

INTERNATIONAL JOURNAL OF

ENGINEERING (IJE)

VOLUME 5, ISSUE 4 2011

EDITED BY

DR. NABEEL TAHIR

ISSN (Online): 1985-2312

International Journal of Engineering is published both in traditional paper form and in Internet.

This journal is published at the website http://www.cscjournals.org, maintained by Computer

Science Journals (CSC Journals), Malaysia.

IJE Journal is a part of CSC Publishers

Computer Science Journals

http://www.cscjournals.org

INTERNATIONAL JOURNAL OF ENGINEERING (IJE)

Book: Volume 5, Issue 4, October 2011

Publishing Date: 05-10-2011

ISSN (Online): 1985-2312

This work is subjected to copyright. All rights are reserved whether the whole or

part of the material is concerned, specifically the rights of translation, reprinting,

re-use of illusions, recitation, broadcasting, reproduction on microfilms or in any

other way, and storage in data banks. Duplication of this publication of parts

thereof is permitted only under the provision of the copyright law 1965, in its

current version, and permission of use must always be obtained from CSC

Publishers.

IJE Journal is a part of CSC Publishers

http://www.cscjournals.org

© IJE Journal

Published in Malaysia

Typesetting: Camera-ready by author, data conversation by CSC Publishing Services – CSC Journals,

Malaysia

CSC Publishers, 2011

EDITORIAL PREFACE

This is the third issue of volume five of International Journal of Engineering (IJE). The Journal is
published bi-monthly, with papers being peer reviewed to high international standards. The
International Journal of Engineering is not limited to a specific aspect of engineering but it is
devoted to the publication of high quality papers on all division of engineering in general. IJE
intends to disseminate knowledge in the various disciplines of the engineering field from
theoretical, practical and analytical research to physical implications and theoretical or
quantitative discussion intended for academic and industrial progress. In order to position IJE as
one of the good journal on engineering sciences, a group of highly valuable scholars are serving
on the editorial board. The International Editorial Board ensures that significant developments in
engineering from around the world are reflected in the Journal. Some important topics covers by
journal are nuclear engineering, mechanical engineering, computer engineering, electrical
engineering, civil & structural engineering etc.

The initial efforts helped to shape the editorial policy and to sharpen the focus of the journal.
Starting with volume 5, 2011, IJE appears in more focused issues. Besides normal publications,
IJE intend to organized special issues on more focused topics. Each special issue will have a
designated editor (editors) – either member of the editorial board or another recognized specialist
in the respective field.

The coverage of the journal includes all new theoretical and experimental findings in the fields of
engineering which enhance the knowledge of scientist, industrials, researchers and all those
persons who are coupled with engineering field. IJE objective is to publish articles that are not
only technically proficient but also contains information and ideas of fresh interest for International
readership. IJE aims to handle submissions courteously and promptly. IJE objectives are to
promote and extend the use of all methods in the principal disciplines of Engineering.

IJE editors understand that how much it is important for authors and researchers to have their
work published with a minimum delay after submission of their papers. They also strongly believe
that the direct communication between the editors and authors are important for the welfare,
quality and wellbeing of the Journal and its readers. Therefore, all activities from paper
submission to paper publication are controlled through electronic systems that include electronic
submission, editorial panel and review system that ensures rapid decision with least delays in the
publication processes.

To build its international reputation, we are disseminating the publication information through
Google Books, Google Scholar, Directory of Open Access Journals (DOAJ), Open J Gate,
ScientificCommons, Docstoc and many more. Our International Editors are working on
establishing ISI listing and a good impact factor for IJE. We would like to remind you that the
success of our journal depends directly on the number of quality articles submitted for review.
Accordingly, we would like to request your participation by submitting quality manuscripts for
review and encouraging your colleagues to submit quality manuscripts for review. One of the
great benefits we can provide to our prospective authors is the mentoring nature of our review
process. IJE provides authors with high quality, helpful reviews that are shaped to assist authors
in improving their manuscripts.

Editorial Board Members
International Journal of Engineering (IJE)

EDITORIAL BOARD

Editor-in-Chief (EiC)

Dr. Kouroush Jenab

Ryerson University (Canada)

ASSOCIATE EDITORS (AEiCs)

Professor. Ernest Baafi
University of Wollongong
Australia

Dr. Tarek M. Sobh
University of Bridgeport
United States of America

Professor. Ziad Saghir
Ryerson University
Canada

Professor. Ridha Gharbi
Kuwait University
Kuwait

Professor. Mojtaba Azhari
Isfahan University of Technology
Iran

Dr. Cheng-Xian (Charlie) Lin
University of Tennessee
United States of America

EDITORIAL BOARD MEMBERS (EBMs)

Dr. Dhanapal Durai Dominic P
Universiti Teknologi Petronas
Malaysia

Professor. Jing Zhang
University of Alaska Fairbanks
United States of America

Dr. Tao Chen
Nanyang Technological University
Singapore

Dr. Oscar Hui
University of Hong Kong
Hong Kong

Professor. Sasikumaran Sreedharan
King Khalid University
Saudi Arabia

Assistant Professor. Javad Nematian
University of Tabriz Iran

Dr. Bonny Banerjee
Senior Scientist at Audigence
United States of America

AssociateProfessor. Khalifa Saif Al-Jabri
Sultan Qaboos University
Oman

Dr. Alireza Bahadori
Curtin University
Australia

Dr Guoxiang Liu
University of North Dakota
United States of America

Dr Rosli
Universiti Tun Hussein Onn
Malaysia

Professor Dr. Pukhraj Vaya
Amrita Vishwa Vidyapeetham
India

Associate Professor Aidy Ali
Universiti Putra Malaysia
Malaysia

International Journal of Engineering (IJE), Volume (5), Issue (4) : 2011

TABLE OF CONTENTS

Volume 5, Issue 4, October 2011

Pages

277 - 291 Analysis of Practicality and Performance Evaluation for Monolithic Kernel

and Micro-Kernel Operating Systems

Hui Miao

292- 301 Mutual Authentication Between base and Subscriber Station Can Improve the

Security of IEEE 802.16 Wimax Network.

Mohammad Zavid Parvez, Mohammad Hossain, Mohammad Hamidul Islam

302 - 312 Design Model-free Fuzzy Sliding Mode Control of Internal Combustion Engine

Farzin Piltan, N. Sulaiman, Payman Ferdosali, Iraj Assadi Talooki

Hui Miao

International Journal of Engineering (IJE), Volume (5) : Issue (4) : 2011 277

Analysis of Practicality and Performance Evaluation for
Monolithic Kernel and Micro-Kernel Operating Systems

Hui Miao hui.miao@microchip.com
Microchip Australia Design Centre

Microchip Technology Inc.

Brisbane, 4108, Australia

Abstract

The microkernel system (as opposite to monolithic systems) has been developed for several

years, with the hope that microkernels could solve the problems of other operating systems.

However, the evolution of the microkernel systems did not go as many people expected. Because

of faultinesses of the design in system structure, the performance of the first generation of

microkernel operating systems was disappointing. The overhead of the system was too high to

bear for users. However, the second-generation microkernel system uses an improved design

architecture that could substantially reduce the overhead in previous microkernel systems.

This project evaluates the system performance of the MINIX3.1.2a and compares the results with

the performance of Linux by using Unixbench system evaluating tool. By this way, it could testify

whether the microkernel systems could be more flexible, portable and secure than monolithic

operating systems. Unixbench could give sufficient statistics on different capacities of MINIX3 and

Linux, such as system call overhead, pipe throughput, arithmetic test and so on. The result

illustrates MINIX3 has better performance on Shell Scripts running and Arithmetic test and Linux

has better performance on other aspects such as system call overhead, process creation and so

on. Furthermore, we provide a more detailed analyse on the microkernel Minix 3 system and

propose a method that could improve the performance of the MINIX3 system.

Keywords: Monolithic System, Microkernel System, Operating System

1. INTRODUCTION

Kernel controls the critical parts of operating systems. Nowadays, many current operating
systems are monolithic kernel operating systems (e.g. Linux). Monolithic kernel operating
systems implement most system functionalities such as file management, device drivers, process
management and I/O management in kernel mode. Although monolithic kernel operating systems
are very popular, they may have some disadvantages. First, the kernel is intensively complex. A
kernel with thousands lines of code could be hard and difficult to maintain. Updating one part of
the system may result in needing to recompile the whole kernel. Second, a large amount of code
means that the operating system could not be ported to different hardware, especially for
embedded systems. Third, the monolithic operating system is not reliable; since the kernel’s
complexity, the possibility of a system crash could be high. A single tiny error in the kernel could
lead the whole system to crash. So microkernel operating systems are designed to overcome the
disadvantages of the monolithic systems.

Hui Miao

International Journal of Engineering (IJE), Volume (5) : Issue (4) : 2011 278

The microkernel system excludes several services out of the kernel. One service can run as a
user level application out of the kernel. For example, Mach [1] uses an external pager and the file
system can also be running out of the kernel. Minix3 is another microkernel-based operating
system which is an earlier version of OS inspired the invention of Linux. The kernel of the latest
version of Minix3 only has 4000 lines of code [6], much smaller than Linux. The L4 kernel is a
developing microkernel system; the latest version of L4 kernel is L4ka::Pistachio 0.4, which can
run on a wide variety of hardware [6].

Compared with macrokernel systems, the microkernel approach has following advantages: First,
a microkernel system can provide higher reliability than a monolithic system. A microkernel
system has much less chance to crash than a system with a huge kernel. Reducing the size of a
kernel is a strategy to reduce the problems in the system. Second, a microkernel system with less
kernel code could be maintained more easily. Recompiling the kernel is not a huge task for
microkernel systems. Last, a microkernel system could be easily ported to simple hardware,
especially in embedded systems.

2. RELATED WORKS AND MOTIVATIONS

2.1 First Generation Microkernels
The first pioneering microkernel conception was in Carnegie-Mellon University, the microkernel
Mach operating system. Mach minimizes the kernel into a very small module. The kernel of Mach
only provides process management; thread management, IPC and I/O service. The file
management, which traditionally is in the kernel, is placed out of the kernel. Mach’s external
pager [1] was the first conceptual breakthrough toward real microkernel. The conceptual
foundation of the external pager is that the kernel manages physical and virtual memory, yet the
pager is outside of the kernel. As Fig. 1 shows: if a page fault occurs in user applications it will
forward the faults to the pager by message passing. The message is handled by the kernel. This
technique permits the mapping of files and databases into user address spaces without having to
integrate the file/database systems into the kernel [1].

FIGURE 1: Page Fault Processing [1]

The prospect of Mach seems splendid. But it was not as ideal as people expected. The Mach
system makes the file system run as a user processes on top of the kernel and uses interprocess
communication (IPC) to control this module. IPC contributes a huge overhead to the whole
operating system. System calls of traditional operating systems use traps, which are much faster
than IPC. Mach needs to create messages, send and switch between processes. As Fig. 2 shows,
the overhead is excessive. Chen and Bershad [2] compared applications under Ultrix (a Unix
based operating system) and Mach on a DECStation 5-200/200 and found peak degradations of
up to 66% on Mach (compared to Ultrix); 66% is really unbearable for user. 75% of the low
efficiency is related to IPC. So this first generation microkernel system failed. The Mach system
project was abandoned by Carnegie-Mellon University team in 1994.

Hui Miao

International Journal of Engineering (IJE), Volume (5) : Issue (4) : 2011 279

FIGURE 2: Non-idle cycles under Ultrix and Mach [1]

In the case of the failure of first generation, people put forward a compromised way of designing
the microkernel system. The main idea is to expand the kernel, put the some file services and
device drivers back into the kernel again. In this way, they could reduce the switch time between
the user space and kernel. The Chorus operating system [1] uses this design idea. However, the
idea of expanding the kernel impairs the original intention of building a small high integrity
microkernel. It reduces the extensibility, flexibility, portability and reliability of the operating system.
So L4ka appeared.

