU stays
powered up, which means that state information (consisting of the MCU registers and the
contents of on chip SRAM) is preserved during sleep. Although waking up from shallow sleep is
very fast, it is (as expected) not the lowest power sleep mode possible. Hypnos [33] addresses

Ahmed Abdulmanea & Lutfi Khanbari

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 226

this problem based on the observation that the minimum voltage required for SRAM data
retention is often much lower (by as much as 10x) than the minimum operating voltage of the
MCU. By lowering the supply voltage when the MCU is in sleep mode to just above the SRAM
data retention voltage, Hypnos achieves dramatic reductions in sleep mode power. The second
type of sleep mode is deep sleep, in which the entire MCU, including the on-chip SRAM, is
powered down. While this results in the lowest power consumption possible during sleep, it
does not preserve SRAM state. Therefore, the contents of the SRAM need to be saved to
non-volatile storage such as the on-chip Flash of the MCU before entering this mode. When the
MCU wakes up next, the saved state is restored from the Flash to the SRAM and the MCU
resumes execution. Unfortunately, due to the high erase/write time and power of Flash, the
energy overhead of saving and restoring state is substantial. Recent work [32] to address this
problem uses emerging non-volatile memory (NVM) technologies such as magnetoresistive RAM.

TABLE 1: Power consumption of a few representative hardware components used in IoT devices

(sourced from datasheets).

(MRAM) [37] or ferroelectric RAM (FRAM) [26]. These memories combine the flexibility and
endurance of SRAM with the non volatility of Flash, all at a very low power consumption. Low
power MCUs with these emerging NVMs integrated are already available [48, 61]. In these
MCUs, software can save the processor state and the contents of SRAM to the NVM before
the MCU enters sleep mode, avoiding the need for keeping the SRAM powered during sleep.
Building on this idea, recent research has led to the emergence of a new class of processors
called non volatile processors [35, 53]. In these processors, NVM memory elements are
distributed throughout the MCU such that it can automatically save the contents of all the
registers in these NVM elements before it is shutdown, resulting in a (nearly) zero power sleep
mode with state retention and rapid wakeup.

Minimizing power consumption in active mode has been extensively investigated for the past
few decades and numerous techniques such as dynamic voltage and frequency scaling (DVFS),
voltage islands, etc., have been proposed and shown to be effective in reducing power
consumption. Continued voltage scaling has led to the emergence of near threshold and
subthreshold processors [17, 58] that aim to operate at an optimal energy point. For example,
the Phoenix processor [29] is an event-driven subthreshold processor that has an sleep power
consumption of only 30 pW. The use of such ultra low power MCUs, if applicable, will provide
a significant boost to the battery life of IoT devices.

Table 1 shows the active mode and sleep mode power consumption of a few off-the-shelf
hardware components (including MCUs, radios, and sensors) that are commonly used in IoT
devices. As seen, most of these hardware components feature highly power-efficient sleep
modes in which the power consumption is decreased by several orders of magnitude compared
to the active mode.

Ahmed Abdulmanea & Lutfi Khanbari

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 227

3.2 Communication Subsystem
The IoT concept fundamentally depends on the fact that devices will communicate either directly
with each other or with a cloud based service accessible through the Internet. Hence, reliable
wireless communication is an integral component of any IoT device. Typically, wireless
communication is more power hungry than other tasks such as sensing or computation. In
addition, different types of IoT devices have different communication requirements depending on
their deployment locations, longevity constraints, traffic patterns, etc. Therefore, choosing an
appropriate wireless technology that is power effcient is a vital design choice.

Despite its relatively high power consumption, WiFi is the preferred wireless standard for many
IoT applications due to its near ubiquitous nature WiFi hotspots are present in most homes,
offices, and public spaces and the fact that it enables convenient and straightforward access to
the Internet. Advances in wireless communication have also seen the development of numerous
low power wireless standards such as Bluetooth Smart, IEEE 802.15.4, etc. The IEEE 802.15.4
standard targets low data rate applications (e.g., remote monitoring and control systems) and
defines the physical and medium access control layers upon which the Zigbee and 6LoWPAN
network stacks are built. The standard allows for multi-hop wireless topologies and several
power efficient IEEE 802.15.4 compliant radios are commercially available. However, one
disadvantage of using IEEE 802.15.4 for IoT applications, compared to WiFi, is the need for an
additional gateway device to achieve Internet access (if required). Particularly for Type II IoT
devices, it is difficult to converge on the use of a single wireless standard due to the varying
nature of applications as well as the large number of product vendors involved. Hence, it is likely
that future smart homes will use IoT hubs such as Revolve [9] or Ninja Spheramid [11] that
support a variety of wireless standards such as WiFi, Bluetooth Smart, Zigbee, Z-Wave, Insteon,
etc. In addition to existing wireless standards, innovative approaches such as using the existing
power line wiring in the home as an antenna have also been proposed [12].

Bluetooth Smart is an enhanced version of the well known Bluetooth standard that was designed
for low power communication [16]. Bluetooth based IoT devices, such as Estimote Beacon [23],
Lively [41], tado Cooling [56], etc., can directly communicate with smart phones, which are
already Bluetooth equipped. This is a key advantage that will likely cement Bluetooth Smart’s
position as the wireless standard of choice for IoT devices that need to frequently communicate
with mobile devices such as smart phones and tablets.

Other IoT applications such as manufacturing and asset tracking could use RFID based
communication. Passive RFID technology allows devices such as battery less smart tags to
operate using power harvested from a nearby reader’s RF transmissions. Recent work [40]
proposed the idea of ambient backscatter, a novel technique that allows two battery less devices
to communicate with each other by backscattering existing wireless signals from TV stations
and cellular transmissions. Although the technique is mainly intended for low throughput
applications, it is a significant step forward because it enables tiny IoT devices to exchange
small amounts of information without the need for a battery or a nearby RFID reader.

4. CONCLUSION
This paper showed some guidance to address the problem of powering the devices that form
the IoT. We believe that a comprehensive solution to this problem involves two main building
blocks including intelligent system-level power management techniques and (perhaps, most
promising) is to make IoT devices self powered by harvesting energy from their operating
environment. Doing so raises the possibility of perpetual operation of these devices, thus
decreasing their dependence on batteries and the need for frequent battery replacement.

5. REFERENCES
[1] Belkin Wemo. http://www.belkin.com/us/Products/homeautomation/c/wemohome
 automation/.

http://www.belkin.com/us/Products/

Ahmed Abdulmanea & Lutfi Khanbari

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 228

[2] CubeSensors. https://cubesensors.com/.

[3] Driblet. http://driblet.co/.

[4] Fitbit. http://www.fitbit.com/.

[5] Flood Beacon. http://floodbeacon.com.

[6] Pavegen. http://www.pavegen.com/.

[7] Pebble. https://getpebble.com/.

[8] Quirky Wink. https://www.quirky.com/ge.

[9] Revolv Home Automation hub. http://revolv.com/.

[10] Self-Powered Ad-Hoc Network. http://www.lockheedmartin.com/us/products/span.html.

[11] Spheramid Gateway for Ninjasphere. http://ninjablocks.com/.

[12] Wally. https://www.wallyhome.com/.

[13] Wireless Sensor Tags. https://www.mytaglist.com/.

[14] B. Allen et al. Harvesting energy from ambient radio signals: A load of hot air? In LAPC,
 pages 1–4, 2012.

[15] Ambiq Micro. AM08X5 real-time clock family. http://ambiqmicro.
 com/sites/default/files/AM08X5 Data Sheet DS0002V1p1.pdf .

[16] Bluetooth Special Interest Group. https://www.bluetooth.org/.

[17] D. Bol et al. SleepWalker: A 25-MHz 0.4-V sub- mm2 7 − μW/MHz microcontroller in 65-nm
 LP/GP PCMOS for low-carbon wireless sensor nodes. IEEE J SOLID-ST CIRC, pages 20–
 32, 2013.

[18] C. Brown. Low-power sampling techniques using kinetis l, 2013.

[19] E. Carlson et al. A 20 mv input boost converter with efficient digital control for
 thermoelectric energy harvesting. IEEE J SOLID-ST CIRC, pages 741–750, 2010.

[20] C.-Y. Chen and P. H. Chou. Duracap: A super capacitor-based, power-bootstrapping,
 maximum power point tracking energy-harvesting system. In ISLPED, pages 313–318,
 2010.

[21] G. Chen et al. Circuit design advances for wireless sensing applications. Proc. IEEE, pages
 1808–1827, 2010.

[22] Cymbet. EnerChip. http://www.cymbet.com/.

[23] Estimote. Estimote beacons. http://estimote.com/.

[24] D. Evans. The internet of things: How the next evolution of the internet is changing
 everything. http://www.cisco.com/web/about/ ac79/docs/innov/IoT IBSG 0411FINAL.pdf ,
 2011.

[25] M. Fo jtik et al. A millimeter-scale energy-autonomous sensor system with stacked battery
 and solar cells. IEEE J SOLID-ST CIRC, pages 801–813, 2013.

http://driblet.co/
http://www.fitbit.com/
http://floodbeacon.com/
http://www.pavegen.com/
http://www.quirky.com/ge
http://revolv.com/
http://www.lockheedmartin.com/us/products/span.html
http://ninjablocks.com/
http://www.wallyhome.com/
http://www.mytaglist.com/
http://ambiqmicro/
http://www.bluetooth.org/
http://www.cymbet.com/
http://estimote.com/
http://www.cisco.com/web/about/

Ahmed Abdulmanea & Lutfi Khanbari

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 229

[26] G. R. Fox et al. Current and future ferroelectric nonvolatile memory technology. J VAC SCI
 TECHNOL B, pages 1967–1971, 2001.

[27] M. Gorlatova et al. Energy harvesting active networked tags (EnHANTs) for ubiquitous ob
 ject networking. IEEE WC, pages 18–25, 2010.

[28] M. Gorlatova et al. Movers and shakers: Kinetic energy harvesting for the internet of things.
 In (to appear in) ACM SIGMETRICS, 2014.

[29] S. Hanson et al. A low-voltage processor for sensing applications with picowatt standby
 mode. IEEE J SOLID-ST CIRC, pages 1145–1155,2009.

[30] A. M. Hawkes et al. A microwave metamaterial with integrated power harvesting
 functionality. Applied Physics Letters, 103(16), 2013.

[31] H. Jabbar et al. RF energy harvesting system and circuits for charging of mobile devices.
 IEEE T CONSUM ELECTR, pages 247–253, 2010.

[32] H. Jayakumar et al. QUICKRECALL: A low overhead HW/SW approach for enabling
 computations across power cycles in transiently powered computers. In VLSID, pages 330–
 335, 2014.

[33] H. Jayakumar et al. HYPNOS: An Ultra-Low Power Sleep Mode with SRAM Data Retention
 for Embedded Microcontrollers. CODES+ISSS ’14, 2014 (to appear).

[34] C. Y. Jiang et al. High-bendability flexible dye-sensitized solar cell with a nanoparticle-
 modified ZnO-nanowire electrode. APPL PHYS LETT, 2008.

[35] S. Khanna et al. An FRAM-based nonvolatile logic MCU SoC exhibiting 100% digital state
 retention at vdd= 0 V achieving zero leakage with < 400-ns wakeup time for ulp
 applications. IEEE J SOLID-ST CIRC, pages 95–106, 2014.

[36] Y. Kim et al. Maximum power transfer tracking for a photovoltaic-supercapacitor energy
 system. In ISLPED, pages 307–312, 2010.

[37] H. Li and Y. Chen. Nonvolatile Memory Design: Magnetic, Resistive, and Phase Change.
 2011.

[38] Linear Technology. LT8490-high V, high I, buck-boost battery charge controller with MPPT.

[39] J.-Q. Liu et al. A MEMS-based piezoelectric power generator array for vibration energy
 harvesting. MICROELECTR J, pages 802–806,2008.

[40] V. Liu et al. Ambient backscatter: Wireless communication out of thin air. COMPUT
 COMMUN REV, pages 39–50, 2013.

[41] Lively. Lively. http://mylively.com/.

[42] C. Lu et al. Maximum power point considerations in micro-scale solar energy harvesting
 systems. In ISCAS, pages 273–276, 2010.

[43] S. J. A. Ma jerus et al. Wireless, ultra-low-power implantable sensor for chronic bladder
 pressure monitoring. JETC, pages 11:1–11:13,2012.

[44] C. Meng et al. Ultrasmall integrated 3D micro-supercapacitors solve energy storage for
 miniature devices. Advanced Energy Materials,2014.

http://mylively.com/

Ahmed Abdulmanea & Lutfi Khanbari

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 230

[45] P. P. Mercier et al. Energy extraction from the biologic battery in the inner ear. NAT
 BIOTECHNOL, pages 1240–1243, 2012.

[46] J. Nickels et al. Find my stuff: Supporting physical ob jects search with relative positioning.
 In UbiComp, pages 325–334, 2013.

[47] P. H. L. Notten et al. 3-D integrated all-solid-state rechargeable batteries. ADV MATER,
 pages 4564–4567, 2007.

[48] Panasonic. MN101LR05D/04D/03D/02D datasheet.
 http://www.semicon.panasonic.co.jp/ds4/MN101L05 E.pdf .

[49] V. Raghunathan and P. Chou. Design and power management of energy harvesting
 embedded systems. In ISLPED, pages 369–374,2006.

[50] V. Raghunathan et al. Emerging techniques for long lived wireless sensor networks. IEEE
 COMMUN MAG, pages 108–114, 2006.

[51] Y. Ramadass and A. Chandrakasan. A battery-less thermoelectric energy harvesting
 interface circuit with 35 mV startup voltage. IEEE J SOLID-ST CIRC, pages 333–341,
 2011.

[52] B. Ransford. Transiently Powered Computers. PhD thesis, University of Massachusetts
 Amherst, Jan. 2013.

[53] N. Sakimura et al. A 90 nm 20 MHz fully nonvolatile microcontroller for standby-power-
 critical applications. In ISSCC, pages 184–185,2014.

[54] A. Sinha and A. Chandrakasan. Dynamic power management in wireless sensor networks.
 IEEE DES TEST COMPUT, pages 62–74,2001.

[55] STMicroelectronics. SPV1050-ULP energy harvester and battery charger with embedded
 MPPT and LDOs.

[56] tado. tado cooling. http://www.tado.com/.

[57] C. Wang et al. Storage-less and converter-less maximum power point tracking of
 photovoltaic cells for a nonvolatile microprocessor. In ASP-DAC, pages 379–384, 2014.

[58] B. Zhai et al. A 2.60pJ/Inst subthreshold sensor processor for optimal energy efficiency. In
 Symposium on VLSI Circuits, pages 154–155, 2006.

[59] P. Zhang et al. QuarkOs: Pushing the operating limits of micro-powered sensors. In HotOS,
 2013.

[60] P. Zhang and D. Ganesan. Enabling bit-by-bit backscatter communication in severe energy
 harvesting environments. In NSDI, pages 345–357, 2014.

[61] M. Zwerg et al. An 82 μA/MHz microcontroller with embedded FeRAM for energy-harvesting
 applications. In ISSCC, pages 334–336,2011.

http://www.semicon.panasonic.co.jp/ds4/MN101L05
http://www.tado.com/

Abdullah Mujawib Alashjaee, Salahaldeen Duraibi & Jia Song

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 231

Dynamic Taint Analysis Tools: A Review

Abdullah Mujawib Alashjaee alas0145@vandals.uidaho.edu
a

Computer Science Department
University of Idaho
Moscow, ID, 83844, USA

b
Computer Science Department
Northern Borders University
Arar, 73222, Saudi Arabia

Salahaldeen Duraibi dura6540@vandals.uidaho.edu
a

Computer Science Department
University of Idaho
Moscow, ID, 83844, USA

b
Computer Science Department
Jazan University
Jazan, 45142, Saudi Arabia

Jia Song jsong@uidaho.edu
Computer Science Department
University of Idaho
Moscow, ID, 83844, USA

Abstract

Taint analysis is the trending approach of analysing software for security purposes. By using the
taint analysis technique, tainted tags are added to the data entering from the sensitive sources
into the applications, then the propagations of the tainted data are monitored carefully. Taint
analysis can be done in two ways including static taint analysis where analysis is conducted
without executing the program, and dynamic taint analysis where the tainted data is monitored
during the program execution. This paper reviews the taint analysis technique, with a focus on
dynamic taint analysis. In addition, some of the existing taint analysis tools and their application
areas are reviewed. In the end, the paper summarises the defects associated with each of the
tools and presents some of them.

Keywords: Taint Analysis, Static Analysis, Dynamic Analysis.

1. INTRODUCTION
Software security analysis is important for testing Commercial off the Shelf (COTS) systems. It
can be accomplished by employing source code or binary code. However, source code is not
available in most of the cases for software security analysis. Hence, binary code analysis is used
for a number of reasons, including software forensics [1, 2], malware analysis [4], and
performance analysis and debugging [3]. A number of binary code analysis approaches are in the
literature, and the most popular ones include symbolic execution, concolic execution, static taint
analysis and dynamic taint analysis [5].

Capitalizing on the issue of efficiency identified in the fuzzing techniques, symbolic execution,
which is another conventional binary code analysis approach, has come into being [6]. Different
from other techniques, such as concrete execution that take concrete input values, symbolic
execution uses symbols that abstractly represent specified input values for vulnerability analysis
[7]. However, the technique is suffering from the famous path-explosion problem when
symbolically executing large programs [8].

Abdullah Mujawib Alashjaee, Salahaldeen Duraibi & Jia Song

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 232

In view of improving the problems identified in symbolic execution, researchers have started
working on taint analysis. According to Xiajing Wang and colleagues [32], taint analysis has first
been proposed by Funnywei [75]. Taint analysis works in a triple form manner of source, sink,
and sanitizer. The source is where some untrusted or confidential input data is introduced to the
application, probably from the application API or network interface. The sink is the sensitive point
in the application that performs secure operations, such as sensitive banking transactions, and
needs to be protected from violation of integrity, confidentiality, and availability of the application.
Sanitizer refers to the process where the tainted input data is no longer considered harmful to the
information security of the application by means of removal of harmful operations such as
malicious programs that may cause the application to function out of its intended operation [7]. In
short, taint analysis helps software analyzers to take an informed decision on whether the data
introduced at the input point or source of the application can be allowed to propagate to the sink
point without harm, or else the application will suffer from some security issues such as data
leakage or other more dangerous operations such as buffer overflow.

There are two types of taint analysis approaches, Static Taint Analysis (STA) and Dynamic Taint
Analyses (DTA). In STA, analyzers test an application by examining the intermediate code
without the execution of the application. Static taint analysis is mostly carried out in a two-step
manner, including disassembly of the intermediate code and conducting analysis on the resulting
assembly code [9, 10]. It may sometimes use binary codes for application security analysis.
However, since source code rarely comes with COTS software, it makes the STA approach
harder to combat malicious programs, thus reducing its application. Similarly, analyzing binary
codes with STA approaches have endured complications and challenges [11]. For instance,
malware with strong evasion techniques can easily escape the STA approach [4]. These
limitations have motivated the identification of alternative approaches that can overcome such
defects to analyze applications accurately and reliably.

On the other hand, in DTA, applications are tested during runtime for possible vulnerabilities [12].
Both STA and DTA approaches have weaknesses and strengths. For example, when conducting
information flow analysis in an application, DTA can suffer from runtime overhead which may
make it fall short of analyzing all the code, causing it not to discover some potential threats. On
the other hand, since STA analyzes the application code without executing it, it may suffer from
an accuracy issue. As a result, some researchers proposed tools that mix the two techniques to
analyze flaws or vulnerabilities in applications [13-15]. Some researchers have used the STA
approach before or after DTA [15, 16]. In doing so, for example, STA is employed after DTA in
order to see whether analysis has missed anything suspicious after using DTA. STA can be
employed before DTA to analyze the behavior of the application prior to the code execution in a
live environment.

Conducting vulnerability analysis on software in cases where the source code is not available, for
example, COTS, software security analysts use the DTA approach as the ideal option [17].

Usually, DTA methods are implemented at the hardware level or code level. For instance, some
of the DTA methods are implemented within the hardware [18-21]. Although this implementation
relatively provides the lowest overhead, it is less flexible and the least practical because it
requires significant architectural and microarchitectural changes to the processor. By using
source code instrumentation to track the propagation of the tainted data, DTA can also be
performed at the code level of the software [22-26]. This approach is also less practical since
source code is hardly available for security analysis in most applications. However, to perform
data flow tracking without hardware modification or source code, the DTA methods such as Dytan
[27], Libdft [22], Argos [28], BitBlaze [29], and DTA++ [30] use binary code to perform security
analysis. This approach is used more prevalently because it enables a wide variety of analysis.
For this paper, the DTA approaches that use binary code is the focus of interest. This paper is
aimed at presenting an analytical view of static and dynamic taint tools.

Abdullah Mujawib Alashjaee, Salahaldeen Duraibi & Jia Song

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 233

The rest of the paper is organized as follows: Section 2 is the background of the study providing
basic knowledge of DTA. Section 3 presents a review on several commonly used STA tools, and
Section 4 presents the review of DTA tools. Section 5 presents lessons learned, and Section 6
concludes the paper.

