

INTERNATIONAL JOURNAL OF DATA

ENGINEERING (IJDE)

VOLUME 3, ISSUE 2, 2012

EDITED BY

DR. NABEEL TAHIR

ISSN (Online): 2180-1274

International Journal of Data Engineering is published both in traditional paper form and in

Internet. This journal is published at the website http://www.cscjournals.org, maintained by

Computer Science Journals (CSC Journals), Malaysia.

IJDE Journal is a part of CSC Publishers

Computer Science Journals

http://www.cscjournals.org

INTERNATIONAL JOURNAL OF DATA ENGINEERING (IJDE)

Book: Volume 3, Issue 2, April 2012

Publishing Date: 16-04-2012

ISSN (Online): 2180-1274

This work is subjected to copyright. All rights are reserved whether the whole or

part of the material is concerned, specifically the rights of translation, reprinting,

re-use of illusions, recitation, broadcasting, reproduction on microfilms or in any

other way, and storage in data banks. Duplication of this publication of parts

thereof is permitted only under the provision of the copyright law 1965, in its

current version, and permission of use must always be obtained from CSC

Publishers.

IJDE Journal is a part of CSC Publishers

http://www.cscjournals.org

© IJDE Journal

Published in Malaysia

Typesetting: Camera-ready by author, data conversation by CSC Publishing Services – CSC Journals,

Malaysia

CSC Publishers, 2012

EDITORIAL PREFACE

This is second issue of volume three of the International Journal of Data Engineering (IJDE).
IJDE is an International refereed journal for publication of current research in Data Engineering
technologies. IJDE publishes research papers dealing primarily with the technological aspects of
Data Engineering in new and emerging technologies. Publications of IJDE are beneficial for
researchers, academics, scholars, advanced students, practitioners, and those seeking an
update on current experience, state of the art research theories and future prospects in relation to
computer science in general but specific to computer security studies. Some important topics
cover by IJDE is Annotation and Data Curation, Data Engineering, Data Mining and Knowledge
Discovery, Query Processing in Databases and Semantic Web etc.

The initial efforts helped to shape the editorial policy and to sharpen the focus of the journal.
Starting with volume 3, 2012, IJDE appears in more focused issues. Besides normal publications,
IJDE intend to organized special issues on more focused topics. Each special issue will have a
designated editor (editors) – either member of the editorial board or another recognized specialist
in the respective field.

This journal publishes new dissertations and state of the art research to target its readership that
not only includes researchers, industrialists and scientist but also advanced students and
practitioners. The aim of IJDE is to publish research which is not only technically proficient, but
contains innovation or information for our international readers. In order to position IJDE as one of
the top International journal in Data Engineering, a group of highly valuable and senior
International scholars are serving its Editorial Board who ensures that each issue must publish
qualitative research articles from International research communities relevant to Data Engineering
fields.

IJDE editors understand that how much it is important for authors and researchers to have their
work published with a minimum delay after submission of their papers. They also strongly believe
that the direct communication between the editors and authors are important for the welfare,
quality and wellbeing of the Journal and its readers. Therefore, all activities from paper
submission to paper publication are controlled through electronic systems that include electronic
submission, editorial panel and review system that ensures rapid decision with least delays in the
publication processes.

To build its international reputation, we are disseminating the publication information through
Google Books, Google Scholar, Directory of Open Access Journals (DOAJ), Open J Gate,
ScientificCommons, Docstoc and many more. Our International Editors are working on
establishing ISI listing and a good impact factor for IJDE. We would like to remind you that the
success of our journal depends directly on the number of quality articles submitted for review.
Accordingly, we would like to request your participation by submitting quality manuscripts for
review and encouraging your colleagues to submit quality manuscripts for review. One of the
great benefits we can provide to our prospective authors is the mentoring nature of our review
process. IJDE provides authors with high quality, helpful reviews that are shaped to assist
authors in improving their manuscripts..

Editorial Board Members
International Journal of Data Engineering (IJDE)

EDITORIAL BOARD

Editor-in-Chief (EiC)

Professor. Walid Aref
 Purdue University (United States of America)

EDITORIAL BOARD MEMBERS (EBMs)

Dr. Zaher Al Aghbari
University of Sharjah
United Arab Emirates

Assistant Professor. Mohamed Mokbel
University of Minnesota
United States of America

Associate Professor Ibrahim Kamel
University of Sharjah
United Arab Emirates

Dr. Mohamed H. Ali
StreamInsight Group at Microsoft
United States of America

Dr. Xiaopeng Xiong
Chongqing A-Media Communication Tech Co. LTD
China

Assistant Professor. Yasin N. Silva
Arizona State University
United States of America

Associate Professor Mourad Ouzzani
Purdue University
United States of America

Associate Professor Ihab F. Ilyas
University of Waterloo
Canada

Dr. Mohamed Y. Eltabakh
IBM Almaden Research Center
United States of America

Professor Hakan Ferhatosmanoglu
Ohio State University
Turkey

Assistant Professor. Babu Shivnath
Duke University
United States of America

Dr. Andrey Balmin
IBM Almaden Research Center
United States of America

Dr. Rishi R. Sinha
Microsoft Corporation
United States of America

Dr. Qiong Luo
Hong Kong University of Science and Technology
China

Dr. Thanaa M. Ghanem
University of St. Thomas
United States of America

Dr. Ravi Ramamurthy
Microsoft Research
United States of America

Dr. David DeHaan
Sybase
Canada

Dr. Theodore Dalamagas
IMIS, Athens
Greece

Dr Moustafa Hammad
Google, Inc.
United States of America

International Journal of Data Engineering (IJDE), Volume (3), Issue (2): 2012

TABLE OF CONTENTS

Volume 3, Issue 2, April 2012

Pages

28 - 47 Clustering Using Shared Reference Points Algorithm Based On a Sound Data Model

Mohamed A. Abbas, Amin A. Shoukry

48 - 65 Query Processing with k-Anonymity
Mohamed Eltabakh, Jalaja Padma, Yasin N. Silva, Walid G. Aref, Pei He

Mohamed A. Abbas & Amin A. Shoukry

International Journal of Data Engineering (IJDE), Volume (3) : Issue (2) : 2012 28

Clustering Using Shared Reference Points Algorithm
Based On a Sound Data Model

Mohamed A. Abbas mohamed.alyabbas@gmail.com
Graduate student with the College of Computing and
Information Technology
Arab Academy for Science and Technology

Alexandria, P.O. Box 1029, Egyt.

Amin A. Shoukry amin.shoukry@ejust.edu.eg
Department of Computer Science and Engineering
Egypt-Japan University of Science and Technology
New Borg El-Arab City, P.O. Box 179, Egypt

Abstract

A novel clustering algorithm CSHARP is presented for the purpose of finding clusters of
arbitrary shapes and arbitrary densities in high dimensional feature spaces. It can be
considered as a variation of the Shared Nearest Neighbor algorithm (SNN), in which each
sample data point votes for the points in its k-nearest neighborhood. Sets of points sharing a
common mutual nearest neighbor are considered as dense regions/ blocks. These blocks are
the seeds from which clusters may grow up. Therefore, CSHARP is not a point-to-point
clustering algorithm. Rather, it is a block-to-block clustering technique. Much of its
advantages come from these facts: Noise points and outliers correspond to blocks of small
sizes, and homogeneous blocks highly overlap. The proposed technique is less likely to
merge clusters of different densities or different homogeneity. The algorithm has been applied
to a variety of low and high dimensional data sets with superior results over existing
techniques such as DBScan, K-means, Chameleon, Mitosis and Spectral Clustering. The
quality of its results as well as its time complexity, rank it at the front of these techniques.

Keywords: Shared Nearest Neighbors, Mutual Neighbors, Spatial Data, High Dimensional
Data, Time Series, Cluster Validation.

1. INTRODUCTION
The present paper is a modified version of [25]. The modification includes the incorporation of
a new measure of cluster homogeneity (section 2.2) which has been used in defining a strict
order for cluster’s propagation in the proposed algorithm (section 3). Also, new validation
indexes; as well as new data sets; have been adopted for the purpose of comparing the
proposed algorithm with the previous techniques (section 4).

Clustering of data is an important step in data analysis. The main goal of clustering is to
divide data objects into well separated groups so that objects lying in the same group are
more similar to one another than to objects in other groups.

Given a set = of data objects (sample points) to be clustered, where is the
i-th object. is an -dimensional column vector. consisting of
measured attributes (is the dimensionality of the feature space). The Jarvis-Patrick
clustering technique [12], needs a measure of the distance between two objects and two
integers: and . is the size of the neighborhood list, and is the number of common
neighbors. This method works as follows:
Determine the -nearest neighbors for each object in the set to be clustered. Two objects are
placed in the same cluster if they are contained in each other’s nearest neighbors list:
K-NBj and K-NBi, where K-NBj and K-NBi denote the K-nearest neighbors of data points

 and , respectively. (1) They have at least
nearest neighbors in common: . (2)

Mohamed A. Abbas & Amin A. Shoukry

International Journal of Data Engineering (IJDE), Volume (3) : Issue (2) : 2012 29

As stated in [15], the principle of K-NB consistency of a cluster states that for any data object
in a cluster its K-Nearest Neighbors should also be in the same cluster. The principle of K-
Mutual Nearest-Neighbor consistency (K-MNB consistency) states that for any data object in
a cluster its K-Mutual Nearest-Neighbors should also be in the same cluster. The principle of
cluster K-MNB consistency is stronger than the cluster K-NB consistency concept, and it is
also a more strict representation of the natural grouping in the definition of clustering. In the
present work, the concept of K-MNB is used in developing a new clustering algorithm,
CSHARP, (Clustering using SHAred Reference Points). CSHARP is a density based
clustering algorithm in which dense regions are identified using mutual nearest neighborhood.
Then, sets of points sharing a common mutual nearest neighbor are considered instead of
points themselves in an agglomerative process.

1.1 Proposed Technique
Specifically, the technique proposed in this paper:

• Determines; for every data point; the largest possible set of points satisfying condition
(1) only (the cardinality of this set lies in the range . For a point , this set is
called its Reference-List and is denoted RL . Point is considered as the
"Representative Point" (or "Reference Point") of this Reference-List. Such sets of
points are the seeds from which clusters may grow up.

• Avoids an early commitment to condition (2), and, instead, proceeds directly from
point(s) to set(s) relation(s) (the Reference-Lists); instead of point(s) to point(s)
relation(s) (as required by conditions (1) and (2), above). Therefore, data in CSHARP
is processed as blocks of points not as individual points. Reference lists constitute a
key concept in the proposed algorithm. To preserve K-MNB consistency, CSHARP
processes data as blocks of tiny groups of Reference-Lists, on which clusters are
built, agglomeratively.

• Allows clusters to be linked if their Reference- Lists share a number of points .
Thus, parameter controls the extent to which mutual neighborhood consistency is
satisfied. Allowing clusters to grow in a chain is similar; though not identical; to the
reachability relation in DBScan algorithm [5]. Reference-Lists of size (a selected
threshold) are either considered as noise or may merge with other clusters as will be
explained in section 2.

Several experiments conducted on a variety of data sets show the efficiency of the proposed
technique for the detection of clusters of different sizes, shapes and densities; whether in low
or high dimensional feature spaces; in the presence of noise and outliers. Although the
motivations behind the algorithm are quite heuristic, the experimental work showed the
validity of the proposed approach.

1.2 Overview of Related Algorithms
Many clustering techniques have been developed based on different concepts. Several
approaches utilize the concept of cluster center or centroid, other methods build clusters
based on the density of the objects, and a lot of methods represent the data objects as
vertices of graphs where edges represent the similarity between these objects.

Centroid based algorithms represent each cluster by using the centre of gravity of its
instances. The most well-known centroid algorithm is the K-means [11]. The K-means method
partitions a data set into k subsets such that all points in a given subset are close to the same
centre. K-means then computes the new centers by taking the mean of all data points
belonging to each cluster. The operation is iterated until there is no change in the centers
locations. The result strongly depends on the initial guess of centroids, besides, it does not
perform well on data with outliers or with clusters of different sizes or non globular shapes.

The key idea of density-based clustering is that for each instance of a cluster, a neighborhood
of a given radius has to contain at least a minimum number of instances. One of the most well
known density-based clustering algorithms is the DBScan [5]. In DBScan the density
associated with an object is obtained by counting the number of objects in a region of a
specified radius, , around the object. An object with density greater than or equal to a
specified threshold, MinPts, is treated as a core (dense), otherwise it is considered as a non-

Mohamed A. Abbas & Amin A. Shoukry

International Journal of Data Engineering (IJDE), Volume (3) : Issue (2) : 2012 30

core (sparse) object. Non-core objects that do not have a core object within the specified
radius are discarded as noise. Clusters are formed around core objects by finding sets of
density connected objects that are maximal with respect to density-reachability. While
DBScan can find clusters of arbitrary sizes and shapes, it cannot handle data containing
clusters of different densities, since it uses global density parameters, MinPts and , which
specify only the lowest possible density of any cluster.

