Volume 2 = Issue 1 = May 2011

INTERNATIONAL JOURNAL OF

EXPERIMENTAL ALGORITHMS (IJEA)

ISSN : 2180-1282

Publication Frequency: 6 Issues / Year

CSC PUBLISHERS
http://www.cscjournals.org

Copyrights © 2011 Computer Science Journals. All rights reserved.

INTERNATIONAL JOURNAL OF
EXPERIMENTAL ALGORITHMS (IJEA)

VOLUME 2, ISSUE 1, 2011

EDITED BY
DR. NABEEL TAHIR

ISSN (Online): 2180-1282
International Journal of Experimental Algorithms (IJEA) is published both in traditional paper form

and in Internet. This journal is published at the website http://www.cscjournals.org, maintained by

Computer Science Journals (CSC Journals), Malaysia.

IJEA Journal is a part of CSC Publishers
Computer Science Journals

http://www.cscjournals.org

INTERNATIONAL JOURNAL OF EXPERIMENTAL ALGORITHMS

(IJEA)
Book: Volume 2, Issue 1, May 2011
Publishing Date: 31-05-2011
ISSN (Online): 1985-4129

This work is subjected to copyright. All rights are reserved whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting,
re-use of illusions, recitation, broadcasting, reproduction on microfilms or in any
other way, and storage in data banks. Duplication of this publication of parts
thereof is permitted only under the provision of the copyright law 1965, in its
current version, and permission of use must always be obtained from CSC

Publishers.

IJEA Journal is a part of CSC Publishers

http://www.cscjournals.org

© IJEA Journal
Published in Malaysia

Typesetting: Camera-ready by author, data conversation by CSC Publishing Services — CSC Journals,
Malaysia

CSC Publishers, 2011

EDITORIAL BOARD

ASSOCIATE EDITORS (AEiCs)

Associate Professor Dursun Delen
Oklahoma State University
United States of America

Professor Nizamettin Aydin

Yildiz Technical University
Turkey

EDITORIAL BOARD MEMBERS (EBMs)

Dr. Doga Gursoy
Graz University of Technology (Austria)

Dr. Kenneth Revett
British University in Egypt (Egypt)

TABLE OF CONTENTS

Volume 2, Issue 1, May 2011

Pages

21-26 An Improvement to the Brent’s Method
Zhenggqiu Zhang

International Journal of Experimental Algorithms (IJEA), Volume (2) : Issue (1) : 2011

Zhenggqiu Zhang

An Improvement to the Brent’s Method

Zhenggiu Zhang zgzhang@cams.cma.gov.cn
Chinese Academy of Meteorological Sciences
Beijing, 100081,China

Abstract

This study presents an improvement to Brent's method by reconstruction. The Brent's method
determines the next iteration interval from two subsections, whereas the new method determines
the next iteration interval from three subsections constructed by four given points and thus can
greatly reduce the iteration interval length.

The new method not only gets more readable but also converges faster. An experiment is made
to investigate its performance. Results show that, after simplification, the computational efficiency
can greatly be improved.

Keywords: Brent’s Method, Simplification, Improvement.

1. INTRODUCTION

Brent’'s method, which is proposed by Brent (1973)[1] and introduced in many numerical books
[2], is a root-finding algorithm with combining root bracketing, bisection and inverse quadratic
interpolation, based on Dekker’s method [3] to avoid the problem that it converges very slowly, in

particular, when |bk —bk_1| may be arbitrarily small, where k is the index for iterative steps.

Brent (1973) published an Algol 60 implementation. Netlib contains a Fortran translation of this
implementation with slight modifications. The MATLAB function fzero also implements Brent's
method [4], as does the PARI/GP method solve. Other implementations of the algorithm (in C++,
C, and Fortran) can be found in the Numerical Recipes books [5]. However, due to the difficulty to
understand this algorithm, this method was replaced by Ridders’ method [6], as mentioned in
some books [7].