2. BACKGROUND
The primary focus of this paper is on the use of DTA approaches for software security testing. In
the following subsections, we will provide the readers with the preliminary details for
understanding the purpose, techniques, and key concerns of the research work of taint analysis.
Different aspects of DTA are in a general manner summarized in Section 2.1.

2.1 Concepts of Dynamic Taint Analysis Approach
This section, explains basic concepts about DTA. DTA is also referred to as dynamic information
flow tracking. The approach is about observing the behaviour of certain untrusted programs as
they execute in a monitored environment. The central idea of the DTA approach is to label some
incoming data values as tainted and to propagate them through operands as instructions execute.
This happens by marking certain values in the CPU registers or memory locations as tainted, and
observing the tainted data as they propagate during the code execution. A taint propagation
policy is associated with each instruction to specify whether each output operand should be
tainted or untainted based on the taint status of the input operands.

2.1.1 Analysis Techniques
DTA can be accomplished either by control or data flow tracking [1]. Control flow tracking is an
approach to show how the hierarchical flow of control in a given application is sequenced. It
makes an easier analysis of all possible execution paths of an application. The output of control
flow analysis is usually expressed in Control Flow Graphs (CFG), where each instruction or a
block of instructions is represented by a node and the control flow between two nodes is indicated
by direct edges. On the other hand, based on the problem that needs to be investigated, DTA
computes a set of possible values at every point in an application. That is, data flow tracking is for
monitoring programs from the perspective of how the program processes the data [2].

2.1.2 Offline and Online Dynamic Taint Analysis
Dynamic information flow tracking can be performed offline or online. In offline analysis, the trace
of program execution is recorded into trace files and later analyzed by replaying those trace files.
In online analysis, the security analysis is conducted by monitoring the program execution. Online
analysis is considered to be more accurate and easier to implement, but it suffers from slow
execution [32]. Using traces for later analysis will let analysts get thorough information about what
has happened, but the raw trace file may become complicated to understand [8]. On the other
hand, in doing online analysis, incident response can be performed in a timely manner, but it may
sometimes end up as a false alert [8, 32].

2.1.3 Modes of Implementation
Dynamic information flow tracking tools can be implemented at the user or kernel level of an
operating system. This depends on the type of security matter under investigation and the level of
information extraction needed for the analysis [3]. For instance, programs such as word
processing and imaging applications are executed at the user level of operating systems. On the
other hand, operating systems perform their operations at the kernel level. Hence, DTA tools can
be developed as targeting either the analysis of the user applications that work at the user level
or the analysis of the privileged applications that have direct access to the kernel level processes.

2.1.4 Taint Granularity
The granularity of tracking the application has important implications for the usage of DTA tools.
In DTA, analysis can be conducted in a fine-grained or coarse-grained manner [34, 35]. In
coarse-grained information flow, the tainted data is tracked at the granularity of a whole system
level, while in fine-grained analysis, tainted data is tracked at the granularity at the process level.

Abdullah Mujawib Alashjaee, Salahaldeen Duraibi & Jia Song

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 234

At the data level, data units can be tagged as small as a bit or as large as chunks of memory [35].
That is, in coarse-grained analysis, fewer tags are required compared to fine-grained analysis.
Coarse-grained analysis tools are often easier to design and implement but may inherit trackless
information causing false alarms [35]. Conversely, by tracking the information flow at the fine
granularity, the analysis is more flexible and more precise but may require more memory space
[35]. In most cases, researchers consider one over another believing that, for example, one is
more effective than the other. However, Vassena et al. argued that both coarse and fine
granularities are equally important in DTA [34].

2.1.5 Dynamic Binary Instrumentation (DBI)
Dynamic Binary Instrumentation refers to the analysis of an executable code through injecting
additional code into the compiled code at runtime. This is usually implemented using a Just-in-
Time (JIT) compiler. In DBI, code is executed in basic blocks, and the code at the end of each
block is modified so that control is passed to the analysis engine to perform a number of checks,
such as whether a system call is being executed [6]. Two of the most popular frameworks for
achieving dynamic instrumentation in Windows are DynamoRIO [7] and Intel Pin [8].

2.2 Challenges in Dynamic Taint Analysis
Challenges that DTA has to face when analyzing applications for security can include soundness,
precision, and overhead. In some papers, these are referred to as over-tainted, under-tainted,
and overhead [17]. Under-tainted refers to a situation where values expected to be marked as
tainted are not, while over-tainted occurs when too many values are marked as tainted. For
instance, tools are still suffering from the issue of accuracy where in some cases taint may
spread too much or happen to be missing, causing over-tainting or under-tainting respectively.
The issue of balancing speed and accuracy is another challenge [8]. DTA tools sometimes cause
overhead, minimizing the performance of the system [12].

3. STATIC TAINT ANALYSIS TOOLS
The STA technique is used for application vulnerability testing. There are a number of software
vulnerability testing tools that utilize STA for deep and exhaustive tracking and prevention of
suspicious data. In most cases, STA is conducted outside the testing environment, but it provides
better code coverage analysis compared to DTA [40]. Existing researches employing STA can be
categorized into three main areas including software privacy analysis [41], software forensics
[42], web application vulnerability analysis [43, 44, 45, 46].

Conventional privacy-enhancing technologies have fallen short of assessing and auditing the
privacy of cutting edge technologies. Detailed and often manual examination that is needed for
these technologies makes privacy assessment a more complex, time-consuming, and tiresome
task. Taint analysis has recently been used for realtime privacy monitoring of system privacy [41].
For instance, Celik et al. present SAINT, a system that can be used by the IoT consumers to
assess the privacy risks that can come with the adoption of IoT devices [47]. Likewise, in digital
forensics identifying potential evidence is at the center of any investigation. Evidence
identification is challenging where only executable code is available; for example, identifying the
existence of malware at the memory of a system where there is no source code [48]. Fordroid is a
fully automated forensics tool developed based on the STA approach [42].

Another security area where the STA approach is widely used is web application vulnerability
analysis. Tripp et al., use an STA in the design and implementation of TAJ to analyze web
application security vulnerability [49]. TAJ has later been improved into a more scalable and
precise version called ACTARUS [50]. A method proposed by Kurniawan et al. detects web file
injection vulnerability in web applications using a PHP parser to traverse abstract syntax trees of
the source code [51], while the method uses source codes for web application vulnerability
assessment [52]. F4F makes use of an augmented taint analysis engine that generates a web
application’s source code in a simple Web Application Framework Language (WAFL) [53]. Tripp
et al. proposed the most popular Web application security analysis tool called ANDROMEDA [54].

Abdullah Mujawib Alashjaee, Salahaldeen Duraibi & Jia Song

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 235

TABLE 1: STA Tools.

Table 1 summarizes and compares the STA tools reviewed in this section. Most of the tools are
vulnerability mining tools that require source code for the analysis.

4. DYNAMIC TAINT ANALYSIS TOOLS

There are a number of research areas where DTA has been used for solving security problems,
including private data leak detection, application vulnerability detection, malware analysis, and
forensics [17]. For example, several researchers presented a Privacy Scope approach that uses
DTA to find application leaks [55]. The approach is believed to be accurate and efficient and is
implemented at the user environment to help pinpoint information leaks even if the sensitive data
is encrypted. This approach uses function call summaries to handle taint propagation to reduce
the overhead of the information flow tracking. In addition, this approach uses on-demand
instrumentation to enable fast loading and to be able to run on large applications to precisely
track information. Different from TightLip [56] and Privacy Oracle [57], information leakage
detecting tools that are limited to applications whose outputs only depend on inputs, Privacy
Scope can trace multiple input data.

TaintEraser is another DTA tool proposed for the prevention of sensitive data leaks [58].
TaintEraser conducts its analysis at the application level to let off-the-shelf application users run
their applications while preventing unwanted information exposure. Similarly, researchers
implement the taint propagation within the kernel for a reduced overhead in tracking in which they
try to achieve near-real-time analysis. TaintEraser uses on-demand instrumentation to enable fast
loading of large applications, and a semantic-aware instruction-level tainting for increased
accuracy. The tool is tested with Internet Explorer, Yahoo! Messenger, and Windows Notepad
where it generated no false positives, precisely preventing user sensitive data that would have
otherwise been leaked to unwanted channels [58]. TaintEraser uses PIN [58] as a dynamic binary
translator to accomplish its application-level analysis. The tool supports a simple privacy policy
whereby a user first specifies sensitive input data to monitor, and subsequently TaintEraser
blocks any data derived from the sensitive input data from moving to output channels that are
specified as restricted. In doing so, TaintEraser monitors applications with input data marked
‘sensitive.’ Once such applications are moving out of the network, TaintEraser would replace
sensitive bytes in those applications with randomly chosen bytes [58].

Information flow tracking is one of the widely used information leak detection methods for
smartphones. For instance, TaintDroid is a tool that provides Android smartphone users a means
of testing whether third-party applications collect and share their private data [59]. TaintDroid
uses a system-wide information flow tracking to analyze Android apps for data leakage. The
system is a near-real-time tool and is capable of tracking multiple sources of sensitive data at one
time. Researchers benchmarked their work with Android’s Activity Manager. It is detected that
Taintdroid adds 3% overhead. In addition, by employing Taintdroid to monitor the behavior of 30
Android apps, 68 instances of potential misuse of the users’ private data were detected. At the
time of its development, according to the authors, TaintDroid was the most effective and efficient
privacy testing tool for Android apps [59]. In this light, Taindroid is the prime candidate tool that
can help Android smartphone users make an informed use of third-party applications.

Sources Year Tools Security Focus area Need Source Code Used Platform Automated/Manual Specific Area

[47] 2018 SAINT Data leak (Privacy) YES

SmartThings/

OpenHAB/

Apple’s HomeKit

automated Commodity IoT

[41] 2018 Fordroid digital forensics YES Android automated Android applications

[49] 2009 TAJ Vulnerability analysis YES Java automated Web Applications

[50] 2011 ACTARUS Vulnerability analysis YES Java automated Web Applications

[53] 2011 F4F Vulnerability analysis YES Java Manual Web Applications

[54] 2013 ANDROMEDA Vulnerability analysis YES Java automated Web Applications

Abdullah Mujawib Alashjaee, Salahaldeen Duraibi & Jia Song

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 236

DTA is used for unknown vulnerability detection by looking for misuses of user input during a
program execution [17]. Vigilante [60] is an end-to-end approach that collaboratively detects
vulnerability at the end host. The tool runs instrumented software to detect worms at the host and
broadcasts alerts upon the detection of one. Subsequently, once an alert is broadcasted the host
automatically generates filters that would block infection of the suspected worm without blocking
innocuous traffic. With the use of Vigilante, there is no need for trust between hosts because it
uses a cooperative worm detection mechanism distributed all over the network, thereby making it
hard for worms to evade from detectors. However, Vigilante requires hosts to run expensive
detection engines that can spread highly accurate detection loads once a worm is detected over
the network.

Lift [61] is another vulnerability detecting approach with a low-overhead information flow tracking
mechanism. The tool is generic in the sense that it does not only target specific vulnerability
exploits such as worm, buffer overflow, format string, etc. Rather, Lift is a software-only approach
that exploits dynamic binary instrumentation and optimizations for detecting various types of
security attacks. Likewise, Lift is more specific in selecting tag propagation paths because it
eliminates unnecessary tracking, coalesces information checks, and efficiently switches between
target programs and instrumented information flow tracking code. The tool is implemented on
StarDBT [61], a dynamic binary translator, on Windows experimenting web applications from
server and client sides. Compared to previous works, the tool shows relatively better results [61].

Newsome and Song propose another host-based DTA tool that automatically detects Format
String and Overwrite attacks exploits on commodity software [62]. These researchers referred to
their tool as TaintCheck. TaintCheck has been employed in testing a number of programs and
turned out to not have false positives for any of the programs. Likewise, TaintCheck enables an
automatic semantic analysis to generate a signature for attack filtering after an exploited attack
has been detected.

Previous studies focused on the use of DTA for securing centralized software. However,
implementing such tools to distributed systems have raised issues of applicability, tool portability
and analysis scalability [63]. Hence, the development of dedicated DTA tools that can be used for
distributed systems is sought to be necessary. DistTaint, an application-level dynamic taint
analyzer, is proposed for this aspect [64, 65]. However, the tool uses Java source code for its
analysis.

Some researchers have taken one step beyond and have tried to secure cloud computing with
DTA tools. For example, Papagiannis and Pietzuch proposed CloudFilter [66], a DTA tool that
allows a cloud consuming organization to have control of its sensitive data and not be leaked to
the cloud without its consent. CloudFilter intercepts file transfers between the consumer
organization and cloud services, and subsequently performs logging and enforces propagation
policies. Similarly, the tool controls where files propagate after they have been uploaded to the
cloud and ensure that only authorized users may gain access to them. The researchers
successfully applied CloudFilter to Dropbox and GSS whereby they were able to control the data
propagation [66].

CloudFence is another data flow tracking service model [67] that monitors data leaks in cloud
services. Researchers propose the tool to be hosted by the cloud providers for consumers to
independently audit their data residing in that same cloud. The tool can also give cloud brokering
companies to confine the propagation of sensitive data of their customers within well-defined
domains. CloudFence is based on runtime binary instrumentation that supports byte-level data
tagging and uses PIN as a dynamic binary translator. Similarly, CloudFence enables fine-grained
data tracking for up to four billion users. To evaluate the effectiveness and practicality of the tool,
the researchers implemented a CloudFence prototype using two publicly disclosed data leakage
vulnerabilities in two real-world applications. Compared to the DTA tools Libdft and SiteBar;
CloudFence shows a runtime overhead which is comparable to that of Libdft and larger
performance impact in comparison to SiteBar.

Abdullah Mujawib Alashjaee, Salahaldeen Duraibi & Jia Song

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 237

Some researchers have amazingly employed dynamic information flow tracking for forensics
readiness purpose, where system call level logging is conducted in order to ease “after-the-myth”
investigation of attacks. For instance in one of the latest developments of this aspect, researchers
proposed Rain, an attack investigation system, which uses a record-replay technology to record
system-call events during runtime [68]. The system has the ability to perform instruction-level
DTA that can filter out processes unrelated to the case to minimize the number of processes to
be investigated for attack causality accuracy. In previous works, for example, Xiao et al. proposes
PoL-DFA, a forensic system that can log the execution traces of the processes being monitored
for investigating applications data leakage and contamination. Likewise, Sun and Oliveira
propose an IoT forensics framework DDIFT [70] that uses a DTA module running in the IoT
system controlling a mobile device, a forensics analysis module running in the cloud, and
distributed optimization to conduct a decentralized forensic analysis of IoT applets.

One of the research areas where the DTA approach is exhaustively used is in dynamic malware
analysis. The use of DTA is preferred for malware analysis because it is not easily defeated by
techniques such as obfuscation and polymorphism. In this paper, we will review some of the most
popular Malware analysis tools developed based on the DTA approach. Some malware analysis
tools such as Panorama [71] and Ether [72] use hardware instrumentation. These types of
malware analysis tools are not in our scope and therefore were not studied in this paper.
However, TQana is an internet explorer browser plug-in tool that uses binary instrumentation for
the analysis of malicious codes [73]. TQana performs at the kernel level to monitor all calls made
by the malware. It observes both the functional behavior and information traces of the malware
execution. Whenever a URL is entered into the address bar of the internet explorer, TQana
implements information flow tracking using the Navigate event of the web browser which in turn
introduces taints to the system. Another binary instrumentation based malware analysis tool is
Cloudtaint [74]. Cloudtaint uses elastic taint tracking based on data flow tracking as well as
control flow for malware detection of cloud-based applications. One of the best-known analysis
tools developed based on the DTA approach is Dyton [27]. Dyton uses PIN for binary
instrumentation providing an API where its user can configure the source and the sink to track the
control of the information flow.

Tables 2 (a) and (b) show a summary of the DTA based tools reviewed in this paper. In tables 2

(a) and (b), the sign (✓) shows the existence or use of the parameter, listed in the tables, by the

tools. In cases where cells are left blank, the corresponding parameter is neither used nor
discussed in the papers reporting about the tools.

5. COMPARATIVE DISCUSSION

In tables 2 (a) and (b), the tools were comparatively analyzed for their employment of certain
parameters. For instance, starting from the left, the tools were evaluated based on their area of
focus. Of the 15 DTA based tools reviewed in this paper, 5 were for analyzing data leaks. In the
literature of DTA, some researchers were categorically referring DTA based tools as data privacy
suitable tools. So no wonder that most of the reviewed tools are dedicated to data leak analysis.
The application of DTA based tools towards digital forensics is now getting the momentum. Three
of the 15 reviewed tools are developed for digital forensics. Starting from its early days the DTA
approach was used for malware analysis. Some DTA tools are generic in a way that they are not
specific for their implementation area. For example, tools such as Vigilante, Lift, TaintCheck, and
DistTaint are in general for application vulnerability analysis.

The tools were also evaluated for the type of analysis techniques they followed. The four columns
under the analysis techniques section of Table 2 (a) show that most tools explicitly follow the data
flow tracking analysis method. A good Handful of the tools including, Vigilante, Lift, DistTaint,
Rain, DDIFT, TQama, CloudTaint, and Dyton, use both dataflow and control-flow for their
analysis. Usually, tools that track data at a fine-grained level have shown law performance
compared to those performing tracking at a coarse-grained level. However, 9 out of the 15 tools
reviewed have implemented tracking at data or process (fine-grained) level analysis. Likewise, in

Abdullah Mujawib Alashjaee, Salahaldeen Duraibi & Jia Song

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 238

Table 2 (a), the binary instrumentation tool used in each of the tools is depicted in the DBI tools
column. Some the tools do not specify which binary instrumentation tool they employ. However,
undeniable number of tools have used the most popular binary instrumentation tool PIN. That is,
PIN is a good candidate for any prospected DTA tools.

In Table 2 (b), we evaluated the mode of the tools’ implementations. Usually, DTA tools perform
their analysis at the user or/and kernel levels of the operating system. Only 4 tools can conduct
analysis at both user and kernel levels, while the remaining 11 tools do analysis at the user or
kernel levels. In Table 2 (b), the soundness, precision, and performance of each of the tools are
evaluated. We could hardly grab soundness of the tools because most of the researchers did not
discuss in the relative papers. However, only have shown interest in indicating the soundness of
the tools. We mostly based our evaluation on the literature, particularly what other researchers
have said about the tools. As a result, most of fine-grained tools have shown high overhead.
Furthermore, we have studied what kind of environment the model has been implemented. As
indicated in the last two columns of Table 2 (b) most of the tools are implemented in virtualized
environments.

TABLE 2 (a): Dynamic Taint Analysis Tools.

TABLE 2 (b): Dynamic Taint Analysis Tools.

6. LESSONS LEARNED

Based on our review and current status of the DTA tools, it is believed that there is an urgent
need of designing DTA based vulnerability analysis tools with a reduced false reporting rate. On
the other hand, such tools may optimize the efficiency of the DTA by selectively controlling the

Abdullah Mujawib Alashjaee, Salahaldeen Duraibi & Jia Song

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 239

number of taints to be spread for each analysis. This can be accomplished by removing
unnecessary taints from the system.

In addition, the DTA tools in the literature can only detect some specific vulnerabilities. Hence, the
development of a generic tool that combines existing techniques in order to detect myriad security
vulnerabilities will be a value add to the domain. The literature is also lacking tools that can
analyze inter-applications or inter-systems data leaks.

Adopting DTA to the analysis of cutting edge technology is also lagging behind. There are only a
number of tools that have been applied to cloud computing and IoT environments. Worth
mentioning is that none of these tools focused on the vulnerability analysis of cloud or IoT
applications. Some focused on data leak detection while others were for either digital forensics or
malware analysis. The primary reason why the vulnerability analysis DTA based tools are not
extended to cloud and IoT technologies is because of the infancy of the two areas. Other reasons
may include the heterogeneous nature of devices and applications involved in cloud and IoT
technologies. Furthermore, how data is distributed, aggregated and processed in cloud and IoT
technologies may pose challenges in the data flow tracking. Particularly, different types of IoT
technologies, Operating systems, and network protocols from different vendors make it hard
implementation of DTA tools to the IoT ecosystem.

6. CONCLUSION

In this paper, taint analysis tools have been studied. At first, different areas where the taint
analysis approach is implemented are discussed. Subsequently, a brief overview of the STA and
a number of tools that have been developed based on STA are presented. Likewise, the section
about DTA is starting with the basics and definitions to consequently build on the description of
the tools and frameworks in the literature. A number of DTA based tools are thoroughly reviewed.
Their areas of implementation were studied together with the shortcomings reported in each of
the tools. A deeper understanding of the DTA approach and the effective adaption of its tools will
have an improving effect on software security analysis.

7. REFERENCES
[1] D Zou, J Zhao, W Li, Y Wu, W Qiang., "A Multigranularity Forensics and Analysis Method on

Privacy Leakage in Cloud Environment." IEEE Internet of Things Journal, 2018. 6(2): p.