2.2 Second Generation Microkernels
After the failure of the Mach operating system, scientists began to redesign the structure of the
kernel. Prof Dr. Jochen Liedtke invented his first microkernel with low overhead in passing
messages, L3. The L3 kernel directly passes the message between processes leaving the
process security and authentication to user space servers. This design method greatly reduced
massive IPC overhead which occured in Mach system. On the same system where Mach
required 114 microseconds for even the smallest of messages, L3 could send the same message
for less than 10. The overall time for a system call was less than half the time on Unix, as
opposed to Mach where the same system call took five times longer that of Unix [3].

After successfully implementing L3, Liedtke designed L3 more comprehensively. The result was a
more flexible kernel, L4. A basic idea of L4 is to support recursive construction of address spaces
by user-level servers outside the kernel. The kernel only does three address space operations:
Grant, Mapping and Unmapping. Liedtke’s design was as follows [3]: the owner of an address
space can assign any of its pages to another space, provided that the recipient agrees. Similarly,
the owner of an address space can map any of its pages into another address space, provided
the recipient agrees. The owner of an address space can also flush any of its pages. The flushed
page remains accessible in the flusher’s address space, but is removed from all other address
spaces which had received the page directly or indirectly from the flusher.

The Mach microkernel had a limitation of implementing the external pager policy outside the
kernel. And now, this limitation is largely removed by L4’s address space concept. This
mechanism implements some protection schemes and physical memory management on the top
of the kernel. Grant and map operations need IPC, since they require an agreement between
granter/mapper and recipient of the mapping. So cross-address-space communication, also
called inter-process communication (IPC), must be supported by the microkernel, which gives
extra overhead to Mach system. L4 uses many methods and techniques to reduce the IPC
overhead. Liedtke improved the performance of the system and reduced the overhead of IPC by
redesigning the kernel. The result is positive. One RPC cost L4 only 10µs, in contrast to 230µs in

Hui Miao

International Journal of Engineering (IJE), Volume (5) : Issue (4) : 2011 280

Mach and 20µs in Unix. IPC is not a burden to L4 any more. Tests of a Linux kernel ported to run
on top of L4 and another ported to run on Mach (MkLinux) and the basic Linux system itself
showed clear performance gains with L4. Even in the best case MkLinux was 15% slower than
the monolithic kernel, whereas L4 was about 5-10% slower [16].

Minix3 is another second generation microkernel system which is developed by Andrew
Tanenbaum. Minix3 was redesigned to be a pure microkernel system from its early version
Minix2. Like other microkernel systems, device drivers, process manager, file system and
memory manager are all implemented outside the kernel. Recently, there is another radical idea
of designing a kernel. In the exokernel concept [7], the operating system only provides
manipulating the raw hardware. The kernel only takes charge of securing the hardware and
controls it. The application-level libraries and servers can directly implement traditional operating
system abstractions. There are already some exokernel operating systems in experimental stage,
such as XOK that is implemented by MIT research group and also Nemesis, written by University
of Cambridge, University of Glasgow, Citrix Systems, and the Swedish Institute of Computer
Science.

2.3 Motivation and Project Aims
The Mach operating system is considered to have poor performance by many people, because of
the overheads in IPC. There are many kinds of other microkernel systems that are claimed to
boast better performance such as L4ka and Minix3. The project’s topic is to use several user
application tools such as Unixbench which run on different operating systems to evaluate their
performance and to discuss the practicality of new generation microkernel operating systems.
The project also uses monolithic operating systems for comparison, because most current
operating systems are based on monolithic kernel. Linux is a typical monolithic operating system
we can use. Comparing the test results of microkernel-based systems to the test results of Linux
could be a good source of discussing the practicality of microkernel operating system.

The comparison has been done by using the benchmark tool Unixbench. Minix3, a pure
microkernel operating systems has been used for testing. Minix3 is a developing microkernel
system, which could be a good option, and also Minix3 supports POSIX [6]. It is well developed
and it can be installed easily. Minix3 has C compiler and Shell like Unix. Therefore, it is easier to
implement and run application test programs on Minix3 than implementing test programs on L4.
Furthermore Minix3 is written by C and Minix3 is a clearly structured microkernel system, so we
could clearly know how microkernel system works after reading the source code of Minix3.

This research is designed to compare and evaluate the performance of two different operating
systems by using OS benchmark tool Unixbench. There are many benchmarks Unixbench can
provide, such as system call overheads, context switch overhead, file read/write throughput, pipe
throughput, arithmetic performance and so on. Even more accurate evaluations were done by
writing test programs which could test single IPC time or single system call time. We could
analyze the result and discuss the practicality of microkernel from the evaluation results.

Linux and Minix3 were used in the testing. Minix3 is a mature microkernel based operating
system. It is well structured and could easily be installed. Also Minix3 supports POSIX. It is Unix-
like operating system. Linux is currently one of the most popular monolithic operating systems; it
is open source and also supports POSIX. Linux is used widely in many fields. So Linux is a good
option for testing. L4Linux is an operating system which runs with the L4 microkernel on the
bottom level, and with Unix-like application runs on top of L4Linux. The reason not to use L4Linux
is there are few research documents available for L4Linux. It is hard to get started and installed.
Besides that, because the Linux kernel is in the middle between application level and L4
microkernel in L4Linux architecture, the result may not be accurate. The user application program
is not implemented directly on L4 microkernel. So accurate results required implementing Unix-

Hui Miao

International Journal of Engineering (IJE), Volume (5) : Issue (4) : 2011 281

like user application level directly on the L4 microkernel. It is required to work at all levels of
abstraction from the bare machine to the application layer, which is a big challenge for
researchers. Also, the exokernel is now in the experimental stage, and there are not sufficient
documents and resources on the exokernel, and therefore the exokernel is not included in testing.

Second generation microkernels like L4ka had proved that the microkernel system could perform
as well as monolithic kernel system. L4Linux on AIM benchmarks report a maximum throughput
which is only 5% lower than that of native Linux. However, it is hard to compare pure L4 system
with Linux, because it is difficult to implement user level application on L4 kernel. For native Linux,
AIM measures a maximum load of 130 jobs per minute. L4Linux achieves 123 jobs per minute,
95% of native Linux. The corresponding numbers for user-mode L4Linux are 81 jobs per minute,
62% of native Linux, and 95 (73%) for the inkernel version. Averaged over all loads, L4Linux is
8.3% slower than native Linux, and 6.8% slower at the maximum load. This is consistent with the
6-7% we measured for recompiling Linux [4]. L4 is designed for optimizing the IPC overhead and
context switch between processes, so the user level application implementation is poor. The
performance of operating system is not only the kernel performance, but also the application layer
performance, which is directly to users. So evaluate the performance of a relatively mature
microkernel system is meaningful to microkernel system.

The project designed does not only to make evaluation benchmarks for microkernel system, but
also would like to analyze the benchmarks of microkernel system and compare it to monolithic
kernel systems. By that, we would like to outline a much clearer performance figure of
microkernel system such as Minix3. From previous papers, IPC overhead was complained most
in microkernel system, which was seen a biggest flaw affecting microkernel system performance.
However, we believe not all the performance differences in microkernel system are due to the
heavy IPC overhead. There are many different ways in implementing kernel and user layer
between Minix3 and Linux, therefore it is important to find out which part of benchmark
differences are due to the different system implementation. From analyzing the benchmarks, we
try to separate performance results that are caused by different system implementation from the
results that are inherited due to the heavy IPC overhead. The discuss on performance evaluating
results are meaningful, because it makes a scrutiny figure on Minix3 microkernel performance
and could give advices that which part of system could be improved by tuning the microkernel
system.

3. Evaluation Environment and Equipments

3.1 Hardware Environment
The result of the test has to be accurate and correct. The selection of hardware is important. The
entire test has to work on the same hardware, thus the hardware selected must be a common
one which is supported by all the system kernels (Minix3, Linux). Minix3 supports many kinds of
hardware: 386, 486 and Pentium and so on. To install Minix3 requires: Intel 386 or higher with 4
MB of RAM, an IDE hard disk with 100 MB of free disk space and an IDE CD-ROM for booting [5].
Linux also could support IA32 (Pentium). So a computer with Pentium or higher is a good choice.
The RAM has to be 256MB or higher. PC must have IDE CD-ROM, VESA compatible VGA, PS/2
keyboard and PS/2 Mouse.

The configurations of the hardware machines are listed as the following:
Central Process: Pentium � with 800MHz speed;
Random Access Memory: 256MB RAM;
Hard Disk: IBM DTLA-307020 20GB ATA hard disk;
CD-ROM: 24X IDE CD-ROM
Accessories: VESA compatible VGA, PS/2 keyboard and PS/2 Mouse

Hui Miao

International Journal of Engineering (IJE), Volume (5) : Issue (4) : 2011 282

3.2 Minix3 Environment
The version of Minix3 used for evaluating is 3.1.2a, which is claimed to be a stable version of the
Minix3 operating system [9]. To install, download the compressed CD image of Minix3.1.2a from
official server in Minix3 home website, then decompress CD image and burn it into a writable CD.
After that, boot computer from CD-ROM. Set Minix3 boot in regular sequence, because we have
more than 16MB RAM. The following are the configurations of Minix3 in installation:

Keyboard Standard: US-Keyboard Standard;
Ethernet Chip: None;
Full distribution: Yes (requires 1GB space);
Size of “/home” directory: 2GB;
Data Block Size: 4-KB per block;

For easier implementing testing programs and benchmark tools on Minix3, extra software
packages should be installed on Minix3 system. These software packages can be downloaded
from the Minix3 home website or installed directly from Minix3.1.2a installation CD. Because
Linux uses the compiler GCC to compile test programs and the benchmark tool, the GCC
software package was installed in Minix3. Moreover, because Linux uses the Bash shell to
execute programs, the shell Minix3 used should be identical with Bash. Consequently, the Bash
3.0 software package was also installed in Minix3 system. If Minix3 used its compiler CC compiler
to compile programs and the default shell ash to execute test programs, it will make an inaccurate
performance benchmarks. Linux uses compiler GCC to compile programs and uses Bash shell to
execute test programs. There are sufficient hard disk spaces for storing, so both the package
software binary distributions and their source codes are install in Minix3.

Minix3 has a version of the X window software package (X11 R6.8.2) which provides a window
display for Minix3. However, the Minix3 X window system was not installed in Minix3 in the testing,
because the X windows software is not a crucial part for system performance evaluating.
Furthermore, due to the way Minix3 memory management works, running X window could lead a
program to fail because it runs of out of memory. “chmem” command should be used to provide
sufficient stack space for the program. The memory of X window binary usually set to a very large
number, which often could result in X window not starting. The hardware has 256MB memory
which is not sufficient for running the X windows as default setting. So “chmem” should be used
for giving the sufficient stack spaces. The higher memory X window consumed the less free
memory will be available for other application programs [10]. That means the system
performance of Minix3 could be greatly deteriorated if running X window software on the system.

3.3 Linux Environment
Fedora core 6.0 and FreeBSD 6.0 were used in performance evaluation at the initial stage of the
research. The ISO images of Fedora core and FreeBSD could be downloaded from AARNet.
Fedora core is an RPM-based Linux distribution. It is well developed and widely used around
world, which is a typical monolithic kernel operating system and POSIX-compatible with 7000
software packages. Therefore, Fedora core 6.0 is a suitable Linux distribution system to be used
for system evaluation. The Fedora core involved in research was installed with X window
software.

FreeBSD is also an Unix-like operating system. It is similar to Linux and also is a typical
monolithic kernel operating system. Many software packages are identical with those of Linux.
FreeBSD is totally free for the user, and it also provides binary compatibility with other Unix-like
operating systems, including Linux, which means programs running on Linux could also run well
on FreeBSD without any modifications. It is as reliable and robust as Linux. In this research,
FreeBSD 6 was installed for testing.