Chameleon [13] and [4] algorithms attempt to obtain clusters with variable sizes, shapes
and densities based on K-nearest neighbor graphs. Chameleon finds the clusters in a data
set by using a two-phase algorithm. In the first phase, it generates a K-nearest neighbor
graph that contains links between a point and its K-nearest neighbors. Then it uses a graph
partitioning algorithm to cluster the data items into a large number of relatively small sub-
clusters. During the second phase, it uses an agglomerative hierarchical clustering algorithm
to find the genuine clusters by repeatedly combining together these sub-clusters. The Shared
Nearest Neighbors clustering algorithm, [4] uses K-nearest neighbor approach for
density estimation. It constructs a K-nearest neighbor graph in which each data object
corresponds to a node which is connected to the nodes corresponding to its K-nearest
neighbors. From the K-nearest neighbor graph a shared nearest neighbor graph is
constructed, in which edges exist only between data objects that have each other in their
nearest neighbor lists. A weight is assigned to each edge based on the number and ordering
of shared neighbors. Clusters are obtained by removing all edges from the shared nearest
neighbor graph that have a weight below a certain threshold .

A recent clustering algorithm, Mitosis [22], is proposed for finding clusters of arbitrary shapes
and arbitrary densities in high dimensional data. Unlike previous algorithms, it uses a dynamic
model that combines both local and global distance measures. The model is depicted in the
proposed dynamic range neighborhood, and the proposed clustering criteria which use
distance relatedness to merge patterns together. Mitosis uses two main parameters and .
Parameter , controlling the neighborhood size, is the main parameter which decides the
lower bound on the number of clusters that can be obtained. The value of , should be varied
in an incremental fashion so as not to deteriorate the speed of the algorithm. It can be
selected just above the value of , and increased by small steps, to avoid unnecessary large
neighborhood sizes. Parameter controls the degree of merging patterns/clusters together,
within the limits of the neighborhood decided by . Increasing values of , for the same
value, means decreasing the number of clusters obtained, and vice versa.

In recent years, spectral clustering [20] has become one of the most popular modern
clustering techniques. It starts from a similarity matrix between data objects, modifies it to a
sparse matrix, then computes its Laplacian matrix "L". The first k eigenvectors of L constitute
the first k columns of a matrix . K-means algorithm is applied then on the row vectors of a
normalized version of matrix (where each original data object is assigned to the same
cluster to which the corresponding row vector in is assigned to). Spectral clustering is
simple to implement and can be solved efficiently on standard linear algebra software.
Additionally, it is more effective in finding clusters than some traditional algorithms such as K-
means. However, it suffers from a scalability problem discussed in [17]. It cannot successfully
cluster data sets that contain structures at different scales of size and density. To overcome
these limitations, a novel spectral clustering algorithm [2] is proposed for computing spectral
clustering using a sparse similarity matrix.

1.3 Outline of the Paper
The rest of this paper is organized as follows. Section 2 describes our approach for the
definition of similarity and density (or reference points structure), which is the key concept to
our clustering algorithm. Section 3 describes the algorithm itself followed by a logical model of
the data entities it manipulates, a graph-based interpretation of its effect and its time
complexity analysis. An anatomy of the proposed algorithm with respect to related algorithms
is discussed next. Section 4 presents the data sets used in the experiments conducted to
evaluate the performance of the algorithm using well known cluster validation indexes.
Section 5 presents a short conclusion and possible future work.

Mohamed A. Abbas & Amin A. Shoukry

International Journal of Data Engineering (IJDE), Volume (3) : Issue (2) : 2012 31

2. BASIC DEFINITIONS
In this section we describe the basic concepts used in the proposed algorithm.

2.1 Reference-List and Reference-Block

As shown in Figure 1, although the Euclidean distance is a symmetric metric, from the
perspective (and considering =4), point is in 4-NBB, however, point is not in 4-NBA.
Given a set of points , let = be the ordered list of points
according to their distances from a point , and let K-NB be the K-
nearest neighbors of . This represents the list of points that point refers to. If K-NB ,
then is referred by . Let RB denote the set of points having in their K-Nearest
Neighborhood. Then, K-NB RB represents a set of dense points called a Reference-
List, RL , associated with point . is called the representative point of RL . Each
representative point with its Reference-List, RL constitute a Reference-Block. Points in a
Reference-Block are shown in Figure 2.

FIGURE 1: Concept of mutual neighboring: is in 4-NBB, however, is not in 4-NBA.

FIGURE 2: A Reference-List (points within circle), associated with a representative point “A”). All

together they constitute a Reference-block.

There are three possible types of representative points:

• Strong Points (or Reference Points), representing blocks of size greater than a pre-
defined threshold parameter .

• Noise points, representing empty Reference-Lists. These points will be excluded
initially from final clusters.

• Weak points which are neither strong points nor noise points. These points may be
merged with another existing clusters if they are members of another strong points.

Mohamed A. Abbas & Amin A. Shoukry

International Journal of Data Engineering (IJDE), Volume (3) : Issue (2) : 2012 32

2.2 Homogeneity Factor
A homogeneity measure is proposed here for the ordering of the cluster’s propagation
process. While CSHARP[25] performs this process according to the cardinality of the
reference lists (i.e their densities), the algorithm proposed here, considers both the density
and homogeneity of the blocks that will be granted priority to propagate first.

Given RL = {q1 , q2 , …qc}, a Reference List associated with point pi having cardinality
 c = | RL | > (i.e. corresponding to a strong reference point), its homogeneity factor αi is
computed as:

αi = (3)

Where is the average distance between pi and its associated reference list points qj,
computed as:

= , (4)

and is the maximum distance between pi and its associated reference list points qj,

computed as:
, (5)

Figure 3 shows three cases of strong reference lists with their corresponding homogeneity
factors. Note that the odd case of a reference list with cardinality c=1 in which αi=1 is
excluded, since it does not correspond to a strong reference list. In the experiments described
in section four, T is always greater than 2.

FIGURE 3: Three reference lists with different homogeneity factors (a) 0.98, (b) 0.80 and (c) 0.55

2.3 Cluster’s Propagation
Given two clusters such that ; where is a chosen parameter, called merge-
parameter, then the two clusters can be merged together. Hence, measures the minimum
link strength required between two clusters. In CSHARP data is processed as blocks of points
(reference-blocks) not as individual points. Two clusters are merged if they share a number of
points equal to or greater than some threshold M; as explained in Figure 4.

A b

FIGURE 4: Two steps of Cluster propagation with M = 2 (the merging parameter) for (a) Ck =

such that M and (b) Cu = Ck Cl such that M.

Mohamed A. Abbas & Amin A. Shoukry

International Journal of Data Engineering (IJDE), Volume (3) : Issue (2) : 2012 33

To illustrate the process of clusters propagation, Chameleon’s data set DS5 is used. DS5
consists of 8000 spatial data points. All genuine clusters were detected at the parameters
setting(=24, =18, =6). The number of strong points obtained were 5122.

Several snapshots of the clustering process are shown in Figure 5. Figure 5, also, illustrates
how clusters propagate agglomeratively, and simultaneously, in CSHARP.

a b c

D e f

g h i

FIGURE 5: Nine snapshots of Adjusted CSHARP cluster propagation for the data set Chameleon DS5
at different iterations (a) 10, (b) 25, (c) 100, (d) 500, (e) 1000, (f) 2000, (g) 3000, (h) 4000 and (i) 5122.

Mohamed A. Abbas & Amin A. Shoukry

International Journal of Data Engineering (IJDE), Volume (3) : Issue (2) : 2012 34

3. MODIFIED CSHARP ALGORITHM
Figure 6 describes the modified CSHARP algorithm. Next, a logical data model and a graph-
based interpretation of the algorithm are given. Finally, the time complexity of this algorithm is
analyzed in section 3.2.

 Input: Data points ;

 {size of the neighborhood of a point};
 {threshold parameter for the size of a reference list} and
 {merge parameter for the size of the intersection between two reference blocks}.

 Output: set of generated clusters.
1: Construct similarity matrix .

{Construct the Refer-To-List, K-NB for each point }

2: K-NB

{construct the Referred-By-List, RB for each point .

3:
4: K-NB
5: for all do
6: If K-NB then

7: RB
8: end if
9: end for

10: end for

{From K-NB and RB , Construct the reference Lists RL

11: for all do
12: RL = K-NB RB .
13: end for

 14: Form a sorted (in a descending order) list L. L = is a representative point , based on
the densities (i.e. RL). Exclude the weak points from list L (those points for which
|RL).

15: Sort the new list according to the homogeneity factors αi’s of the Reference-Lists RL .

 {Building Clusters}

16: {Initialize i}
17: = RL
18: label point as belonging to cluster .
19: label each point in RL as belonging to cluster .
20: While do
21: {increment i}
22: = RL
23: label point as belonging to cluster .
24: label each point in RL as belonging to cluster .
25: , {where -1} then
26:
27: Update labels, by marking each point in as belonging to cluster
28: end if
29: end while

FIGURE 6: CSHARP Clustering Algorithm

Note that although a reference list associated with a weak point does not participate in
Cluster’s growing, a weak point may itself belong to a Reference list of another strong point.

Mohamed A. Abbas & Amin A. Shoukry

International Journal of Data Engineering (IJDE), Volume (3) : Issue (2) : 2012 35

This implies that this weak point is not considered as noise.

3.1 Logical Data Model and Graph-based Interpretation
Figure 7 depicts the conceptual data model underlying the proposed algorithm. Two entities
are shown; namely, the data sample and Reference-List associated with a data sample
entities; as well as a one one-to-many" relation between them and one "many-to-many"
relation associated with each of them.

• The relation “Has as member in its K-NB list” is not symmetric.
• The relation “Has as member” between a Reference List and its members is

symmetric.
• The relation “Overlaps” is symmetric but not transitive.
• The entity "Reference List Associated with a Data sample"; say , is obtained as the

intersection of two sets: the set of points having in their K-Nearest Neighborhood
and the K-Nearest Neighborhood of itself.

FIGURE 7: Conceptual data model.

Consider the following weighted graph , where a vertex in this graph corresponds to a
Reference-List and an edge corresponds to an Overlaps relation between two Reference
Lists. The weight of an edge corresponds to the cardinality of the intersection set between two
Reference lists. Now, the effect of the CSHARP algorithm can be viewed as follows: Edges
with weights less than the threshold are removed. This decomposes the graph into
independent components. The remaining connected vertices (i.e. vertices connected by
edges having weights greater than) are combined, the union of the data samples belonging
to their reference lists correspond to the obtained clusters.

3.2 Time Complexity
The time complexity for computing the similarity matrix is O(N2), where N is the number of
data points. This can be reduced to O(N log N), by using a data structure such as a k-d tree
[1] or an R-tree[6]. The space complexity for t computing distances between samples is
O(NF) where N is the number of data points and F is the number of features (or dimensions).

The time complexity of the algorithm can be analyzed as follows:
• line 2, finding k-nearest neighbors(refer-to-list): k iterations through all N data points are

needed, hence it has a complexity of O(KN)
• lines 3-10, finding referred-by-list: it has, also, a complexity of O(KN)
• lines 11-13, finding reference-points: for each data point, its k-nearest neighbors are

searched for mutual neighborhood. As a binary search is adopted; its complexity is of
O(K log K), thus, the overall complexity of this step is O(NK log k).

• Line 14, computing homogeneity factor procedure: has a complexity of) as , k
iterations are needed for each of the N data points .

Mohamed A. Abbas & Amin A. Shoukry

International Journal of Data Engineering (IJDE), Volume (3) : Issue (2) : 2012 36

• line 15, sorting data sets procedure: sorting has a complexity of O(N log N), as binary sort
is used.

• lines 25-28, clusters overlapping procedure: detecting overlapping among clusters has a
linear complexity of O(K),since we iterate through reference-blocks of processed points
and detect previously labeled points.

• lines 20-29, clusters propagation procedure: this is the main procedure. It has a
complexity of O(NK) , since we iterate through all N data points, running clusters
overlapping procedure for each data point. Accordingly, the overall complexity is O(NK
log N) .

The overall time complexity for the modified CSHARP algorithm is O(N log N) where N is
the number of data points and K is the number of nearest neighbors. Modified CSHARP has a
space complexity of O(KN), where N is the number of data points and K is the number of
nearest neighbors used

3.3 Anatomy of CSHARP vs. Jarvis-Patrick and SNN Algorithms

• In SNN, similarity between two points p and q is computed as the number of nearest
neighbors they share. In contrast, CSHARP's similarity is computed as the number of
reference points two blocks share.