1484-1494.

[2] A.N. Moussa, N. Ithnin, and A. Zainal, "CFaaS: bilaterally agreed evidence collection."

Journal of Cloud Computing, 2018. 7(1): p. 1.

[3] X. Meng, and B.P. Miller. "Binary code is not easy." in Proceedings of the 25th International
Symposium on Software Testing and Analysis. 2016. ACM.

[4] M. Shudrak, and V. Zolotarev. "The technique of dynamic binary analysis and its application
in the information security sphere." in Eurocon 2013. 2013. IEEE.

[5] C Chen, B Cui, J Ma, R Wu, J Guo, W Liu. "A systematic review of fuzzing techniques."

Computers & Security, 2018. 75: p. 118-137.

[6] R Baldoni, E Coppa, DC D'elia, C Demetrescu. "A survey of symbolic execution techniques."

ACM Computing Surveys (CSUR), 2018. 51(3): p. 50.

[7] Z Feng, Z Wang, W Dong. "Bintaint: A STA Method for Binary Vulnerability Mining." in 2018
International Conference on Cloud Computing, Big Data and Blockchain (ICCBB). 2018.

IEEE.

[8] J Cai, P Zou, J Ma, J He. "Sworddta: A dynamic taint analysis tool for software vulnerability
detection." Wuhan University Journal of Natural Sciences, 2016. 21(1): p. 10-20.

https://scholar.google.com/citations?user=82tR6VoAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=cJrM-6IAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=At-spOYAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=uqX964EAAAAJ&hl=en&oi=sra

Abdullah Mujawib Alashjaee, Salahaldeen Duraibi & Jia Song

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 240

[9] K. Liu, H.B.K. Tan, and X. Chen, "Binary code analysis. Computer," 2013. 46(8): p. 60-68.

[10] C. Cadar, D. Dunbar, and D.R. Engler. "KLEE: Unassisted and Automatic Generation of
High-Coverage Tests for Complex Systems Programs." in OSDI. 2008.

[11] W. Aman, "A framework for analysis and comparison of dynamic malware analysis tools."

arXiv preprint arXiv:1410.2131, 2014.

[12] J. Kim, T. Kim, and E.G. Im. "Survey of dynamic taint analysis." in 2014 4th IEEE
International Conference on Network Infrastructure and Digital Content. 2014. IEEE.

[13] E Zhu, X Li, F Liu, X Li, Z Ma. "Constructing a hybrid taint analysis framework for diagnosing
attacks on binary programs." Journal of Computers, 2014. 9(3): p. 566-575.

[14] M Ahmad, V Costamagna, B Crispo "TeICC: targeted execution of inter-component
communications in Android." in Proceedings of the Symposium on Applied Computing.

2017. ACM.

[15] M. Monga, R. Paleari, and E. Passerini. "A hybrid analysis framework for detecting web
application vulnerabilities." in Proceedings of the 2009 ICSE Workshop on Software
Engineering for Secure Systems. 2009. IEEE Computer Society.

[16] A. Getman, V. Padaryan, and M. Solovyev. "Combined approach to solving problems in
binary code analysis". in Proceedings of 9th International Conference on Computer Science
and Information Technologies (CSIT’2013). 2013.

[17] P. Dai, Z. Pan, and Y. Li. "A Review of Researching on Dynamic Taint Analysis Technique."
in 2018 3rd Joint International Information Technology, Mechanical and Electronic
Engineering Conference (JIMEC 2018). 2018. Atlantis Press.

[18] S Chen, J Xu, N Nakka, Z Kalbarczyk. "Defeating memory corruption attacks via pointer
taintedness detection." in 2005 International Conference on Dependable Systems and

Networks (DSN'05). 2005. IEEE.

[19] GE Suh, JW Lee, D Zhang, S Devadas. "Secure program execution via dynamic information
flow tracking." in ACM Sigplan Notices. 2004. ACM.

[20] G Venkataramani, I Doudalis, Y Solihin. "Flexitaint: A programmable accelerator for dynamic
taint propagation." in 2008 IEEE 14th International Symposium on High Performance
Computer Architecture. 2008. IEEE.

[21] J Shin, H Zhang, J Lee, I Heo, YY "Chen A hardware-based technique for efficient implicit
information flow tracking." in 2016 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). 2016. IEEE.

[22] VP Kemerlis, G Portokalidis, K Jee, AD Keromytis. "libdft: Practical dynamic data flow
tracking for commodity systems." in Acm Sigplan Notices. 2012. ACM.

[23] W. Xu, S. Bhatkar, and R. Sekar. "Taint-Enhanced Policy Enforcement: A Practical
Approach to Defeat a Wide Range of Attacks." in USENIX Security Symposium. 2006.

[24] V. Ganesh, T. Leek, and M. Rinard. "Taint-based directed whitebox fuzzing." in Proceedings
of the 31st International Conference on Software Engineering. 2009. IEEE Computer
Society.

[25] TR Leek, GZ Baker, RE Brown, MA Zhivich, "Coverage maximization using dynamic taint
tracing." 2007, MASSACHUSETTS INST OF TECH LEXINGTON LINCOLN LAB.

https://scholar.google.com/citations?user=8f9H-cUAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=exvMi3YAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=neO3vFYAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=PA-QN6IAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=QIFXp1IAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=-yrzguMAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=XarUylkAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=tndlIesAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=sXEIhhUAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=zRT97ucAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=tkb2YWQAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=pGz5U34AAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=x-ApqMUAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=mncyWbcAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=3Vu-f5AAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=mAvz2YMAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=cGztrWkAAAAJ&hl=en&oi=sra

Abdullah Mujawib Alashjaee, Salahaldeen Duraibi & Jia Song

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 241

[26] R Wang, G Xu, X Zeng, X Li, Z Feng TT-XSS: A novel taint tracking based dynamic
detection framework for DOM Cross-Site Scripting. Journal of Parallel and Distributed

Computing, 2018. 118: p. 100-106.

[27] J. Clause, W. Li, and A. Orso. "Dytan: a generic dynamic taint analysis framework." in
Proceedings of the 2007 international symposium on Software testing and analysis. 2007.
ACM.

[28] G. Portokalidis, A. Slowinska, and H. Bos."Argos: an emulator for fingerprinting zero-day
attacks for advertised honeypots with automatic signature generation." in ACM SIGOPS
Operating Systems Review. 2006. ACM.

[29] D Song, D Brumley, H Yin, J Caballero, I Jager "BitBlaze: A new approach to computer
security via binary analysis." in International Conference on Information Systems Security.

2008. Springer.

[30] MG Kang, S McCamant, P Poosankam, D Song Dta++: dynamic taint analysis with targeted

control-flow propagation. in NDSS. 2011.

[31] L Li, TF Bissyandé, M Papadakis, S Rasthofer. "Static analysis of android apps: A
systematic literature review." Information and Software Technology, 2017. 88: p. 67-95.

[32] X Wang, R Ma, B Dou, Z Jian, H Chen, "OFFDTAN: A New Approach of Offline Dynamic
Taint Analysis for Binaries." Security and Communication Networks, 2018. 2018.

[33] M Nunes, P Burnap, O Rana, P Reinecke, "Getting to the root of the problem: A detailed
comparison of kernel and user level data for dynamic malware analysis" Journal of

Information Security and Applications, 2019. 48: p. 102365.

[34] M Vassena, A Russo, D Garg, V Rajani, "From fine-to coarse-grained dynamic information
flow control and back." Proceedings of the ACM on Programming Languages, 2019.

3(POPL): p. 76.

[35] H. Yin, and D. Song, "Whole-system Fine-grained Taint Analysis for Automatic Malware
Detection and Analysis." Technical paper. College of William and Mary & Carnegie Mellon
University, 2006.

[36] M Polino, A Continella, S Mariani, S D'Alessio Measuring and defeating anti-instrumentation-
equipped malware. in International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. 2017. Springer.

[37] D. Bruening, E. Duesterwald, and S. Amarasinghe. Design and implementation of a dynamic
optimization framework for Windows. in 4th ACM Workshop on Feedback-Directed and
Dynamic Optimization (FDDO-4). 2001.

[38] CK Luk, R Cohn, R Muth, H Patil, A Klauser. "Pin: building customized program analysis
tools with dynamic instrumentation." in Acm sigplan notices. 2005. ACM.

[39] L.K. Yan, and H. Yin, "SoK: On the Soundness and Precision of Dynamic Taint Analysis."

[40] D. Boxler, and K.R. Walcott. STA Tools to Detect Information Flows. in Proceedings of the
International Conference on Software Engineering Research and Practice (SERP). 2018.

The Steering Committee of The World Congress in Computer Science, Computer ….

[41] M. von Maltitz, C. Diekmann, and G. Carle. Privacy Assessment Using STA (Tool Paper). in
International Conference on Formal Techniques for Distributed Objects, Components, and
Systems. 2017. Springer.

https://scholar.google.com/citations?user=lk90G3wAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=84WzBlYAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=O-29z5AAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=_1VlI00AAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=ldSJoRUAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=T8qbA4MAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=xx3cu9EAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=rVIZtNcAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=84WzBlYAAAAJ&hl=en&oi=sra

Abdullah Mujawib Alashjaee, Salahaldeen Duraibi & Jia Song

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 242

[42] X Lin, T Chen, T Zhu, K Yang, F Wei "Automated forensic analysis of mobile applications on

Android devices." Digital Investigation, 2018. 26: p. S59-S66.

[43] Z Xing, Z Bin, F Chao, Z Quan "Staticly Detect Stack Overflow Vulnerabilities with Taint
Analysis." in ITM Web of Conferences. 2016. EDP Sciences.

[44] C. Feng, and X. Zhang. A Static Taint Detection Method for Stack Overflow Vulnerabilities in
Binaries. in 2017 4th International Conference on Information Science and Control
Engineering (ICISCE). 2017. IEEE.

[45] F. Pauck, and H. Wehrheim. Together strong: cooperative Android app analysis. in
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 2019. ACM.

[46] S Arzt, S Rasthofer, C Fritz, E Bodden, A Bartel "Flowdroid: Precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for android apps." in Acm Sigplan Notices.

2014. ACM.

[47] ZB Celik, L Babun, AK Sikder, H Aksu, G Tan "Sensitive information tracking in commodity
IoT." in 27th {USENIX} Security Symposium ({USENIX} Security 18). 2018.

[48] N. Rosenblum, X. Zhu, and B.P. Miller. Who wrote this code? identifying the authors of
program binaries. in European Symposium on Research in Computer Security. 2011.

Springer.

[49] O Tripp, M Pistoia, SJ Fink, M Sridharan, TAJ: effective taint analysis of web applications.

ACM Sigplan Notices, 2009. 44(6): p. 87-97.

[50] S Guarnieri, M Pistoia, O Tripp, J Dolby Saving the world wide web from vulnerable
JavaScript. in Proceedings of the 2011 International Symposium on Software Testing and
Analysis. 2011. ACM.

[51] A Kurniawan, BS Abbas, A Trisetyarso STA Traversal with Object Oriented Component for
Web File Injection Vulnerability Pattern Detection. Procedia Computer Science, 2018. 135:

p. 596-605.

[52] M.L. Minsky, Computation. 1967: Prentice-Hall Englewood Cliffs.

[53] M Sridharan, S Artzi, M Pistoia, S Guarnieri F4F: taint analysis of framework-based web
applications. in ACM SIGPLAN Notices. 2011. ACM.

[54] O Tripp, M Pistoia, P Cousot, R Cousot Andromeda: Accurate and scalable security analysis
of web applications. in International Conference on Fundamental Approaches to Software
Engineering. 2013. Springer.

[55] Y Zhu, J Jung, D Song, T Kohno, D Wetherall, Privacy scope: A precise information flow
tracking system for finding application leaks. 2009, Citeseer.

[56] A.R. Yumerefendi,, B. Mickle, and L.P. Cox. TightLip: Keeping Applications from Spilling the
Beans. in NSDI. 2007.

[57] J Jung, A Sheth, B Greenstein, D Wetherall "Privacy oracle: a system for finding application
leaks with black box differential testing." in Proceedings of the 15th ACM conference on
Computer and communications security. 2008. ACM.

[58] DY Zhu, J Jung, D Song, T Kohno, TaintEraser: Protecting sensitive data leaks using
application-level taint tracking. ACM SIGOPS Operating Systems Review, 2011. 45(1): p.

142-154.

Abdullah Mujawib Alashjaee, Salahaldeen Duraibi & Jia Song

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 243

[59] W Enck, P Gilbert, S Han, V Tendulkar TaintDroid: an information-flow tracking system for
realtime privacy monitoring on smartphones. ACM Transactions on Computer Systems

(TOCS), 2014. 32(2): p. 5.

[60] M Costa, J Crowcroft, M Castro, A Rowstron Vigilante: End-to-end containment of internet
worms. in ACM SIGOPS Operating Systems Review. 2005. ACM.

[61] F Qin, C Wang, Z Li, H Kim, Y Zhou "Lift: A low-overhead practical information flow tracking
system for detecting security attacks." in 2006 39th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO'06). 2006. IEEE.

[62] J. Newsome, and D.X. Song. Dynamic Taint Analysis for Automatic Detection, Analysis, and
SignatureGeneration of Exploits on Commodity Software. in NDSS. 2005. Citeseer.

[63] X Wang, H Ma, K Yang, H Liang "An Uneven Distributed System for Dynamic Taint Analysis
Framework." in 2015 IEEE 2nd International Conference on Cyber Security and Cloud
Computing. 2015. IEEE.

[64] X. Fu, and H. Cai." A dynamic taint analyzer for distributed systems." in Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 2019. ACM.

[65] X. Fu, "On the scalable dynamic taint analysis for distributed systems." in Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 2019. ACM.

[66] I. Papagiannis, and P. Pietzuch. "Cloudfilter: practical control of sensitive data propagation
to the cloud." in Proceedings of the 2012 ACM Workshop on Cloud computing security
workshop. 2012. ACM.

[67] V Pappas, VP Kemerlis, A Zavou CloudFence: Data flow tracking as a cloud service. in
International Workshop on Recent Advances in Intrusion Detection. 2013. Springer.

[68] Y Ji, S Lee, E Downing, W Wang, M Fazzini "Rain: Refinable attack investigation with on-
demand inter-process information flow tracking." in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. 2017. ACM.

[69] G Xiao, J Wang, P Liu, J Ming, D Wu "Program-object level data flow analysis with
applications to data leakage and contamination forensics." in Proceedings of the Sixth ACM
Conference on Data and Application Security and Privacy. 2016. ACM.

[70] N. Sapountzis, R. Sun, and D. Oliveira. "DDIFT: Decentralized Dynamic Information Flow
Tracking for IoT Privacy and Security." in Workshop on Decentralized IoT Systems and
Security (DISS). 2018.

[71] H Yin, D Song, M Egele, C Kruegel "Panorama: capturing system-wide information flow for
malware detection and analysis." in Proceedings of the 14th ACM conference on Computer
and communications security. 2007. ACM.

[72] A Dinaburg, P Royal, M Sharif, W Lee "Ether: malware analysis via hardware virtualization
extensions." in Proceedings of the 15th ACM conference on Computer and communications
security. 2008. ACM.

[73] M Egele, C Kruegel, E Kirda, H Yin, D Song. "Dynamic spyware analysis." 2007.

[74] J Yuan, W Qiang, H Jin, D Zou. "CloudTaint: an elastic taint tracking framework for malware
detection in the cloud." The Journal of Supercomputing, 2014. 70(3): p. 1433-1450.

[75] Funnywei, “Bufer Overfow Vulnerability Mining Model [Z/OL],” 2003,
http://xcon.xfocus.net/XCon2003/archives/ Xcon2003 funnywei.pdf.

Salahaldeen Duraibi, Abdullah Mujawib Alashjaee & Jia Song

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 244

A Survey of Symbolic Execution Tools

Salahaldeen Duraibi dura6540@vandals.uidaho.edu
a
 Computer Science Department

 University of Idaho
 Moscow, ID, 83844, USA
b
 Computer Science Department

 Jazan University
 Jazan, 45142, Saudi Arabia

Abdullah Mujawib Alashjaee alas0145@vandals.uidaho.edu
a
 Computer Science Department

 University of Idaho
 Moscow, ID, 83844, USA
b
 Computer Science Department

 Northern Borders University

Jia Song jsong@uidaho.edu
Computer Science Department
University of Idaho
Moscow, ID, 83844, USA

Abstract

In the software development life cycle (SDLC), testing is an important step to reveal and fix the
vulnerabilities and flaws in the software. Testing commercial off-the-shelf applications for security
has never been easy, and this is exacerbated when their source code is not accessible. Without
access to source code, binary executables of such applications are employed for testing. Binary
analysis is commonly used to analyze on the binary executable of an application to discover
vulnerabilities. Various means, such as symbolic execution, concolic execution, taint analysis,
can be used in binary analysis to help collect control flow information, execution path information,
etc. This paper presents the basics of the symbolic execution approach and studies the common
tools which utilize symbolic execution in them. With the review, we identified that there are a
number of challenges that are associated with the symbolic values fed to the programs as well as
the performance and space consumption of the tools. Different tools approached the challenges
in different ways, therefore the strengths and weaknesses of each tool are summarized in a table
to make it available to interested researchers.

Keywords: Symbolic Execution, Concrete Execution, Concolic Execution, Binary Analysis.

1. INTRODUCTION

In cases where applications are analyzed for defects and source code is not available, software
analysts have to conduct analysis at the binary code level of the application. Engaging binary
code for software analysis is referred to as binary analysis. It is commonly used for error
identification, reverse engineering, and security analysis. In addition, binary analysis is well
known for its use for discovering vulnerabilities in software, and this paper focuses on that aspect
of the binary analysis. To reveal vulnerabilities, disassembly of the binary executable needs to be
done first and then the vulnerability patterns, such as buffer overflow, can be recognized.

Conducting binary analysis is challenging, because a great deal of useful information, such as
symbolic information, data types, program structures, is not carried to the binary code. What is
more, in the early days of using binary code analysis, analysts used to have difficulty

Salahaldeen Duraibi, Abdullah Mujawib Alashjaee & Jia Song

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 245

distinguishing between data and code in binary, because data fragments and executable code
are mixed in the binaries [1]. Therefore, researchers in the domain of software testing have
proposed a number of binary analysis techniques, including taint analysis, symbolic execution,
and concolic execution.

Taint analysis is used for information flow tracking, data entering from some specific sources
such as user input, application APIs or network interfaces are marked as tainted (untrusted).
Then the propagations of the tainted data are tracked throughout the program and the uses of the
tainted data are carefully checked. There are two ways of performing taint analysis, static taint
analysis and dynamic taint analysis. Static taint analysis tools usually conduct the analysis in a
controlled environment where the data are monitored before run time [2]. Tools developed based
on static taint analysis can offer better code coverage in their analysis compared to dynamic taint
analysis [2]. However, such tools suffer in that they cannot detect runtime security defects of
applications. Static taint analysis can be used for different aspects of security analysis including
data leak analysis [3], digital forensics [4], web application vulnerability analysis [5, 6]. On the
other hand, dynamic taint analysis is a principled approach for tracking information flow during
program execution. Different from the static taint analysis that needs for its analysis to run in a
confined environment, dynamic taint analysis usually conducts analysis when the application is
running in its intended environment. Moreover, dynamic taint analysis can be implemented within
the hardware level of a system to conduct analysis [7-10], or at the software stack by either using
the source code [11-15] or binary code [16]. However, since dynamic taint analysis conducts
applications security analysis at the runtime, it can only find flows that are executed. Hence, it has
less code coverage compared to the static taint analysis [2].

Symbolic execution remains one of the favored techniques when it comes to error detections [17].
It is usually used for testing applications for defects and security matters [18]. Symbolic execution
has been proposed as a solution to the concrete execution that explores a specific actual data
input and a single control flow path at a time. Instead in symbolic execution, a program is
explored for the different paths it can take when fed with different inputs. To that end, to
accomplish this, symbolic execution does not take actual data as input, rather, it uses symbolic
input values. As a result, the output is given as a function of the symbolic value and is considered
as a sound analysis compared to the concrete. Symbolic execution has suffered from execution
path explosion for large or complex programs [19].

Hence, in order to mitigate the path explosion issue, concolic execution is proposed. Concolic
execution combines concrete execution and symbolic execution in order to overcome inherent
defects identified in the symbolic execution including path explosion and handling calls to native
libraries [20]. That is, the program is executed on some concrete input values provided by the
analyst and then symbolic path constraints are generated for that specific execution. Concolic
execution was first proposed in 2001 by Eric Larson and Todd Austin [21].

The rest of the paper is organized as follows: Section 2 is the background of the study providing
basics of how symbolic execution works. The studies of different symbolic execution tools are
presented in Section 3. Section 4 discusses the lessons learned from reviewing the common
tools, and Section 5 concludes the paper.