Hui Miao

International Journal of Engineering (IJE), Volume (5) : Issue (4) : 2011 283

At the initial stage of the research, Linux, FreeBSD and Minix3.1.2a were used in the system
performance evaluation. As the research went along, we found the performance results were very
similar between Linux and FreeBSD. There was only 5%-10% difference between Linux and
FreeBSD in system call overhead. There is about a 5% difference between Linux and FreeBSD
on pipe throughput overhead. The shell and software packages are almost the same in Linux and
FreeBSD. At the middle stage of the project, we decided to stop evaluate the performance of
FreeBSD. The following reasons are why we did that:

1. The purpose of the project is to obtain benchmarks of microkernel system and monolithic
kernel system and discuss the practicality of microkernel system to see whether it could be more
reliable and sophisticate as well as current monolithic kernel system. Performance comparison
between Linux and FreeBSD does not make any sense for the intention of the project.
Furthermore, there are already many benchmarks and benchmark tools for the performance
evaluation between those Unix-like monolithic kernel systems. Many documents about
benchmarks and performance evaluations could be found in the Internet.

2. The performance evaluation results are very similar in Linux and FreeBSD. There is only 5%-
10% difference between Linux and FreeBSD in system call overhead. It is about 5% difference
between Linux and FreeBSD on pipe throughput overhead. The structure of the kernels in Linux
and FreeBSD are similar. Both of the FreeBSD and Linux are designed as monolithic kernel
system, so performance measurement between two monolithic kernel systems certainly will give
a similar result.

3.4 Benchmark Tool
The selection criteria of benchmark tool were not complex. The benchmark tool should be able to
run correctly on Minix3 and Linux, and gives accurate benchmarks for the system. After carefully
reviewing through benchmark tools such as LMbench, Unixbench and Ubench, we finally decided
to use Unixbench 4.0.1 [11] to test the system performance of Minix3 and Linux. The reason not
use LMbench is that LMbench requires specific header files at time of configuration. The header
files only could be found in Linux system or other mature Unix-like system. Minix3 does not have
these header files; therefore it will cause compiling failure during install LMbench on Minix3.

Unixbench is another system benchmark tool like LMbench. Unixbench gives performance
benchmarks on many aspects of operating systems. Unixbench is a simple portable and POSIX
microbenchmarks tool. Unixbench can give operating system benchmarks such as Dhrystone,
system call overhead, file system performance on Write/Read/Copy, pipe throughput, context
switch, shell script running, arithmetic test, compiler performance and so on. Thus, Unixbench
can give a comprehensive figure of system performance on Minix3 and Linux. The main idea
Unixbench use to evaluate performance of operating system as follows: On each system, a
constant running time is given. Then, an infinite loop running test program is started, and a global
variable is used to record the number of loops. When the time is up, a signal interrupts the loop
and records how many times the test program runs. Obviously, an operating system which has
higher efficiency could run more loops than that with lower performance. The more loops run the
better system performed. For example, we use Unixbench to evaluate process creation on Linux:

1. At start, the test program is set to run 10 seconds. “signal(SIGALRM, func)” is used for setting

an interrupt function handler. “alarm(10)” will sign a signal after 10 seconds.
2. Use “while (1)” to run an infinite loop. In the loop, “fork()” and “wait(&status)” are used for

creating process, and “iter++” counts the times program run during 10 seconds.
3. After 10 seconds, the infinite loop is interrupted by a signal sent by the “alarm(10)” system

call. In the end, record the value of variable “iter”. The bigger “iter” is the better system
performs in process creation.

Hui Miao

International Journal of Engineering (IJE), Volume (5) : Issue (4) : 2011 284

The Unixbench only gives the number of loops run to present the performance of the system.
What if people want more direct performance benchmarks? For example: microsecond time
values on each test program run are wanted. Therefore, in this project we also used another way
to measure the performance of Minix3 and Linux. The system call “gettimeofday()” returns the
time in seconds and microseconds since epoch in GMT. So we could run “gettimeofday()” system
call at the beginning and the end of test program and subtract the returned values in order to get
the microseconds used in running test program. Also, taking the process creation test as an
example, the following code determines the execution time of one process creation:

gettimeofday(time, tzone); /*get the time befor running */
 if ((slave = fork()) == 0) {
 exit(0);
 } else if (slave < 0) {
 exit(2);
 } else
 wait(&status);
 if (status != 0) {
 exit(2);
 }
gettimeofday(time1, tzone1); /*record finish time */

From the value of structure “time1” and “time” we could calculate the execution time of process
creation for once.

4. Evaluation Results and Analysis

4.1 Unixbench Evaluation Benchmarks
At the beginning of the evaluation, we installed Unixbench on Linux and Minix3 separately first.
First problem was how to transfer data into Minix3. Minix3 was not developed as well as Windows
and Linux. Linux could automatically mount and unmount many file devices such as USB and
CD-ROM. With X window, Linux could easily transfer Unixbench program from mobile devices
(USB, CD) to hard disk. However, Minix3 could not obtain data sophisticatedly from outside
devices. MINIX's primary purpose is to illustrate operating system principles. Keeping MINIX
small enough to fit into a student's head during a semester- or year-long course has required
keeping it simple. In particular, the MINIX file system supports mounting only media containing
MINIX file systems [9]. In this research, we used command “isoread” to read the content of
Unixbench from ISO-9660 CD-ROM and copied the content to local hard disk. We wrote
Unixbench install program into a writable CD and use “isoread /dev/c0d2/ Unixbench.zip >
/home/Unixbench/Unixbench.zip” command to copy Unixbench.zip into /home/unixbench/
directory. After that, to use GCC, we have to change the PATH to add “/usr/gnu/bin” into PATH of
Minix3 system. At last, using “make” command to compile and link all the programs of Unixbench
then we used “./run” to run Unixbench to get benchmarks.

The total evaluation procedure lasted for 52 minutes. Unixbench gave system evaluation
benchmarks on Dhrystone, system call overhead, file system performance on Write/Read/Copy,
pipe throughput, context switch, shell script running (with 8 and 16 concurrent users), arithmetic
test, C compiler throughput and process creation. Because Linux uses Bash shell, which is
different from Minix3’s ash shell, so we installed Bash 3.0 shell on Minix3 and run Unixbench on
Minix3 with Bash 3.0. The following table Table 1 in next page are benchmarks of Unixbench on
Minix3 with Bash 3.0, Minix3 and Linux. Here are the terminologies for the table:

lps: loops per second
lmp: loops per minute

Hui Miao

International Journal of Engineering (IJE), Volume (5) : Issue (4) : 2011 285

KBps: Kbytes per second

From table.1, we could find that performance of Minix3 with Bash shell is similar to Minix3 with
the default shell. Therefore, we only compare performance of Minix3 with performance of Linux
instead of comparing those three benchmarks between Minix3, Minix3 with Bash and Linux. From
the table, we could see Minix3 behaves little worse than Linux in some benchmarks such as in
Dhrystone, File Write, Shell scripts and Recursion Test. In some benchmarks Minix3 could
perform as well as Linux did, such as Arithmetic Test in short integer. In some cases like System
Call overhead, Pipe throughput, Pipe-based context switching, Process Creation, Exce
throughput and Arithmetic test in float and double type. Minix3 is far slower than Linux. For
example, Minix3 is about 182 times slower than Linux. Minix3 could give better performance on
Shell Script running with 8 or 16 concurrent users and Arithmetic test in integer and long integer.
We used bar charts (Fig 3, Fig 4, Fig. 5 and Fig. 6) to illustrate the benchmarks. The bar charts of
the performance benchmarks of Minix3 and Linux are after Table. 1 (Linux as 100 marks).

FIGURE 3: and FIGURE 4: Benchmarks in Shell Script Running

Hui Miao

International Journal of Engineering (IJE), Volume (5) : Issue (4) : 2011 286

TABLE 1: Unixbench Benchmarks in Minix3 and Linux

Benchmarks
Minix 3.1.2a running

Bash-3.0
Minix 3.1.2a Linux

Dhrystone 2 using register
varibles

1944025.1 loop/s 1892225 lps 2340428.8 lps

System Call Overhead 60340.9 lps 60366 lps 521107.6 lps

Pipe Throughput 42795.4 lps 42584.1 lps 251399.8 lps

Pipe-based Context
Swithing

16668.3 lps 17506.2 lps 89164.7 lps

Process Creation 30 lps 24.6 lps 4479 lps

Excel Throughput 36.7 lps 36.7 lps 1051.9 lps

File Read 1024 bufsize
2000 maxblocks

81011 KBps 80693 KBps 220582 KBps

File Write 1024 bufsize
2000 maxblocks

75644 KBps 75511 KBps 99276 KBps

File Copy 1024 bufsize
2000 maxblocks

39228 KBps 39165 KBps 65518 KBps

File Read 256 bufsize 500
maxblocks

24833 KBps 24721 KBps 81638 KBps

File Write 256 bufsize 500
maxblocks

26400 KBps 26372 KBps 42460 KBps

File Copy 256 bufsize 500
maxblocks

12674 KBps 12664 KBps 25413 KBps

File Read 4096 bufsize
8000 maxblocks

30002 KBps 29997 KBps 392921 KBps

File Write 4096 bufsize
8000 maxblocks

32800 KBps 32799 KBps 158023 KBps

File Copy 4096 bufsize
8000 maxblocks

14064 KBps 14014 KBps 109613 KBps

Shell scripts (1
concurrent)/ (8

concurrent)/
(16 concurrent)

922.5 lps / 212 lps /
112.3 lps

825.6 lps / 207 lps /
111 lps

1452.8 lps / 199
lps / 99 lps

Arithmetic Test (double) /
(float)

3656 lps / 7066 lps 3656 lps / 7067.4 lps
250048.8 lps /
259010.4 lps

Arithmetic Test (short) 249705 lps 249774 lps 252042 lps

Arithmetic Test (int) /
(long)

261163.6 lps /
261175.5 lps

261163.9 lps /
261159.6 lps

258079.3 lps /
258180.7 lps

Arithoh 4597523.4 lps 4598553 lps 140482502 lps

C Compiler Troughput 43.8 lpm 43.6 lpm 358.7 lmp

Dc: sqrt(2) to 99 decimal
places

1721.8 lps 1424.7 lps 38247.5 lps

Recursion Test-Tower of
Hanoi

27023.3 lps 27149.8 lps 37328.8 lps

Hui Miao

International Journal of Engineering (IJE), Volume (5) : Issue (4) : 2011 287

FIGURE 5: File System Benchmarks

FIGURE 6: Arithmetic Benchmarks

3.2 Microsecond Level Evaluation Benchmarks
As stated in last chapter, Unixbench starts an infinite loop running a test program and uses a
global variable to record the number of loops. When the time is up, it uses a signal to interrupt the
loop and records how many times the test program ran. The more loops run the better system
has performed. Next we want a more precise evaluation result at the microsecond level. So we
ran the system call function “gettimeofday()” at the beginning and the end of test program and
subtracted the returned values in order to get the microseconds used in running test program. In
Unixbench, the main program to evaluate system call overhead is as the following:

Hui Miao

International Journal of Engineering (IJE), Volume (5) : Issue (4) : 2011 288

while (1) {
close(dup(0));
getpid();
getuid();
umask(022);
iter++;

}

When the time is up, the signal sent from kernel will interrupt the infinite loop and the value of iter
will be recorded. For testing the real execution time on system call overhead, we run
“gettimeofday()” system call at the beginning and the end of the program. So the main program
codes are the following:

gettimeofday(time, tzone); /*get the time befor running */
for (i =0 ; i<1; i++) /* do test program for just once */
{ /* copy from Unixbench */

close(dup(0));
getpid();
getuid();
umask(022);

}
gettimeofday(time1, tzone1); /*record finish time */

Ran the test program on Minix3 and Linux separately. When the test program ran for one
iteration, the result could not be measured on Minix3 because the system is too fast. So we
increased the running loops of test program. When we run test program for 1000 times, the
execution time was get in Minix3. The following table are the evaluation results:

 Minix3 Linux

Iterations (i) 1 10 100 1000 10000 1 10 100 1000 10000

Time
(Microsecs)

None None None 15,333 166,666 23 45 220 2,000 22,000

TABLE 2 : Benchmarks on microsecond level

From Table 2, we could see running system call test program for 1000 iterations cost Minix3
15333 microseconds and cost Linux 2000 microseconds. In 10000 iterations, Minix3 spent
166666 microseconds, whereas Linux use 22000 microseconds. In 1000 iterations case, Minix3
is about 15333/2000 = 7.6 times slower than Linux. In 10000 iterations case, Minix3 is
166666/22000 = 7.58 times slower than Linux. We back to the evaluation result Unixbench got;
Minix3 is about 521107.6 lps/60366 lps = 8.6 times slower than Linux. The results of Unixbench
and the results of microsecond level evaluation are similar. The purpose of the project is to
evaluate the performance of microkernel operating system, which could define whether
microkernel operating systems are as practical as current monolithic operating systems. Then the
approach was to analyze the benchmarks and separate performance results that are caused by
different system implementation from the results that are inherited due to the heavy IPC
overhead. Therefore, we could only consider the benchmarks Unixbench gave, if the
microsecond level results are similar to the benchmarks Unixbench gave.