• In contrast to Jarvis-Patrick and SNN, CSHARP is a block-to-block rather than point-to-
point clustering.

• Jarvis-Patrick and SNN work with k-nearest neighborhood which corresponds to a non-
symmetric relationship between data points. On the other hand, CSHARP relies on a
symmetric relation between any point and its reference list points.

• Jarvis-Patrick and SNN use static k-nearest neighbor lists, while CSHARP starts with
static k-nearest neighbor lists then turns them into dynamic Reference Lists.

• In Jarvis-Patrick and SNN, the association between points is one-to-one, while it is one-to
many in CSHARP.

• Both SNN and CSHARP propagate clusters simultaneously and agglomeratively, while
Jarvis-Patrick builds a similarity graph then decomposes it by removing the weakest links.

4. EXPERIMENTAL RESULTS

4.1 Datasets Used
4.1.1. 2-d Chameleon’s DS5 data set
DS5 consists of 8,000 points. It is a mixture of clusters with different densities used by
Chameleon algorithm to illustrate its efficiency in obtaining arbitrary density clusters. The aim
is to classify the data into 8 clusters of different densities.

4.1.2. Eight Low Dimensional Datasets

• This is a well known database in the pattern recognition literature. The data set
contains 3 classes of 50 instances each, where each class refers to a type of iris
plant. One class is linearly separable from the others 2; the latter are NOT linearly
separable from each other [16].

• The Synthetic Control Charts (SCC) data set; obtained from UCR repository [14]; it
includes 600 patterns, each of 60 dimensions (time points).

• The pen digit character recognition data from the UCI repository [16], consists of
10992 patterns, each of 16 dimensions. Features (dimensions) are used to describe
the bitmaps of the digit characters. The aim is to properly classify the digit characters
to 10 classes from 0 to 9.

• Libras movement data set: The dataset contains 15 classes of 24 instances each,
where each class references to a hand movement type. It consists of 360 patterns,
each of 91 dimensions.

• The Breast Cancer Wisconsin Diagnostic data from the UCI repository, consists of
569 patterns, each of 30 dimensions. The aim is to classify the data into two
diagnosis (malignant or benign).

• SPECT heart data set: The dataset describes diagnosing of cardiac Single Proton
Emission Computed Tomography (SPECT) images. It consists of 267 patterns, each
of 22 dimensions. Each of the patients is classified into two categories: normal and

Mohamed A. Abbas & Amin A. Shoukry

International Journal of Data Engineering (IJDE), Volume (3) : Issue (2) : 2012 37

abnormal
• The Protein localization data; obtained from the UCI repository; is the Ecoli data set

with 336 proteins of seven dimensions. The aim is to properly classify it to eight
classes.

• The Protein Localization Sites, obtained from the UCI repository, consists of 1484
patterns, each of 8 dimensions. This database contains information about a set of
Yeast cells. The task is to determine the localization site of each cell by partitioning it
into 10 classes of varying distribution.

4.1.3. Two High Dimensional Datasets

• Corel image features data set: This dataset contains image features extracted from a
Corel image collection. 2074 images of 144 dimensions were selected in this
experiment according to criteria discussed in [2].

• Arcene data set which consists of 200 patterns each of 10,000 features. The task is
to distinguish cancer versus normal patterns from mass-spectrometric data. This is a
two-class classification problem with continuous input variables. Arcene has been
part of the NIPS 2003 feature selection challenge.

4.2 Cluster Validation
As described in [21], for a given data set, a clustering algorithm can always produce a
partitioning whether or not a particular structure in the data really exists. Different clustering
approaches usually yield different results. Even for the same algorithm, the selection of a
parameter or the presentation order of the input patterns may affect the final results.
Therefore, effective evaluation criteria are critically important to provide users with a degree of
confidence in the obtained clustering results. These assessments should be objective and
have no preferences to any algorithm. V-measure [24], Purity and Entropy [23] are used for
the purpose for clustering validation. Noise is taken into consideration in the validation
process. This reduces the indexes values than if a noise-free validation process is adopted.
However, this presents a more accurate assessment.

4.3 Results and Performance Evaluation
To compare the results obtained by the Modified CSHARP with those obtained by other
algorithms, the nine data sets presented above have been used.

4.3.1. Chameleon’s DS5 data set.
Five algorithms are compared: K-means, DBScan, SNN, Chameleon, and mitosis, in addition
to Modified CSHARP.

Due to the presence of different densities in the DS5 data set, DBScan either identifies the
lower density cluster but merges the two neighboring higher density ones, or do not identify
the lower density cluster, but identifies the higher density ones. DBScan at the parameters
setting (= 10 and MinPts = 3) can only identify six rather than eight clusters. Similarly, SNN
merges two clusters together due to its static nature derived from DBScan. Both DBScan and
SNN , (Figure 8b, and d) were unable to obtain a good clustering solution. Modified CSHARP
obtained the genuine clusters at the parameters setting given in Table 1b for K in the range
[23...25], Figure 8f.

Mitosis has been able to obtain the genuine clusters at parameter settings (= 2.15 and =
2.5) (Figure 8e). Mitosis results were obtained after discarding outliers. Clusters of sizes less
than 1% of the data size are identified as outliers. While Mitosis uses a static model for
discarding noise, CSHARP [25] focuses on the detection of chains of dense connected
regions (defined by strong points) possibly including non-dense regions ; represented by
weak points; as explained in section 2.1. Hence, in CSHARP any point not taken into
consideration during cluster’s propagation is considered as noise. Table 2 gives the numbers
and percentages of strong, weak and noise points found in all the investigated data sets.

TABLE 1: Adjusted CSHARP’s range of parameters setting for DS5 data set.

 M

23 [3...5] 7

Mohamed A. Abbas & Amin A. Shoukry

International Journal of Data Engineering (IJDE), Volume (3) : Issue (2) : 2012 38

4.3.2. Eight Dimensional Data

Five data sets have been used to compare the results obtained by Modified CSHARP to
the ground truth as well as to the results obtained by DBScan, K-means, Mitosis and
Spectral clustering (as a state-of- the art technique [2]) algorithms. Chameleon and SNN
have not been included in these experiments, due to the difficulty of adjusting their
parameters. The Euclidean distance has been adopted as a metric for all data sets.
Numerous experiments (100 experiments at least per algorithm per dataset) have been
done on each algorithm to obtain its best indexes’ values. V-Measure, Purity, and Entropy
have been used to evaluate all the above clustering algorithms.

TABLE 2: Number of strong, weak and noise points found in the tested data sets and their percentages
;at given parameters settings; relative to the size of the corresponding data set.

23 19 [6,7]
23 22 [6…9]
24 [15…17] 7
24 18 6
24 22 [6...9]
24 23 [4...9]
25 [16…18] [7,8]

25 22 [6...9]

25 23 [5...9]

Dataset size Strong
Points

Weak
Points

Noise
Points

Chameleon DS5
(K=24, T=18 and M=6)

8000 6399
(79.98%)

1601
(20.02%)

225
(2.81%)

Synthetic Control Charts
 (K=14, T=7 and M=4)

600 479
(79.83%)

121
(20.17%)

1
(0.17%)

Pen Digit Data
(K=31, T=14 and M=9)

10992 8732
(79.44%)

2260
(20.56%)

253
(2.30%)

Breast Cancer Diagnostic
(K=41, T=22 and M=14)

569 492
(86.47%)

77
(13.53%)

15
(2.64%)

Ecoli
(K= 22, T=11 and M=8)

336 240
(71.43%)

96
 (28.57%)

25
(7.44%)

Yeast
(K= 44, T=25 and M=15)

1484 848
(57.14%)

636
(42.86%)

134
 (9.03%)

Arcene
(K= 11, T=3 and M=1)

200 180
(90.0%)

20
(10.0%)

4
(2.0%)

SPECT Heart
(K= 30, T=7 and M=4)

267

222
(83.15%)

45
(16.85%)

18
(6.74%)

Libras Movement
(K= 10, T=7 and M=3)

360

173
(48.06%)

187
(51.94%)

46
(12.78%)

Iris
(K= 24, T=8 and M=9)

360

138
(92.00%)

12
(8.00%)

0
(0.00%)

Corel
(K= 43, T=21 and M=13)

2074

1230
(59.31%)

844
(40.69%)

120
(5.78%)

Mohamed A. Abbas & Amin A. Shoukry

International Journal of Data Engineering (IJDE), Volume (3) : Issue (2) : 2012 39

 a b c

d e f

FIGURE 8: Results for the DS5 data set. Clusters are identified by a specific color, and a specific

marker for: (a) K-means clusters; (b) DBScan clusters; (c) Chameleon clusters; (d) SNN clusters; (e)
Mitosis clusters; and (f) Modified CSHARP clusters.

• Iris data set: Modified CSHARP and spectral clustering performed better for this data set,

reached the highest indexes for F-measure and Purity and lowest index for entropy as
shown in Figure 10a. The concept of relatedness fails with iris data set, since it consists
of three classes, two of them are not linearly separable; thus, Due to the merging of
these two clusters, Mitosis obtained the lowest indexes for this data set. Mitosis failed to
detect the original three clusters and detected only two clusters. On the contrary, Modified
CSHARP and Spectral clustering detected the three original clusters, Figure 11.

• Time series data: For SCC, The original six clusters are shown in Figure 9. All algorithms
(with the exception of CSHARP) failed to discover the cluster labeled normal, due to its
relatively low density. DBScan using the parameters setting (= 50 and MinPts = 3)
detected the cyclic cluster. However, it merged the Up-Shift, and the Up-Trend clusters
together, as well as the Down-Shift and the Down-trend clusters. K-means, at
merged patterns from different clusters together. The values of the V-Measure, Purity and
Entropy are shown in Figure 10b. Due to the discovery of the Normal low dense cluster;
at the parameters setting (=11, =5 and =3); CSHARP reached the maximum values
for both V-measure and Purity indexes and the lowest for Entropy index, Figure 12.

FIGURE 9: Time series clusters (mean ± standard deviation) of SCC data original classes.

Mohamed A. Abbas & Amin A. Shoukry

International Journal of Data Engineering (IJDE), Volume (3) : Issue (2) : 2012 40

• Pen Digits data set: CSHARP gave good solution and gave a very high Purity and low
Entropy relative to the other solutions as shown in Figure 10c. DBScan and K-means
combined several characters in one cluster. For instance, K-means combined 5 with (8,
9) and 1 with (2, 7), DBScan combined (1,2) and (5,9) and Mitosis combined 1 with (2, 7)
and (5,9).

• Disease diagnosis data set: For breast cancer diagnosis, CSHARP obtained the
maximum values for all the indexes at the parameters setting (K=50, T=8 and M=5).
Figure 13a gives the corresponding validity indexes values.

• SPECT heart and Libras Movement : Adjusted CSHARP performed better for all indexes
as shown in Figures 13b and c respectively.

• Ecoli and Yeast: The values of the indexes are given in Figures 13e and f, respectively
showing the superiority of CSHARP over all other algorithms.

a

b

c

Mohamed A. Abbas & Amin A. Shoukry

International Journal of Data Engineering (IJDE), Volume (3) : Issue (2) : 2012 41

FIGURE 10: V-Measure, Purity and Entropy for: (a) Iris data set, and (b) SCC time series, and (c) pen digit

recognition data set.
a b c

a b

c d

FIGURE 12: Plotting SCC time series data set using PCA for (a) reference solution, (b) Mitosis, (c)
Spectral clustering, and (d) Modified CSHARP.

Mohamed A. Abbas & Amin A. Shoukry

International Journal of Data Engineering (IJDE), Volume (3) : Issue (2) : 2012 42

FIGURE 11: Plotting Iris data set using PCA for (a) reference solution, (b) Mitosis, and (c) Modified CSHARP

and Spectral clustering.

a

b

c

d

e

Mohamed A. Abbas & Amin A. Shoukry

International Journal of Data Engineering (IJDE), Volume (3) : Issue (2) : 2012 43

.FIGURE 13: V-Measure, Purity and Entropy for: (a) Breast cancer Wisconsin diagnostic data set, (b)
SPECT heart data set, and (c) Libras movement data set.(d) Ecoli data set, and (e) Yeast data set.

4.3.3. High Dimensional Data
To investigate the performance of the Modified CSHARP when applied to high dimensional
data sets, two data sets were used from the 2003 Nips Feature extraction challenge [7]. Both
CSHARP and spectral clustering obtained competitive results as shown in Figures 14a and b
for Corel and Arcene data sets, respectively, with CSHARP performing slightly better for all
indexes. Spectral clustering algorithm implemented by [2] uses two parameters, "K" for the
number of K-nearest neighbors; used to generate a sparse symmetric distance matrix and
value used in similarity function S,

where .

a

Mohamed A. Abbas & Amin A. Shoukry

International Journal of Data Engineering (IJDE), Volume (3) : Issue (2) : 2012 44

In this section, the efficiency of Modified CHARP is recorded when compared with well-
known clustering algorithms such as K-means, DBScan, Chameleon, Mitosis, and Spectral
Clustering. V-measure, Purity, and Entropy are used showing the superiority of CSHARP
over the other tested algorithms for almost all used data sets .