2. BACKGROUND

Conventionally, symbolic execution is used for analyzing sequential programs with integer
variables [22]. Symbolic Execution uses symbolic values as input data rather than actual data and
symbolic expressions as program variables. Different from the concrete execution approach that
tests programs on specific input with a single control flow path, symbolic execution rather tests
programs with different inputs against multiple execution paths. In symbolic execution, programs
are fed with symbolic values instead of concrete input values [23]. The approach uses an
execution engine that collects a set of constraints combined and formulas across each explored
path. Once instructions are evaluated the formula is updated accordingly. The execution forks

Salahaldeen Duraibi, Abdullah Mujawib Alashjaee & Jia Song

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 246

when a branching instruction is encountered. A constraint solver - typically one suited for
satisfiability modulo theories (SMT) - is used to evaluate expressions involving symbolic values,
as well as for generating concrete inputs that can be used to run the program concretely along
the desired path [24].

FIGURE 1: Code that swaps two integers and the corresponding symbolic execution tree [20].

The state of the symbolically executed program is usually depicted in a symbolic execution tree
that shows the execution paths the input followed during the analysis. The nodes of the tree are
the states of the program. Each execution path between states is represented by an arc labelled
with a transition number. For example, in Figure 1, the code segment which swaps the value of
integer variables x and y is shown to the left of the figure. A corresponding symbolic execution
tree can be built and is depicted on the right of Figure 1. According to the symbolic execution
tree, in the initial path condition, x and y have the symbolic values X and Y. In each transition,
based on the input values, the path condition is updated. Following the execution of the initial
statement, both ‘then’ and ‘else’ alternatives of the ‘if’ statement are possible, and the path
condition is updated accordingly. Where inputs do not satisfy the path condition (false), it means
the symbolic state of the program is not reachable, and as a result, the symbolic execution will
not continue for that path of the program. For instance, statement number six (6) is unreachable
in the symbolic execution tree in Figure 1.

In order to perform symbolic execution analysis, the program has to exercise a large set of paths
through its execution tree that is because whenever more paths are explored, the higher the
coverage of examined codes. Nevertheless, such an enumeration of execution paths is
computationally expensive. Traditionally symbolic execution uses exhaustive exploration of the
possible execution paths. However, this makes the analysis process to remain applicable only to
small applications, causing analysts to aim for less ambitious goals. Having said that, a number of
approaches that can ease the process of path exploration are employed by most of the recent
symbolic execution tools. For example, some researchers proposed standard model checking
tools for Java programs in order to perform the path selection process [25, 26].

Generally, symbolic execution challenges are related to four different areas that have been
studied including memory, environment, state-space exploration, and constraint solving [27].
Memory related challenges are about the way the symbolic engine manipulates pointers, arrays
and other complex objects that may give rise wrong symbolic values or expressions.
Environment-related challenges are about the external call that may cause side effects to the
execution. State-space exploration is about the control flow path that the execution engine should
explore within a reasonable amount of time. Finally, the constraint solving related challenges are
simply about the issues pertaining to the scalability of the constraint solver of a tool.

Likewise, according to Xu et al., challenges pertaining to the symbolic execution tools (software
and program testing) can be referred to as symbolic-reasoning and path-explosion challenges
[28]. Symbolic-reasoning challenges are related to the problems that cause symbolic execution
tools to generate incorrect test results for particular control flows. These include a symbolic
variable declaration, symbolic jumps, symbolic memories, contextual symbolic values, floating-

int x, y;
1: if (x > y) {

 2: x = x + y;
3: y = x - y;
4: x = x - y;

 5: if (x - y > 0)
 6: assert (false);

}

Salahaldeen Duraibi, Abdullah Mujawib Alashjaee & Jia Song

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 247

point numbers, buffer overflows, and arithmetic overflows. Likewise, path explosion challenges
are related to the problems that introduce increased control flows to analye a program [29]. In
other words, these are problems that cause symbolic execution tools to require increased time
and resources on exploring the paths needed for analysis [30]. These include external function
calls, loops, and crypto functions that may cause path-explosion issues to both large-sized and
small-sized programs. In this paper, these challenges are considered and solutions from each
tool in relation to the challenging area are discussed.

3. SYMBOLIC EXECUTION TOOLS
This section discusses some of the famous software testing tools which utilize symbolic execution
techniques. The tools proposed in the literature are mostly used for testing input generation [31],
regression testing [32], program deobfuscation [33], and dynamic software updates [34]. In
addition, there is another group of tools that uses symbolic execution to guide exploit generation
[30], vulnerability finding [35], and fuzzing [36].

DART [37] is one of the early works with automated unit testing (concrete execution) technique. It
combines three approaches in order to conduct software analysis. It uses static source code
parsing for code inspection of C programs. It performs automatic random testing in order to find
software bugs specifically inter-procedural bugs and bugs caused by the use of library functions.
Finally, it conducts dynamic analysis in order to test how the program behaves under random
testing. It tests programs for standards errors such as crashes, assertion violations, and non-
termination. As a concrete execution tool, DART does not employ path selection mechanisms
because it uses specific input with a single path testing scenario. However, the random choosing
of the value over the domain of potential inputs (random testing) followed by DART may lead to
the same observation behaviour that may cause redundancy. Likewise, in random testing, the
chance of selecting inputs that cause buggy behaviour may be small [38].

CUTE [39] is a software testing tool that uses the concolic execution technique that combines
concrete and symbolic executions. Different from DART, CUTE tests programs with first trying
NULL, and then, in a subsequent execution, a concrete address, rather than making random
choices. CUTE uses concretization of address to maintain consistency across different
executions and due to efficiency in constraint solving. In this tool, a logical input map is used to
generate memory input graphs for the unit under test. Sen, K. et al. reported that the CUTE works
efficiently in exploring paths in C code to expose software bugs resulting in assertion violations,
segmentation faults, or infinite loops [39]. The main reason why CUTE uses combined symbolic
and concrete execution is to generate test inputs to explore different execution paths with which
the execution proceeds [27]. In addition, the tool uses a constraint solver tool that facilitates the
incremental generation of the input. Sen et al. proposed an implementation of CUTE in finding
algebraic security attacks in cryptographic protocols and security breaches in unsafe languages,
but have never published their work in this regard [40]. In another study jCUTE, the tools have
been extended for Java programs [41].

Cadar et al. proposed EXE, an effective bug-finding tool [42]. EXE uses the concolic execution
technique that runs symbolic inputs to track the constraints in memory locations. The tool uses
real code in finding bugs and capitalizes on the effect of running a single code path by
automatically generating concrete inputs that can run into multiple program execution paths.
What makes EXE different is that once a path hits a bug it automatically generates a test case
using the value that has triggered the bug as concrete values. The tool uses search heuristics for
path selection. The researchers use two performance optimizations including cashing constraints
to avoid calling Simple Theorem Prover (STP) solver and removing irrelevant constraints from the
queries the tools send to STP solver.

SAGE proposed by Godefroid et al. is a concolic execution software testing tool that is internally
used by Microsoft [43]. SAGE is considered as a general tool because it works at the instruction
level to track integer constraints (bit-vectors). In another research, SAGE has been utilized as a

Salahaldeen Duraibi, Abdullah Mujawib Alashjaee & Jia Song

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 248

security testing tool [44]. The tool uses the random test style firstly employed by DART but
mutates well-formed inputs using grammars. SAGE introduced a generational search as a
constraint solver to explore the state space of large applications executed with large inputs. In
addition, the tool uses a number of optimization techniques to improve the performance and
memory usage of the constraint generation, such as tag caching where structurally equivalent
tags are mapped to the same physical object, and local constraint caching. Moreover, the tool
also uses the constraint subsumption optimization technique for structured-file parsing
applications.

According to Tillmann and De, PEX is a software testing tool developed for .NET that produces a
small test suite with high code coverage [45]. PEX performs analysis using dynamic symbolic
execution. To reason about the feasibility of execution paths, PEX uses constraint solver Z3. Z3
[46] is an efficient satisfiability modulo theory solver which is commonly used in software
verification and application analysis. By using Z3, PEX is able to reason operations such as
substring, concatenation, and replacement. Z3 also offers binding for certain programming
languages [46].

A recently-developed tool, Tracer, is another software testing tool that is developed based on
symbolic execution approach [47]. Tracer is a verification tool for the finite-state of sequential C
programs. The tool uses constraint logic programming (CLP) as a resolver. In addition, the tool
uses interpolation methods including the strongest postconditions and weakest preconditions.

Identifying vulnerability in binary code is a complicated task. BitBlaze is one of the projects that
focused on the analysis of binary codes for vulnerability analysis [2]. The BitBlaze project
contributed to the community three tools each focusing different approaches of preforming binary
analysis. The tools include Vine, a static taint analysis component, TEMU, a dynamic taint
analysis component, and Ruder, a Concolic execution component. Rudder has core utilities and
interfaces that enable users to take a snapshot and reload the exploration state providing user-
specific path selection policies. The tool uses the ‘Lazy’ approach which collects necessary
information in the symbolic machine during the execution. Moreover, the tool uses STP for
symbolic-reasoning and breadth-first search approach for path selection [2].

BAP is one of the early binary analysis tools that is developed based on the symbolic execution
approach [48]. BAP is a redesigned type of Vine [2] with the goal of including useful analysis and
verification techniques that may be appropriate for binary code analysis and allowing user-level
analysis. It assembles binary code into an optimized intermediate language (IL) and subsequently
performs analysis at the IL level.

Automatic Exploit Generation (AEG) is developed based on concrete and symbolic execution
approaches [49]. The tool identifies exploitable paths in a program. Hence to address the path-
reasoning challenge, the tool employs a novel technique called preconditioned symbolic
execution with which it targets paths that are more likely to be exploitable. In the report, the
researchers have proposed five challenging areas where tools like AEG should focus on doing
their analysis. The five challenging areas include the state space explosion problem, the path
selection problem, the environment modelling problem, the mixed analysis challenge, and the
exploit verification problem.

Different from the AEG, Mayham is a concolic execution tool that finds exploitable bugs in binary
code without debugging information [50]. There are four design principles adopted by Mayham
that make it different from the tools discussed previously. The tool makes forward symbolic
execution with arbitrary time, it does not repeat work for maximized performance, the tool keeps
the works of previous analysis for reusability, and finally, the tool can reason about symbolic
memory. In addition, the tool is known for its hybrid way of combining offline and online
executions. Another work similar to that provided in Mayham is proposed in Veritesting [51].
Veritesting is a binary only symbolic execution tool targeting large scale testing of commodity off-

Salahaldeen Duraibi, Abdullah Mujawib Alashjaee & Jia Song

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 249

the-shelf software. It uses dynamic symbolic execution for testing and static symbolic execution
for verification.

A recent tool, Firmalice, is proposed for the analysis of privacy-sensitive and security-critical
applications installed on the IoT devices specifically [52]. The tool mainly focuses on the
identification of the existence authentication bypass activities and existing backdoor. The tool
uses concretizing user input as a constraint solver.

Driller, developed by Stephens et al. is a hybrid vulnerability excavation tool that uses concolic
execution to guide fuzzing [53]. The concolic execution component analyses the program, traces
user input and utilizes its constraint-solving engine to guide fuzzing too take different paths,
therefore it finds bugs located deeper in the code. Helping with a concolic execution component,
Driller can detect more vulnerabilities, however, it requires a lot of computing power and may
quickly run into the path explosion problem [53].

Table 1 summarizes the tools reviewed in this paper together with their techniques used to
overcome challenges associated with symbolic-reasoning, path-reasoning, and the optimization
approaches the tools employed in order to boost the performance or reduce the space required
for the analysis. Only three tools have used optimization techniques (EXE, SAGE, and BAP).
However, SAGE seems relatively more efficient in path reasoning and symbolic reasoning, while
EXE is only good in path reasoning and BAP has shown less accurate. Four tools are language-
dependent including CUTE, DART, EXE, and Tracer. Nevertheless, most of the tools reviewed in
this paper are language independent and employ binary codes for their analysis. There has been
an increase since 2012, which may show that symbolic execution tools are becoming more robust
and main vulnerability analysis. The Concolic execution techniques have gained a higher bar of
acceptance for the past decade. The tools have used different constraint solvers, however, the
most used are SMT solvers. Of the 13 symbolic execution tools reviewed in this paper, 6 use
Concolic approaches that combine symbolic with concrete executions.

The first five columns provided in Table 1 capture the nature of the tools and little do they say
about the evaluation of the tools; the last column capture the performance of the tools. Most of
the tools do not perform quantitative evaluation of their results. However, based on the reviewing
we were able to quantitatively compare different claims reported in each of the papers. As a
result, the last column of Table 1 discusses the overall performance of each of the tools in
relation to other similar works reviewed here.

Salahaldeen Duraibi, Abdullah Mujawib Alashjaee & Jia Song

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 250

Sources Tools SE or CE
Targeting

Language or Binary
Constraint solvers

Used Oprimization

technique
Strengths & weaknesses

[39] CUTE CE Language approximate pointer constraints
its weakness is that it targets only C

language programs

[37] DART SE Language depth first exploration

It lucks constraint solver for path selection,

as it uses concrete inputs, that is it is time

consuming

[42] EXE CE Language
best-first search (BFS)

heuristic and depth-first search

Constraint caching and

Constraint independence
It is relatively more efficient in path

reasoning.

[45] PEX CE Binary
Z3 for both symbolic and path

reasoning

its effectiveness relies on good run-time

checks in the code or the run-time system.

[43] SAGE CE Binary

code-coverage maximizing

heuristic, compositionally

(function summaries),

Generational Search

tag caching, local

constraint caching, and

constraint subsumption.

It is relatively more efficient in path

reasoning and symbolic reasoning cause it

optimizes using caching.

[47] Tracer SE Language constraint logic programming

relatively less pupolar because language

specific and does not use known way of

symbolic reasoning

[2] Rudder CE Binary

STP as the solver for symbolic

reasoning, and breadth-first

search for path reasoning.

one of the most famous among security

testing concolic execution tools

[48] BAP SE Binary SMT solvers

Optimizes intermediate

language (IL), making

syntaxdirected analysis

possible

It does not support floating point and

privileged instructions, hence lass accurate

[49] AEG CE Binary

preconditioned symbolic

execution and path

prioritization technique for

path selection.

resistant to buffer overflows, and it an end-

to-end fully automated tool

[50] Mayham SE Binary SMT solver
MAYHEM does not have models for all

system/library calls

[51]
Veritesti

ng
SE Binary SMT solver for path reasoning

Can do some modern defenses such as

canaries

[52] Firmlice SE Binary concretizing user input
used for modern application testing such

mobile and IoT applications

[53] Driller SE Binary Mutated inputs supports fuzzing with sysmbolic execution

TABLE 1: Summary of Symbolic Execution Tools.

Salahaldeen Duraibi, Abdullah Mujawib Alashjaee & Jia Song

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 251

4. DISCUSSIONS AND FUTURE DIRECTIONS
In this section, potential directions to enhance the state of art of symbolic execution tools are
discussed. According to our review, the scalability of such reviewed tools is an open direction that
can be taken as future research. Researchers have only slightly worked on the optimizations of
both performance and memory space of the tools. Investigating new optimization methods to
lower the overhead of symbolic execution and concolic execution tools could make the tools more
useable. The well-known path explosion problem is still a main concern of the symbolic execution
tools. Therefore, finding a way to limit the paths or possibly reduce the number of less important
paths may be helpful to slow down the path explosion problem.

Taking symbolic execution tools that may detect problems, such as authentication bypass,
towards cloud and mobile applications could be an interesting future direction. In addition to the
symbolic execution engines, SMT solvers are decision procedures that solve problems that arise
from the use of logic formulas. SMT solvers are predominately used in the security testing tools,
however, software testing tools make little use of these solvers, and their support for non-linear
real and integer arithmetic is still in its infancy.

5. CONCLUSION
Without access to source code, binary analysis becomes an effective method for finding
vulnerabilities from programs. Researchers have proposed and developed many techniques to
help with the binary analysis process, for example, taint analysis, symbolic and concolic
executions. In this paper, symbolic and concolic execution techniques are discussed in detail.
Tools utilize symbolic and/or concolic execution are reviewed as well. These tools mostly focus
on software security testing, and they usually use symbolic execution or concolic execution to
help with the test generation and program analysis. The work related to this area is vast and
cannot be covered in a single review paper. However, this survey paper discusses well-known
and usually referenced tools that cannot be overlooked while studying this area. The comparison
table built from the review can be used by researchers in this area to provide a guide to the
commonly used tools which employs symbolic and/or concolic execution techniques.

6. REFERENCES
[1] D Andriesse. "Practical Binary Analysis", no starch press. 2019.

[2] D Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager, Min Gyung Kang, Zhenkai

Liang, James Newsome, Pongsin Poosankam, Prateek Saxena. "BitBlaze: A new approach
to computer security via binary analysis." in International Conference on Information
Systems Security. 2008. Springer.

[3] M von Maltitz, C Diekmann, G Carle. "Privacy Assessment Using Static Taint Analysis (Tool

Paper)." in International Conference on Formal Techniques for Distributed Objects,
Components, and Systems. 2017. Springer.

[4] X Lin, T Chen, T Zhu, K Yang, F Wei, "Automated forensic analysis of mobile applications

on Android devices." Digital Investigation, 2018. 26: p. S59-S66.

[5] Z Xing, Z Bin, F Chao, Z Quan. "Staticly Detect Stack Overflow Vulnerabilities with Taint

Analysis." in ITM Web of Conferences. 2016. EDP Sciences.

[6] C Feng, X Zhang. "A Static Taint Detection Method for Stack Overflow Vulnerabilities in

Binaries." 4th International Conference on Information Science and Control Engineering
(ICISCE). 2017. IEEE.

[7] S Chen, J. Xu , N. Nakka, Z. Kalbarczyk, R.K. Iyer. "Defeating memory corruption attacks

via pointer taintedness detection." in 2005 International Conference on Dependable Systems
and Networks (DSN'05). 2005. IEEE.

Salahaldeen Duraibi, Abdullah Mujawib Alashjaee & Jia Song

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 252

[8] GE Suh, JW Lee, D Zhang, S Devadas. "Secure program execution via dynamic information
flow tracking." in ACM Sigplan Notices. 2004. ACM.

[9] G Venkataramani, Ioannis Doudalis, Yan Solihin, Milos Prvulovic. "Flexitaint: A

programmable accelerator for dynamic taint propagation." in 2008 IEEE 14th International
Symposium on High Performance Computer Architecture. 2008. IEEE.

[10] J Shin, Hongce Zhang, Jinyong Lee, Ingoo Heo, Yu-Yuan Chen, Ruby Lee, Yunheung Paek.

"A hardware-based technique for efficient implicit information flow tracking." in 2016
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). 2016. IEEE.

[11] VP Kemerlis, G Portokalidis, K Jee, AD Keromytis. "libdft: Practical dynamic data flow

tracking for commodity systems." in Acm Sigplan Notices. 2012. ACM.

[12] W Xu, S Bhatkar, R Sekar. "Taint-Enhanced Policy Enforcement: A Practical Approach to

Defeat a Wide Range of Attacks." in USENIX Security Symposium. 2006.

[13] V Ganesh, T Leek, M Rinard. "Taint-based directed whitebox fuzzing." in Proceedings of the

31st International Conference on Software Engineering. 2009. IEEE Computer Society.

[14] TR Leek, GZ Baker, RE Brown, MA Zhivich. "Coverage maximization using dynamic taint

tracing." 2007, MASSACHUSETTS INST OF TECH LEXINGTON LINCOLN LAB.

[15] R Wang, G Xu, X Zeng, X Li, Z Feng. "TT-XSS: A novel taint tracking based dynamic

detection framework for DOM Cross-Site Scripting." Journal of Parallel and Distributed
Computing, 2018. 118: p. 100-106.

[16] J Clause, W Li, A Orso. "Dytan: a generic dynamic taint analysis framework." in Proceedings

of the 2007 international symposium on Software testing and analysis. 2007. ACM.

[17] C Cadar, K Sen. "Symbolic execution for software testing: three decades later." Commun.

ACM, 2013. 56(2): p. 82-90.

[18] S Shen, Shweta Shinde, Soundarya Ramesh, Abhik Roychoudhury, Prateek Saxena.

"Neuro-Symbolic Execution: Augmenting Symbolic Execution with Neural Constraints." in
NDSS. 2019.

[19] Q Yi ; Zijiang Yang ; Shengjian Guo ; Chao Wang ; Jian Liu ; Chen Zhao. "Eliminating path

redundancy via postconditioned symbolic execution." IEEE Transactions on Software
Engineering, 2017. 44(1): p. 25-43.

[20] CS Păsăreanu and W. Visser. "A survey of new trends in symbolic execution for software

testing and analysis." International journal on software tools for technology transfer, 2009.
11(4): p. 339.

[21] E Larson, T Austin. "High Coverage Detection of Input Related Security Faults," 12th

USENIX Sec. 2001. Symposium.

[22] CS Pasareanu, R Kersten, K Luckow, QS Phan. "Symbolic Execution and Recent

Applications to Worst-Case Execution," Load Testing and Security Analysis.