Hui Miao

International Journal of Engineering (IJE), Volume (5) : Issue (4) : 2011 289

FIGURE 7: Similar Results in Unixbench and Microseconds Level

5. SUMMARY AND CONCLUSION

5.1 Summary of the Conclusion
The project used micro-benchmark tool Unixbench to measure the overall system performance of
Minix3.1.2a and the performance of Linux (Fedora Core 6.0). The evaluation test was done in
user application layer of the systems. In this way that we could testify the second generation
microkernel operating systems whether could be as flexible, portable and secure as monolithic
operating systems like Linux. Unixbench gave many benchmarks on MINIX3 and Linux, such as
system call overhead, pipe throughput, arithmetic test and so on. The result shows MINIX3 has
better performance on Shell Scripts running and Arithmetic test and Linux has better performance
on other aspects such as system call overhead, process creation and so on. Linux gave a better
performance than Minix3 on the overview of benchmarks. However, after analyzing the
benchmarks Unixbench gave, we realized that many benchmarks such as process creation,
floating point arithmetic test and Arithoh test in Minix3 could be optimized by system tuning. The
following list is the summary of the Unixbench benchmarks discussions:

Process Creation: The benchmark shows that Minix3 is about 182 times slower than Linux.
However, COW (Copy-On-Write) technique is a main reason that causes the big performance
difference in process creation benchmarks.

Floating Point Arithmetic Test: The benchmark shows that Minix3 is about 68 times and 36 times
slower than Linux in double and float data type respectively while Minix3 perform as well as Linux
in integer arithmetic test. The reason that causes the poor performance on floating point
arithmetic test is Minix3 does not support Floating Point Unit (FPU) that is integrated into CPU.
Minix3 used software to emulation the floating point operations, which is much slower than
hardware floating point operation supported by Linux.

Shell Script Running: In Unixbench’s benchmarks, Minix3 performed better than Linux in shell
script running in 8 and 16 concurrent users cases. Because Minix3 does not have virtual file
system, so the buffer cache implementation in the systems would be different from Minix3 to
Linux. Linux with virtual memory system may require more CPU cycle on page allocation than
Minix3.

5.2 Future Works
At the middle of this project, a new experimental version of Minix3 was released. Minix3.1.3, an
experimental version of Minix3 which was released at 13

th
 April 2007. A few changes were made

Hui Miao

International Journal of Engineering (IJE), Volume (5) : Issue (4) : 2011 290

in Minix3.1.3, such as enlarged file system, adding virtual file system, new boot procedure and so
on. Notice that virtual file system was imported to Minix3; therefore there must be a big change in
file system in Minix3. So we should measure the performance of new Minix3 virtual system again
using same benchmark tool and benchmarks in Linux. Measurement on process creation may
give us a different benchmark compare with the current benchmark. Another benchmark we
should focus on is the shell script running. In current benchmarks, Minix3 gave better
performance on shell script running with 8 and 16 concurrent users. We guess in this report that
the reason that causes better performance in Minix3 in shell script running is Minix3 does not
implement virtual file system. In Minix3.1.3, virtual file system was ported on Minix3. Therefore,
the benchmarks of shell script running in Minix3.1.3 could give crucial information that whether
the virtual memory system is the reason causes Linux slower than Minix3 in shell script running
benchmark.

Form the benchmarks in chapter 3, we could see that there are many benchmarks such as
system call overheads, pipe throughput, context switch overheads, excel overheads and C
compiler throughput which we did not discuss yet. Research on those benchmarks need to be
done in the future. By doing that, we could make a very clear figure that on Minix3 microkernel
performance and could find out that which part of system could be improved by tuning the
microkernel system. Then try to optimize the system performance by tuning the microkernel
system if we know exactly why Minix3 behaved such a low performance in the benchmark.

From the Minix3 official web site, we also found that some future works should be done by
researchers [9]:
1. Testing MINIX 3 on different platforms
2. Porting programs and applications to MINIX 3
3. Porting drivers to MINIX 3
4. Building a driver framework to use FreeBSD or Linux drivers
5. Porting MINIX 3 to different architectures

6. REFERENCES
[l] Jochen Liedtke, “toward real microkernels”. Communications of ACM September 1996.

Vo139, No. 9.

[2] Chen, J.B. and Bershad, B.N. “The impact of operating system structure on memory system

performance”. In Proceedings of the 14th ACM Symposium on Operating System Principles
(SOSP) (Asheville, N.C., Dec. 1993). ACM Press, 1993, pp. 120—133.

[3] Liedtke, J. “On microkernel construction”. In Proceedings of the 15th ACM Symposium on

Operating System Principles (SOSP) (Copper Mountain Resort, Cob., Dec. 1995). ACM
Press, New York, 1995, pp. 23 7-250.

[4] Liedtke, J. “Improving the IPC by design Kernel”. 14th ACM Symposium on Operating

System Principles (SOSP) Asheville. 1993, pp. 10-11.

[5] Andrew S Tanenbaum & Albert S Woodhull. “Operating System Design and Implementation”

(3rd Edition). Prentice Hall Software Series. 2006.

[6] L4 Kickstart < http://www.l4ka.org/projects/pistachio/kickstart.php >. Edited by University of

Karlsruhe. 2000-2006. Viewed on 24th Mar. 2010.

[7] D. R. Engler, M. F. Kaashoek, J. O'Toole. “Exokernel: an operation system architecture for

application-level resource management”. ACM SIGOPS Operating Systems Review ,
Proceedings of the fifteenth ACM symposium on Operating systems principles SOSP '95,
Volume 29 Issue 5.

Hui Miao

International Journal of Engineering (IJE), Volume (5) : Issue (4) : 2011 291

[8] Lmbench home website <http://www.bitmover.com/lmbench/ >LMbench - Tools for
Performance Analysis. Viewed on 24th Mar. 2010.

[9] Minix3 home website < http://www.minix3.org/doc/environ.html> MiniFAQ about MINIX 3

Programming. Viewed on 14
th
 May 2010.

[10] Minixtip website < http://www.minixtips.com/> Tips For Running the Minix OS Version 3.

Viewed on 14
th
 May 2010.

[11] FTP of Unixbench <http://www.tux.org/pub/tux/benchmarks/System/unixbench> Viewed on

13
th
 Mar 2010.

[12] Daniel P. Bovet & Macro Cesati. “Understanding the Linux Kernel”. O’REILLY Press, Nov

2005.

[13] Floating Point Unit, <http://en.wikipedia.org/wiki/Floating_point_unit>, From Wikipedia, the

free encyclopaedia. Viewed on 24th Mar 2010

[14] Comparing Linux and Minix, <http://lwn.net/Articles/220255/>, LWN.net article, Viewed on

16
th
 May 2010.

[15] Hbench-OS Operating system Benchmarks <http://www.eecs.harvard.edu/vino/perf/hben
 ch/index.html>, Viewed on 16

th
 May 2010.

[16] H. Hartig, M. Hohmuth, J. Liedtke, S. Schänberg, J. Wolter, “The Performance of µ-Kernel-

based Systems”, 16th SOSP TU Dresden, Fakultat Informatik, Heft Jan 1997.

[17] Ben Leslie, Carl van Schaik and Gernot Heiser, “Wombat: a portable user-mode Linux for

embedded systems”, Proceedings of the 6th Linux Conference Australia, Canberra, April,
2005.

[18] ERTOS Website <http://www.ertos.nicta.com.au/research/l4/performance.pml>, National

ICT Australia United, Viewed on 16
th
 May 2010.

[19] Release Notes of MINIX 3.1.3 - Developer's Interim Release, <http://www.minix3.org
 /download/releasenotes-3.1.3.html>, Minix3 Home Website, Viewed on 17

th
 May 2010.

Mohammad Hossain, Mohammad Zavid Parvez & Mohammad Hamidul Islam

International Journal of Engineering (IJE), Volume (5) : Issue (4) : 2011 292

Mutual Authentication Between Base and Subscriber Station
Can Improve the Security of IEEE 802.16Wimax Network

Mohammad Hossain reganmh8@gmail.com
Telecommunication Systems
Blekinge Institute of Technology
Karlskrona, 37179, Sweden

Mohammad Zavid Parvez zavidparvez@hotmail.com
Signal Processing
Blekinge Institute of Technology
Karlskrona, 37179, Sweden

Mohammad Hamidul Islam rubeldiu@yahoo.com
Information and Communication Systems Security
Royal Institute of Technology
Stockholm, 10044, Sweden

Abstract

High throughput broadband connection over long distance is greatly demanded in the present
web application. IEEE 802.16/WiMax technology is one of the latest additions on internet
broadband. When wireless devices are connected to the broadband wireless access, security
comes on the front line to ensure the communication safe and protected from any kind of attacks
or threats. Strong and effective security must be confirmed to make the wireless environment
reliable and risk less. Base station authentication is an important part of WiMax security which
must be confirmed to make the environment more secure. This paper derived the technique to
secure the environment by confirming the authentication of base station.

Keywords: WiMax, Authentication, Base Station, Broadband Connection, Security.

1. INTRODUCTION

Since the last decade of twentieth century, data networks have successfully acknowledged a
progressive expansion and getting update with time. The whole world is the prime target to come
under the coverage of fixed internet to facilitate the communication easier and faster. For this
extra large coverage, wireless access is chosen because of its last end focusing power and
reaching ability rather than that of wired network. The expansion of high speed wireless data
access i.e., in MB/s, is going to make wired network a history which is just a matter of time in the
present twenty first century.

The world telecommunication became instantly prosperous in consideration of its high speed data
transmission and coverage to the end user when WiMax added to it. The resource scarcity has
been eliminated instantly which was concerning present service providers even some few years
before. All of the major telecommunication services like as voice (mobile and static), video and
data sharing got the new shape in true market based competition.

WiMax provides fixed, portable or mobile non line-of-sight (NLOS) service from a base station
(BS) to subscriber station (SS) and so also known as customer premise equipment (CPE). Fig. 1
shows the transmission of WiMax between point-to-point and point-to-multipoint scenario. With a
throughput of 72 Mbps it covers 30 miles of area around it in point-to-point communication. In the
case of point-to-multipoint scenario it covers 6 miles NLOS range with a throughput of 40 Mbps.