Modified CSHARP succeeded to overcome the limitations that the other algorithms suffer
from. It can deal with classes of different densities whereas DBScan cannot, deal with
arbitrary shapes whereas K-means cannot, deal with arbitrary cluster’s sizes where spectral
clustering cannot, and deal with interlaced (overlapped) clusters where Mitosis cannot.
Moreover, it can scale easily whereas Chameleon cannot. Therefore, it can be said that the
proposed technique is less likely to merge clusters of different densities or different
homogeneities as indicated by the obtained results. Next, the performance of Modified
CSHARP relative to the other algorithms is investigated.

4.4 Speed Performance
The speed of Modified CSHARP has been compared to the speed of CSHARP, Chameleon
and DBScan as shown in Figure. 15, using the DS5 data set, after dividing it into data
subsets, each of size 1000 patterns. The subsets are added incrementally, and the speed of
the algorithm is recorded for each increment. The time considered is the time required for
running the core clustering algorithms, excluding the time for obtaining the similarity matrix
between the sample points. The time is measured in seconds. The average running times are
computed for DBScan, K-means, and Modified CSHARP for 10 runs, with standard deviation
listed in Table 3. Chameleon was tested only once for each increment. K-means was iterated
100 times for each experiment to provide better convergence.

The adopted algorithms as well as the proposed Adjusted CSHARP algorithm have been
executed on a machine with the following configuration: 3.00 GHz processor, 1.0 GB RAM,
and running Linux operating system (Ubuntu 10.04 LTS).

b

FIGURE 14: V-Measure, Purity and Entropy for: (a) Corel data set and (b) Arcene data set.

Mohamed A. Abbas & Amin A. Shoukry

International Journal of Data Engineering (IJDE), Volume (3) : Issue (2) : 2012 45

TABLE 3: Standard Deviation for 10 Runs on Adjusted CSHARP, DBScan, and K-means on
Chameleon’s DS5.

Data Size 1000 2000 3000 4000 5000 6000 7000 8000

K-means 0.020 0.008 0.017 0.015 0.021 0.018 0.023 0.043

DBScan 0.008 0.012 0.017 0.025 0.028 0.021 0.017 0.034

Adjusted

CSHARP
0.013 0.013 0.014 0.016 0.016 0.019 0.025 0.037

5. CONCLUSION
In this paper, a modified version of the novel shared nearest neighbors clustering algorithm,
CSHARP[25] has been presented. Density and homogeneity are combined in a new
homogeneity factor used to order the merging of blocks of points . It can find clusters of
varying shapes, sizes and densities; even in the presence of noise and outliers and in high
dimensional spaces as well. It is based on the idea of letting each data point vote for its K-
nearest neighbors and adopting the points with the highest votes as clusters’ seeds. Two
clusters can be merged if their link strength is sufficient. Any data point not belonging to a

a

b

c

FIGURE. 15: Speed of Adjusted CSHARP and Adjusted CSHARP using Chameleon’s DS5 data set,

compared to (a) DBScan and K-means (b) DBScan, Kmeans, and Chameleon (c) DBScan.

Mohamed A. Abbas & Amin A. Shoukry

International Journal of Data Engineering (IJDE), Volume (3) : Issue (2) : 2012 46

cluster is considered as noise. The results of our experimental study on several data sets are
encouraging. A wide range of possible parameters settings yield satisfactory solutions using
the validation indexes adopted in [8], [9] and [10]. Adjusted CSHARP solutions have been
found, in general, superior to those obtained by DBScan, K-means and Mitosis and
competitive with spectral clustering algorithm adopted in[2].

More work is needed to introduce a procedure for parameters selection. Also, we intend to
investigate the behavior of our clustering approach on other types of data. Moreover, we
intend to parallelize our algorithm as its clustering propagation is inherently parallel, as has
been shown in section 2.2. Finally, we have made the algorithm publicly available to other
researchers at http://www.csharpclustering.com.

ACKNOWLEDGMENT
Authors would like to thank Dr. Noha A. Yousri for several useful discussions. Noha A. Yousri
is with the Department of Computer and System Engineering, Faculty of Engineering,
Alexandria University, Alexandria, Egypt.

REFERENCES
[1] Bentley, J. L. (1975). Multidimensional binary search trees used for associative

searching. Communications of the ACM, 18(9):509–517.

[2] Chen, W.-Y., Song, Y., Bai, H., Lin, C.-J., and Chang, E. Y. (2011). Parallel spectral
clustering in distributed systems. IEEE Trans. Pattern Anal. Mach. Intell, 33(3):568–
586.

[3] Ding, C. H. Q. and He, X. (2004). K-nearest-neighbor consistency in data clustering:
incorporating local information into global optimization. In Haddad, H., Omicini, A.,
Wainwright, R. L., and Liebrock, L. M., editors, SAC, pages 584–589. ACM.

[4] Ertoz, Steinbach, and Kumar (2003). Finding clusters of different sizes, shapes, and
densities in noisy, high dimensional data. In SIAM International Conference on Data
Mining, volume 3.

[5] Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996). A density-based algorithm for
discovering clusters in large spatial databases with noise. In KDD, pages 226–231.

[6] Guttman, A. (1984). R-trees: A dynamic index structure for spatial searching. In ACM
SIGMOD. Also published in/as: UCB, Elec.Res.Lab, Res.R. No.M83-64, 1983, with
Stonebraker,M.

[7] Guyon, I., Gunn, S., Nikravesh, M., and Zadeh, L. (2006). Feature Extraction:
Foundations and Applications. Springer Verlag.

[8] Halkidi, M., Batistakis, Y., and Vazirgiannis, M. (2002). Cluster validity methods: part I.
SIGMOD Record (ACM Special Interest Group on Management of Data), 31(2):40–45.

[9] Hammouda, K. M. and Kamel, M. S. (2002). Phrase-based document similarity based on
an index graph model. In ICDM, pages 203–210. IEEE Computer Society.

[10] Hubert, L. and Arabie, P. (1985). Comparing partitions. Journal of Classification, 2:193–
218.

[11] Jain, A. K. and Dubes, R. C. (1988). Algorithms for Clustering Data. Prentice Hall,
Englewood Cliffs.

[12] Jarvis, R. and Patrick, E. (1973). Clustering using a similarity measure based on shared
near neighbors. IEEE Transactions on Computers, 22(11):1025–1034.

[13] Karypis, G., Han, E.-H. S., and NEWS, V. K. (1999). Chameleon: Hierarchical clustering

Mohamed A. Abbas & Amin A. Shoukry

International Journal of Data Engineering (IJDE), Volume (3) : Issue (2) : 2012 47

using dynamic modeling. Computer, 32(8):68–75.

[14] Keogh, E. J., Xi, X., Wei, L., and Ratanamahatana, C. A. The ucr time series
classification/clustering, homepage: (www.cs.ucr.edu/ eamonn/time_series_data/),
2006.

[15] Lee, J.-S. and Ólafsson, S. (2011). Data clustering by minimizing disconnectivity. Inf.
Sci, 181(4):732–746.

[16] Murphy, P. M. and Aha, D. W. (1992). UCI repository of machine learning databases.
Machine-readable data repository, University of California, Department of Information
and Computer Science, Irvine, CA.

[17] Nadler, B. and Galun, M. (2006). Fundamental limitations of spectral clustering. In
Schölkopf, B., Platt, J. C., and Hoffman, T., editors, NIPS, pages 1017–1024. MIT
Press.

[18] Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. American
Statistical Association Journal, 66(336):846–850.

[19] Rijsbergen, C. J. V. (1979). Information Retrieval, 2nd edition. Butterworths, London.

[20] von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and Computing,
17(4):395–416.

[21] Xu, R. and II, D. C. W. (2005). Survey of clustering algorithms. IEEE Transactions on
Neural Networks, 16(3):645–678.

[22] Yousri, N. A., Kamel, M. S., and Ismail, M. A. (2009). A distance-relatedness dynamic
model for clustering high dimensional data of arbitrary shapes and densities. Pattern
Recognition, 42(7):1193–1209.

[23] Ying Zhao and George Karypis. 2001. Criterion functions for document clustering:
Experiments and analysis. Technical Report TR 01.40, Department of Computer
Science, University of Minnesota

[24] Andrew Rosenberg and Julia Hirschberg, 2007. V--Measure: a conditional entropy--
based external cluster evaluation measure. EMNLP '07

[25] Mohamed A. Abbas Amin A. Shoukry, and Rasha F. Kashef, ICDM 2012. CSHARP: A
Clustering Using Shared Reference Points Algorithm, International Conference on Data
Mining, Penang, Malaysia, World Academy of Science, Engineering and Technology.

Eltabakh, Padma, Silva, He, Aref & Bertino

International Journal of Data Engineering (IJDE), Volume (3) : Issue (2) : 2012 48

Query Processing with K-Anonymity

Mohamed Y. Eltabakh
Department of Computer Science meltabakh@cs.wpi.edu
Worcester Polytechnic Institute
Worcester, MA, USA, 01604

Jalaja Padma

Cisco Systems jpadma@cisco.com
San Jose, California, USA, 95134

Yasin N. Silva

Division of Mathematical & Natural Sciences ysilva@asu.edu
Arizona State University
Tempe, Arizona, USA, 85281

Pei He, Walid G. Aref,

Elisa Bertino

Department of Computer Science {phe, aref, bertino}@cs.purdue.edu
Purdue University
West Lafayette, Indiana, USA, 47907

Abstract

Anonymization techniques are used to ensure the privacy preservation of the data owners, especially
for personal and sensitive data. While in most cases, data reside inside the database management
system; most of the proposed anonymization techniques operate on and anonymize isolated datasets
stored outside the DBMS. Hence, most of the desired functionalities of the DBMS are lost, e.g.,
consistency, recoverability, and efficient querying. In this paper, we address the challenges involved in
enforcing the data privacy inside the DBMS. We implement the k-anonymity algorithm as a relational
operator that interacts with other query operators to apply the privacy requirements while querying the
data. We study anonymizing a single table, multiple tables, and complex queries that involve multiple
predicates. We propose several algorithms to implement the anonymization operator that allow efficient
non-blocking and pipelined execution of the query plan. We introduce the concept of k-anonymity view
as an abstraction to treat k-anonymity (possibly, with multiple k preferences) as a relational view over
the base table(s). For non-static datasets, we introduce the materialized k-anonymity views to ensure
preserving the privacy under incremental updates. A prototype system is realized based on
PostgreSQL with extended SQL and new relational operators to support anonymity views. The
prototype system demonstrates how anonymity views integrate with other privacy-preserving
components, e.g., limited retention, limited disclosure, and privacy policy management. Our
experiments, on both synthetic and real datasets, illustrate the performance gain from the anonymity
views as well as the proposed query optimization techniques under various scenarios.

Keywords: Data Privacy, K-Anonymity, Query Processing, Database Management Systems

1. INTRODUCTION
Privacy preservation is a key requirement for organizations holding personal or sensitive data.
Organizations need to comply with the privacy preferences of data owners and privacy laws that
regulate the use and sharing of such data [2]. Examples of privacy laws include the United States
Privacy Act of 1974, the Australian Privacy Amendment Act of 2000, and The Health Insurance
Portability and Accountability Act of 1996. These requirements have motivated a significant amount of
work to answer the challenging question: How to make use of the data, e.g., querying and analysing,
while ensuring the required level of privacy of data owners? Data anonymization techniques, e.g., [11,

Eltabakh, Padma, Silva, He, Aref & Bertino

International Journal of Data Engineering (IJDE), Volume (3) : Issue (2) : 2012 49

12, 16, 17], have proposed to achieve the privacy preservation by ensuring that the identity of each
individual cannot be distinguished from a group of other individuals whose records exist in the same
dataset. K-anonymity [16, 17] is one of the foremost anonymization techniques proposed in literature. It
ensures that the identity of each individual is hidden within a group of at least k-1 individuals. Clustering
and generalization, e.g., [5, 15], are common approaches to implement k-anonymity as we will discuss
in more detail in Section II. Several algorithms have been proposed to provide stronger privacy
preservation over k-anonymity, e.g., l-diversity [12], and t-closeness [11]. However, most of these
techniques are standalone anonymization techniques implemented at the application level. That is, they
assume the data is exported outside the database system and stored externally as standalone datasets.
Moreover, the anonymized version of the data is also stored outside the database system and released
to various Applications. This approach has major drawbacks including: (1) Sensitive data is transferred
from the database system to external applications, which may compromise the privacy of the data
owners, (2) Most desirable functionalities of the DBMS are lost, e.g., consistency, recoverability,
efficient querying, and authorization mechanisms, (3) The entire dataset needs to be anonymized even
if users are interested in a single (or few) records, and (4) Anonymizing complex queries with multiple
predicates and joined tables is not feasible in the standalone version.