[23] C Cadar, P Godefroid, S Khurshid. "Symbolic execution for software testing in practice:

preliminary assessment." in 2011 33rd International Conference on Software Engineering
(ICSE). 2011. IEEE.

Salahaldeen Duraibi, Abdullah Mujawib Alashjaee & Jia Song

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 253

[24] R Baldon, iEmilio Coppa, Daniele Cono D’Elia "Assisting malware analysis with symbolic
execution: A case study." in International Conference on Cyber Security Cryptography and
Machine Learning. 2017. Springer.

[25] S Khurshid, C.S. Păsăreanu, and W. Visser. "Generalized symbolic execution for model

checking and testing." in International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. 2003. Springer.

[26] X Deng, J Lee "Bogor/kiasan: A k-bounded symbolic execution for checking strong heap

properties of open systems." in 21st IEEE/ACM International Conference on Automated
Software Engineering (ASE'06). 2006. IEEE.

[27] R Baldoni, E Coppa, DC D'elia, C Demetrescu. "A survey of symbolic execution techniques."

ACM Computing Surveys (CSUR), 2018. 51(3): p. 50.

[28] H Xu, Z Zhao, Y Zhou, MR Lyu. "Benchmarking the Capability of Symbolic Execution Tools

with Logic Bombs." IEEE Transactions on Dependable and Secure Computing, 2018.

[29] A Arusoaie, D Lucanu, V Rusu. "Symbolic execution based on language transformation."

Computer Languages, Systems & Structures, 2015. 44: p. 48-71.

[30] AJ Kahn, Y Drougas, AP Shendarkar. "Symbolic execution for web application firewall

performance." 2019, Google Patents.

[31] L Arquint, M Schwerhoff. "Profiling Symbolic Execution." 2019.

[32] T Kuchta, H Palikareva, C Cadar. "Shadow symbolic execution for testing software patches."

ACM Transactions on Software Engineering and Methodology (TOSEM), 2018. 27(3): p. 10.

[33] M Liang, Z Li, Q Zeng, Z Fang. "Deobfuscation of Virtualization-Obfuscated Code Through

Symbolic Execution and Compilation Optimization." in Information and Communications
Security: 19th International Conference, ICICS 2017, Beijing, China, December 6-8, 2017,
Proceedings. 2018. Springer.

[34] S Guo "Efficient Symbolic Execution of Concurrent Software." 2019, Virginia Tech.

[35] G Wang, S Chattopadhyay, AK Biswas, T Mitra. "KLEESPECTRE: Detecting Information

Leakage through Speculative Cache Attacks via Symbolic Execution." arXiv preprint
arXiv:1909.00647, 2019.

[36] C Chen, B Cui, J Ma, R Wu, J Guo, W Liu. "A systematic review of fuzzing techniques."

Computers & Security, 2018. 75: p. 118-137.

[37] P Godefroid, N. Klarlund, and K. Sen. "DART: directed automated random testing." in ACM

Sigplan Notices. 2005. ACM.

[38] AJ Offutt, JH Hayes. "A semantic model of program faults." in ACM SIGSOFT Software

Engineering Notes. 1996. ACM.

[39] K Sen, D Marinov, G Agha "CUTE: a concolic unit testing engine for C." in ACM SIGSOFT

Software Engineering Notes. 2005. ACM.

[40] R Ahmadi, K Jahed, J Dingel. "mCUTE: A Model-level Concolic Unit Testing Engine for

UML State Machines." in 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE 2019), Demonstration Track, page to appear. ACM. 2019.

Salahaldeen Duraibi, Abdullah Mujawib Alashjaee & Jia Song

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 254

[41] K Sen, G Agha. "CUTE and jCUTE: Concolic unit testing and explicit path model-checking
tools." in International Conference on Computer Aided Verification. 2006. Springer.

[42] C Cadar, V Ganesh, PM Pawlowski, DL Dill. "EXE: automatically generating inputs of

death." ACM Transactions on Information and System Security (TISSEC), 2008. 12(2): p.
10.

[43] P Godefroid, MY Levin, DA Molnar. "Automated Whitebox Fuzz Testing." in NDSS. 2008.

Citeseer.

[44] P Godefroid, MY Levin, D Molnar. "SAGE: whitebox fuzzing for security testing."

Communications of the ACM, 2012. 55(3): p. 40-44.

[45] N Tillmann, J De Halleux. "Pex–white box test generation for. net." in International

conference on tests and proofs. 2008. Springer.

[46] L De Moura, N Bjørner. "Z3: An efficient SMT solver." in International conference on Tools

and Algorithms for the Construction and Analysis of Systems. 2008. Springer.

[47] J Jaffar, V Murali, JA Navas, AE Santosa. "TRACER: A symbolic execution tool for

verification." in International Conference on Computer Aided Verification. 2012. Springer.

[48] D Brumley, I Jager, T Avgerinos. "BAP: A binary analysis platform." in International

Conference on Computer Aided Verification. 2011. Springer.

[49] T Avgerinos, SK Cha, BLT Hao, D Brumley. "AEG: Automatic exploit generation." 2011.

[50] SK Cha, T Avgerinos, A Rebert. "Unleashing mayhem on binary code." in 2012 IEEE

Symposium on Security and Privacy. 2012. IEEE.

[51] T Avgerinos, A Rebert, SK Cha, D Brumley. "Enhancing symbolic execution with veritesting."

in Proceedings of the 36th International Conference on Software Engineering. 2014. ACM.

[52] Y Shoshitaishvili, R Wang, C Hauser, C Kruegel. "Firmalice-automatic detection of

authentication bypass vulnerabilities in binary firmware." in NDSS. 2015.

[53] N Stephens, J Grosen, C Salls, A Dutcher, R Wang. "Driller: Augmenting Fuzzing Through

Selective Symbolic Execution." in NDSS. 2016.

Nawaf Almolhis, Michael Haney, Fahad Alqhtani & Khalid Makdi

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 255

Discovering and Understanding The Security Issues In IoT Cloud

Nawaf Almolhis almo3113@vandals.uidaho.edu
a
 Computer Science Department

 University of Idaho
 Moscow, ID, 83844, USA
b
 Computer Science Department

 Jazan University
 Jazan, 45142, Saudi Arabia

Michael Haney mhaney@uidaho.edu
Computer science department
University of Idaho
Idaho Falls, ID, 83401, USA

Fahad Alqahtani alqa0199@vandals.uidaho.edu
a
 Computer Science Department

 University of Idaho
 Moscow, ID, 83844, USA
b
 Computer Science Department

 Prince Sattam Bin Abdulaziz University
 Al-Kharj, 16278, Saudi Arabia

Khalid Makdi alma0138@vandals.uidaho.edu
a
 Computer Science Department

 University of Idaho

 Moscow, ID, 83844, USA
b
 Computer Science Department

 Najran University
 Najran, 66223, Saudi Arabia

Abstract

The rapid growth and adoption of IoT technologies in sectors of life are challenged by the
resources constrained IoT devices. However, the growth of IoT technologies can be enhanced by
integrating them with cloud computing. Hence, a new area of computing called IoT Cloud or
CloudIoT has emerged. That is, the data collected from the IoT technologies are stored and
processed in the cloud infrastructure so that IoT technologies are relived from resources
constrained issue. As a result, some new classes of security and privacy issues are introduced.
This paper presents security issues pertaining to IoT cloud.

Keywords: IoT, Cloud, Privacy, Security, CloudIoT.

1. INTRODUCTION

Internet of Things (IoT) is the fast-growing information technology paradigm of this digital era. The
number of IoT consumers is increasing due to the deployment of IoT technologies in all sorts of
life [1]. At present, the IoT technologies are vastly deployed in the health sector [2, 3], smart cities
[4], and smart homes [5, 6]. However, IoT technology alone cannot fully satisfy the increasing
number of consumers and their computational requirements. Hence, the need for offloading IoT
computations to the cloud has become paramount.

The notion of IoT cloud computing (IoT-Cloud) is concerned with the integration of IoT
technologies with cloud computing resources [7-9]. IoT technologies are integrated with cloud
mainly for two reasons; first, the IoT providers want to benefit of characteristics of the cloud

Nawaf Almolhis, Michael Haney, Fahad Alqhtani & Khalid Makdi

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 256

computing such as on-demand self-service, resource pooling, broad network, measured service,
and rapid elasticity [10]; second, it is for the sake of alleviating the high demands of data storage
and processing from the resource-limited IoT technologies [11]. As a result, from a high-level
view, IoT technologies appear to be well-integrated with the cloud to establish a uniform
infrastructure for IoT cloud applications [12]. This phenomenon of integrating IoT technologies
with the cloud is also referred to as the Cloud of Things [13], CloudIoT [14], or Edge IoT [15].
Apart from alleviating the resources constrained behavior, and improving the system performance
of IoT technologies, the IoT cloud also enables a new venue of designing and deploying security
solutions for IoT technologies [15]. The amalgamation of IoT, cloud, and big data is currently
trending [16].

In fact, IoT cloud has come with its own challenges including security issues that may dismay the
whole paradigm. IoT cloud security issues are the aggregate of IoT technologies security [17, 18],
cloud security [19, 20], and those arising from IoT cloud architecture. This paper surveys security
issues that are specific to IoT cloud paradigm, and to our knowledge, it is the first paper of its
kind.

The paper is organized as follows, Section 2 presents the background of the research, Section 3
discusses the security challenges related to the IoT cloud, and Section 4 concludes the paper.

2. BACKGROUND

This section discusses areas of intersection of the IoT and Cloud computing. Specifically, the
drivers that make the integration of IoT technologies and the cloud more important, and the IoT
cloud applications. Furthermore, some of the architectures proposed for IoT cloud are studied.
Finally, challenges and issues related to the IoT Cloud are presented.

2.1 IoT Cloud Drivers
IoT and cloud computing are from two different worlds. However, their characteristics are
complementary, and that is the main reason why in the literature their integration is seen
beneficial for both. That is, IoT can benefit from some aspects of cloud, likewise, IoT can help
cloud in some other aspects [21]. For instance, the virtually unlimited resources of cloud can
compensate the IoT resource constrains and, IoT can extend cloud services in a more distributed
manner and may bring about new real-world service [22]. The driving motivations towards the
integration of cloud and IoT mainly lay on three categories including communication, storage, and
computing. In communication, data and application sharing are the two main IoT Cloud drivers
[23]. In regards to the storage, by definition IoT technologies normally produce large amounts of
semi-structured or non-structured data that are generated frequently in large volumes and
varieties. Hence, making use of the virtually unlimited storage capacity of the cloud such data can
be stored in the cloud. On the other hand, in computing, IoT technologies normally suffer from
limited processing and energy resources [24]. These do not allow IoT devices complex data
processing. Using cloud computing resources, IoT devices will be able to process data on-site.
These are the main motivations that are driving the integration of IoT and Cloud [25]. Table 1
shows aspects where cloud and IoT may complement each other.

Criteria IoT Cloud

Displacement pervasive centralized

Reachability limited ubiquitous

Components real-world things virtual resources

Computational Capabilities limited virtual unlimited

Storage limited or none virtual unlimited

Role of the internet point of convergence means of delivering services

Big data source means to manage data

TABLE 1: Complementary aspects of Cloud and IoT.

Nawaf Almolhis, Michael Haney, Fahad Alqhtani & Khalid Makdi

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 257

2.2 IoT Cloud Application
IoT cloud paradigm has come with its new sets of applications and smart services most of which
were conventionally deployed as a machine to machine communications. This section, discusses,
however, the set of applications that have been improved in order to be used in the IoT cloud
paradigm. Figure 1 shows an abstract picture of the IoT cloud applications scenario.

2.2.1 Smart Cities
The adoption of the IoT cloud has generated services like smart city applications that can interact
with the surrounding environment to create geographic awareness and contextualization
opportunities. IoT cloud provides middleware for future-oriented smart city services by collecting
information about the geographical location of different sensing technologies and exposing that
information uniformly. Most of the current smart application frameworks consist of APIs of
sensors and actuators that are directly connected to cloud platforms where they can get
scalability, durable storage and processing resources for automatic management and control of
large deployments of sensing devices. For example, some researchers have proposed
crowdsourced and reputation based smart city frameworks that implement sensing as a service
aimed at public safety [26, 27]. Likewise, mobile crowdsensing smart cities technology that uses
cloud-based publish/subscribe middleware that collects data from mobile devices are proposed in
[28, 29].

FIGURE 1: IoT Cloud Application Scenario.

2.2.2 Healthcare
In the healthcare industry, things like sensors and devices used for health monitoring are
increasing and hugely impacting on patients and health professionals. According to IoT Forbes
and Gartner, in 6 years’ time from 2016-2020, the healthcare IoT market will be invested with
$117 billion [30]. IoT cloud applications are immensely developed for this aspect. Some of the
recent works of IoT cloud applications proposed for health care are discussed here. For example,
Syed et al. have proposed an asthma patient health monitoring system that connects to the cloud
using wireless body area networks [30]. For security, the researchers have watermarked the
recorded signal before sending it to the cloud. Douglas et al. also proposed an efficient
healthcare IoT cloud architecture for ambient assisted living environments [31]. The advantages
of using IoT cloud in healthcare are discussed in [32].

2.2.3 Smart Home
In recent years, high development of smart home applications that use different sensors such as
motion, light, and fire detector sensors, etc have been observed. Data collected from these
sensors are used for decision making. Hence, like the preceding applications, the necessity of
employing IoT cloud sensors in smart homes is becoming mandatory [33]. For instance, Yassine
et al. proposed an IoT cloud platform that enables analytics on data captured from smart homes
[34]. The proposed data-driven service uses fog nodes and cloud systems for online data

Nawaf Almolhis, Michael Haney, Fahad Alqhtani & Khalid Makdi

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 258

processing, storage, and classification. The researchers employ a policy-based access control
mechanism to ensure trusted connectivity and security in their platform.

2.3 IoT Cloud Architecture
There are efforts made towards the definition of a reference architecture for IoT cloud. For
example, Jenjira Jaimunk proposed Data Bank, an IoT cloud architecture that allows users to
customize their data collection policies at the IoT device level and data sharing policies at the
cloud level, as suited to their privacy needs [35]. Similarly, some researchers proposed IoT cloud
architecture for different aspects such as for sustainability [36] where the architecture is focusing
on low power consumption and environmental friendliness of the things. A generic IoT cloud
architecture is provided by Araujo et al. [37], where data collected from a smart city can be
stored, processed and managed.

FIGURE 2: A Generic IoT Cloud Architecture [37].

As can be seen in Figure 2, the architecture provides a southbound interface where IoT
technologies interact with the cloud and a northbound interface where higher-level services such
as M2M applications and end consumers interact with the IoT cloud.

2.4 Security IoT Cloud Challenges
Even though the IoT cloud is advantageous for both consumers and providers, it is still facing
some issues that threaten its usage. The heterogeneity of the IoT technologies, clouds, operating
systems, network protocols from different vendors generates a more challenging environment
that may result in a lack of interoperability and portability in IoT cloud [32, 38]. In addition, in IoT
cloud, cloud elasticity and scalability is required. If for instance, IoT cloud provider resources do
not meet the increased demand for IoT technologies, interruption or unavailability of the services
may result in problem [39]. Security challenges pertaining to the IoT cloud environment are more
volatile compared to the security issues in conventional cloud computing. For example, due to the
limited resource of IoT technologies, it is not practical to run anti-virus on the IoT devices.

Nawaf Almolhis, Michael Haney, Fahad Alqhtani & Khalid Makdi

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 259

3. SECURITY CHALLENGES IN IOT CLOUDS
After having seen the basics of IoT clouds, this section discusses security challenges within IoT
cloud. Such security issues may usually result from different parts of technologies constituting the
IoT cloud.

3.1 Security Challenges Related To Data
The data security issues are mainly introduced as the consequence of when smart home owner
data are transferred, stored, and processed at clouds that are not part of his network and belong
to a third person. The data related security issues that may happen include data loss and data
breach. The data loss refers to the data damage that may happen to consumer data. On the other
hand, data breach means when the consumer data is taken by an unauthorized individual.

3.2 Offloading Security Challenge
During the transfer process of the data from smart devices to the IoT cloud, access to the cloud is
accomplished through wireless networks. Since the consumer does not have access to the data
or cannot have control over the data, then there is a risk of unauthorized access to the offloaded
content, subsequently, processing of the loaded data is done at the cloud, then there may happen
another incident where the integrity of the data is violated.

3.3 Virtualization Security Challenge
The IoT cloud service is provided by using some virtualization techniques. Hence, at the provider
side of the IoT cloud, the consumer data is stored and processed on a virtual machine. However,
in the cloud, there may be a number of virtual machines abstracted from the same physical
server. Hence, a rogue user of a virtual machine may get unauthorized access to a neighboring
virtual machine that stores the smart home consumer data.

3.4 IoT Cloud Applications Security Challenges
The security incidents in IoT cloud applications are about compromising the integrity,
confidentiality, and availability of both data and applications. Security issues specific to the IoT
cloud paradigm are hardly discussed in the literature. Nevertheless, the security challenges of IoT
cloud applications may happen at IoT device level, and communication and networking level.
Security issues associated with IoT cloud platforms for the smart home is thoroughly discussed in
[40]. Likewise, security issues related to the IoT cloud-based healthcare systems can be found in
[41].

Another main security issue arises due to a lack of trust in the service provider or the knowledge
about service level agreement and knowledge about the physical location of data. Some other
security challenges may include heterogeneity, performance, reliability, big data, and monitoring
related. For example, the heterogeneity of devices involved in this integrated area may be
focusing on the operating system, platform, and services availability [42, 43]. Likewise, those that
may come with the performance are those threatening the availability of services such as
communication, computation, and storage. Reliability issues may arise when mission-critical
applications involving in IoT cloud may suffer from device failure due to a resource-constrained
environment[44, 45]. Usually, thousands of smart devices (big data) networked with the cloud
would create transportation, storage, access and processing of huge amounts of data that may
scrutinize the limited resources of the IoT environment [46, 47]. Having no sophisticated
authentication approaches also exacerbates the security associated with IoT cloud. Furthermore,
intrusion-related security issues are of most importance for IoT Cloud. In the future as the
adoption of cloud-connected IoT technologies increases, security concerns of this area are
anticipated to be automatically added on top of currently known security issues.

3.5 IoT Cloud Security Solutions In The Literature
This section presents the current solutions proposed in the literature of IoT cloud. There are a
couple of researches that have deliberated to get solutions to the security issues specific to the
IoT cloud paradigm [48-64]. Moreover, the summary of the solutions is presented in Table 2. The
solutions presented in Table 2 do not include those focusing on the IoT and cloud computing

Nawaf Almolhis, Michael Haney, Fahad Alqhtani & Khalid Makdi

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 260

differently, rather they are the solutions that consider IoT cloud as one area and, hence, trying to
propose their solutions in that aspect. Table highlight the security feature in each solution as well
as the target area of the paradigm.

3.6 Discussions and Future Directions
Based on the security challenges presented in this paper, it is obvious that security issues
pertaining to IoT cloud entail a new set of security challenges from the emerging usage of the
paradigm. This new set of security challenges are becoming more difficult to handle for the
integration of IoT technologies and cloud. Despite the existence of some security solutions in the
literature, there are still some open issues that deserve the attention of the security community. A
first secure reference architecture is needed to coin most of the security requirements that IoT
cloud need. The cost-effectiveness of the solutions proposed in the literature is not discussed in
most cases, hence, the deployment of such solutions is not on the real horizon, thus not cost-
effective. In addition, the IoT cloud architecture introduces communications between different
technologies. Such communications tend to be secured as well. Here, lightweight secure
communication protocols are recommended. There is also a need for algorithms that can create
trust between IoT technologies and the cloud. More researches on lightweight solutions for
securing virtual machines in the IoT cloud is an added value.

So far researchers have indicated that improving or integrating existing solutions may to some
extent handle some of the discussed security issues. However, there is also a need for
developing new and dedicated security solutions for the area. What makes different the cloud-
connected IoT architecture is that two (cloud and IoT) broadly different areas of technologies are
involved. Each has its security issues and challenges where researchers are striving to get
solutions. Nevertheless, getting an end to end security solution that would protect personal data
collected from IoT end devices and stored or processed in the cloud is alarming.

Converging towards a common security platform for providing APIs to auditing IoT clouds will
enable new research efforts in the direction of standard rules and policies that would hold
consumers and providers accountable. Similarly, security solutions of IoT cloud would benefit
from efficient and flexible technologies that can create a network and virtual machine isolation.
Solutions that detects manipulation of data based on IoT clouds will enable enhanced context-
based security services.