Mohammad Hossain, Mohammad Zavid Parvez & Mohammad Hamidul Islam

International Journal of Engineering (IJE), Volume (5) : Issue (4) : 2011 293

FIGURE 1: Fixed WiMAX showing point to point and point to multipoint communication [1].

During the time of designing of IEEE 802.11 wireless standard, scientist and manufacturer
considered the security issues after all other infrastructure and implementation [8]. So the security
of this standard familiarized as part of one of most vulnerable wireless protocols. In the case of
IEEE 802.16 standard, security was thought to be implemented within the protocol but the
depressing thing is that it was also left aside and not considered as a front line topic. The
consequence is that, there are still questions about the transmission security of this standard.
Many papers published on different security issues and researchers are still working to make it
robust, secured and trustworthy.

2. DIFFICULTY CLASSIFICATION
It is not always unreachable for the attackers to intercept the wireless network as because it is
based on radio waves which keep the medium open more or less during transmission. A secured
radio transmission was always a concerning issue to the protocol designers. The different issues
which primarily considered during the designing time were handling with intrinsic
untrustworthiness of wireless medium, good mobility, featuring of protocol to be confirmed while
delivering frames in mobility and also power saving [2]. In the former specification IEEE 802.11
wireless standard, security proved to be an inadequately considered issue which was not
mentioned in the frontage line. The implementation of the wireless network was also not secured
enough so that it can easily handle service disruption and theft. Different kind of attacks took
place by the intruders which make the network poorly secured due to the various attacks like as
interception, fabrication, modification, interruption and so on. Although in IEEE 802.16 standard
designing in MAC layer was especially focused on the security mechanism, yet it might provide
inadequate security in multihop scenarios and demand the needs of rising applications in WiMax
networks [3]. Paper [4] mentioned that WiMax is suitable to physical layer attacks like as jamming
which is a source of noise and so strong that it significantly reduce the capacity of transmission
channel. It also mentioned of scrambling which is kind of jamming occurs to specific frames for
short intervals of time. In IEEE 802.16 standard securities are implemented as a sub-layer at the
bottom of MAC layer in order to protect the data exchange between the MAC and PHY layer but
does not protect the PHY layer itself against the attacks which intends to malfunction the
internally built weakness of the wireless links [5]. So, security is such an important issue in data
transmission of wireless network that a little mistreat or falsification of data may generate huge
chaos and disable the complete system for long run and cause immeasurable sufferings.

3. BASE STATION SPOOFING
When a rogue BS gets credentials from a legitimate SS to process further transmission and so
cheat the SS called BS spoofing. Initially the SS tries to get authorization and traffic keying
material from the BS. For this, it uses the PKM (Key Management Protocol) protocol. The

Mohammad Hossain, Mohammad Zavid Parvez & Mohammad Hamidul Islam

International Journal of Engineering (IJE), Volume (5) : Issue (4) : 2011 294

protocol has the necessary features to support the periodic reauthorization and key refreshment.
This protocol also uses the RSA public key encryption algorithm and X.509 digital certificates.
The key exchanging between the SS and the BS takes place in presence of some strong
encryption algorithm like as DES (Data Encryption Standard), AES (Advanced Encryption
Standard) etc. A client-server model is performed during transmission by the PKM protocol. The
SS acts as a PKM client and the BS acts a PKM server. Being a client, the SS requests keying
materials from the BS and the BS provides the requested keying materials to the SS. When the
SS is authorized, it gets keying materials from the BS. MAC management messages of the
protocol are used between the BS and the SS which are PKM-REQ and PKM-RSP as already
mentioned. To establish a shared and secret Authentication Key (AK) between the SS and the
BS, the protocol uses public key cryptography. Consecutive PKM exchanges happened by
maintaining a secure traffic encryption keys (TEKs) using the authentication key. A BS
authenticates an SS during the initial authorization.

FIGURE 2: Base Station spoofing by a rogue node.

The manufacturer issues X.509 digital certificate for each SS which are given to them. The
certificate has the SS’s public key and MAC address. The SS presents its digital certificate to the
BS when requesting an AK. After verifying the digital certificate the BS uses the verified public
key to encrypt an AK and transmits to the SS. This way exchanging the AK, the BS established
an authenticated identity of a client SS. Now, the SS is authorized to proceed for further services.
Because of this authorization process, it is very difficult for an attacker to get inside into the
network being a false SS. But, there is no way of BS authentication. That is the place where the
attacker starts its working. Fig. 2 shows how an attacker disguised himself as a rogue BS and
creates BS spoofing.

4. MAC ADDRESS SPOOFING
Each SS uses an SS certificate during the time of authentication. This certificate is issued and
signed by the manufacturer. The subject field of a certificate contains the MAC address and
identifying credentials of an SS. 48-bit MAC address is used in IEEE 802.16 standard. Using this
subject field documents the BS and the SS identifies each other during the time of initial ranging
and authentication process. SS includes the MAC address while sending Ranging Request
(RNG-REQ) to the BS. The BS sends back the MAC address again in its Ranging Response
(RNG-RSP). An eavesdropper may try to get the MAC address of the authorized SS by
intercepting either the uplink or the downlink of the connection. But, it becomes difficult for the
attacker because of maintaining a private key public key method between the BS and the SS.
The attacker compromises it with the BS as the BS is not authorized like the SS. There is no way

Mohammad Hossain, Mohammad Zavid Parvez & Mohammad Hamidul Islam

International Journal of Engineering (IJE), Volume (5) : Issue (4) : 2011 295

of authentication or BS certificate that the BS sends to the SS to introduce it as a legitimate BS
and not the false one.

5. SECURITY IMPROVEMENT
In IEEE 802.16 network, an SS must be authenticated and verified by the BS to obtain the
network credentials and to be a part of the network as a legitimate node. But, there is no such
verification or authentication procedure by which an SS can verify and authenticate a BS before it
starts to give all its credentials to the unknown BS. The easy thing is that a BS can also pass
through some verification procedure by which the SS will understand that it is communicating with
a legitimate BS and not with the rogue one. Therefore, mutual authentication is must to establish
a both side secure and trustworthy transmission. It is rather an intelligent thinking to work on the
process besides running behind the intruders. Different attacks are discussed so far which are
related more or less only because the base station authentication is not present in the existing
authentication protocol which is shown below in Fig. 3. It shows the present scenario of the SS
verification and authentication but not for the BS.

FIGURE 3: Authentication Protocol of IEEE 802.16 Standard.

In Fig. 3, Cert (SS) is the digital certificate which the SS obtained from the manufacturer. The
basic fields which are included on it are certificate version, serial number, signature, issuer,
validity, subject, subject public key info, issuer unique ID, subject unique ID, and extensions.
Capabilities contain the SS supported authentication and data encryption algorithms. Basic
Connection ID of SS is termed as BCID. KUSS (AK) is the Authorization key generated by the BS
for the SS and is encrypted with the public key of SS. SeqNo is a 4-bit sequence number.
Lifetime is the number of seconds. SAIDList contains the identities and the properties of the SAs
(Security Associations) due to which an SS is authorized to obtain keying information.

When the rogue BS obtained all the credentials from the SS being a legitimate BS, it can put the
SS out of the network by repeating the received messages from SS to the legitimate BS again
and again. When the preliminary message repeatedly comes, the BS stops receiving any more
messages from the source considering it as a fraud or disturbing element. So, the existing
protocol must be renewed to ensure secure and trustworthy communication especially in banking,
government activities or other important sectors only to maintain high security from the intruders
and hackers.

5.1 Mutual Authentication can be Established as the Proposed Algorithm
During the time of transmission, an SS initiates the session. It sends its identifications,
capabilities and other requirements to the BS. After checking the documents the BS sends back
Authorization Reply to the SS. This reply must be checked whether it is from the legitimate BS or
rogue BS. As the SS has no ability to check it, it can get help of a trusted third party. This third
trusted party is an Authentication Server (AS) which must be in the knowledge of SS. The AS and
the BS know each other as they are manufactured by the manufacturer this way. After getting the
Auth Reply from the BS, the SS will send it to the Authentication Server (AS). The BS will also
forward information containing its own ID, SSID and SS credentials to the AS. The AS will judge
both side information’s received from the BS and the SS and return the confirmation to the SS. In
this message, if SS finds that the BS is a legitimate one, it will continue its transmission.
Otherwise, it will end further communication with the BS. The Fig. 4 shows the new authentication
protocol to avoid rogue BS. Here the BS sends back the Auth Reply message to the legitimate
SS where it also includes its ID which the SS will present to Authentication Server (AS). If any
attacker tries to involve the network, it will be captured by Authentication Server. However,

Message 1: SS � BS: Cert (SS) (Auth Req message)

Message 2: SS � BS: Cert (SS) | Capabilities | BCID

Message 3: BS � SS: KUSS (AK) | SeqNo | Lifetime |

SAIDList

Mohammad Hossain, Mohammad Zavid Parvez & Mohammad Hamidul Islam

International Journal of Engineering (IJE), Volume (5) : Issue (4) : 2011 296

legitimate BS will not allow any other party but the legitimate SS as it checks its ID and other
credentials. DES (Data Encryption Standard) encryption can be used in all private-public key
cases.

6. SIMULATION RESULT
The proposed algorithm is demonstrated in a simulation process only to represent its accuracy,
perfections and way of working.

Step 1: SS communicates BS
Step 2: BS communicates SS and AS
Step 3: SS communicates AS
Step 4: AS communicates SS
Step 5: SS communicates BS

FIGURE 4: The Mutual Authentication process to avoid Rogue BS attack.

The obtained result of the simulation process confirmed that the algorithm works according to its
theme and process. The testing environment of the simulation and its way of working is given
below.

6.1 Testing Environment
Testing environment expressed the manipulation of the result. A simple implementation of a TCP
client server relationship has been considered where the SS works as client, the BS the AS work
as server respectively. The algorithm has some prerequisite conditions like as the BS and the AS
are previously trusted to each other and the SS and the BS would use public key cryptography for
message encryption or decryption.

The simulation process used the following things in its testing environment.

• Microsoft Windows Vista platform

• Processing power of the machine 2.0GHZ
• The Socket class in the .NET framework

• TCP/IP protocol.

• Some encryption and decryption capabilities.
• Programming language C#.NET.

Mohammad Hossain, Mohammad Zavid Parvez & Mohammad Hamidul Islam

International Journal of Engineering (IJE), Volume (5) : Issue (4) : 2011 297

6.2 Overall Communication Process
The overall communication processes are as follows:

Step 1: The BS is waiting to get someone’s request like as the SS. Here the BS is running at port
8001 and the local IP is 192.168.1.73 shown in Fig. 5.

FIGURE 5: The Base Station (BS) is waiting for the connection.

Step 2: The SS has connected to the BS with port 8001 and Local end point is 192.168.1.73. The
SS is sending its subscriber ID and all necessary credentials to the BS shown in Fig. 6.

FIGURE 6: The SS is sending information to the BS.

Step 3: The BS received successfully the SS credentials. The BS verified the SS credentials.
After the verification the BS starts further communication with the SS. The BS encrypted its ID by
using DES encryption algorithm and sends it to the SS shown in Fig. 7. The BS does the

Mohammad Hossain, Mohammad Zavid Parvez & Mohammad Hamidul Islam

International Journal of Engineering (IJE), Volume (5) : Issue (4) : 2011 298

verification procedure by its predefined knowledge about the SS. The ID or the information of the
SS is attached inside the simulation code so that the BS can verify the SS if the correct ID or
address is used otherwise would discard the SS which is shown in Fig. 7.

FIGURE 7: The BS is sending information to the SS.

Step 4: The SS received encrypted information from the BS. The SS is decrypting the BS
information by using DES decryption and found the BS ID.

FIGURE 8: The SS received message from the BS and decrypting the message.