In this paper, we propose extending the database system to support the privacy-preservation
requirements from within the database engine to overcome the shortcomings discussed above. We
implement the k-anonymity algorithm as a relational operator that can compose, along with the
standard query operators, a privacy-aware query plans. We propose several query optimizations, e.g.,
pushing the selection operator below the anonymization operator, to build efficient query plans. We
propose several algorithms, block-level and tuple-level, to implement the anonymization operator and
allow efficient non-blocking and pipelined execution of the query plan. We introduce the notion of
anonymization views (A-views, for short) to abstract the problem of anonymization as a relational view
on the base tables containing sensitive data. We extend the k-anonymity to multi-k-anonymity to
support personalized anonymization, i.e., different individuals may choose different k values. We study
anonymizing a single table, multiple joined tables, and complex queries that involve multiple predicates.
We also address several challenges that emerge when anonymizing complex queries and/or joined
tables (which they can be anonymization views themselves). In the paper, we focus on implementing
the k-anonymity algorithm, however, the proposed anonymization view is independent of the underlying
anonymization technique. We realized the proposed system through extensions to PostgreSQL where
we extended SQL to create and manipulate the anonymization views and introduced a new
anonymization operator to the query engine.

The rest of the paper is organized as follows. In Section II, we discuss related work. In Section III, we
present the architecture of the proposed open-source privacy-aware database system. In Sections IV,
we introduce the needed definiens and concepts. In Sections V, VI, and VII, we present the logical and
materialized A-views over single and multiple tables. Sections VIII presents the performance evaluation
and experimental results. Finally, Section IX contains concluding remarks.

2. RELATED WORK
Data anonymization techniques, e.g., [11, 12, 16, 17], have been proposed to enforce privacy
preservation requirements. K-anonymity [16, 17] is one of the most common anonymization techniques
in literature. It ensures that the identity of each individual cannot be distinguished from at least a group
of other k-1 individuals in the same dataset. In this technique, the attribute-combinations that may
reveal the identity of an individual are called Quasi-Identifiers (QI, for short) while the attributes
pertaining to sensitive values, e.g., the disease name, are called Sensitive-Attributes (SA, for short). K-
anonymity algorithms can be implemented using clustering or generalization techniques, e.g., [5, 15]. In
the clustering approach, clustering algorithms are employed to identify groups of similar records that
are represented by a single record. In the generalization technique, each quasi-identifier attribute is
associated with a domain generalization hierarchy (DGH) from which the QI values can be generalized
to form groups of at least k tuples with identical QI values. Examples of DGHs and k-anonymized tables
are given in Figs. 1 and 2, respectively. Fig. 1 shows three attributes, Disease, YearOfBirth, and
ZipCode, associated with their DGHs. Fig.2 shows a list of patient records where the combinations of

Eltabakh, Padma, Silva, He, Aref & Bertino

International Journal of Data Engineering (IJDE), Volume (3) : Issue (2) : 2012 50

QI attributes (Birthdate and Area) are 2-level anonymous, i.e., there are at least 2 identical records
(w.r.t QI values) for every QI attribute combinations.

Several algorithms have been proposed to provide stronger privacy-preservation over the k-anonymity
technique, e.g., l-diversity [12], and t-closeness [11]. The t-closeness technique ensures that the
distribution of sensitive values in a single anonymized group is as close as possible to the distribution in
the base table. More sophisticated anonymization algorithms can also be embedded. These data
anonymization techniques, as discussed in Section I, are standalone techniques that operate on the
data at the application layer outside the database management systems. In contrast, the proposed
materialization views ensure the data privacy inside the DBMS, and hence fully utilize the functionalities
and query processing power of the DBMSs. Moreover, the abstraction of anonymization views is
independent of the underlying anonymization algorithm being used. For example, and as a proof of
concept, we implement the t-closeness algorithm in Datafly system [16] on top of the k-anonymity
technique.

The concept of personalized privacy in [19] allows data owners to choose the level of generalization of
sensitive attribute and to integrate it with k-anonymity to produce a stronger anonymized version of the
data. We support sensitive attribute generalization. However, we keep generalization independent of
anonymization, and provide it as an additional technique for protecting the privacy of sensitive data.
While the integration of SA generalization with anonymization provides better utility, it may suffer from
information leak through the locality of sensitive data. For example, as presented in [19], a tuple whose
sensitive attribute is generalized to its parent value in the DGH containing 3 children is considered 3-
anonymous, whereas in regular anonymization, the tuple can be part of a QI group having sensitive
attributes that could be distributed across all the leaves in the DGH.

 FIGURE 1: Domain Generalization Hierarchies. FIGURE 2: An example of a 2-anonymous table.

Supporting data privacy at the database-system level is not a new approach. For example, Hippocratic
Database [2] is an extension to the standard DBMS to manage the privacy of the data inside the
database systems. Hippocratic databases include several privacy components to support policy
management, limited disclosure, limited collection, limited retention, and compliance, among others.
When a query is issued, the Hippocratic database system ensures that the recipient of the query
answer receives only the data (s)he is allowed to see as per the policies. A data model to enforce the
limiting disclosure principle enunciated in Hippocratic databases is proposed in [10]. In [3, 6], a
Hippocratic fine-grained access control is proposed to limit the data disclosure. In [9], a middleware
system is designed to implement and integrate several Hippocratic components. Other extensions to
Hippocratic databases have been proposed in [1, 4, 10]. However, Hippocratic databases do not
address data anonymization as a mechanism for privacy preservation, and they do not study the
privacy as an operator inside the database engine that interacts with the other query operators. Most
extensions to Hippocratic databases have been at the application-level or middleware-level between
the application and the database. Anonymization views differ from the above proposals in that they are
fully integrated inside the database.

Eltabakh, Padma, Silva, He, Aref & Bertino

International Journal of Data Engineering (IJDE), Volume (3) : Issue (2) : 2012 51

Multi-relational k-anonymity [13] highlights several privacy attacks possible in multi-relational scenario
and proves that the algorithms for a single relation do not achieve anonymity in the case of multiple
relations. In this paper, we address the issue of anonymizing joined tables and propose different
semantics for query results to ensure data privacy. For example, while [13] proposes hiding every tuple
in some scenarios, we propose reporting false-positive tuples in addition to the correct (true-positive)
tuples to ensure the privacy while maintaining high utility of the query result. Metrics to measure the
privacy and utility of anonymized data are discussed in [20]. We adopt the Normalized Certainty Penalty
proposed in [20] as a measure of utility.

3. SYSTEM ARCHITECTURE
The architecture of the proposed privacy-preserving database system is given in Figure 3. The system
is an extension to our Hippocratic PostgreSQL system published in [21] which only supports a simple
case of single-table anonymization. The goal is to develop a complete privacy-aware open-source
DBMS by integrating the hippocratic database components, e.g., Policy Manager, Limited Disclosure,
and Limited Retention, with the proposed anonymization techniques. The Policy Translator component
is used to translate a P3P policy [7] into metadata. The Parser integrated with limited disclosure and
retention support uses this translated metadata to produce query plans. We needed to change the
Parser, Planner, and Executor of the database engine to integrate anonymization-related changes. We
integrate and extend the ideas in [2, 9, 10] to implement our limited disclosure module. We use keywords
PURPOSE and RECIPIENT to associate a purpose and a recipient to a given query, for example:
 SELECT p.name, p.birth, p.sex, p.disease
 FROM patient p PURPOSE research RECIPIENT lab;

Even though the definition of limited retention in Hippocratic databases [2] is to retain the information
only as long as required, deletion of information after this period is not always trivial. Our approach to
limited retention is through privacy policy specification of the retention periods for various attributes by
each data owner. Every query complies with the policy for retention and does not display data that has
exceeded its retention period. The limited retention and limited disclosure components are described in
detail in [21]. The anonymization support and its interactions with the above privacy preserving modules
are explained in the next sections.

FIGURE 3: Hippocratic PostgreSQL architecture

4. DEFINITIONS AND CONCEPTS
Anonymization views (A-views) can be defined on a single table, multiple tables, or arbitrary SQL

queries. They can be logical or materialized. A-views are similar to the standard database views except

Eltabakh, Padma, Silva, He, Aref & Bertino

International Journal of Data Engineering (IJDE), Volume (3) : Issue (2) : 2012 52

that they employs anonymization operators during query processing to ensure that the anonymization
requirements are met. Before we describe how A-views work, we present the needed definitions and
concepts.

Multi-k-Anonymity: The concept of k-anonymity is introduced to protect the privacy of individuals [16,
17]. It associates one global privacy measure k to all individuals. However, in order to be applicable to a
wide range of applications and to support personalized privacy, we need to extend k-anonymity to
support multi-k-anonymity. That is, every individual may specify his/her preference for k. Furthermore,
we allow the data owners to specify a k value for each purpose/recipient combination. These
preferences are part of the privacy policy signed by the data owners and are kept inside the database.
The flexible multi-k-anonymity model is highly motivated by the diverse privacy requirements of the data
owners. For example, a hospital database may contain information about ordinary and well-known
individuals who, most probably, have different privacy constraints.

Domain Generalization Hierarchy (DGH): The k-anonymity algorithm uses domain generalization
hierarchies to generalize the values in certain attributes. Example of DGH is depicted in Fig. 4. In our
system, these DGHs are stored in a database table. A single DGH can be associated with one or more
columns in the database. To create and populate the DGHs, we introduce the following extended SQL
commands:
 CREATE DGH <dgh_name>;
 INSERT INTO DGH <dgh_name> <child, parent>;

The association between the DGHs and the database columns is established when creating the
anonymization views.

FIGURE 4: DGH, Table, and Sensitive Attributes Distribution

FIGURE 5: Create Anonymization View command

Sensitive Attribute (SA) Generalization: Our work adopts the idea of sensitive-attribute generalization
proposed in [9, 19] to provide additional privacy to data owners. However, unlike [19], this feature is

Eltabakh, Padma, Silva, He, Aref & Bertino

International Journal of Data Engineering (IJDE), Volume (3) : Issue (2) : 2012 53

kept independent of the anonymization process. That is, apart from specifying the k values, the data
owner may specify the level of generalization (in DGH) of the sensitive attribute(s) for every
purpose/recipient combination. For example (refer to Figure 4), if a person suffering from ‘Ulcer’
specifies a generalization level of 1, then the Disease attribute (the SA attribute) is generalized to
‘stomach-disease’, otherwise, it is reported as is.

Anonymization View (A-view): We introduce a new SQL construct to define an anonymization view
as presented in Fig. 5. The command declares the identifiers, quasi-identifiers, and sensitive attributes
of the data to be anonymized. Additionally, it associates DGHs to the quasi-identifiers. The profile_col
gives the provision of choosing any attribute as the foreign key to a table containing the k-values and
sensitive attribute generalization levels for various combinations of purpose and recipients.
Anonymization views can be either logical or materialized (if the keyword MATERIALIZED is used in the
command). Logical A-views suffer from temporal attacks if the datasets are not static [17]. This is
because updating the data will results in different anonymized dataset each time. Hence, in the case of
non-static datasets, we materialize the A-views to prevent these temporal attacks under incremental
updates. Details about materialized A-views are discussed in Section VII.

5. ANONYMIZATION VIEW ON SINGLE TABLE
We propose two different query plans to anonymize queries on single tables. The two plans differ in
where to plug-in the anonymization operator w.r.t the selection operator. The anonymization operator
implements an extended version of the Datafly algorithm in [16] to accommodate for multi-k-anonymity
and t-closeness. A key challenge in both plans is that anonymizing only the subset of tuples in the final
query answer may result in a privacy breach by linking of the answers from multiple queries. For
example, since queries can have different sets of tuples in the final answer, a quasi-identifier attribute of
a specific tuple may have 3-level generalization in Query Q1 while having a 2-level generalization in
Query Q2 (that is because the set of anonymized tuples are different). This clearly results in a privacy
breach since the intended level of generalization in Q1 is lost once the adversary has the results from
Q2. Therefore, the anonymization should relay on the entire collection of tuples in the base table
instead of considering only the final query answer. Conceptually, if a logical A-view is defined on a table
T, then any query on that A-view will use either of the two query plans presented in Fig. 6. The two
plans are described next.