Nawaf Almolhis, Michael Haney, Fahad Alqhtani & Khalid Makdi

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 261

Source Title Focus Area

[48]
Intrusion detection in Cloud Internet of Things

Environment
Network security

[49]
A software defined network-based security

assessment framework for cloudIoT
Network security

[50]
Secure Self-Destruction of Shared Data in Multi-

CloudIoT
Data security

[51]

Secure and Parallel Expressive Search over

Encrypted Data with Access Control in Multi-

CloudIoT
Data security

[52]
PRTA: A Proxy Re-encryption based Trusted

Authorization scheme for nodes on CloudIoT
Access control

[53]

A design of secure communication protocol using

RLWE-based homomorphic encryption in IoT

convergence cloud environment.
Network security

[54]
A Data Security Storage Method for IoT Under

Hadoop Cloud Computing Platform
Data security

[55]
Advanced lightweight multi-factor remote user

authentication scheme for cloud-IoT applications
Access control

[56]

Enhancing Cloud-Based IoT Security Through

Trustworthy Cloud Service: An Integration of

Security and Reputation Approach
Access control

[57]
Ontology-Based Security Context Reasoning for

Power IoT-Cloud Security Service
Management

[58]
Privacy-aware IoT cloud survivability for future

connected home ecosystem
Privacy

[59]
Security in Lightweight Network Function

Virtualisation for Federated Cloud and IoT
Network security

[60]

A Brain-Inspired Trust Management Model to

Assure Security in a Cloud Based IoT Framework for

Neuroscience Applications
Trust

[61]

A novel and secure IoT based cloud centric

architecture to perform predictive analysis of users

activities in sustainable health centres
Digital forensics

[62]
A Lightweight User Authentication Scheme for

Cloud-IoT Based Healthcare Services
Access control

[63]
IoT–Cloud collaboration to establish a secure

connection for lightweight devices
Network security

[64]
Identity-based encryption with authorized

equivalence test for cloud-assisted IoT
Access control

TABLE 2: Solutions in Te Literature.

4. CONCLUSION
In this paper, we review the security challenges pertaining to the IoT cloud. The basics of the IoT
cloud are reviewed, followed by the security challenges that a consumer may encounter when
using smart devices that are connected to the cloud are discussed. Moreover, solutions in the
literature are studied and presented. Open security research issues that need immediate
attention from the research community are discussed and some prospect solutions that may work
conveniently with the IoT cloud paradigm are recommended. Finally, we hope that this paper will
be a good entry in enabling a secure integration of IoT technologies and cloud computing.

Nawaf Almolhis, Michael Haney, Fahad Alqhtani & Khalid Makdi

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 262

5. REFERENCES
[1] Alabady, S.A., F. Al-Turjman, and S. Din, A novel security model for cooperative virtual

networks in the IoT era. International Journal of Parallel Programming, 2018: p. 1-16.

[2] Adhikary, T., et al. The Internet of Things (IoT) Augmentation in Healthcare: An Application

Analytics. in International Conference on Intelligent Computing and Communication
Technologies. 2019. Springer.

[3] da Silveira, F., et al., Analysis of Industry 4.0 Technologies Applied to the Health Sector:

Systematic Literature Review, in Occupational and Environmental Safety and Health. 2019,
Springer. p. 701-709.

[4] Arasteh, H., et al. Iot-based smart cities: a survey. in 2016 IEEE 16th International

Conference on Environment and Electrical Engineering (EEEIC). 2016. IEEE.

[5] Park, D.-M., S.-K. Kim, and Y.-S. Seo, S-mote: SMART Home Framework for Common

Household Appliances in IoT Network. Journal of Information Processing Systems, 2019.
15(2).

[6] Mahmud, S., S. Ahmed, and K. Shikder. A Smart Home Automation and Metering System

using Internet of Things (IoT). in 2019 International Conference on Robotics, Electrical and
Signal Processing Techniques (ICREST). 2019. IEEE.

[7] Mohamed, K.S., IoT Cloud Computing, Storage, and Data Analytics, in The Era of Internet of

Things. 2019, Springer. p. 71-91.

[8] Zamora-Izquierdo, M.A., et al., Smart farming IoT platform based on edge and cloud

computing. Biosystems engineering, 2019. 177: p. 4-17.

[9] Bhawiyuga, A., et al., Architectural design of IoT-cloud computing integration platform.

Telkomnika, 2019. 17(3).

[10] Mircea, M., M. Stoica, and B. Ghilic-Micu, Using Cloud Computing to Address Challenges

Raised by the Internet of Things, in Connected Environments for the Internet of Things.
2017, Springer. p. 63-82.

[11] Ali, Z.H., H.A. Ali, and M.M. Badawy, A new proposed the internet of things (IoT)

virtualization framework based on sensor-as-a-service concept. Wireless Personal
Communications, 2017. 97(1): p. 1419-1443.

[12] Nikolov, N. and O. Nakov. Creating Architecture and Software of Embedded Systems with

Constrained Resources and Their Communication to the IoT Cloud. in 2019 X National
Conference with International Participation (ELECTRONICA). 2019. IEEE.

[13] Aazam, M., et al. Cloud of Things: Integrating Internet of Things and cloud computing and

the issues involved. in Proceedings of 2014 11th International Bhurban Conference on
Applied Sciences & Technology (IBCAST) Islamabad, Pakistan, 14th-18th January, 2014.
2014. IEEE.

[14] Serrano, D., et al. Towards qos-oriented sla guarantees for online cloud services. in 2013

13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing. 2013.
IEEE.

[15] Sha, K., et al., A survey of edge computing based designs for IoT security. Digital
Communications and Networks, 2019.

Nawaf Almolhis, Michael Haney, Fahad Alqhtani & Khalid Makdi

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 263

[16] Sharma, S., et al., Cloud and IoT-based emerging services systems. Cluster Computing,
2019. 22(1): p. 71-91.

[17] Hassan, W.H., Current research on Internet of Things (IoT) security: A survey. Computer

Networks, 2019. 148: p. 283-294.

[18] Khan, M.A. and K. Salah, IoT security: Review, blockchain solutions, and open challenges.

Future Generation Computer Systems, 2018. 82: p. 395-411.

[19] Kumar, R. and R. Goyal, On cloud security requirements, threats, vulnerabilities and

countermeasures: A survey. Computer Science Review, 2019. 33: p. 1-48.

[20] Wang, Z., et al., An empirical study on business analytics affordances enhancing the

management of cloud computing data security. International Journal of Information
Management, 2019.

[21] Gomes, M.M., R.d.R. Righi, and C.A. da Costa. Future directions for providing better IoT

infrastructure. in Proceedings of the 2014 ACM international joint conference on pervasive
and ubiquitous computing: Adjunct Publication. 2014. ACM.

[22] Alhakbani, N., et al. A framework of adaptive interaction support in cloud-based internet of

things (iot) environment. in International conference on internet and distributed computing
systems. 2014. Springer.

[23] Aitken, R., et al. Device and technology implications of the Internet of Things. in 2014

Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers. 2014.
IEEE.

[24] Botta, A., et al., Integration of cloud computing and internet of things: a survey. Future

generation computer systems, 2016. 56: p. 684-700.

[25] Ray, P.P., A survey of IoT cloud platforms. Future Computing and Informatics Journal, 2016.

1(1-2): p. 35-46.

[26] Kantarci, B. and H.T. Mouftah. Mobility-aware trustworthy crowdsourcing in cloud-centric

Internet of Things. in 2014 IEEE Symposium on Computers and Communications (ISCC).
2014. IEEE.

[27] Kantarci, B. and H.T. Mouftah, Trustworthy sensing for public safety in cloud-centric internet

of things. IEEE Internet of Things Journal, 2014. 1(4): p. 360-368.

[28] Podnar Zarko, I., A. Antonic, and K. Pripužic. Publish/subscribe middleware for energy-

efficient mobile crowdsensing. in Proceedings of the 2013 ACM conference on Pervasive
and ubiquitous computing adjunct publication. 2013. ACM.

[29] Antonic, A., et al. A mobile crowdsensing ecosystem enabled by a cloud-based

publish/subscribe middleware. in 2014 International Conference on Future Internet of Things
and Cloud. 2014. IEEE.

[30] Shah, S.T.U., et al., Cloud-Assisted IoT-Based Smart Respiratory Monitoring System for

Asthma Patients, in Applications of Intelligent Technologies in Healthcare. 2019, Springer. p.
77-86.

[31] de Macedo, D.D.J., et al., Toward an efficient healthcare CloudIoT architecture by using a

game theory approach. Concurrent Engineering, 2019: p. 1063293X19844548.

Nawaf Almolhis, Michael Haney, Fahad Alqhtani & Khalid Makdi

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 264

[32] Darwish, A., et al., The impact of the hybrid platform of internet of things and cloud
computing on healthcare systems: Opportunities, challenges, and open problems. Journal of
Ambient Intelligence and Humanized Computing, 2019. 10(10): p. 4151-4166.

[33] Madhu, B., et al., IoT Based Home Automation System over Cloud. 2019.

[34] Yassine, A., et al., IoT big data analytics for smart homes with fog and cloud computing.

Future Generation Computer Systems, 2019. 91: p. 563-573.

[35] Jaimunk, J. Privacy-preserving cloud-IoT architecture. in Proceedings of the 6th

International Conference on Mobile Software Engineering and Systems. 2019. IEEE Press.

[36] Singh, A., U. Sinha, and D.K. Sharma, Cloud-Based IoT Architecture in Green Buildings, in

Green Building Management and Smart Automation. 2020, IGI Global. p. 164-183.

[37] Araujo, V., et al., Performance evaluation of FIWARE: A cloud-based IoT platform for smart

cities. Journal of Parallel and Distributed Computing, 2019.

[38] Kanchi, R.R., V.P. Sreeramula, and D.V. Palle. Implementation of Smart Agriculture using

CloudIoT and its Geotagging on Android Platform. in International Conference on Intelligent
Computing and Communication Technologies. 2019. Springer.

[39] Malik, A. and H. Om, Cloud computing and internet of things integration: Architecture,

applications, issues, and challenges, in Sustainable Cloud and Energy Services. 2018,
Springer. p. 1-24.

[40] Zhou, W., et al. Discovering and understanding the security hazards in the interactions

between IoT devices, mobile apps, and clouds on smart home platforms. in 28th {USENIX}
Security Symposium ({USENIX} Security 19). 2019.

[41] Ahmed, A., et al., Malicious insiders attack in IoT based multi-cloud e-healthcare

environment: a systematic literature review. Multimedia Tools and Applications, 2018.
77(17): p. 21947-21965.

[42] Grozev, N. and R. Buyya, Inter‐Cloud architectures and application brokering: taxonomy and

survey. Software: Practice and Experience, 2014. 44(3): p. 369-390.

[43] Moussa, A.N., et al. A Consumer-Oriented Cloud Forensic Process Model. in 2019 IEEE

10th Control and System Graduate Research Colloquium (ICSGRC). 2019. IEEE.

[44] Rao, B.P., et al. Cloud computing for Internet of Things & sensing based applications. in

2012 Sixth International Conference on Sensing Technology (ICST). 2012. IEEE.

[45] Moussa, A.N., N. Ithnin, and A. Zainal, CFaaS: bilaterally agreed evidence collection.

Journal of Cloud Computing, 2018. 7(1): p. 1.

[46] Dobre, C. and F. Xhafa, Intelligent services for big data science. Future Generation

Computer Systems, 2014. 37: p. 267-281.

[47] Moussa, A.N., N.B. Ithnin, and O.A. Miaikil. Conceptual forensic readiness framework for

infrastructure as a service consumers. in 2014 IEEE Conference on Systems, Process and
Control (ICSPC 2014). 2014. IEEE.

[48] Rebbah, M., D.E.H. Rebbah, and O. Smail. Intrusion detection in Cloud Internet of Things

environment. in 2017 International Conference on Mathematics and Information Technology
(ICMIT). 2017. IEEE.

Nawaf Almolhis, Michael Haney, Fahad Alqhtani & Khalid Makdi

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 265

[49] Han, Z., et al., A software defined network-based security assessment framework for

cloudIoT. IEEE Internet of Things Journal, 2018. 5(3): p. 1424-1434.

[50] Guechi, F.A. and R. Maamri. Secure Self-Destruction of Shared Data in Multi-CloudIoT. in

2017 IEEE 5th International Conference on Future Internet of Things and Cloud (FiCloud).
2017. IEEE.

[51] Guechi, F.A. and R. Maamri. Secure and Parallel Expressive Search over Encrypted Data

with Access Control in Multi-CloudIoT. in 2018 3rd Cloudification of the Internet of Things
(CIoT). 2018. IEEE.

[52] Su, M., et al., PRTA: A Proxy Re-encryption based Trusted Authorization scheme for nodes

on CloudIoT. Information Sciences, 2019.

[53] Jin, B.-W., J.-O. Park, and H.-J. Mun, A design of secure communication protocol using

RLWE-based homomorphic encryption in IoT convergence cloud environment. Wireless
Personal Communications, 2019. 105(2): p. 599-618.

[54] Mo, Y., A Data Security Storage Method for IoT Under Hadoop Cloud Computing Platform.

International Journal of Wireless Information Networks, 2019: p. 1-6.

[55] Sharma, G. and S. Kalra, Advanced lightweight multi-factor remote user authentication

scheme for cloud-IoT applications. Journal of Ambient Intelligence and Humanized
Computing, 2019: p. 1-24.

[56] Li, X., et al., Enhancing cloud-based IoT security through trustworthy cloud service: An

integration of security and reputation approach. IEEE Access, 2019. 7: p. 9368-9383.

[57] Choi, C. and J. Choi, Ontology-Based Security Context Reasoning for Power IoT-Cloud

Security Service. IEEE Access, 2019. 7: p. 110510-110517.

[58] Arabo, A. Privacy-aware IoT cloud survivability for future connected home ecosystem. in

2014 IEEE/ACS 11th International Conference on Computer Systems and Applications
(AICCSA). 2014. IEEE.

[59] Massonet, P., et al. Security in lightweight network function virtualisation for federated cloud
and IoT. in 2017 IEEE 5th International Conference on Future Internet of Things and Cloud
(FiCloud). 2017. IEEE.

[60] Mahmud, M., et al., A brain-inspired trust management model to assure security in a cloud
based IoT framework for neuroscience applications. Cognitive Computation, 2018. 10(5): p.
864-873.

[61] Gupta, P.K., B.T. Maharaj, and R. Malekian, A novel and secure IoT based cloud centric
architecture to perform predictive analysis of users activities in sustainable health centres.
Multimedia Tools and Applications, 2017. 76(18): p. 18489-18512.

[62] Sharma, G. and S. Kalra, A Lightweight User Authentication Scheme for Cloud-IoT Based
Healthcare Services. Iranian Journal of Science and Technology, Transactions of Electrical
Engineering, 2019. 43(1): p. 619-636.

[63] Park, J., H. Kwon, and N. Kang, IoT–Cloud collaboration to establish a secure connection
for lightweight devices. Wireless Networks, 2017. 23(3): p. 681-692.

[64] Elhabob, R., et al., Identity-based encryption with authorized equivalence test for cloud-
assisted IoT. Cluster Computing, 2019: p. 1-17.

Khalid Aloufi, Ahmed Alharbi, Anwar Redwan & Yousif AbuTarboush

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 266

Web Based Access Control of Smart Home Security System

Khalid Aloufi koufi@taibahu.edu.sa
College of Computer Science & Engineering
Taibah University
Madinah, Saudi Arabia

Ahmed Alharbi amadsas2@taibahu.edu.sa
College of Computer Science & Engineering
Taibah University
Madinah, Saudi Arabia

Anwar Redwan anwar_nory@hotmail.com
College of Computer Science & Engineering
Taibah University
Madinah, Saudi Arabia

Yousif AbuTarboush gh.yousif@gmail.com
College of Computer Science & Engineering
Taibah University
Madinah, Saudi Arabia

Abstract

Smart Home is an essential feature for future homes to provide smart automatic services in home
daily activities. Smart Home system Framework will require different units to work, such as
security system, maintenance system, kitchen system, living room system and other main part of
the home. These unit should complement each other's. This work is proposing a solution to the
design and implementation of Smart home security system (SHSS) unit. With the Internet of
Things (IoT), SHSS has become simpler to design and implement. The control and management
of such system will require an interface. The web is an excellent option as an interface with
secure access. Integrating the system with the web increases the operation of the system and the
interaction with other security department for the future Smart City. In this work, the design and
implementation of SHSS is shown. The model has successfully been built and ready for the
integration with more units of the smart home and smart city.

Keywords: IoT, Smart Home, MQTT, Web Services, Home Security Systems.

1. INTRODUCTION

With the growth of cities and population size, regular systems and services are not enough.
Smart city framework is required to fulfill this almost currently and surely a future demanded
service. Table 1 shows the Smart city framework units, one of which is the smart home. Smart
home has also different units, such as security system that is should be part of the smart city in
the future. Smart Home will provide services, that performs decisions without reference to human,
which could be enhanced by an Artificial System (AI) that observe the habits of persons and take
actions accordingly. This paper presents a Smart home security system (SHSS) design and
implementation. SHSS is using embedded systems, Internet of Things (IoT) and web interface to
monitor and control the system. SSHS and any smart city application should increase response
performance for services. Time is a main factor in terms of home security, such as smoke alarm
or motion detector. SHSS helps in smoke or toxic gases detection, which could be caused by a
careless actions or faulty Electrical Equipment. This work present smart solutions to in short time,

Khalid Aloufi, Ahmed Alharbi, Anwar Redwan & Yousif AbuTarboush

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 267

discover problems, verify them and act without human intervention. Which helps us to prevent or
reduce damage and speed of rescue.

IoT services can be classifieds in static or dynamic services. Static services start with user
request only, such as door entry using mobile application or using finger barometric input device
or by voice command. In general, IoT devices should work with more than one method to avoid
errors in any possible case. After the introduction, a section about Previous studies and System
Design and Implementation is presented. Then a section about results and discussion to discuss
the system implementation. The paper closes by Conclusion and Future Work and the references
referred to in this paper.

 ... … SHSS

 … Smart Home

 …. Smart Building

Smart City

TABLE 1: Smart City Framework.

2.1 Previous Studies
IoT application uses different application protocols, mainly MQTT and Constrained Application
Protocol (CoAP) with different enhanced security and operational schema over cloud and edge
computing [6] [4]. There are great range of research projects and commercial Smart Home
projects, using different types of sensors and actuators, such as camera microphones and
Wireless Smoke Detector [19]. Intelligent Door Lock project connects the door of the house to
mobile application with security to open a remote door for those trusted [12]. Home motion
detector project for motion detection within a household [11]. In Smart doorbell project, the bell
can be heard from anywhere connected [8]. One of the IoT application uses IoT for engagement
of elderly people in daily activities [18] Also other examples are light bulbs and temperature
Dynamic services starts without user request, such as opening Garage, Automatic entry door,
light bulbs to operate according to time intervals [17].

Smart system has many operational and functional details and components with support of
Artificial intelligence [20]. Embedded system” is not related to hardware alone or software but
related to all of them. It is a computer made to do specific function. Therefore, it is compiled
system of hardware and software designed to make function [16]. Embedded System Must be
Reliable, maintainable and efficient [13]. Embedded systems naturally contain of diverse
components, Sensors, Elements transmit, Command-and-control units, Actuators [14]. Different
kinds and features of Embedded System can be used in IoT application, such as Raspberry pi
and Arduino [1] [10] [5]. Smart homes have some Challenges, such implementation cost,
technical awareness and insufficient technical support to maintain, operate and work with these
systems [7]. The Internet of Things Technologies has been tested as a use Case Study of Smart
Malls [3]. One of the projects presented a Scalable Monitoring System (WiSe-SMS) using IoT
without using an application protocol [2].

Layer OSI Layers TCP/IP IoT

7 Application

Application MQTT 6 Presentation

5 Session

4 Transport Transport TCP

3 Network Internet IP

2 Data Link
Network Access

IEEE 802.15.4 MAC

1 Physical IEEE 802.15.4 PYS

TABLE 2: Internet Of Things Stack.

Khalid Aloufi, Ahmed Alharbi, Anwar Redwan & Yousif AbuTarboush

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 268

2. SYSTEM DESIGN AND IMPLEMENTATION
SHSS is designed using Raspberry Pi 3 Model B and Arduino. The programming language used
is Python, is the official programming language for raspberry pi. Message Queue Telemetry
Transport (MQTT) is publish/subscribe and lightweight messaging protocol. Table 2 shows the
MQTT stack model. A client receives messages from a sensor by subscribing to the topic on the
same sensor. In this model, there is no straight connection between a publisher (sensor) and
subscriber (client or actuator). The system use cases is shown in Figure 1 and 2. For instance,
two cases that almost follow the same actions, but has a different reactions as shown in figure 2
and 3. Following the smart procedure, when there is an intruder, the system takes a reaction
without human interference. When smoke is detected by a smoke detector, the reaction will be
sent to the Civil Defense to take the message and send a rescue team. Home design is miniature
design for home as shown in Figure 3.

FIGURE 1: Case 1” Intruder”.

FIGURE 2: Case 2” Intruder”.

FIGURE 3: Home Design.