Mohammad Hossain, Mohammad Zavid Parvez & Mohammad Hamidul Islam

International Journal of Engineering (IJE), Volume (5) : Issue (4) : 2011 299

Step 5: To verify the BS, the SS is sending the BS ID to the Authentication Server (AS). Local
end point of the AS is 192.162.1.73 and TCP port 8002.

FIGURE 9: The SS transmitting message to the AS.

Step 6: The AS received message from the SS, verified the BS as rouge or trusted and sent
acknowledgement to the SS.

FIGURE 10: The AS verified the BS and sent message to the AS.

Step 7: After receiving the acknowledgement of the AS, the SS got the confirmation that the BS is
trusted or not. If the BS is trusted then protected communication will start between the SS and the
BS otherwise all communication will remain stop in this phase. In this simulation process, the SS
is ID is 002 and the BS ID is 005. When the SS sends the BS ID 005 to the AS, it is accepted as
a trusted BS which is shown in Fig. 11. Here any other ID except 005 for BS would have

Mohammad Hossain, Mohammad Zavid Parvez & Mohammad Hamidul Islam

International Journal of Engineering (IJE), Volume (5) : Issue (4) : 2011 300

considered as a false or unknown one as in the simulation code only 005 is inserted as a trusted
BS which is in the knowledge of AS.

FIGURE 11: The SS verified the BS.

7. COMPARATIVE STUDY
Paper [5] said the way to save the data exchange between MAC layer and the PHY layer. It also
mentioned that the PHY layer cannot save itself against the attacks which intercept inside the
wireless channel. Paper [6] shown the security aspects of the IEEE 802.16 Standard and point
out the security vulnerabilities, threats and risks associated with this standard shortly. [7]
Examined the MAC layer of the 802.16 standard to determine the presence of the denial of
service attacks and also the attacks that may be unique to the 802.16 standard. But it did not
point out the way to prevent these problems. It did not solve the BS authentication to save the
legitimate SS except just discussing the problems a bit detail which left curiosity to researchers to
find a way to figure out a solution and make this communication environment more secured and
trustworthy.

8. CONCLUSION
Although being a new technology, this standard works with strong encryption algorithm, data
encryption standard (DES) and with a strong key management scheme. Attacks on privacy,
integrity and authentication can be overcome by taking some few necessary steps. Besides, the
standard itself provides adequate solutions to defend against others major attacks which were
somewhat concerning issues in previous standards. Base station authentication will make the
whole communication secure and reliable which was not defined in the architecture of the IEEE
802.16 network though different separate works have been done so far and is still a concerning
issue in data transmission. This paper solved this problem by ensuring mutual authentication
technique for both base and subscriber station in a way that no intruders or outsiders can
penetrate the network disguising themselves as part of it and doing unnecessary activities. The
simulation result proved that when mutual authentication is established, a secure and reliable
transmission can be achieved in point to point or point to multipoint communication in IEEE
802.16/WiMax network.

Mohammad Hossain, Mohammad Zavid Parvez & Mohammad Hamidul Islam

International Journal of Engineering (IJE), Volume (5) : Issue (4) : 2011 301

9. REFERENCES
[1] Frank Ohrtman, WiMAX Handbook, building 802.16 WiMAX networks, McGraw-Hill 2005.

[2] Mahmoud Nasreldin, Heba Aslan, Magdy El-Hennawy, Adel El- Hennawy. WiMax Security,

22
nd

 International Conference on Advanced Information Networking and Applications
Workshops 2008, p. 1335- 1340.

[3] Kejie Lu and Yi Qian, University of Puerto rico, Hsiao-Hwa Chen, National Sun Yat-Sen

University. A Secure and Service-Oriented Network Control Framework for WiMax
Networks, IEEE Communications Magazine, May 2007.

[4] Michel Barbeau, School of Computer Science, Carleton University, Canada. WiMax Threat

Analysis, Q2SWinet’05, October 13, 2005, Montreal, Quebec, Canada.

[5] Hyung-Joon Kim, IEEE 802.16/WiMax Security, Dept. of Electrical and Computer

Engineering, Stevens Institute of Technology, Hoboken, New Jersey, Unpublished.

[6] Jamshed Hasan, School of Computer and Information Science, Edith Cowan University,

Australia Security Issues of IEEE 802.16 (WiMax),
http://scissec.scis.ecu.edu.au/conference_proceedings/2006/aism/Hasan%20-
%20Security%20Issues%20of%20IEEE%20802.16%20(WiMAX).pdf.

[7] Derrick D. Boom “Denial of Service Vulnerabilities in IEEE 802.16 Wireless Networks” IEEE
 C802.16e-04/406.

[8] Loutfi Nuaymi, WiMAX Technology for Broadband Wireless Access, John Wiley & Son Ltd.

Farzin Piltan, N. Sulaiman, P. Ferdosali & I. Assadi Talooki

International Journal of Engineering (IJE), Volume (5) : Issue (4) : 2011 302

Design Model-free Fuzzy Sliding Mode Control: Applied to
Internal Combustion Engine

Farzin Piltan SSP.ROBOTIC@yahoo.com
Department of Electrical and Electronic
Engineering, Faculty of
Engineering,Universiti Putra Malaysia
43400 Serdang, Selangor, Malaysia

N. Sulaiman nasri@eng.upm.edu.my
Department of Electrical and Electronic
Engineering, Faculty of
Engineering,Universiti Putra Malaysia
43400 Serdang, Selangor, Malaysia

Payman Ferdosali SSP.ROBOTIC@yahoo.com
Industrial Electrical and Electronic
Engineering SanatkadeheSabze
Pasargad. CO (S.S.P. Co),NO:16 ,
PO.Code 71347-66773, Fourth floor
Dena Apr , Seven Tir Ave , Shiraz , Iran

Iraj Assadi Talooki SSP.ROBOTIC@yahoo.com
Industrial Electrical and Electronic
Engineering SanatkadeheSabze
Pasargad. CO (S.S.P. Co),NO:16 ,
PO.Code 71347-66773, Fourth floor
Dena Apr , Seven Tir Ave , Shiraz , Iran

Abstract

Modeling and control of engine systems are vital due to wide range of their applications. As it is
obvious stability is the minimum requirement in any control system, however the proof of stability
is not trivial especially in the case of nonlinear systems. One of the most active research areas in
field of internal combustion engine (IC engine) is control of the fuel ratio. The strategies for control
of engines are classified into two main groups: classical and non-classical methods, where the
classical methods used the conventional control theory and non-classical methods used the
artificial intelligence theory such as fuzzy logic, neural networks and/or neurofuzzy. One of the
best nonlinear robust controllers which can be used in uncertainty nonlinear systems is sliding
mode controller (SMC). Chattering phenomenon is the main challenge in this controller. Fuzzy
logic and neuro control have been applied successfully in many applications. Therefore stable
control of an internal combustion engine is challenging because it has uncertain dynamic
parameters. This research presents design a fuzzy sliding mode control with improved in sliding
mode algorithm which offers a model-free sliding mode methodology. The fuzzy sliding mode
controller is designed as a 49 rules Mamdani’s error-based fuzzy sliding-like equivalent part
instead of nonlinear dynamic equation of equivalent part. Various performance indices like the
minimum error, trajectory, disturbance rejection, and chattering control are used for comparison.

Keywords: Internal Combustion Engine, Sliding Mode Controller, Chattering Phenomenon,
Fuzzy Sliding Mode Controller, Minimum Error, Trajectory, Disturbance Rejection, and Chattering
Control.

Farzin Piltan, N. Sulaiman, P. Ferdosali & I. Assadi Talooki

International Journal of Engineering (IJE), Volume (5) : Issue (4) : 2011 303

1. INTRODUCTION
The internal combustion (IC) engine is designed to produce power from the energy that is
contained in its fuel. More specifically, its fuel contains chemical energy and together with air, this
mixture is burned to output mechanical power. There are various types of fuels that can be used
in IC engines which include petroleum, diesel, bio-fuels, and hydrogen [1]. The output power
produced by an IC engine results from the fuel, that it uses, and also its mechanical parts [2].
Modeling of an entire IC engine is a very important and complicated process because engines
are nonlinear, multi inputs-multi outputs and time variant. One purpose of accurate modeling is to
save development costs of real engines and minimizing the risks of damaging an engine when
validating controller designs. Nevertheless, developing a small model, for specific controller
design purposes, can be done and then validated on a larger, more complicated model. [3], [4],
[5].

Controller design is the main part in IC engines as well as the major objectives is stability and
robustness. One of the significant challenges in control algorithms is a linear behavior controller
design for nonlinear systems. When system works with various parameters and hard
nonlinearities this technique is very useful in order to be implemented easily but it has some
limitations such as working near the system operating point[2]. Some of IC engines which work in
industrial processes are controlled by linear PID controllers, but the design of linear controller for
IC engines is extremely difficult because they are nonlinear, uncertainty, and MIMO[1, 6]. To
reduce above challenges the nonlinear robust controllers is used to systems control. One of the
best nonlinear robust controller that can used in uncertainty nonlinear systems (e.g., IC engines),
is sliding mode controller. But, SMC also has attachment to dynamic equation using equivalent
control, so used fuzzy logic system instead equivalent control (e.g., proposed fuzzy sliding mode
controller). To have the best solution, this paper focuses on self tuning robust controller (e.g., self
tuning fuzzy sliding mode controller) [6], [7].

One of the powerful nonlinear robust controllers is sliding mode controller (SMC), although this
controller has analyzed by many researchers recently but the first proposed was in the 1950
[7].This controller is used in wide range areas such as in robotics, in control process, in
aerospace applications, and in IC engines because it has an acceptable control performance and
solve some main challenging topics in control such as resistivity to the external disturbance [18-
24]. Even though, this controller is used in wide range areas but, pure sliding mode controller has
the following disadvantages: Firstly, chattering problem; which caused the high frequency
oscillation in the controllers output. Secondly, equivalent dynamic formulation; calculate the
equivalent control formulation is difficult because it depends on the dynamic equation [8, 9]. The
classical sliding mode controller is classified into two main parts: discontinuous (hitting) controller
which is based on discontinuous switching function and equivalent controller which is based on
dynamic equations of IC engine.

On the other hand, after the invention of fuzzy logic theory in 1965, this theory was used in wide
range applications that fuzzy logic controller (FLC) is one of the most important applications in
fuzzy logic theory because the controller has been used for nonlinear and uncertain (e.g., robot
manipulator) systems controlling. Conversely pure FLC works in many areas, it cannot guarantee
the basic requirement of stability and acceptable performance[10, 11].

Although both SMC and FLC have been applied successfully in many applications but they also
have some limitations. The boundary layer method is used to reduce or eliminate the chattering
and proposed method focuses on substitution error-base fuzzy logic system instead of dynamic
equivalent equation to implement easily and avoid mathematical model base controller [20-24].
To reduce the effect of uncertainty in proposed method, self tuning method is applied in error-
base fuzzy sliding mode controller [18-24] in IC engine. This paper is organized as follows: In
section 2, main subject of engine operating cycle are presented. Detail of modelling of fuel ratio in
IC engine is presented in section 3. Detail of classical sliding mode controller is presented in

Farzin Piltan, N. Sulaiman, P. Ferdosali & I. Assadi Talooki

International Journal of Engineering (IJE), Volume (5) : Issue (4) : 2011 304

section 4. In section 5, the main subject of proposed fuzzy sliding mode controller is presented. In
section 6, the simulation result is presented and finally in section 7, the conclusion is presented.