5.1. Anonymize-then-Select Plan
The Anonymize-then-Select plan performs the anonymization as early as possible in the query pipeline,
i.e., immediately after the table-scan. Consequently, the selection predicates and/or projected attributes
are not pushed inside the table-scan operator but rather delayed until after the anonymization is
performed on the entire table. In the Anonymize-then-Select plan, a block of tuples is read from disk
and these tuples are then anonymized and pipelined to the next query operator in the plan. Thus, the
anonymization operator does not block the query pipeline until all tuples in the base table are
anonymized. Instead it operates as a block-level anonymization. The detailed steps are as follow.

Step 1: Index-Scan
Using a direct table scan to read the data blocks from disk may produce tuples with different order
depending on the table layout on disk (recall that the anonymization operator processes one block at a
time). Thus, the anonymization algorithm may generate different outputs, which may lead to a privacy
breach. To overcome this issue, Anonymize-then-Select plan uses a pre-defined index on the identifier
attribute to perform an index-scan over the data (See Fig. 6). Thus, the anonymized blocks are
guaranteed to have the same set of tuples independent of how the data is stored on disk.

Step 2: Sensitive Attribute Generalization
Each data owner can optionally specify a generalization level for SA attributes. If the generalization
level is m, then SA attributes are generalized to their m

th
 ancestor in its DGH.

Eltabakh, Padma, Silva, He, Aref & Bertino

International Journal of Data Engineering (IJDE), Volume (3) : Issue (2) : 2012 54

Limited disclosure and retention

Filtering tuples

(selection predicates)

Anonymizing

(k-anonymity & t-closeness)

Sensitive Attribute

Generalization

Base table scan

Limited disclosure and retention

Anonymizing

(k-anonymity & t-closeness)

Sensitive Attribute

Generalization

Base table scan

Filtering tuples

(selection predicates)

Anonymize-then-Select Plan Select-then-Anonymize Plan

FIGURE 6: Anonymization query plans

Step 3: Block-Level Anonymization
We assume that each tuple belongs to a single data owner, e.g., patient record. If the k anonymity
value is set zero, then no anonymization is required. If k =1, then it is 1-anonymous, i.e., identifiers are
hidden, but will not be part of any QI group. The anonymization algorithm works as follow.

1) Retrieve the next block of tuples to process.
2) Identify the k value for each tuple from the A-view definition.
3) Mark the tuples having k = 0 as anonymized, and hide the identifier attribute of all the remaining

tuples. Mark the tuples having k = 1 as anonymized .
4) Compute the probability distribution of the sensitive attribute values over the tuples in the block.
5) While there exist unanonymized tuples, repeat the following:

5.1) Select the QI attribute having the maximum number of distinct values � Say QImax.
5.2) Generalize QImax one level in its DGH. Then, merge all tuples with identical QI values in one

group.
5.3) If a group size is larger than or equals to the group’s maximum k (max k for the tuples in the

group), then compute the probability distribution for this QI group and calculate the t-closeness.
If the group satisfies t-closeness, all tuples in that group are marked anonymized. Otherwise,
repeat Step 5.1).

5.4) If there are not enough tuples to be anonymized, then hide all identifiers, quasi identifiers, and
sensitive attributes of the remaining tuples in the block. Then mark these tuples as anonymized.

6) If there are more blocks, then go to 1), otherwise exit.

Note that the anonymization operator does not wait until the anonymization of the entire block is
performed to pass on the anonymized tuples to the next node in the query tree. Instead, anonymized
tuples are pipelined after each iteration (Step 5 in the algorithm).

Step 4: Selection
Selection predicates on identifier attributes will not return any anonymized tuples since the identifier
values are hidden in Step 3.3 above. For quasi-identifiers, it is proposed in [13, 14] that if tuple t is the
only true query result, then t will not be reported in the answer to preserve the k-anonymity requirement
of t’s owner. In contrast, in our model, we report t along with at least k-1 other tuples that will have the
same QI generalized values. Some of these reported tuples in t’s QI group could be false-positive
tuples, i.e., without generalization, they do not satisfy the query. This approach of including false-
positive tuples preserves the anonymity requirements as well as improves the utility of the query, i.e.,
the number of true-positive reported tuples.

We currently support only equality predicates on QI and SA attributes. After generalizing the values in
the QI and SA attributes, the equality operator needs to be extended such that an ancestor value in a

Eltabakh, Padma, Silva, He, Aref & Bertino

International Journal of Data Engineering (IJDE), Volume (3) : Issue (2) : 2012 55

DGH should match any descendant value under that ancestor. For this purpose, we introduce the
operator AVLIKE (A-view LIKE) that is used as illustrated in the following example.

Select * from PATIENT_AVIEW where zipcode = ‘88512’;
Assuming that zipcode is a QI attribute, then the query is re-written as:

Select * from PATIENT_AVIEW where zipcode AVLIKE ‘88512’;

Assume that two tuples t1 and t2 with zipcodes ‘88512’, and ‘88513’, respectively, are both generalized
to ‘88***’, then both tuples will now satisfy the query (t1 is true-positive while t2 is false-positive). This
algorithm is guaranteed to return all true-positive tuples along with their QI generalized groups.

Step 5: Limited Disclosure & Retention
The projection clause is manipulated to comply with the opt-in/opt-out choices of the tuple’s owners.
Otherwise, the attribute value is replaced with a null value. The conditions for limited retention are also
embedded within this clause. Hence, the algorithm combines the anonymization with the limited
disclosure and retention to provide maximum privacy.

5.2. Select-then-Anonymize Plan
The Select-then-Anonymize plan is motivated by the fact that the former plan needs to anonymize the
entire base table even if there is only one true-positive tuple. Therefore, for high-selectivity queries, it is
more efficient to first find the true-positive tuples, and then construct their QI groups. In this case, the
anonymization is a tuple-level anonymization that provides even better pipelining in the query plan and
better response time compared to the block-level anonymization. The trick is how to form QI groups for
the true-positive tuples that are still base-table dependent and not query-answer dependent. The
detailed steps are as follow.

Steps 1, 2 & 3: Scan, SA Generalization, and Selection
In this step, tuples are scanned from the base table. The limitation of using pre-defined index scan (as
in Anonymize-then-Select) does not apply here since the Select-then-Anonymize plan processes one
tuple at a time. The SA attributes are generalized and predicates on these attributes are re-written to
use AVLIKE operator instead of equality operators. If there are predicates on identifier attributes, the
tuples will pass from the selection operator. But, they will be filtered in the anonymization operator (Step
4-3 below) except for tuples having k = 0.

Step 4: Anonymization
Select-then-Anonymize is based on the fact that every tuple t belongs to a particular QI group, say g(t),
in the anonymized version. Thus, the true-positive tuples are first selected, and then the QI groups for
each of these tuples are then retrieved from the base table. The criterion for forming the QI groups is
the same as in Anonymize-then-Select plan . One trick that Select-then-Anonymize uses is that the
sequence in which the QI attributes are selected for generalization (Step 3-5.1, Section V.1) can be pre-
computed for a given table, e.g., an example sequence can be: zipcode, disease, disease, zipcode, ….
This order can be pre-computed by estimating the number of distinct values in each of the QI attributes
after each generalization step. Given that QI generalization sequence is computed, the algorithm
executes as follow.

1) Scan tuples from the table being queried. Filter the tuples based on selection predicates. If the

selection predicate is based on SA, use the AVLIKE operator. Indicate if the selection predicate is
based on identifier or QI attributes.

2) Identify the k-requirement for each true-positive tuple.
3) If the selection predicate is based on identifiers, then report only the tuples having k = 0.
4) Hide the identifier attribute of all tuples with k ≥ 1. Mark the tuples having k = 1 as anonymized.
5) Compute the probability distribution of the sensitive attribute values in the table.
6) For every tuple t remaining after step 5, go to Step 7.
7) Initialize set g(t) to t.
8) While the size of g(t) is less than the maximum k- requirement of any tuple in g(t) or g(t) does not

satisfy t-closeness repeat Steps 9-10.

Eltabakh, Padma, Silva, He, Aref & Bertino

International Journal of Data Engineering (IJDE), Volume (3) : Issue (2) : 2012 56

9) Select the next QI attribute to be generalized from the pre-computed order � Say QImax.
10) Generalize the values in QImax. Retrieve form the base table all tuples with values either matching

or descendant to the value in QImax and add them to g(t). Go to Step 8.
11) If the selection is based on QI attributes, return the tuples in g(t) (they are the QI group of t).

Otherwise, return t only.
Step 5: Limited Disclosure and Retention
This step is performed as in the Anonymize-then-Select plan.

!

!" # $!%# $!&# ' (#) (#

%# (%# *+# ' , %#) , %#

&# (&# *+# ' , %#) , &#

*# (*# *- # ' , &#) , &#

. # (. # *%# ' , *#) , *#

+# / %# *&# ' , . #) , &#

- # / &# *&# ' , +#) , . #

0# / &# *- # ' , *#) , +#

#

$!%# $!&# ' (#) (#

(1# *23. 2# ' , %#) , %#

(1# *23. 2# ' , %#) , &#

(1# *23. 2# ' , &#) , &#

(1# *23. 2# ' , *#) , *#

/ 1# *23. 2# ' , . #) , &#

/ 1# *23. 2# ' , +#) , . #

/ 1# *23. 2# ' , *#) , +#

" #$#%#&' ()*+!,$- .*! / #%#&' ()*+!,$- .*!

FIGURE 7: Example demonstrating privacy breach by querying QI and SA attributes

Special case: Predicates on both quasi-identifiers and sensitive attributes-
Queries that involve selection predicates on quasi-identifiers in combination with either sensitive
attributes or other attributes or both need special handling. We explain this case with the help of an
example given in Fig. 7. The attribute 'OA' is neither QI nor SA attributes. However, revealing the
mapping between such attributes and QI attributes helps in mapping an individual to his/her SA
attribute. For example, if the adversary is able to extract the information that individual with ID=1 (QI1=
A1 and QI2= 35) has OA=Oa1, (s)he can easily deduce by looking at the corresponding QI group that
the individual's SA value is Sa1. For this reason, consider the case of predicates on QI/SA combination
separately. From Fig. 7, we observe that performing the selection before anonymization may cause
privacy breach. For example, an adversary interested in finding the sensitive attribute of individual with
ID=4 can issue the following queries.

SELECT * FROM T WHERE QI1=`A4' AND QI2=`31' AND SA=`Sa1';
SELECT * FROM T WHERE QI1=`A4' AND QI2=`31' AND SA=`Sa2';

Both queries will return empty results as there are no matching tuples and so the adversary
successfully maps the individual to sensitive attribute value `Sa3'. It can be noted that the Anonymize-
then-Select algorithm performs the selection after anonymization and so gives out some false positives
even in this scenario. Therefore, Anonymize-then-Select does not suffer from this privacy breach. The
issue with Select-then-Anonymize can be resolved by postponing the predicate evaluation of SA/OA
attributes until after the anonymization takes place. This ensures that the results are consistent from
both plans and that the adversary does not gain any further knowledge beyond what can be obtained
from querying the anonymized version of the entire table.

5.3 Anonymize-then-Select vs. Select-then-Anonymize Plans
Although it is guaranteed that both plans will give query results that comply with the privacy policy,
there are a few trade-offs in choosing one plan over the other.

Execution Time: Anonymize-then-Select plan has the drawback of anonymizing the entire base table
even if the query is highly selective, e.g., only one true-positive tuple exists. In Contrast, Select-then-
Anonymize plan anonymizes very few tuples (only the true-positives and their QI groups). However,
during the anonymization of a tuple, Select-then-Anonymize plan issues several queries that may lead
to a large number of random disk accesses. The number of database queries per tuple depends on the
number of iterations required to form the tuple’s QI group, which in turn depends on the distribution of k-

Eltabakh, Padma, Silva, He, Aref & Bertino

International Journal of Data Engineering (IJDE), Volume (3) : Issue (2) : 2012 57

values i.e., the smaller the average k-value, the lesser the number of iterations required to form the QI
group for a given tuple. Therefore, the higher the selectivity of the query and the smaller the k-values,
the greater the advantage of using Select-then-Anonymize plan and vice versa.

Utility: The utility is measured in terms of the lesser number of false-positive tuples included in the
answer. The utility is better for Select-then-Anonymize plan, where the maximum number of false
positives for a given tuple t is |g(t)| - 1. In contrast, for Anonymize-then-Select plan, the maximum
number of false positives per tuples is |Table| - 1.

In Fig. 8, we demonstrate the difference in query answers from the two plans with a simple example.
The base table PATIENT consists of four attributes and five tuples. The attribute Name is an identifier,
Birth and Zipcode are quasi-identifiers, and Disease is a sensitive attribute. These attributes use the
domain generalization hierarchies given in Fig. 1. The issued query has a single selection predicate on
Zipcode QI attribute. The table contains only one true-positive tuple as illustrated in the figure. The
answers from both plans meets the privacy requirements, yet the utility of Select-then-Anonymize plan
higher than that of Anonymize-then-Select since the former produces less false-positives.