The system consists of Ultrasonic sensor, temperature and humidity sensor, Gas sensor,
Raspberry pi ,Raspbian OS, Power Supply, 2A microB USB power supply, HDMI cable to
Connect Raspberry Pi to a Screen, Monitor as a display for the raspberry pi, Keyboard, Mouse

Khalid Aloufi, Ahmed Alharbi, Anwar Redwan & Yousif AbuTarboush

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 269

and SD card Reader .SD Card and microSD card are used to store files and software to use on
your Raspberry Pi, such as NOOBS and Raspbian. ”Mosquitto” distribution is used as MQTT
broker and client with access control by a username and password [15]. Python web framework
called Flask to shows up the Raspberry Pi into a dynamic web server [9]. Ultrasonic is a sensor
that measure the distance to an object by using sound waves. Connection is shown in figure 4(a)
and output is shown in figure 4(b). Connection of the temperature and humidity sensor is shown
in figure 5(a) and output is shown in figure 5(b). Connecting the Gas sensor as shown in figure
6(a) and the output is shown in figure 6(b).

(a): Connection of Ultrasonic.

(b): Output of Ultrasonic.

FIGURE 4: Ultrasonic Sensor.

(a): Connection of Temperature Sensor.

(b): Output of Temperature Sensor.

FIGURE 5: Temperature Sensor.

Khalid Aloufi, Ahmed Alharbi, Anwar Redwan & Yousif AbuTarboush

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 270

(a): Connection of Gas Sensor.

(b): Output of Gas Sensor.

FIGURE 6: Gas Sensor.

3. RESULTS AND DISCUSSION

We have three parts of SHSS system, home, police and the other for civil defense. The home
requires watching for two entrances and two rooms and one kitchen. If there is a warning it will
show that to the police or civil defense, which should be using MQTT. The main Home Interface
will look like the page shown in figure 7.

In each icon there is a sensor that can detect something like gas, motion or high temperature. For
Entrance 1 and 2, a limiting distance is set for the window sensor to alert the user and the Police
Department as shown in figure 8(a) and 8(b) for entrance 1 and 2, respectively. If the sensor
detects a motion for less than 15 cm, a warning is sent to the homeowner and the police. A pop-
up massage is displayed for entrance 1 as shown in figure 9 and the same applied for entrance 2.

FIGURE 7: The Main Home Interface.

Khalid Aloufi, Ahmed Alharbi, Anwar Redwan & Yousif AbuTarboush

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 271

(a): Entrance 1 Interface.

(b): Entrance 2 Interface.

FIGURE 8: Entrance Interface.

FIGURE 9: Entrance 1 with Pop Up Window.

FIGURE 10: Kitchen Interface.

FIGURE 11: Room 1 Interface.

For the Kitchen, there is a gas sensor connect that detect the Gas Leak. It will open a pop-up
window in case of warning. Also, the Temperature and humidity sensor shows pop up in case of
warning as shown in figure 10. If the sensor detect gas, it will turn to 1. For Room 1, there is a
Temperature and humidity sensor. We have shown pop up the Temperature and humidity of the

Khalid Aloufi, Ahmed Alharbi, Anwar Redwan & Yousif AbuTarboush

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 272

room to show the information to the homeowner as shown in figure 11. For Room 2, the same as
the Room 1.

FIGURE 12: Police Page Interface.

The system will contact the police by warning message as shown in figure 12. It will display the
time and the date and the location address for the home for every warning. For the civil defense,
the same as the police warning messages but with different sensors. The main goals of this work
are achieved by running the web page and python code using raspberry pi and reading the
sensor and display it in the web page and send the warning to the police and civil defense.

4. CONCLUSION AND FUTURE WORK
Home security solutions is essential in the future of smart city. With the IoT popularity, Home
security systems are expected to decrease in cost and increase in availability and performance.
IoT enhanced by the cloud computing and web services, such system is expected to get simpler
to install and implement making such studies are very important. The integration between IoT and
application protocols, such as MQTT, and Web servers open wide range of applications and open
the doors for using web technologies based on what so called Web of Things (WoT). One of the
main challenges of the smart city and smart home application is the structured data integration
between separate system from different vendor. Such System can be integrated with other
systems using the Semantic Web (SW) with the support with an ontology to help the integration
with other system as one system.

Connect the sensors to the Web with dynamic web page, and pop up message, help in increasing
the dynamic interactions between machine and human. As well as the connection between
different systems, such as the police and other departments to provide easy secure systems
integration. Such research opens great range of research and commercial challenges for such
systems. No one corporation with one solution will be able to provide complete solution for smart
city application.

Therefore, it is very clear that the only solution is to agree on messages transaction between
units of the smart city framework. Implementation is not a problem if different from system to
system. To complete such mission, the governance of such mega projects need to specify the
machine to machine and machine to human interaction and the technologies associated such as
SW.

Khalid Aloufi, Ahmed Alharbi, Anwar Redwan & Yousif AbuTarboush

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 273

5. REFERENCES
[1] AbdAllah, A.A.: Simple raspberry pi,easy learning (2014).

[2] Aboelela, E., Aloufi, K., Atta, R.: Design and implementation of a wireless sensor network
based scalable monitoring system (wise-sms). Journal of Computers 13, 244–261 (2018).
DOI 10.17706/jcp.13.3.244-261.

[3] Algarni, F., Ullah, A., Aloufi, K.: Enhancing the Linguistic Landscape with the Proper
Deployment of the Internet of Things Technologies: A Case Study of Smart Malls, pp. 13–
39 (2020). DOI 10.1007/978-3-030-32523-7 2.

[4] Alhazmi, O.H., Aloufi, K.S.: Fog-based internet of things: A security scheme. In: 2019 2nd
International Conference on Computer Applications Information Security (ICCAIS), pp. 1–6
(2019). DOI 10.1109/CAIS.2019.8769506.

[5] Aloufi, K.: 6lowpan stack model configuration for iot streaming data transmission over
coap. International Journal of Communication Networks and Information Security 11, 304–
3012 (2019).

[6] Amairah, A., Al-tamimi, B.N., Anbar, M., Aloufi, K.: Cloud computing and internet of things
integration systems: A review. In: F. Saeed, N. Gazem, F. Mohammed, A. Busalim (eds.)
Recent Trends in Data Science and Soft Computing, pp. 406–414. Springer International
Publishing, Cham (2019).

[7] carbontrack: The challenges of security for iot and home automation.
http://carbontrack.com.au/blog/challenges-security-iot-home-automation/ (2017).

[8] Caroline El Fiorenza S. Madhumita, S.B.M.G.A.A.: Iot smart doorbell surveillance.
Internation Journal Of Advance Research And Innovative Ideas In Education 4(2), 2701–
2706 (2018).

[9] DuPlain, R.: Flask Web Development (2013).

[10] Gus: What is a raspberry pi computer. https://pimylifeup.com/what-is-raspberry-pi/ (2019).

[11] hackster: Home motion detector. https://www.hackster.io/65860/home-motiondetector-
28f965?ref=tag&ref id=home securit (2017).

[12] hackster: Smartphone connected home door lock.
https://www.hackster.io/hackershack/smartphone-connected-home-door-lock-69944f
(2017).

[13] Kopetz, H.: Real-time systems - design principles for distributed embedded applications.
In: The Kluwer international series in engineering and computer science (1997).

[14] Lee, Seshia: Introduction to embedded systems, a cyber-physical systems approach,
second edition, mit press, isbn 978-0-262-53381-2 (2017).

[15] Light, R.: Mosquitto: server and client implementation of the mqtt protocol. The Journal of
Open Source Software 2 (2017). DOI 10.21105/joss.00265.

[16] Nasir, S.Z.: Real life examples of embedded systems.
https://www.theengineeringprojects.com/2016/11/examples-of-embeddedsystems.html
(2016).

[17] safewise team: What is a security system and how does it work?
https://www.safewise.com/home-security-faq/how-do-security-systems-work/ (2019).

Khalid Aloufi, Ahmed Alharbi, Anwar Redwan & Yousif AbuTarboush

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 274

[18] Thakur, N., Han, C.: Framework for an intelligent affect aware smart home environment for
elderly people. pp. 23 – 43. International Journal of Recent Trends in Human Computer
Interaction (IJHCI) (2019).

[19] Vivint: Vivint doorbell camera. https://www.vivint.com/products/doorbell-camera (2017).

[20] Wikipedia: Smart system. https://en.wikipedia.org/wiki/Smart system (2017).

Mahmud Mansour & Ahmed Hmeed

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 275

A Comparison of Queueing Algorithms Over TCP Protocol

Mahmud Mansour mm.mansour@gmail.com
Faculty of Information Technology
Department of Network Engineering
Tripoli University
Tripoli, Libya

Ahmed Hmeed A.Hmeed@hotmail.com
Faculty of Information Technology
Department of Network Engineering
Tripoli University
Tripoli, Libya

Abstract

Network congestion control is one of the most key problems in network study. With the expansion
of network size, the continuous increase of network bandwidth and increasing diversification of
networking forms, congestion control has encountered some new problems that require a
solution.

If a packet number that reaches the network is greater than the processing capacity of network,
network performance would drop dramatically, resulting in an inevitable congestion. In order to
avoid congestion, people use congestion control algorithm in the network.

This paper studies different versions of TCP source algorithms, such as Reno and Vegas, and
investigate the impact of various Queuing management algorithms on the self-similarity of
network traffic. We compare the performance of Reno and Vegas using various queue
management algorithms, namely Droptail, Fair Queueing (FQ), Deficit Round Robin (DRR) and
Random Early Detection (RED) using NS-2 network simulators. The characteristics of different
algorithms are also discussed and compared based on the basis of packet loss, fairness and
throughput metric.

Keywords- Congestion Control, TCP Reno, TCP New Reno, TCP Vegas, Transmission Control
Protocol /Internet Protocol (TCP/IP).

1. INTRODUCTION
Internet has experienced exploding growth since its emergence. Internet traffic keeps growing at
an exponential rate of almost doubling itself each year; and this trend is expected to continue [1].
Various and vast amount of Internet-based applications and services emerge with this growth and
surveys reveal trend towards them. More and more people come to depend on them, and all
kinds of business processes are built around them. And along with the emergence of Next
Generation Network (NGN) services Internet is entering every home and business groups, and
Internet-based applications and services are pervading everyday life.

In return, people and business groups unceasingly bring forth all kinds of new demands. They not
only ask for diversified applications and services to satisfy their needs, but also demand for better
quality of service (QoS). These different applications and services have varying requirements for
goodput, packet loss ratio and end-to-end latency [2]. As surveys reveal, time-critical and
mission-critical applications are rapidly growing to be a significant portion of Internet-based
applications. In pursuing of greater profit, delay as one of the important performance indices of

Mahmud Mansour & Ahmed Hmeed

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 276

quality of service is becoming more and more recognized and emphasized by Internet service
providers.

The transport layer providers duplex, end-to-end data transport services between applications.
Data sent from the application layer ware divided into segment appropriate in size for the network
technology. Transmission control protocol (TCP) and user datagram protocol (UDP) are the
protocols used at this layer [1].

Transmission control protocol (TCP) provides reliable service by being connection-oriented and
including error detection and correction. The connected nature of TCP used only for two end-
points to communicate with each other. The connection must be established before a data
transfer can occur, and transfers are acknowledged throughout the process. Acknowledgments
assure that data received properly [6]. The acknowledgment process provides robustness in the
face of network congestion or communication unreliability. It also determines when the transfer
ends and closes the connection, thus freeing up resources on the systems. Checksums assure
that the data not accidentally modified during transit [3].

Traffic management in TCP examines the reality of two autonomous methods: Delivery control
regulated by the recipient using the window specification and Congestion control regulated by the
sender for employed the congestion window and slow begin method. The first method oversees
the recipient input buffer and the second method registers the channel congestion, hence it helps
to decrease the level of traffic. The Congestion Window (CWND) and slow start method gives
resolve the full loading of the virtual connection and decreasing the packet loss in case of
overloading in the network [4].

2. TCP CONGESTION CONTROL ALGORITHM
The basis of TCP congestion control lies in Additive Increase Multiplicative Decrease (AIMD),
halving the congestion window for every window containing a packet loss, and increasing the
congestion window by roughly one segment per Round Trip Time (RTT) otherwise.

The second component of TCP congestion control is the Retransmit Timer, including the
exponential bakeoffs of the retransmit timer when a retransmitted packet is itself dropped. The
third fundamental component is the Slow-Start mechanism for the initial probing for available
bandwidth. The fourth TCP congestion control mechanism is ACK-clocking, where the arrival of
acknowledgements at the sender is used to clock out the transmission of new data.

There are two windows in TCP: receiver advertised window (rwnd) and congestion window
(cwnd). The TCP receiver advertised window (rwnd) is added in each sent ACK packet, which
sets the size for the sender's sliding window. The sender's transmission rate is then adjusted by
the rwnd value, so that the maximum number of allowed outstanding packets is equal to the size
of the receiver advertised window at any given time instant, i.e .(rate = rwnd/RTT). Congestion
window, which is used by the sender to estimate the network capability, is the key window in the
congestion control mechanism. At any given time, instant, the maximum amount of outstanding
bytes is equal to MIN (cwnd, rwnd) [5].

Lost packets in the Internet are generally due to data collision and network congestion. Data
collision occurs, when the shared media used such as switch and Hub, and this happen in LAN.
Congestion refers to a state of the network, where one or more routers receive packets faster
than they can forward them. After the queues of one of those routers fill up, it starts to drop
packets.

TCP retransmits lost packets, which introduces an overhead in bandwidth utilization. The
purpose of congestion control is to try to minimize congestion and, consequently, the need for
retransmission by adjusting the transmission rate of TCP. The main concept of congestion
control is the congestion window (cwnd), which controls, with the receiver advertised window

Mahmud Mansour & Ahmed Hmeed

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 277

(rwnd), the size of sender's sliding window and, thus, the transmission rate. At any given time,
instant, the maximum amount of outstanding bytes is equal to min (cwnd, rwnd). Different
flavors of TCP have different strategies to react to a loss event, i.e. they resize the cwnd
differently.

2.1 Slow Start
Slow start and congestion avoidance are essentially different strategies to grow the cwnd. In the
beginning of a connection, TCP sender is in slow start mode. The size of the cwnd is initialized
to one Maximum segment size (MSS) and is increased by one each time a new ACK arrives.

The slow start mechanism was a direct attempt to avoid congestion collapse by increasing the
packet rate of a connection in a controlled fashion – slowly at first, faster later on - until
congestion is detected (i.e. packets are dropped), and ultimately arrive at a steady packet rate,
or equilibrium. To achieve this goal, the designers of the slow start mechanism chose an
exponential ramp-up function to successively increase the window size. Slow start introduces a
new parameter called the congestion window or cwnd, which specifies the number of packets
that can be sent without needing a response from the server. TCP starts off slowly (hence the
name “slow start”) by sending just one packet, then waits for a response (an ACK) from the
receiver. These ACKs confirm that it is safe to send more packets into the network (i.e. double
the window size), rather than wait for a response packet by packet. The window size grows
exponentially until a router in between the sender and the receiver discards (drops) some
packets, effectively telling TCP through a time-out event that its window size has grown too large
[10].

2.2 Congestion Avoidance
During the initial data transfer phase of a TCP connection the Slow Start algorithm is used.
However, there may be a point during Slow Start that the network is forced to drop one or more
packets due to overload or congestion [12].

When a network is congested, queue lengths start to increase exponentially. Congestion
avoidance was devised as a technique to signal packet loss via time-outs and make TCP throttle
back quickly (more quickly than queue lengths are growing), with the objective of stabilizing the
whole system. Near the point of congestion, overly aggressive increases in connection
bandwidth can drive the network into saturation, causing the “rush-hour effect”. To avoid the
rush-hour phenomenon, the congestion avoidance mechanism increases bandwidth additively
rather than exponentially. When congestion is detected via a timeout, bandwidth is scaled back
aggressively by setting cwnd to half the current window size. Congestion avoidance is
sometimes characterized as being an additive-increase, multiplicative-decrease (AIMD)
technique [8].

While slow start and congestion avoidance were devised separately and for different purposes,
they are almost always implemented together. The combined algorithm introduces a new
variable called ssthresh (slow-start threshold), that effectively determines which mechanism is
used.

2.3 Fast Retransmit
The TCP receiver can only acknowledge, the last packet received in sequence. Thus, if packets
arrive out of sequence (e.g. one packet was lost but packets sent later arrive correctly), the
receiver sends the same ACK more than once [11].

Fast retransmit algorithm makes usage of identical acknowledgement to discover packet loss. In
Fast retransmit, during an acknowledgement packet is received a congestion window is fixed to
three, TCP sender is adequately assured that the TCP packet is lost and will retransmit the
packet beyond waiting for retransmission clock. Fast recovery is approximately connected to
retransmit the packet [9].

Mahmud Mansour & Ahmed Hmeed

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 278

In Fast recovery algorithm, TCP sender will not arrive in the slow start phase rather it will exactly
decrease the congestion window by halve and boost the congestion window by estimating the
convenient congestion window. When an acknowledgement of current data is received, it restore
to congestion avoidance phase. This appropriate case may cause fast buffer uniform with low
use determinant. Suddenly the queues on the maximum loaded lines will build endlessly and, in
the end, exceed the width of the buffers at the equivalent nodes. This leads to the known fact
that the packets retransmit to the nodes with complete buffers will be reboot and therefore are to
be re-entering and that in change effect in wasting of network resources.

2.4 Fast Recovery
TCP Reno introduced a new mechanism called fast Recovery that, changes the congestion
control behaviour, after retransmit: When three duplicate ACKs received, TCP sets the slow start
threshold (ssthresh) to half of cwnd and cwnd to ssthresh plus three packets [15].

Fast recovery works hand in hand with fast retransmit to improve the responsiveness of TCP
once congestion has occurred. Fast recovery introduces the concept of partial
acknowledgements, which are used to notify that the next in-sequence packet has been lost so it
can be re-transmitted immediately. Furthermore, instead of going back into slow-start mode, fast
recovery jumps TCP into congestion avoidance mode. The congestion window is also reduced to
the slow start threshold (ssthresh) instead of dropping all the way back to a window size of one
packet [11].

3. TCP IMPLEMENTATIONS AND EXTENSIONS
In today's Internet, many different versions of TCP implementation coexist and communicate with
each other, most common types of these versions are Reno, Vegas, Tahoe and New Reno, In
this section, we review two different TCP implementations Reno and Vegas [17].

3.1 TCP Reno
TCP Reno introduced major improvements by changing the way in which, it reacts to detecting a
loss through duplicate acknowledgements. The Reno TCP implementation retained the
enhancements incorporated into Tahoe TCP but modified the Fast-Retransmit operation to
include Fast Recovery [7]. The new algorithm prevents the communication channel from going
empty after Fast Retransmit, thereby avoiding the need to Slow-Start to re-fill it after a single
packet loss.

The idea is that the only way for a loss to be detected via a timeout and not via the receipt of a
duplicate acknowledgements (dup ACK), is when the flow of packets and ACKs has completely
stopped this would be an indication of heavy congestion [21].

The response to packet loss events has been modified in order to maintain a high sending rate, in
a mildly congested network. The so, called coarse-grained implementation of the TCP, timeout
leads to long idle periods, while waiting for the timeout timer to expire. During this waiting period,
packet sending is discontinued, which results in low throughput. In TCP-Reno, the lengthy loss
recovery phase has been improved upon, via the introduction of the fast-retransmit loss recovery
algorithm [13].

Fast retransmit is a mechanism that, sometimes results in a much faster retransmission, of a lost
packet than, what would have been possible if only the expire of timeout timers, was used to
detect packet loss. The idea behind the fast-retransmit algorithm, is intuitive and easy to grasp.
Every time a packet arrives to the receiver, the receiver responds by returning an
acknowledgment packet.

Fast recovery replaces slow-start after a packet loss event is discovered by triple duplicates. The
effect of fast retransmit / fast recovery is in principle that, if a packet loss is discovered via triple
duplicates, the first lost packet will be quickly, resent and the congestion window size halved. If

Mahmud Mansour & Ahmed Hmeed

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 279

the resulting congestion window size allows it, linear increase during congestion avoidance
follows directly. This results in a more aggressive, and more effective utilization of the available
Network capacity, resulting in high throughput for TCP-Reno sender, when only a few packets are
lost at each congestion event where the fast retransmit / fast recovery instance, will re-send, the
first lost packet and quickly resume with congestion avoidance. If multiple packets are lost from a
single window, the TCP-Reno fast retransmit / fast recovery, algorithm might, however, lead to
multiple consecutive invocations, each invocation halving the congestion window size. in case of
multiple packet losses, from a single window, the first re-sent packet will lead to, the receiver
acknowledging, that it expects the second lost packet [14]. This ACK for a previously, sent and
lost packet could be called a partial ACK. In the TCP-Reno implementation of fast retransmit / fast
recovery, the arrival of partial ACKs will initiate a new fast retransmit / fast recovery followed by
window halving.

These consecutive window halving, will decrease the congestion window so much that TCP-
Reno, will ultimately not be able to send, any new packets, due to the congestion window size
restriction, on the number of packets, it is allowed to have, un-acknowledged on the link. Hence,
multiple packet losses, might finally lead to the sender having, to wait for a coarse timeout timer
to expire, even if the re-sent packets, are being correctly received and acknowledged.