 2. ENGINE OPERATING CYCLE
In an internal combustion engine, a piston moves up and down in a cylinder and power is
transferred through a connecting rod to a crank shaft. The continual motion of the piston and
rotation of the crank shaft as air and fuel enter and exit the cylinder through the intake and
exhaust valves is known as an engine cycle. The first and most significant engine among all
internal combustion engines is the Otto engine, which was developed by Nicolaus A. Otto in 1876
(Figure 1). In his engine, Otto created a unique engine cycle that consisted of four piston strokes.
These strokes are:
1. Intake stroke
2. Compression stroke
3. Expansion stroke
4. Exhaust stroke

During the intake stroke, the piston begins at top-dead-center (TDC) and ends at bottomdead-
center (BDC). An air and gasoline mixture enters the cylinder through the intake valve and in
some cases this valve opens slightly before the intake stroke begins to allow more air-fuel mixture
into the cylinder. During the compression stroke, the intake and exhaust valves are closed and
the mixture is compressed to a very small fraction of its initial volume. The compressed mixture is
then ignited by a spark causing the pressure to rise very rapidly [12].

During the expansion stroke, the piston begins at (TDC). Due to the high pressure and
temperature gases in the cylinder, the piston is now pushed down, causing the crank to rotate. As
the piston approaches (BDC) the exhaust valve opens. During the exhaust stroke, the burned
gases exit the cylinder due to the high cylinder pressure and low exhaust pressure and also due
to the piston moving up towards TDC. The cycle starts again after the exhaust valve closes.

FIGURE 1: The Four Stroke Engine Cycle [1]

Farzin Piltan, N. Sulaiman, P. Ferdosali & I. Assadi Talooki

International Journal of Engineering (IJE), Volume (5) : Issue (4) : 2011 305

A complete engine cycle is divided into 720 crank angle degrees, where the crank angle is
between the piston connecting rod at TDC and the connecting rod away from TDC. This means
that the piston will move up and down in the cylinder two times during one complete engine cycle.
Since there are two revolutions in one engine cycle, time duration (in seconds) of one engine
cycle can be found given the rotations-per-minute (RPM). For example, at 1500 RPM, an engine
cycle lasts 80 milliseconds (ms) and at 3000 RPM an engine cycle lasts 40 ms [13].

3. MODELLING OF ENGINE
In developing a valid engine model, the concept of the combustion process, abnormal
combustion, and cylinder pressure must be understood. The combustion process is relatively
simple and it begins with fuel and air being mixed together in the intake manifold and cylinder.
This air-fuel mixture is trapped inside cylinder after the intake valve(s) is closed and then gets
compressed [13].

When the air-fuel mixture is compressed it causes the pressure and temperature to increase
inside the cylinder. Unlike normal combustion, the cylinder pressure and temperature can rise so
rapidly that it can spontaneously ignite the air-fuel mixture causing high frequency cylinder
pressure oscillations. These oscillations cause the metal cylinders to produce sharp noises called
knock, which it caused to abnormal combustion.

The pressure in the cylinder is a very important physical parameter that can be analyzed from the
combustion process. After the flame is developed, the cylinder pressure steadily rises, reaches a
maximum point after TDC, and finally decreases during the expansion stroke when the cylinder
volume increases. Since cylinder pressure is very important to the combustion event and the
engine cycle in spark ignition engines, the development of a model that produces the cylinder
pressure for each crank angle degree is necessary. A cylinder pressure model that calculates the
total cylinder pressure over 720 crank angle degrees was created based upon the following
formulation [12-13], [17]:

 (1)

where is pressure in cylinder, is Wiebe function, and is motoring pressure

of a cylinder. Air fuel ratio is the mass ratio of air and fuel trapped inside the cylinder before
combustion starts. Mathematically it is the mass of the air divided by the mass of the fuel as
shown in the equation below:

(2)

If the ratio is too high or too low, it can be adjusted by adding or reducing the amount of fuel per
engine cycle that is injected into the cylinder. The fuel ratio can be used to determine which fuel
system should have a larger impact on how much fuel is injected into the cylinder. Since a direct
fuel injector has immediate injection of its fuel with significant charge cooling effect, it can have a
quicker response to the desired amount of fuel that is needed by an engine [17].

4. CLASSICAL SLIDING MODE CONTROL
Sliding mode controller (SMC) is a powerful nonlinear controller which has been analyzed by
many researchers especially in recent years. This theory was first proposed in the early 1950 by
Emelyanov and several co-workers and has been extensively developed since then with the
invention of high speed control devices[15-16].
A time-varying sliding surface is given by the following equation [18-24]:

(3)

where λ is the constant and it is positive. A simple solution to get the sliding condition when the
dynamic parameters have uncertainty is the switching control law:

Farzin Piltan, N. Sulaiman, P. Ferdosali & I. Assadi Talooki

International Journal of Engineering (IJE), Volume (5) : Issue (4) : 2011 306

 (4)

Where the function of defined as;

(5)

and the is the positive constant. To reduce or eliminate the chattering it is used the
boundary layer method; in boundary layer method the basic idea is replace the discontinuous
method by saturation (linear) method with small neighborhood of the switching surface. This
replace is caused to increase the error performance [20-24].

 (6)

Where is the boundary layer thickness. Therefore, to have a smote control law, the saturation

function added to the control law:

(7)

Where can be defined as

(8)

Based on above discussion, the control law for a multi degrees of freedom robot manipulator is
written as [18-24]:

 (9)

Where, the model-based component is compensated the nominal dynamics of systems.

Therefore can calculate as follows:

(10)

Where

5. DESIGN PROPOSED FUZZY SLIDING MODE

CONTROLLER
The most important objective in fuzzy sliding mode controller (FSMC) is design sliding mode
control combined to fuzzy logic systems to resolve most important problems in pure sliding mode
controller. This research focuses on resolve the equivalent nonlinear dynamic sliding mode
controller by use a new method. To compensate the nonlinearity of dynamic equivalent control
some researchers is used model base fuzzy controller instead of classical equivalent controller.
This technique was employed to obtain the desired control behavior with a number of information
about dynamic model of system and a fuzzy switching control was applied to reinforce system
performance. In contrast proposed methodology is used error based fuzzy instead of classical
equivalent dynamic to have an acceptable performance and easy to implementation. According to
the new method model free controller design is the basis of research so it’s found that there is a
big difference between this new method with the old one that was based on equivalent in order to
undefined dynamic models compensation.

Farzin Piltan, N. Sulaiman, P. Ferdosali & I. Assadi Talooki

International Journal of Engineering (IJE), Volume (5) : Issue (4) : 2011 307

The most important objects in fuzzy sliding mode controller (FSMC) are applied fuzzy logic
controller in sliding mode controller to solve equivalent problems in classical sliding mode
controller. In proposed fuzzy sliding mode controller error based Mamdani’s fuzzy inference
system has considered with two inputs, one output and totally 49 rules instead of the dynamic
equivalent part.

For both SMC and FSMC applications the system performance is sensitive to the sliding surface
slope . For instance, if large value of is chosen the response is very fast but the system is
very unstable and conversely, if small value of is considered the response of system is very
slow but the system is very stable. Therefore, calculation the optimum value of λ is the other
important challenge works. A block diagram for proposed fuzzy sliding mode controller is shown
in Figure 2. In this method a model free Mamdani’s fuzzy inference system has considered based
on fuzzy logic controller instead of equivalent control. In FSMC the equation can be written as;

 (11)

As mentioned as Figure 2, as a summary the design of fuzzy like equivalent part based on
Mamdani’s fuzzy inference method has four steps , namely, fuzzification, fuzzy rule base and rule
evaluation, aggregation of the rule output (fuzzy inference system), and deffuzzification.
Fuzzification: the first step in fuzzification is determine inputs and outputs which, it has two
inputs () and one output (). The inputs are error (e) which measures the difference

between desired and actual inputs, and the change of error () which measures the difference
between desired and actual velocity and output is fuzzy equivalent estimator. The second step is
chosen an appropriate membership function for inputs and output which, for simplicity in
implementation and also to have an acceptable performance the researcher is selected the
triangular membership function. The third step is chosen the correct labels for each fuzzy set
which, in this research namely as linguistic variable. The linguistic variables for error (e) are;
Negative Big (NB), Negative Medium (NM), Negative Small (NS), Zero (Z), Positive Small (PS),
Positive Medium (PM), Positive Big (PB), and it is quantized in to thirteen levels represented by: -
1, -0.83, -0.66, -0.5, -0.33, -0.16, 0, 0.16, 0.33, 0.5, 0.66, 0.83, 1 the linguistic variables for
change of error () are; Fast Left (FL), Medium Left (ML), Slow Left (SL),Zero (Z), Slow Right
(SR), Medium Right (MR), Fast Right (FR), and it is quantized in to thirteen levels represented by:
-6, -5, -0.4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, and the linguistic variables to find the output are; Large
Left (LL), Medium Left (ML), Small Left (SL), Zero (Z), Small Right (SR), Medium Right (MR),
Large Right (LR) and it is quantized in to thirteen levels represented by: -6, -5, -0.4, -3, -2, -1, 0,
1, 2, 3, 4, 5, 6.

FIGURE 2: Block diagram of proposed fuzzy sliding mode controller

Farzin Piltan, N. Sulaiman, P. Ferdosali & I. Assadi Talooki

International Journal of Engineering (IJE), Volume (5) : Issue (4) : 2011 308

Fuzzy Rule Base and Rule Evaluation: the first step in rule base and evaluation is provide a
least structured method to derive the fuzzy rule base which, expert experience and control
engineering knowledge is used because this method is the least structure of the other one and
the researcher derivation the fuzzy rule base from the knowledge of system operate and/or the
classical controller. Design the rule base of fuzzy inference system can play important role to
design the best performance of fuzzy sliding mode controller, that to calculate the fuzzy rule base
the researcher is used to heuristic method which, it is based on the behavior of the control of IC
engine suppose that two fuzzy rules in this controller are;

F.R
1
: IF e is NB and is FL, THEN is LL.

F.R
2
:

IF e is PS and is FL THEN is ML

(12)

The complete rule base for this controller is shown in Table 1. Rule evaluation focuses on
operation in the antecedent of the fuzzy rules in fuzzy sliding mode controller. This part is used

 fuzzy operation in antecedent part which operation is used.

TABLE 1: Modified fuzzy rule base table

Aggregation of the Rule Output (Fuzzy inference): Max-Min aggregation is used to this work
which the calculation is defined as belows.

 (13)

Deffuzzification: The last step to design fuzzy inference in our fuzzy sliding mode controller is
defuzzification. This part is used to transform fuzzy set to crisp set, therefore the input for
defuzzification is the aggregate output and the output of it is a crisp number. In this design the
Center of gravity method is used and calculated by the equation 14.

 (14)

Table 2 is shown the lookup table in fuzzy sliding mode controller which is computed by COG
deffuzzification method. These output values were obtained from trial and error after some
manual adjustment to reach the best performance in fuzzy sliding mode controller. Table 2 has
169 cells to shows the fuzzy like equivalent part behavior. For instance if and then the
output or . By comparing between the COG deffuzzification and
the equivalent part it found that this controller works well because it can be reducing the
chattering and error with respect to eliminate the dynamic equation in equivalent part.

 e NB NM NS ZE PS PM PB

NB PB NB NB NM NS NS ZE

NM NB NM NM NM NS ZE PS

NS NB NM NS NS ZE PS PM

ZE NB NM NS ZE PS PM PB

PS NM NS ZE PS PS PM PB

PM NS ZE PS PM PM PM PB

PB PS PS PM PB PB NB ZE

Farzin Piltan, N. Sulaiman, P. Ferdosali & I. Assadi Talooki

International Journal of Engineering (IJE), Volume (5) : Issue (4) : 2011 309

Membership Function

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-1 -5 -5 -5 -5 -3 -2 -1 0 1 2 3 3 3
-0.83 -5 -5 -4 -3 -2 -1 -1 0 1 2 3 3 4
-0.66 -5 -5 -4 -3 -2 -1 0 1 1 2 3 4 5
-0.5 -5 -4 -3 -2 -1 -1 0 1 2 3 3 4 5
-0.33 -6 -5 -3 -2 -1 -1 0 1 2 3 3 4 5
-0.16 -6 -5 -3 -2 -1 -1 0 1 2 3 4 5 6

0 -5 -5 -4 -3 -2 -1 0 1 2 3 5 5 6
0.16 -5 -4 -3 -3 -2 -1 0 1 2 4 5 5 6
0.33 -4 -4 -3 -3 -1 0 0 2 3 4 5 5 6
0.5 -3 -3 -2 -2 0 0 0 2 3 4 5 6 6
0.66 -2 -1 -1 0 0 1 2 3 4 5 5 6 6
0.83 -1 0 0 1 1 2 2 3 4 5 6 6 6

1 0 1 2 2 2 3 4 4 5 5 5 6 6

TABLE 2: COG lookup table in fuzzy sliding mode controller: applied to IC engine

6. RESULTS
PD Matlab-based sliding mode controller (PD-SMC) and PD Matlab-based fuzzy sliding mode
controller (PD-FSMC) were tested to Step response trajectory. The simulation was implemented
in Matlab/Simulink environment. Fuel ratio trajectory, disturbance rejection and error are
compared in these controllers. It is noted that, these systems are tested by band limited white
noise with a predefined 40% of relative to the input signal amplitude which the sample time is
equal to 0.1. This type of noise is used to external disturbance in continuous and hybrid systems.