6. ANONYMIZATION VIEW ON JOINED TABLES
In this section, we study anonymization over multiple tables and/or A-views. We analyse the 2-way joins
(extension to more than two entities is straightforward). In Fig. 9, we classify the 2-way join cases
based on the join predicates as well as whether the joins between base tables and/or A-views. Joins on
QI or SA attributes are allowed using the AVLIKE operator. For example, consider joining an A-view A
and a base table B. Anonymize-then-Select plan follows the regular process of constructing the A-view
A, and then joins this result with the raw table B. The intuition behind not joining earlier is that the
outside entity B should not be able to see the sensitive raw data associated with the A-view A. Consider
the case where table B (outside entity) has only one tuple and it is joined with the A-view A on the A.ID
attribute. If B were joined with the base table of the A-view A, the result could be a single tuple.
Anonymizing this single tuple would not protect privacy as the mapping between the identifiers and
sensitive attribute for the tuple is implicitly exposed.

Select-then-Anonymize plan also ensures that the raw table joins with the A-view only. However, as an
intermediate step, Select-then-Anonymize plan calculates the semijoin of A with B. This produces the
tuples in A that would be participating in the join and thus need to be anonymized. The anonymized
result is then joined with the raw table. The advantage of this approach over Anonymize-then-Select
plan is the higher utility in cases where join predicates are based on QI. The reasons are the same as
the ones explained in Section V.

In the case of joining two A-views, Anonymize-then-Select plan follows a similar approach to the one in
the previous case. Each A-view is constructed independently and the results are joined using the
AVLIKE operator, if needed. Select-then-Anonymize plan calculates the semi-join of A with B and B
with A, thus identifying the tuples of A and B that will participate in the join. These tuples are
independently anonymized (Section V.2) and then joined.

Eltabakh, Padma, Silva, He, Aref & Bertino

International Journal of Data Engineering (IJDE), Volume (3) : Issue (2) : 2012 58

FIGURE 8: Example demonstrating Anonymize-then-Select versus Select-then-Anonymize plans

7. MAINTENANCE OF A-VIEWS
A logical A-view work fine if the data do not change over time. If the data gets updated, and the DBMS is
re-computing the A-view with each query, then the comparison of various answers may lead to a privacy
breach. The incremental maintenance of K-anonymization has been studies in [8, 18]. In our model, we
proposed Materialized A-views to handle insertions to existing data. For simplicity, we consider the
single-k anonymity requirement. The A-view is materialized in the format shown in Fig 10, where QI
groups and the corresponding tuple ids are stored.

Eltabakh, Padma, Silva, He, Aref & Bertino

International Journal of Data Engineering (IJDE), Volume (3) : Issue (2) : 2012 59

 JOIN SCENARIOS

A : A-VIEW

B : RAW TABLE
A, B : RAW TABLES

(NO SPECIAL HANDLING)

A : A-VIEW

B : A-VIEW

ALGORITHM I : Anonymize A , Join with B

Join on A.ID : Join fails. Desired.

Join on A.QI : Returns at least k similar rows.

Join on A.SA: Privacy guaranteed.

Join on A.OA: No guarantee needed.

ALGORITHM I I: Anonymize (A semijoin B),

Join with B

Join on A.ID : Join fails. Desired.

Join on A.QI : Returns at least the QI group.

Join on A.SA: Privacy guaranteed.

Join on A.OA: No guarantee needed.

ALGORITHM I : Anonymize A , Anonymize B

, then join

Join on A.ID : Join fails. Desired.

Join on A.QI : Returns at least k similar rows.

Join on A.SA: Privacy guaranteed.

Join on A.OA: No guarantee needed.

ALGORITHM I I: Anonymize (A semijoin B),

Anonymize (B semijoin A), then join

Join on A.ID : Join fails. Desired.

Join on A.QI : Returns at least the QI group.

Join on A.SA: Privacy guaranteed.

Join on A.OA: No guarantee needed.

FIGURE 9: Join Scenarios

FIGURE 10: Materialized A-view

Selection: Any query over a materialized A-view triggers a Pl/Sql procedure that uses the AVLIKE
operator on QI attributes. In this case, the entire QI group is returned as output. For example, in
Figure10, if the selection predicate is ‘QI1 = 35’, then 3 tuples formed out of the first cluster and returned
as output. Selection predicates on SA or other attributes scan each of the tuples in the A-view (QI
groups/ clusters) and processes the list of values to match the value in the predicate. Queries with
selection predicates on identifiers return empty answer. The utility of materialized A-views is similar to
that of Select-then-Anonymize plan except that in the case where the regular query result is empty.
Select-then-Anonymize plan would return empty result whereas the materialized A-view may return a
cluster that closely matches the predicate.

Insertion: Inserting to a base table of the materialized A-view triggers a Pl/Sql procedure that calculates
the distance of the tuple being inserted from each of the tuples in the materialized A-view. Here, the
distance refers to the sum of distances between corresponding quasi-identifiers. Each quasi-identifier
value is a node in its DGH. The normalized distance between any two nodes in a DGH is given by the
number of edges between the two nodes divided by the maximum distance between any two nodes in
the DGH. This ensures that the distance measure for any QI is in the range [0 1]. The new tuple is
inserted into the closest group (This may require modifying the QIs of the group). The closest group is
the one where the total changes, measured in terms of normalized distance, of the inserted tuples and
all existing tuples in the group, is the least. The ID, SA, and other attributes of the group are modified by
adding the values of the new tuple to the corresponding lists. Upon insertions, the QI group attributes of
other tuples can be only generalized to a higher node in DGH. In this case, temporal attacks from the
insertion are avoided because the groups’ attributes will become more generalized after the insertion.
This is the trade-offs between the privacy and the utility.

Deletion: The select predicate in a delete command is processed on the base table and the IDs of the
tuples to be deleted are noted. Each tuple is queried in the materialized A-view and is deleted from the
group. If the group size decreases to a value less than ‘k’, the group is removed from the materialized A-
view, and each of the remaining tuples in that group and individually inserted again into the materialized
view following the insert procedure above.

Update: Update is handled as a delete of the old tuple followed by an insertion of new tuple with
updated values.

Eltabakh, Padma, Silva, He, Aref & Bertino

International Journal of Data Engineering (IJDE), Volume (3) : Issue (2) : 2012 60

8. PERFORMANCE ANALYSIS

8.1. Quality Measures
There is always a trade-off between privacy and utility in anonymization; the higher the privacy, the lower
the utility of the data. The target is to maximize the utility of the anonymized data, while achieving the
required levels of privacy. There are two types of utility in our system -1) utility of the query result
(considers the number of false positives and false negatives) and 2) utility of the anonymized data
(considers the effect of generalizing the data).

Precision and Recall: Precision is the ratio of true positives to the sum of true positives and false
positives. Precision is always between 0 and 1, where 1 is the ideal value (no false positives). Since both
plans return false positives when the selection predicates are on QI or SA attributes, the precision is
below 1. In all other cases, the precision is 1. Recall is the ratio of the number of true positives to the
sum of true positives and false negatives. Both plans are guarantee not to have false negatives (except
for predicates on ID), and hence the recall is 1 in most cases.

Normalized Certainty Penalty (NCP): The NCP metric [20] measures the information loss for various
choices of block sizes during the anonymization of large data. This metric can be used for the
Anonymize-then-Select algorithm to identify the best block sizes to use since this algorithm is a block-
level anonymization.

K-Deviation: To provide a measure of the unnecessary anonymization performed, we propose k-
Deviation, which is the sum of differences between required k and achieved k for each tuple in the table.
This value would be close to 0 for optimal algorithms. k-Deviation demonstrates the efficiency of the
multi-k approach over the straightforward approach of anonymizing using single k, where k is set to the
maximum required k over all tuples.

8.2. Experimental Results
We used a synthetically generated and real-world datasets in the experiments. The synthetic data
include table 'PATIENT' with a maximum of 100K tuples, with 4 attributes {Name, Birthdate, Area and
Disease}. 'Name' is the identifier, 'Birthdate' and 'Area' form the QI set, while 'Disease' is the sensitive
attribute for the patient entity. Similar experiments are repeated over million tuples from the US Census
Data (1990). Two identifiers 'ID' and 'NAME' are synthetically generated. The attributes 'AGE', 'SEX' and
'CITIZENSHIP' are used as QIs. 'SCHOOL (Education Level)' is considered the sensitive attribute. DGHs
for QI and SA attributes are generated synthetically with a maximum depth of 4. The k-values and SA-
Generalization levels for each of the million tuples are randomly generated. The k values range between
0 and 9 for all the experiments unless otherwise is specified. For all the experiments, it is assumed that
the DGHs for all the attributes are in-memory data structures. The experiments are performed on Intel(R)
CoreTM2 Quad CPU @ 2.83GHz machine with 3.5GB RAM.

Fig. 11 shows the runtime overhead of the anonymization operator (using Anonymize-then-Select plan)
during query processing, with the block size set to 1024. Though the runtime with anonymization is
asymptotically much higher than the runtime without anonymization, it is notable that the anonymization
of 100k tuples is performed in less than 75 seconds for Synthetic dataset. In case of the US Census data
set, the anonymization of 100k tuples is performed within 30 seconds and that of 1 million tuples is
performed within 300 seconds. The time taken may vary with the algorithm used (algorithms that are
more efficient in terms of utility may be slower); however, the fact that anonymization at the database
engine level takes reasonable time is very promising. We observed in Fig. 12 that the run time varies
with different block sizes (the table size in this experiment is set to 10K tuples). The trends show that
higher block sizes marginally reduce the run time. This can be attributed to the fact that the larger
numbers of tuples help in faster formation of QI groups and thus need a lesser number of iterations.
Though this measurement helps in choosing the optimal block size for the dataset in hand, it is important
to note that the available memory in the system (to store and anonymize the tuples) is a constraint on
the maximum value of block size.

Eltabakh, Padma, Silva, He, Aref & Bertino

International Journal of Data Engineering (IJDE), Volume (3) : Issue (2) : 2012 61

In Fig. 13, we measured the k-Deviation and NCP metric for multi-k and single-k variations. We distribute
k-values in such a way that 10 percent of the tuples have high k (k=50) and the remaining values have
low k (less than 5). We also show the trend for 1 percent high k values (k=50). It is observed that the k-
Deviation of multi-k technique is marginally smaller than the one of the single-k technique. The reason
for this is that single-k anonymization forms larger groups unnecessarily. The multi-k technique has a
marginal gain over the single-k in this case of varying block sizes as well. We measured the utility loss of
anonymized data for the single-k and multi-k cases and observed that NCP is close to 0 for large
datasets and block sizes. This is intuitive since having large number of tuples for anonymization helps in
easier formation of groups without the need for much generalization. Again, it is noted that the multi-k
technique has lower NCP than the single-k case. The reason is that the multi-k technique strives for
smaller group sizes (avoids unnecessary generalization) when compared to single-k, and hence results
in lower k-Deviation and NCP.

In Fig. 14, we study the performance of the Select-then-Anonymize algorithm (labelled as Algorithm II in
the figure). The Anonymize-then-Select algorithm is labelled as Algorithm I in the figure. We set the table
size to 100K tuples and vary the selectivity of the issued queries. For queries with non-QI predicates, the
response time initially increases linearly with the increase in the number of selected tuples. This is
intuitive since the tuples selected based on non-QI attributes do not often tend to form QI/equivalence
groups; this results in many database queries being issued for every selected tuple to find its QI group.
However, the rate of increase in the running time decreases after a certain point as the algorithm comes
across tuples that are already reported and thus no database queries are issued for a fraction of the
selected tuples. On the other hand, the time taken by queries on QI attributes increases very slowly
initially and speeds up after a certain point. The query predicates use equality or `like' operators. The
reason for the this behaviour is that with a small number of selected tuples, it is highly probable that they
form a part of the same QI group and thus the number of database queries to be issued is small.