2. IMPROVEMENT OF THE BRENT’S METHOD

2.1 Comparisons Between the Brent’s Method and the Simplification
The original Brent’s algorithm can be easily found on many websites such as Wikipedia (Brent's
method)[8], for comparison it is reprinted here:

input a, b, and a pointer to a subroutine for f

calculate f(a)

calculate f(b)

if fla) f(b) >= 0 then error-exit end if

if |f(a)| < |f(b)| then swap (a,b) end if

c=a

set mflag

repeat until b or s) = 0 or |b - a| is small enough (convergence)
o iffla) # f(c) and f(b) # f(c) then

= calculate s (inverse quadratic interpolation)

o else

International Journal of Experimental Algorithms (IJEA), Volume (2) : Issue (1) : 2011 21

Zhenggqiu Zhang

» calculate s (secant rule)
o end if
o if (condition 1) s is not between (3a + b)/4 and b
or (condition 2) (mflag is set and |s-b| = |b-c| / 2)
or (condition 3) (mflag is cleared and |s-b| = |c-d| / 2)
or (condition 4) (mflag is set and |b—c| < |9])
or (condition 5) (mflag is cleared and |c-d| < |9])

then
= (bisection method)
» set mflag
o else
= clear mflag
o endif

o calculate f(s)
o d:=c(dis asigned for the first time here, it won't be used above on the first
iteration because mflag is set)
o ¢c=b
o iffla) f(s) < 0then b= selse a:= send if
o if |f(a)| < |f(b)| then swap (a,b) end if
¢ end repeat
e output b or s (return the root)

As seen from the above, the Brent’s method is very complicated and difficult to understand. It is
obvious that, the algorithm still preserves the idea that determines the next iteration interval from
two subsections, in which one endpoint of previous interval is replaced with the new one
calculated using inverse quadratic interpolation.

According to the computation, three points will be used for the next inverse quadratic interpolation,
one is b, another is s, which will be one of the two endpoints of the next interval, and the other will
be b or a. When it takes a = s, then f(a)=f(c), the Brent's method will use the secant rule algorithm.

To simplify the Brent’'s method, we can add one more evaluation for the function at the middle
point ¢ = (a + b)/2 before the interpolation. The simplified scheme now becomes as follows:

input a, b, and a pointer to a subroutine for f
calculate f(a)
calculate f(b)
if fla) f(b) >= 0 then error-exit end if
repeat until b or s) = 0 or |b - a| is small enough (convergence)
o c=(a+b)2
o calculate f{c)
o if fla) # f(c) and f(b) # f(c) then
= calculate s (inverse quadratic interpolation)

o else
= calculate s (secant rule)
o endif
o calculate f(s)
o If c> sthen swap(s,c)
o if flc) f(s) < 0 then
" a=s
» bi=cC
o else
= if f{s) f(b) < 0 then a: = c else b: = s endif
o endif

¢ end repeat

International Journal of Experimental Algorithms (IJEA), Volume (2) : Issue (1) : 2011 22

Zhenggqiu Zhang

e output b or s (return the root)

As seen from the above, after simplification, the new algorithm becomes much brief, more easily
readable and understandable. Also, we don’t need set the mflag, reducing several of its related
conditions.

In the new algorithm, it is assumed that a < b, and c is the middle. If the interploated point (s) is
less than ¢, then swap s and ¢, which makes the four points intersected with x—axis be labelled in
the order of a, ¢, s and b by their coordinates.

Note that, for the above two methods, to avoid calulating the function again, when swapping or
assigning a variable to another, the function variable also needs to do the same, accordingly.

2.2 Analysis on the Advantages of the New Algorithm

Because the new algorithm added one more evaluation for the root-finding function, one step of
iteration for it will be equivalent to two steps of the Brent’s method. This will provide it with several
advantages over the original Brent’'s method.

a) Reducing the Times for Evaluating the Conditions
Since for each step the Brent’s method must evaluate the condition: if (f, X f, <0), two iterations

must need two times of such judgment. Whereas for the new algorithm, its conditional judgment
is: If...else, two times of evaluating the root-finding function each loop just does the judgment
once.

Therefore, it is obvious that the new algorithm spends less time to do the judgment after two
times of the function evaluation than the Brent’s method.

b) Accelerating Reduction of the Convergence Interval

By introducing the evaluation at the middle point, in each iterative loop for the new algorithm, the
convergence interval must reduce more than half of the previous interval, but two iterations of the
Brent’s method could not.