3.2 TCP Vegas
New TCP implementation, called Vegas is presented in 1994 by Brakmo. O'Malley and Petersen.
TCP Vegas adopts a more sophisticated, bandwidth estimation scheme. Vegas algorithm
estimates the buffering that does arise in reach the system and controls the rate affiliate with
appropriate flow. This algorithm is absolutely capable to regulate and decrease the flow rate since
the packet loss arise.

It uses the difference between expected and actual flows rates, to estimate the available
bandwidth in the network. The idea is that when the network, is not congested, the actual flow
rate, will be close to the expected flow rate [6]. Otherwise, the actual flow rate, will be smaller
than the expected flow rate. TCP Vegas, using this difference in flow rates, estimates the
congestion level, in the network and updates the window size accordingly. This difference in the
flow rates can be easily translated into the difference between the window size and the number of
acknowledged packets during the roundtrip time, using the equation:

Diff = (Expected – Actual) BaseRTT

Where Expected is the expected rate, Actual is the actual rate, and BaseRTT is the minimum
round trip time. The details of the algorithm are as follow:

1. First, the sender computes the expected flow rate:

where CWND is the current window size and BaseRTT is the minimum round trip time.

2. Second, the sender estimates the current flow rate by using the actual round trip time.

where RTT is the actual round trip RTT time of a packet.

3. The sender, using the expected and actual flow rates, computes the estimated backlog in
the queue from diff= (Expected – Actual) BaseRTT.

Mahmud Mansour & Ahmed Hmeed

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 280

4. Based on diff, the sender updates its window size as follows:

TCP Vegas tries to keep at least α packets but no more than β packets in the queues. The
reason behind this is that TCP Vegas attempts to detect and utilize the extra bandwidth whenever
it becomes available without congesting the network. This mechanism is fundamentally different
from that used by TCP Reno. TCP Reno always updates its window size to guarantee full
utilization of available bandwidth, leading to constant packet losses, whereas TCP Vegas does
not cause any oscillation in window size once it converges to an equilibrium point

4. CONGESTION MANAGEMENT
Congestion can occur at any point in the network where there are points of speed mismatches,
aggregation, or confluence Queuing manages congestion to provide bandwidth and delay
guarantees.

FIGURE 1: Queuing Theory .

The queuing theory work showing in Figure 1, when source 1 and source 2, send sum of packets
at the same time the router starts to decide, where to direct first packet, and at the same time
begin saving, the another packets into, the Buffer as seen in Figure 1. The way which the router
(gateway), mange that packets in the buffer is called queuing theory [13].

During congestion, gateway influences, the fairness problem, because its queuing discipline,
determines which packet to drop. This has effect on retransmissions used by TCP. Normal or
default configuration, of gateways used the FIFO discipline, commonly referred to as Drop Tail
(DT) gateway. Other possible gateway’s, configurations of discipline include, the Random Drop
(RD) Gateway and the Random Early Detection (RED) Gateway [16].

The TCP algorithm, at the sender, and the receiver is only part of the congestion control effort. An
equally important part, is the congestion feedback from the network, which is the basis of any
congestion control actions [20].

Congestion feedback, can be delivered in different ways. The most primitive feedback, is packet
drops. In case of buffer overflow, the network simply drops incoming packets that cannot be
accommodated in the router buffer. The source can detect the packet drop, either from a timeout,
or from duplicate acknowledgments [22].

Mahmud Mansour & Ahmed Hmeed

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 281

5. QUEUING MANAGEMENT ALGORITHMS
In this section we outline the most common queue management algorithms. Queue management
is obviously about managing queues in forwarding devices such as routers and switches.

5.1 Drop Tail
The simplest queue management algorithm, where, when a queue becomes full, packets are
simply dropped. Since packets can be dropped on all TCP connections simultaneously, many
TCP connections on the link can be forced to go into slow-start mode. Figure 2 showing the
Droptail queueing [20].

FIGURE 2: Drop Tail Queueing.

5.2 Fair Queuing
It is a queuing mechanism that is used to allow multiple packets flow to comparatively share the
link capacity. "Fair Queuing" is an attempt to give the flows equal shares, at least within the limits
of actual demand.

FIGURE 3: Round Robin with Different Size Packets.

The simplest algorithm for fair queuing is round-robin queue service, with all packets of equal
size; this is sometimes called Nagle Fair Queuing, each nonempty queue gets to send an equal
share of packets, Nagle fair queuing allows other flows to use more than their equal share, if
some flows are underutilizing. Shares are divided equally among the active flows. As soon as a
flow becomes active (that is, its queue becomes nonempty) it gets to start sharing in the
bandwidth allocation; it does not have to wait for other flows to work through their backlogs,
Round-robin works as fair queuing as long as all packets have the same size [18]. If packets have
different sizes, then flows all get their fair share of packets per second, but this may not relate
to bytes per second. FQ also ensure about the maximum throughput of the network. Figure 3
showing the Round Robin [19].

5.3 Deficit Round Robin
It is a modified weighted round robin scheduling mechanism. It can handle packets of different
size without having knowledge of their mean size. Deficit Round Robin keeps track of credits for
each flow. It derives ideas from Fair Queuing. It uses hashing to determine the queue to which a

Mahmud Mansour & Ahmed Hmeed

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 282

flow has to be assigned and collisions automatically reduce the bandwidth guaranteed to the flow.
Each queue is assigned a quantum and can send a packet of size that can fit in the available
quantum. If not, the idle quantum gets added to this meticulous queue’s deficit and the packet
can be sent in the next round. The quantum size is a very vital parameter in the DRR
scheme, determining the upper bound on the latency as well as the throughput as shown in
Figure 4. [20]

FIGURE 4: Deficit Round Robin.

5.4 RED
Random Early Detection (RED) is a congestion avoidance queuing mechanism. RED is a type of
congestion control algorithm/mechanism that takes advantage of TCP’s congestion control
mechanisms and takes proactive approach to congestion.

It operates on the average queue size and drop packets on the basis of statistics information. If
the buffer is empty all incoming packets are acknowledged. As the queue size increase the
probability for randomly discarding a packet also increase. When buffer is full probability becomes
equal to 1 and all incoming packets are dropped [21].

RED has three modes:

 No drop: When the average queue size is between 0 and the minimum threshold.

 Random drop: When the average queue size is between the minimum and the maximum

Threshold.

 Full drop (tail drop): When the average queue size is at maximum threshold or above.

FIGURE 5: Packet Drop Profile In RED.

6. SIMULATION SCENARIO and CONFIGURATION
In this section, we evaluate the performance proposed for the different Queueing Algorithms over
TCP Protocols. This network was examined using NS2 Simulator software.

Mahmud Mansour & Ahmed Hmeed

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 283

Figure 6 show the proposed scheme of the network, covering the needs of an average networks
with a data server that allows to send files and make voice / video calls and FTP Application.
Although minor changes could be made to allow for the needs of different Networks. This network
was designed to connect two branches; each branch has 4 nodes. In addition, 2 routers were
used to connect network.

Here we will be using five different mechanisms which have different behavior for different
network configuration and traffic pattern. Most importantly, the task in designing the simulation is
to select parameters (bandwidth, queue limit, packet size, etc.) and a typical set of network
topology. A simple topology is used in our simulation where different flows share a bottleneck
between the two routers. The packets sent from sources queue to the queue of router and wait
for transmitting. If the sender keeps sending and the queue overloaded, then congestion occurs.

FIGURE 6: Network Topology of The Case Sudy.

There are four nodes at each side of the bottleneck link. Here four nodes are acting as a TCP
source (Vegas, Reno) and four nodes are acting as a TCP sink so that both routers are applying
the congestion control algorithm. We simulate this network on NS2 for different Queueing
algorithms such as Drop tail, Fair Queueing, Random Early Detection and Deficit Round Robin
over TCP protocols Vegas and Reno and compare the results for all proposal. This simulation
has been observed over the period of 200 seconds.

TABLE 1: Simulation Parameters.

Simulation Parameter V
a
l
u
e

Simulator Ns-allinone-
2.31 Type of link Duplex Link

Routers 2

Nodes 8

Network Applications FTP, VOIP, Video conferencing

Queue Drop Tail, FQ, RED, RDD

Speed 2MB

Delay 20ms
Transmission Protocol TCP

Simulation start time 0s

Simulation finish time 200s

Mahmud Mansour & Ahmed Hmeed

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 284

7. SIMULATION RESULTS
The performance of the congestion management system that consists of the queueing algorithm
and the link congestion signal, algorithm has many facets, and these variables can impact the
QoS, that applications experience from the network. Varieties of metrics that address different
aspects of performance used to evaluate a congestion management system. At first, the results
will be displayed algorithms, followed by an explanation of how the work of the network and right
after, the results will be discussed. A final step and it will explain the main differences between
the four algorithms.

7.1 Congestion Window in TCP Reno

FIGURE 7: Congestion Window In TCP Reno.

7.2 Send, Dropped and ACK Packet In 40 Sec using TCP Reno

FIGURE 8: Send, Dropped and ACK Packet In 40 Sec using TCP Reno.

7.3 Queueing Algorithms (Droptail, FQ, RDD and RED) over TCP Reno
If all TCP Sources work as TCP Reno and the used queuing type is Drop Tail and Fair Queueing
in a bottleneck link, G1-G2 and Queuing limit (Buffer size) is equal to 20. The results shown in
Figure 9 Drop Tail and in Figure 10 FQ and tables are below.

Mahmud Mansour & Ahmed Hmeed

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 285

FIGURE 9: Throughput kbps to four sources work as TCP Reno when Queuing type is DropTail.

FIGURE 10: Throughput kbps to four sources work as TCP Reno when Queuing type is FQ.

If all TCP Sources work as TCP Reno and the used queuing type is DRR and RED in a
bottleneck link, G1-G2 and Queuing limit (Buffer size) are equal to 20. The results shown in
Figure 11 Deficit Round Robin and in Figure 12 RED and tables are below.

Mahmud Mansour & Ahmed Hmeed

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 286

FIGURE 11: Throughput kbps to four sources work as TCP Reno and Queuing type is Deficit Round Robin.

FIGURE 12: Throughput kbps to four sources work as TCP Reno and Queuing type is RED.

TABLE (7-1): Compare between Sent, Received and Dropped packets with different Queuing algorithms in

TCP Reno.

Sources

S1

S2

S3

S4

Droptail

Sent Packet

3775

3816

3155

3385

Received Packet

3706

3750

3085

3320

Dropped Packet

68

66

70

65

Sent Packet

3719

3588

3559

3559

Received Packet

3706

3576

3547

3547

Mahmud Mansour & Ahmed Hmeed

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 287

Fair
Queueing

Dropped Packet

0

0

0

0

DRR

Sent Packet

3675

3550

3627

3724

Received Packet

3612

3480

3558

3660

Dropped Packet

63

70

69

64

RED

Sent Packet

4182

3190

3551

3406

Received Packet

4085

3077

3449

3306

Dropped Packet

97

113

102

100

7.4 Congestion Window In TCP Vegas

FIGURE 13: Congestion Window in TCP Vegas.

Mahmud Mansour & Ahmed Hmeed

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 288

7.5 Send, dropped and ACK packet in 40 sec using TCP Vegas

FIGURE 14: Send, Dropped and ACK Packet In 40 Sec using TCP Vegas.

7.6 Queueing Algorithms (Droptail, FQ, RDD and RED) over TCP Vegas
If all TCP Sources work as TCP Vegas and the used queuing type is Drop Tail and Fair Queueing
in a bottleneck link, G1-G2 and Queuing limit (Buffer size) are equal to 20. The results shown in

Figure 15 Drop Tail and in Figure 16 FQ and tables are below.

FIGURE 15: Throughput kbps to four-sources work as TCP Vegas when Queuing type is DropTail.

Mahmud Mansour & Ahmed Hmeed

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 289

FIGURE 16: Throughput kbps to four-sources work as TCP Vegas when Queuing type is FairQueueing.

If all TCP Sources work as TCP Vegas and the used queuing type is DRR and RED in a
bottleneck link, G1-G2 and Queuing limit (Buffer size) are equal to 20. The results shown in
Figure 17 Drop Tail and in Figure 18 FQ and tables are below.

FIGURE 17: Throughput kbps to four sources work as TCP Vegas when Queuing type is DRR.

Mahmud Mansour & Ahmed Hmeed

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 290

FIGURE 18: Throughput to four sources work as TCP Vegas when Queuing type is RED.

Sources

S1

S2

S3

S4

Droptail

 Sent Packet

5382

4234

2630

2630

Received Packet

5382

4234

2630

2630

Dropped Packet

0

0

0

0

Fair Queueing

Sent Packet

3803

3713

3681

3680

Received Packet

3803

3713

3681

3680

Dropped Packet

0

0

0

0

DRR

Sent Packet

3801

3712

3682

3681

Received Packet

3801

3712

3682

3681

Dropped Packet

0

0

0

0

RED

Sent Packet

3960

3761

3865

3625

Received Packet

3869

3673

3779

3520

Dropped Packet

91

88

86

105

TABLE (7-2): Compare between Sent, Received and Dropped packets with different Queuing algorithms in

TCP Vegas.

Mahmud Mansour & Ahmed Hmeed

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 291

7.8 Compare between sent and received packets with different Queuing Algorithms in
(TCP Reno and Vegas):

Type TCP Vegas TCP Reno

Drop Tail 14876 13861

Fair Queueing 14877 14376

DRR 14876 14310

RED 14841 13917

TABLE (7-3): Compare Between Total of Sent Packets.

Type TCP Vegas TCP Reno

Drop Tail 1162.1785 276.0121

Fair Queueing 50.1416 65.7381

DRR 48.9540 66.8636

RED 1129.9141 374.0550

TABLE (7-4): Compare Standard Deviation.

8. CONCLUSION
In this paper, we analysed the proposed scheme of ‘A Comparison of Queueing Algorithms over
TCP Protocol’.

While looking at the performance metrics (fairness and throughput) for all four queueing
algorithms, we find that The DRR algorithm in TCP Vegas is the best in fairness. Then we find FQ
algorithm in both TCP (Vegas and Reno) is better than DRR in Reno and the other two algorithms
RED and Droptail, so we can conclude that the overall performance of FQ algorithm in both TCP
protocols Reno and Vegas is better than DRR. DRR in TCP Vegas is better than FQ only in
fairness but in throughput it is the same with FQ and Droptail and better than RED.

Moreover, we find Droptail in Reno is better than RED in both TCP protocols (Reno and Vegas),
but when it is in Vegas, it is less fairness than RED and better throughput, so that the overall
performance of Droptail in both TCP protocols Reno and Vegas is better than RED except when it
is in Vegas, then it is worse in fairness.

Mahmud Mansour & Ahmed Hmeed

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 292

From this study we can classify these four Queueing algorithms in accordance to performance
metrics as this order:

1-FQ
2-DRR
3-Droptail
4-RED

9. REFERENCES
[1] Lawrence G. Roberts, “Beyond Moore’s Law: Internet Growth Trends,” Computer, vol. 33,

no. 1, pp. 117-119, January 2000.

[2] Jeonghoon Mo, Richard J. La, Venkat Anantharam, and Jean Walrand, Analysis and
Comparison of TCP Reno and Vegas.

[3] V. Jacobson. “Modified TCP Congestion Avoidance Algorithm”, Technical report, 30
Apr.1990

[4] M. Fomenkov, K. Keys, D. Moore, and K. Claffy, Longitudinal studyofInte rnettrafficin 1998-
2003,WISICT’04:Proc.Winter Int. Symp. Info.Commun.Technol, 2004.

[5] K. Fall, and S. Floyd, “Simulation–Based Comparison of Tahoe, Reno and SACK

[6] TCP”, Computer Communications Review ACMSIGCOMM, Vol. 26, No. 3, July 1996 K. Fall,
and S. Floyd, “Simulation–Based Comparison of Tahoe, Reno and

[7] SACK TCP”, Computer Communications Review ACMSIGCOMM, Vol. 26, No. 3, July 1996.

[8] M. Chiang, S. Low, A. Calderbank and J. Doyle, Layering as optimization decomposition:
Amathematical theory of network architectures, Proc. of the IEEE,95(1): 255–312, 2007.

[9] UDP Protocol,http://www.erg.abdn.ac.uk/users/gorry/course/inet-pages/udp.html. 5 NOV
2015.

[10] UDP and TCP Segment Structure http ://searchnetworking.techtarget .com /
definition/duplex http://www.ciscopress.com/store/cisco-ip-telephony-cipt -authorized-self-
study-guide-9781587054099. , 22 Dec 2015.

[11] Nagle, J. RFC 896: Congestion control in IP/TCP internetworks (1984).

[12] TCP Protocol http://searchnetworking.techtarget.com/definition/TCP. , 5 DEC 2015.

[13] The Advantages and Disadvantages TCP and UDP http://smblog.iiitd .com /2010 /09
/advantages-and-disadvantages-of-tcp-and.html. , 31 DEC 2015.

[14] V. Jacobson, "Congestion Avoidance and Control", In Proceedings of ACM SIGCOMM' 88,
PP. 314-329, Stanford, CA, August 1988.

[15] Chunlei Liu, B.Sc., M.S."Wireless Network Enhancements Using Congestion Coherence,
Faster Congestion Feedback , Media Access Control and AAL2 Voice Trunking " 2001, The
Ohio State University.

[16] B.B. et al."Recommendations on queue management and congestion avoidance in the
internet". RFC 2309, April 1998.

[17] Romanow and S.Floyd. "The dynamics of TCP over ATM networks . In Proceedings,1994
SIGCOMM Conference , , London, 1994.

http://www.erg.abdn.ac.uk/users/gorry/course/inet-pages/udp.html
http://searchnetworking.techtarget.com/definition/duplex
http://searchnetworking.techtarget.com/definition/duplex
http://searchnetworking.techtarget.com/definition/duplex
http://www.ciscopress.com/store/cisco-ip-telephony-cipt-authorized-self-study-guide-%20%20%20%20%20%20%20%20%20%20%20%20%209781587054099
http://www.ciscopress.com/store/cisco-ip-telephony-cipt-authorized-self-study-guide-%20%20%20%20%20%20%20%20%20%20%20%20%209781587054099
https://tools.ietf.org/html/rfc896
http://searchnetworking.techtarget.com/definition/TCP

Mahmud Mansour & Ahmed Hmeed

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 293

[18] N.Yin and M. G. Hluchyj."Implication of dropping packets from the front of a queue.proc".7th
ITC seminar ,1990.

[19] T.Lakshman, A. Neidhardt, and T. Ott. The drop from front strategy in tcp and in tcp over
atm,1996.

[20] S. Floyd and V.Jacobson. "Random early detection gateways for congestion avoidance".
IEEE/ACM Transactions on Networking,Aug.1993.

[21] J. Postal."Internet control message protocol icmp",1981,ISI.

[22] Michael Welzl "Network Congestion Control Managing Internet Traffic" John Wiley & Sons
Ltd,2005.

INSTRUCTIONS TO CONTRIBUTORS

The International Journal of Computer Science and Security (IJCSS) is a refereed online journal
which is a forum for publication of current research in computer science and computer security
technologies. It considers any material dealing primarily with the technological aspects of
computer science and computer security. The journal is targeted to be read by academics,
scholars, advanced students, practitioners, and those seeking an update on current experience
and future prospects in relation to all aspects computer science in general but specific to
computer security themes. Subjects covered include: access control, computer security,
cryptography, communications and data security, databases, electronic commerce, multimedia,
bioinformatics, signal processing and image processing etc.

To build its International reputation, we are disseminating the publication information through
Google Books, Google Scholar, Open J Gate, ScientificCommons, Docstoc and many more. Our
International Editors are working on establishing ISI listing and a good impact factor for IJCSS.

The initial efforts helped to shape the editorial policy and to sharpen the focus of the journal.
Started with Volume 14, 2020, IJCSS is appearing with more focused issues. Besides normal
publications, IJCSS intend to organized special issues on more focused topics. Each special
issue will have a designated editor (editors) – either member of the editorial board or another
recognized specialist in the respective field.

We are open to contributions, proposals for any topic as well as for editors and reviewers. We
understand that it is through the effort of volunteers that CSC Journals continues to grow and
flourish.

IJCSS LIST OF TOPICS
The realm of International Journal of Computer Science and Security (IJCSS) extends, but not
limited, to the following:

 Authentication and authorization
models

 Communications and data security

 Computer Engineering  Bioinformatics

 Computer Networks  Computer graphics

 Cryptography  Computer security

 Databases  Data mining

 Image processing  Electronic commerce

 Operating systems  Object Orientation

 Programming languages  Parallel and distributed processing

 Signal processing  Robotics

 Theory  Software engineering

CALL FOR PAPERS

Volume: 14 - Issue: 1

i. Submission Deadline : December 31, 2019 ii. Author Notification: January 31, 2020

iii. Issue Publication: February 2020

CONTACT INFORMATION

Computer Science Journals Sdn BhD

 B-5-8 Plaza Mont Kiara, Mont Kiara

50480, Kuala Lumpur, MALAYSIA

Phone: 006 03 6204 5627

Fax: 006 03 6204 5628

Email: cscpress@cscjournals.org