1

10

100

1000

10000

100000

0

20

40

60

80

100

120

140

160

180

10 100 1000 10000 100000

R
u

n
n

in
g

ti
m

e
 w

it
h

 a
n

o
n

y
m

iz
a

ti
o

n
(m

s)

R
u

n
n

in
g

ti
m

e
 w

it
h

o
u

t
a

n
o

n
ym

iz
a

ti
o

n
(m

s)

Number of tuples (log scale)

Synthetic Dataset
No Anonymization

With Anonymization

1

10

100

1000

10000

100000

1000000

0

500

1000

1500

2000

2500

10 100 1000 10000 100000 1000000

R
u

n
n

in
g

ti
m

e
 w

it
h

 a
n

o
n

y
m

iz
at

io
n

(m
s)

R
u

n
n

in
g

 t
im

e
 w

it
h

o
u

t
an

o
n

y
m

iz
at

io
n

(m
s)

Number of tuples (log scale)

Census Dataset

No Anonymization

With Anonymization

FIGURE 11: The runtime for Anonymize-then-Select algorithm under different datasets

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1

R
u

n
n

in
g

ti
m

e
 in

 s
e

co
n

d
s

Block size (as a fraction of table size)

Synthetic Dataset

Census Dataset

FIGURE 12: The runtime for Anonymize-then-Select under different block sizes

Eltabakh, Padma, Silva, He, Aref & Bertino

International Journal of Data Engineering (IJDE), Volume (3) : Issue (2) : 2012 62

0.1

1

10

100

1000

10000

100 1000 10000 100000

k
-D

e
v

ia
ti

o
n

 i
n

 T
h

o
u

sa
n

d
s

(l
o

g
 s

ca
le

)

Number of tuples in dataset (log scale)

Multi-k (10%)

Single-k (10%)

Multi-k (1%)

Single-k (1%)

0.001

0.01

0.1

1

100 1000 10000 100000

N
C

P
 (

lo
g

 s
ca

le
)

Number of tuples in dataset (log scale)

Single-k (10%, 1%)

Multi-k (10%)

Multi-k (1%)

FIGURE 13: k-Deviation and NCP using Anonymize-then-Select plan (Census Dataset, sparse high-k values)

As the query result size increases, it implies that the quasi-identifiers of the selected tuples are not very
similar and thus need more database queries to find their QI groups. It can be noted from Fig. 14 that
Select-then-Anonymize (Algorithm II) performs better than Anonymize-then-Select (Algorithm I) if the
query is highly selective, otherwise Algorithm I performs better since its anonymization cost is constant.
The query selectivity and the distribution of the k values can be passed to the query optimizer to select
the cheapest plan among the two. This optimization is left for future work.

In Fig. 15, we analyse the sensitivity of Select-then-Anonymize (Algorithm II) to the k value. We tested
three values of k, 10, 50, and 200. The number of iterations, which maps to the number of issued
database queries, increases with the increase in k. Thus, we see an increase in the runtime of Select-
then-Anonymize plan, whereas Anonymize-then-Select plan takes similar runtime for all k-values.
Figs. 16 and 17 depict the performance of joins involving anonymization views. In Fig. 16, the join of an
Anonymization View (100K tuples) is performed with a base table (10k tuples). As in the case of a single
table, the trends are observed for QI-based and non-QI-based predicates. Fig. 17 demonstrates the
runtime for the join of two anonymization views using synthetic datasets (100K and 10K tuples). we
observe that the runtime almost doubled compared to joining an anonymization view with a base table.
This is expected since the time taken to anonymize both relations is accounted. In both cases, the trend
is similar to that in the single-table case. Similar trends are observed for Census dataset in the case
Select-then-Anonymize plan, but the Synthetic data has much larger domain of distinct values for QI and
non-QI attributes, and hence it displays much sharper trends.

0

50

100

150

200

250

300

350

400

450

0.001 0.01 0.1 1 10

Ru
n

ni
n

g
tim

e
 in

 s
e

co
n

d
s

Selectivity (% of table size)

Algorithm I

Algorithm II - QI predicates

Algorithm II - non QI predicates

2.8

3.3

3.8

4.3

4.8

5.3

5.8

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5

R
u

n
ni

n
g

ti
m

e
 in

 s
e

co
n

ds
 (

A
lg

or
it

h
m

 I
)

R
u

nn
in

g
ti

m
e

in
 s

ec
on

d
s

(A
lg

o
ri

th
m

 I
I)

Selectivity (% of table size)

Algo I (k=10)

Algo I (k=50)

Algo I (k=200)

FIGURE 14: The runtime for Select-then-Anonymize
plan (Synthetic Dataset) FIGURE 15: The runtime for Anonymize-then-Select

plan and Select-then-Anonymize with varying `k'
(Census Dataset)

Eltabakh, Padma, Silva, He, Aref & Bertino

International Journal of Data Engineering (IJDE), Volume (3) : Issue (2) : 2012 63

0

50

100

150

200

250

300

350

400

450

500

0 1 2 3 4 5 6 7

R
u

n
n

in
g

ti
m

e
 in

 s
e

c
o

n
d

s

Selectivity x 10 -4 (expressed as % of |a-view| x |raw table|)

Algorithm I

Algorithm II - QI Predicates

Algorithm II - non QI Predicates

0

100

200

300

400

500

600

700

800

0 1 2 3 4 5 6 7

R
u

n
n

in
g

ti
m

e
 in

 s
e

co
n

d
s

Selectivity x 10 -4 (% of |a-view| x |a-view|)

Algorithm I

Algorithm II - QI Predicates

Algorithm II - non QI Predicates

FIGURE 16: Joining an A-view and a base table FIGURE 17: Joining two A-views

9. CONCLUSION
Protecting the privacy of the data inside the data’s natural habitat, the DBMS, is an ever more
demanding. It is (1) more secure, since the data is not transferred to an application layer or to a third-
party, (2) more efficient, since the various query optimizations can be applied inside the database engine,
(3) more flexible, since anonymization can be performed on arbitrary queries with multiple predicates,
and (4) more reliable, since recovery mechanisms are already taken care of by the DBMS. In this paper,
we proposed the concept of anonymization views (A-views) to enforce data privacy inside the DBMS.
We presented two query plans Anonymize-then-Select and Select-then-Anonymize, which perform
block-level and tuple-level anonymization, respectively, and studied the trade-offs between the two plans.
For static datasets, we proposed the logical A-views to anonymize the data without the need to store the
anonymized version. In contrast, for dynamically changing data, we proposed materialized A-views. Our
experimental analysis and performance evaluation showed the feasibility of the proposed approach and
highlighted the trade-offs among the proposed algorithms under different scenarios and settings.

Eltabakh, Padma, Silva, He, Aref & Bertino

International Journal of Data Engineering (IJDE), Volume (3) : Issue (2) : 2012 64

REFERENCES
[1] Agarwal, R., Ameet Kini, Kristen LeFevre, Amy Wang, Yirong Xu, and Diana Zhou. Managing

Healthcare Data Hippocratically. SIGMOD, 2004.

[2] Agarwal, R., Kiernan, J., Ramakrishnan Srikant, and Yirong Xu. Hippocratic Databases. VLDB.
2002.

[3] Agarwal, R., Paul, B., Grandison, T., Kiernan, J., Logan, S. and Rjaibi, W. Extending Relational
Database Systems to Automatically Enforce Privacy Policies. ICDE. 2005.

[4] Agrawal, R., Bayardo, R., Faloutsos, C., Kiernan, J., Rantzau, R., and Srikant, R. Auditing

Compliance with a Hippocratic Database. VLDB. 2004.

[5] Byun, J., Karma, A., Bertino, E., and Li, N. Efficient k-Anonymization using Clustering Techniques.

DASFAA. 2007.

[6] Chaudhuri, S., Dutta, T. and Sudarshan, S. Fine Grained Authorization Through Predicated

Grants. ICDE, 2007.

[7] Cranor, L., Langheinrich, M., Marchiori, M., Pressler-Marshall, M., and Reagle, J. The platform for

privacy preferences 1.0 (P3P1.0) specification. W3C Recommendation, 2002.

[8] Jian Pei., Xu, J., Wang, Z., Wang, W., Wang, K., Maintaining K-Anonymity against Incremental

Updates. 19
th
 International Conference on Scientific and Statistical Database Management, 2007.

[9] Laura-Silva, Y N., and Aref, W. Realizing Privacy-Preserving Features in Hippocratic Databases.

ICDE. 2007.

[10] LeFevre, K, Agarwal, R., Ercegovac, V., Ramakrishnan, R., Xu, Y. Limiting Disclosure in

Hippocratic Databases. VLDB. 2004.

[11] Li, N., Li, T., and Venkatasubramanian, S. t-closeness: Privacy Beyond k-Anonymity and l-

Diversity. ICDE. 2007.

[12] Machanavajjhala, A., Gherke, J., Kifer, D., and Venkitasubramaniam, M. l-Diversity: Privacy

beyond k-Anonymity. ICDE. 2006.

[13] Nergiz, Ercan M, Clifton, C., and Nergiz, A E . Multi-relational k-Anonymity. ICDE. 2007.

[14] Qihua Wang et al. On the Correctness Criteria of Fine-Grained Access Control in Relational

Databases.VLDB.’07.

[15] Sweeney, L. Achieving k-anonymity privacy protection using generalization and suppression.

International Journal on Uncertainty, Fuzziness and Knowledge-based Systems, ‘02.

[16] Sweeney, L. Guaranteeing anonymity when sharing medical data, the datafly system. Journal of

the American Medical Informatics Association, 1997.

[17] Sweeney, L. k-Anonymity:A model for protecting privacy. International Journal on Uncertainty,

Fuzziness and Knowledge-based Systems, 2002.

Eltabakh, Padma, Silva, He, Aref & Bertino

International Journal of Data Engineering (IJDE), Volume (3) : Issue (2) : 2012 65

[18] Truta, Traian Marius, and Alina Campan. K-Anonymization Incremenatal Maintenance and
Optimization Techniques. Symposium on Applied Computing. 2007.

[19] Xiao, Xiaokui, and Yufei Tao. Personalized Privacy Preservation. SIGMOD, 2006.

[20] Xu, Jian, Wei Wang, Jian Pei, Xiaoyuan Wang, Baile Shi, and Ada Wai-Chee Fu. Utility-based

Anonymization using Local Recoding. KDD. 2006.

[21] Padma, J., Silva, Y., Arshad, U., Aref, W. G. Hippocratic PostgreSQL. ICDE. 2009.

[22] Frank D. McSherry. Privacy integrated queries: an extensible platform for privacy-preserving data

analysis. SIGMOD, 2009

INSTRUCTIONS TO CONTRIBUTORS

Data Engineering refers to the use of data engineering techniques and methodologies in the
design, development and assessment of computer systems for different computing platforms and
application environments. With the proliferation of the different forms of data and its rich
semantics, the need for sophisticated techniques has resulted an in-depth content processing,
engineering analysis, indexing, learning, mining, searching, management, and retrieval of data.

International Journal of Data Engineering (IJDE) is a peer reviewed scientific journal for sharing
and exchanging research and results to problems encountered in today’s data engineering
societies. IJDE especially encourage submissions that make efforts (1) to expose practitioners to
the most recent research results, tools, and practices in data engineering topics; (2) to raise
awareness in the research community of the data engineering problems that arise in practice; (3)
to promote the exchange of data & information engineering technologies and experiences among
researchers and practitioners; and (4) to identify new issues and directions for future research
and development in the data & information engineering fields. IJDE is a peer review journal that
targets researchers and practitioners working on data engineering and data management.

To build its International reputation, we are disseminating the publication information through
Google Books, Google Scholar, Directory of Open Access Journals (DOAJ), Open J Gate,
ScientificCommons, Docstoc and many more. Our International Editors are working on
establishing ISI listing and a good impact factor for IJDE.

The initial efforts helped to shape the editorial policy and to sharpen the focus of the journal.
Starting with volume 3, 2012, IJDE appears in more focused issues. Besides normal publications,
IJDE intend to organized special issues on more focused topics. Each special issue will have a
designated editor (editors) – either member of the editorial board or another recognized specialist
in the respective field.

We are open to contributions, proposals for any topic as well as for editors and reviewers. We
understand that it is through the effort of volunteers that CSC Journals continues to grow and
flourish.

IJDE LIST OF TOPICS
The realm of International Journal of Data Engineering (IJDE) extends, but not limited, to the
following:

• Approximation and Uncertainty in Databases
and Pro

• Autonomic Databases

• Data Engineering • Data Engineering Algorithms
• Data Engineering for Ubiquitous Mobile

Distributed
• Data Engineering Models

• Data Integration • Data Mining and Knowledge Discovery

• Data Ontologies • Data Privacy and Security

• Data Query Optimization in Databases • Data Streams and Sensor Networks
• Data Warehousing • Database Tuning

• Database User Interfaces and Information
Visualiza

• Knowledge Technologies

• Metadata Management and Semantic
Interoperability

• OLAP and Data Grids

• Personalized Databases • Query Processing in Databases

• Scientific Biomedical and Other Advanced
Database

• Semantic Web

• Social Information Management • Spatial Temporal

CALL FOR PAPERS

Volume: 3 - Issue: 3 - August 2012

i. Paper Submission: May 31, 2012 ii. Author Notification: July 15, 2012

iii. Issue Publication: August 2012

CONTACT INFORMATION

Computer Science Journals Sdn BhD

B-5-8 Plaza Mont Kiara, Mont Kiara
50480, Kuala Lumpur, MALAYSIA

Phone: 006 03 6207 1607

006 03 2782 6991

Fax: 006 03 6207 1697

Email: cscpress@cscjournals.org