Although it will get more accurate interpolated point using the inverse quadratic interpolation, two
iterations can’t guarantee the next interval reduces half of its previous. It is easy to find such an
example. Suppose current iterative interval is [a, b], which can be divided into two half. If two
continuous interpolated points are located in the same half region, it can't guarantee the last
interval length reduces that much.

Since the Brent’s method uses the bisection method under some conditions, it is obvious that the
new method can more greatly reduce the next interval length.

2.3 Comparisons With Ridders’ Method

Before modification, Ridder’'s method is simpler than Brent’'s method, but Press et al. claim that it
usually performs about as well [9]. However, the new revised Brent's method becomes as simple
as the Ridder's method. They have the same feature as that they converge quadratically, which
implies that the number of additional significant digits doubles at each step, and the function has
to be evaluated twice for each step, but the revised Brent's method converges faster.

International Journal of Experimental Algorithms (IJEA), Volume (2) : Issue (1) : 2011 23

Zhenggqiu Zhang

The Ridders’ method can be described as follows ("exponential case"). Given three x values {xo,
X1, X2} evenly spaced by interval dy at which the function f(x) has been calculated, a function p(x)
in an exponential form is found which takes the same values as f(x) at the three points, then x; is
found as the point where p(x) = 0. Once x3 has been found, the closest one of the original three
points is used as one of the three new points, along with one more new point chosen so as to
have three equally spaced points with x; in the middle.

Compared with Ridders’ method, although the simplified Brent's method and the Ridders’ method
both determine the next iterative subsection via four points {xo, X1, X2, X3}, the simplified Brent’s
method will have a narrower converging subsection for the next iteration than that of Ridders’
method does, as can be seen from their actions to search for the converging subsection. That is,
the next iterative subsection for the new method is one of the three subsections formed by the
four points, whereas the next iterative subsection for Ridders’ method is the subsection double
extended on one of the three subsections.

3. EXPERIMENTAL TEST

From the above analysis, we can tell the new algorithm will be faster than the Brent’'s method. To
confirm it, the following experiment will be used to test and compare their efficiencies. Simply,
let’s find one root of

cos(x)—x* =0,
Using the two methods with iteration, respectively. For the initial, set a=-4 and b=4 as the two

endpoints of a section in which the root will be located. And iteration termination error is given to
be 1.0E-5.

3.1 Analysis on the Advantages of the New Algorithm

Due to one more evaluation of the root-finding function is needed for the new method in each do-
loop, equivalent to two times of iterations for the Brent’'s method. To make them comparable, we
compare the times of the function evaluation for the two methods.

Step Brent’'s method The new method

(a, b) A (a, b) |A |
1 4 .000000 | 0.000000 | 4.000000 _ _ —
2 2.000000 | 0.000000 | 2.000000 0.000000 | 4.000000 | 4.000000
3 0.000000 | 1.000000 | 1.000000 _ _ —
4 1.000000 0.685073 | 0.314927 | 0.235070 | 2.000000 | 1.764930
5 1.000000 0.842537 | 0.157463 _ _ —
6 0.921268 | 0.842537 | 0.078732 0.710220 | 1.117535 | 0.407315
7 0.842537 | 0.881903 | 0.039366 _ _ —
8 0.881903 | 0.865107 | 0.016796 0.862843 | 0.913877 | 0.051035
9 0.873505 | 0.865107 | 0.008398 _ _ —
10 0.869306 | 0.865107 | 0.004199 0.865470 | 0.888360 | 0.022890
11 0.867206 | 0.865107 | 0.002099 _ _ —
12 0.866156 | 0.865107 | 0.001050 0.865470 | 0.865474 | 0.000004
13 0.865107 | 0.865631 0.000525
14 0.865631 0.865474 | 0.000157
15 0.865553 | 0.865474 | 0.000079
16 0.865513 | 0.865474 | 0.000039

TABLE 1: Comparisons between the results from the two methods.

International Journal of Experimental Algorithms (IJEA), Volume (2) : Issue (1) : 2011 24

Zhenggqiu Zhang

Before comparison, we design two programs for the two methods with C or other languages,
respectively. The endpoints a, b and the interval length at each step are printed as in Table 1.

In the table, the “—* represents the function has to be evaluated twice. As seen from the table,
under the given iteration termination error, the new method can reach the real root more quickly,

with fewer iteration steps. Similar to Dekker's method (1969), when |a —b| gets arbitrarily small,
the computation of the Brent’s method converges very slowly.