6.1 Fuel Ratio Trajectory
Figure 3 shows the fuel ratio in PD-SMC and PD-FSMC without disturbance for Step trajectory.
The best possible coefficients in Step PD-FSMC are; as well as

similarly in Step PD-SMC are;

By comparing step response, Figure 3, in PD-SMC and PD-FSMC, conversely the FSMC's
overshoot (0%) is lower than SMC's (1%), the SMC’s rise time (0.483 Sec) is dramatically lower
than FSMC’s (0.9 Sec); in addition the Settling time in FSMC (Settling time=0.65 Sec) is fairly
lower than SMC (Settling time=1.4 Sec).

6.2 Disturbance Rejection
Figure 4 is indicated the power disturbance removal in SMC and FSMC. As mentioned before,
SMC is one of the most important robust nonlinear controllers. Besides a band limited white noise

FIGURE 3: SMC Vs. FSMC: fuel ratio

Farzin Piltan, N. Sulaiman, P. Ferdosali & I. Assadi Talooki

International Journal of Engineering (IJE), Volume (5) : Issue (4) : 2011 310

with predefined of 40% the power of input signal is applied to the step SMC and FSMC; it found
slight oscillations in trajectory responses.

Among above graph, relating to step trajectory following with external disturbance, SMC and
FSMC have slightly fluctuations. By comparing overshoot, rise time, and settling time; FSMC's
overshoot (0.9%) is lower than SMC's (1.1%), SMC’s rise time (0.48 sec) is considerably lower
than FSMC’s (0.9 sec) and finally the Settling time in FSMC (Settling time=0.65 Sec) is quite
lower than SMC (Settling time=1.5 Sec).

6.3 Errors in the Model
Although SMC and FSMC have the same error rate (refer to Table.3), they have oscillation

tracking which causes chattering phenomenon at the presence of disturbances. As it is obvious in

Table.1 FSMC is a SMC which estimate the equivalent part so FSMC have acceptable

performance with regard to SMC in presence of certain and uncertainty. Figure 5 is shown steady

state and RMS error in SMC and FSMC in presence of external disturbance. However both of

SMC and FSMC have slight oscillation but FSMC in presence of uncertainty has better response.

TABLE 3: RMS Error Rate of Presented controllers

RMS Error Rate SMC FSMC
Without Noise 1e-3 0.6e-3

With Noise 0.012 0.0012

FIGURE 4: SMC Vs. FSMC: fuel ratio with external disturbance

FIGURE 5: SMC Vs. FSMC: Steady state and RMS error in presence of external disturbance

Farzin Piltan, N. Sulaiman, P. Ferdosali & I. Assadi Talooki

International Journal of Engineering (IJE), Volume (5) : Issue (4) : 2011 311

In these methods if integration absolute error (IAE) is defined by (15), table 4 is shown
comparison between these two methods.

 (15)

Traditional SMC FSMC Method

484.8 442.1 IAE

TABLE 4: Calculate IAE

7. CONCLUSION
Refer to the research, a fuzzy sliding mode control design and application to IC engine has
proposed in order to design high performance nonlinear controller in the presence of uncertainties

and external disturbances. Regarding to the positive points in sliding mode controller and fuzzy
logic controller the output responses have improved. Fuzzy logic method by adding to the sliding
mode controller has covered negative points. Obviously IC engine is nonlinear so this paper
focuses on comparison between sliding mode controller and fuzzy sliding mode controller, to opt
for better control method for the IC engine. Higher implementation quality of response and model
free controller versus an acceptable performance in chattering, trajectory and error is reached by
designing fuzzy sliding mode controller. This implementation considerably reduces the chattering
phenomenon and error in the presence of uncertainties. As a result, this controller will be able to
control a wide range of IC engine with a high sampling rates because its easy to implement
versus high speed markets.

REFERENCES:
[1] Heywood, J., “Internal Combustion Engine Fundamentals”, McGraw-Hill, New York,

1988.

[2] Ferguson, C., “Internal Combustion Engines: Applied Thermosciences”, John Wiley &

Sons, Inc., New York, 2001.

[3] Guzzella, L., “Introduction to Modeling and Control of Internal Combustion Engine

Systems” Springer, New York, 2004.

[4] Ramos, J., “Internal Combustion Engine Modeling”, Hemisphere Publishing corporation,

New York, 1989.

[5] Blair, G., “Design and Simulation of Four Stroke Engines”, Society of Automotive

Engineers, Warrendale, Pa, 1999.

[6] G. Zhu, et al, "Closed-Loop Ignition Timing Control for SI Engines Using Ionization

Current Feedback," IEEE Trans on Control Systems, pp. 416-427, May 2007.

[7] I. Haskara, et al, "On Combustion Invariants For MBT Timing Estimation and Control," in

ASME Internal Combustion Engine Division, 2004.

[8] Frank L.Lewis. Nonlinear dynamics and control, Handbook, pages 51-70. CRC press,

1999.

[9] Thomas R.Kurfess.,” Dynamic plant and Automation Handbook”, CRC press, 2005.

Farzin Piltan, N. Sulaiman, P. Ferdosali & I. Assadi Talooki

International Journal of Engineering (IJE), Volume (5) : Issue (4) : 2011 312

[10] Lotfi A. Zadeh” Toward a theory of fuzzy information granulation and its centrality in

human easoning and fuzzy logic” Fuzzy Sets and Systems 90 (1997) 111-127

[11] Lotfi.A.Zadeh”Fuzzy logic,Nural network, and Soft computing” communications of the

ACM, March 1994, Vol.37.No.3

[12] Dawson, J., “An experimental and Computational Study of Internal Combustion Engine

Modeling for Controls Oriented Research” Ph.D. Dissertation, The Ohio State University,

2005.

[13] Lee, B., “Methodology for the Static and Dynamic Model Based Engine Calibration and

Optimization” Ph.D. Dissertation, The Ohio State University, 2005.

[14] Okyak Kaynak, “Guest Editorial Special Section on Computationally Intelligent

Methodologies and Sliding-Mode Control”, IEEE TRANSACTIONS ON INDUSTRIAL

ELECTRONICS, VOL. 48, NO. 1, 2001

[15] Norsinnira Zainul Azlan and Johari Halim Shah Osman,” Modeling and Proportional

Integral Sliding Mode Control of Hydraulic Manipulators”, SCOReD 2006, 2006.

[16] Soteris A. Kalogirou,” Artificial intelligence for the modeling and control of combustion

processes: a review”, Progress in Energy and Combustion Science, science direct, 2003.

[17] J. G. Rivard, "Closed-loop Electronic Fuel Injection Control of the IC Engine," in Society

of Automotive Engineers, 1973.

[18] F. Piltan, et al., "Artificial Control of Nonlinear Second Order Systems Based on

AFGSMC," Australian Journal of Basic and Applied Sciences, 5(6), pp. 509-522, 2011.

[19] Piltan, F., et al., 2011. Design sliding mode controller for robot manipulator with artificial

tunable gain. Canaidan Journal of pure and applied science, 5 (2): 1573-1579.

[20] Piltan, F., et al., 2011. Design Artificial Nonlinear Robust Controller Based on CTLC and

FSMC with Tunable Gain, International Journal of Robotic and Automation, 2 (3): 205-

220.

[21] Piltan, F., et al., 2011. Design Mathematical Tunable Gain PID-Like Sliding Mode Fuzzy

Controller with Minimum Rule Base, International Journal of Robotic and Automation, 2

(3): 146-156.

[22] Piltan, F., et al., 2011. Design of FPGA based sliding mode controller for robot

manipulator, International Journal of Robotic and Automation, 2 (3): 183-204.

[23] Piltan, F., et al., 2011. A Model Free Robust Sliding Surface Slope Adjustment in Sliding

Mode Control for Robot Manipulator, World Applied Science Journal, 12 (12): 2330-

2336.

[24] Piltan, F., et al., 2011. Design Adaptive Fuzzy Robust Controllers for Robot Manipulator,

World Applied Science Journal, 12 (12): 2317-2329.

INSTRUCTIONS TO CONTRIBUTORS

The International Journal of Engineering (IJE) is devoted in assimilating publications that
document development and research results within the broad spectrum of subfields in the
engineering sciences. The journal intends to disseminate knowledge in the various disciplines of
the engineering field from theoretical, practical and analytical research to physical implications
and theoretical or quantitative discussion intended for both academic and industrial progress.

Our intended audiences comprises of scientists, researchers, mathematicians, practicing
engineers, among others working in Engineering and welcome them to exchange and share their
expertise in their particular disciplines. We also encourage articles, interdisciplinary in nature. The
realm of International Journal of Engineering (IJE) extends, but not limited, to the following:

To build its International reputation, we are disseminating the publication information through
Google Books, Google Scholar, Directory of Open Access Journals (DOAJ), Open J Gate,
ScientificCommons, Docstoc and many more. Our International Editors are working on
establishing ISI listing and a good impact factor for IJE.

The initial efforts helped to shape the editorial policy and to sharpen the focus of the journal.
Starting with volume 5, 2011, IJE appears in more focused issues. Besides normal publications,
IJE intend to organized special issues on more focused topics. Each special issue will have a
designated editor (editors) – either member of the editorial board or another recognized specialist
in the respective field.

We are open to contributions, proposals for any topic as well as for editors and reviewers. We
understand that it is through the effort of volunteers that CSC Journals continues to grow and
flourish.

IJE LIST OF TOPICS
The realm of International Journal of Engineering (IJE) extends, but not limited, to the following:

 Aerospace Engineering Agricultural Engineering
 Biomedical Engineering Chemical Engineering
 Civil & Structural Engineering Computer Engineering
 Control Systems Engineering Education Engineering
 Electrical Engineering Electronic Engineering
 Engineering Mathematics Engineering Science
 Environmental Engineering Fluid Engineering
 Geotechnical Engineering Industrial Engineering
 Manufacturing Engineering Materials & Technology Engineering
 Mechanical Engineering Mineral & Mining Engineering
 Nuclear Engineering Optical Engineering
 Petroleum Engineering Robotics & Automation Engineering
 Telecommunications Engineering

CALL FOR PAPERS

Volume: 6 - Issue: 1 - February 2012

i. Paper Submission: November 30, 2011 ii. Author Notification: January 01, 2012

iii. Issue Publication: January / February 2012

CONTACT INFORMATION

Computer Science Journals Sdn BhD
B-5-8 Plaza Mont Kiara, Mont Kiara
50480, Kuala Lumpur, MALAYSIA

Phone: 006 03 6207 1607
006 03 2782 6991

Fax: 006 03 6207 1697

Email: cscpress@cscjournals.org