3.2 Converging Speed
Generally, there are several factors that affect the converging speed, which includes the

calculations of the function f'(x), the interpolation, the conditional judgment and so on.

In practice, we can use computer system functions to record time consumptions for the both
methods. However, for simplicity, the following just gives an analysis on their computational
efficiencies.

As seen from the above experiment, when getting the root of the equation, the new method
needs to calculate 12 times of the function:

f(x) = cos(x) - x*,
While the Brent's method needs to calculate f(x) for 18 times. Since f(x) is the same,
indicating one time calculation of the function for the two methods need the same computational
time, thus the new method spends less total time on evaluating the f(x) . On the other hand, the
above analysis and the code’s structures also indicated that the new method needs less time.

Briefly, comparing with the original Brent's method, the new algorithm not only gets more
understandable but also will improve its computational efficiency.

4. CONCLUSIONS

This study proposes an improvement to the Brent’s method, and a comparative experiment test
was conducted. The new algorithm is simpler and more easily understandable. Experimental
results and analysis indicated that the proposed method converges faster. Other experiments
also show this advantage.

In short, the proposed method has a lot of advantages over the original Brent's method, and it will
be useful for engineering computations.

5. REFERENCES
[1] Brent, R.P., Algorithms for Minimization without Derivatives, Chapter 4. Prentice- Hall,
Englewood Cliffs, NJ. ISBN 0-13-022335-2,1973.

[2] Antia,H.M., Numerical Methods for Scientists and Engineers, Birkhauser, 2002, pp.362-365,2
ed.

[3] Dekker, T. J. Finding a zero by means of successive linear interpolation, In B. Dejon and P.

Henrici (eds), Constructive Aspects of the Fundamental Theorem of Algebra, Wiley-
Interscience, London, SBN 471-28300-9,1969.

[4] Alfio Quarteroni, Fausto Saleri. Scientific Computing with MATLAB (Texts in Computational
Science and Engineering 2), Springer, 2003, pp.52.

International Journal of Experimental Algorithms (IJEA), Volume (2) : Issue (1) : 2011 25

Zhenggqiu Zhang

[5] William H. Press, Saul A. Teukolsky, William T. Vetterling and Brian P. Flannery. Numerical
Recipes in C, The Art of Scientific Computing Second Edition, Cambridge University Press,
November 27, 1992, pp. 358-362.

[6] Ridders, C.J.F. “ Three-point iterations derived from exponential curve fitting 7, IEEE
Transactions on Circuits and Systems 26 (8): 669-670,1979.

[7] Jaan Kiusalaas. Numerical Methods in Engineering with Python, 2nd Edition, Cambridge
University Press, 2010.

[8] Wikipedia contributors. “ Brent's method. Wikipedia ”, The Free Encyclopedia. Wikipedia, The
Free Encyclopedia, 13 Apr. 2010. Web. 13 May. 2010.

[9] Press, W.H.; S.A. Teukolsky, W.T. Vetterling, B.P. Flannery. Numerical Recipes in C: The Art

of Scientific Computing (2nd ed.). Cambridge UK: Cambridge University Press.1992, pp.
358-359.

International Journal of Experimental Algorithms (IJEA), Volume (2) : Issue (1) : 2011 26

INSTRUCTIONS TO CONTRIBUTORS

Experimental Algorithmics studies algorithms and data structures by joining experimental studies
with the more traditional theoretical analyses. With this regard, the aim of The International
Journal of Experimental Algorithms (IJEA) is (1) to stimulate research in algorithms based upon
implementation and experimentation; in particular, to encourage testing, evaluation and reuse of
complex theoretical algorithms and data structures; and (2) to distribute programs and testbeds
throughout the research community and to provide a repository of useful programs and packages
to both researchers and practitioners. IJEA is a high-quality, refereed, archival journal devoted to
the study of algorithms and data structures through a combination of experimentation and
classical analysis and design techniques. IJEA contributions are also in the area of test
generation and result assessment as applied to algorithms.

To build its International reputation, we are disseminating the publication information through
Google Books, Google Scholar, Directory of Open Access Journals (DOAJ), Open J Gate,
ScientificCommons, Docstoc and many more. Our International Editors are working on
establishing IS listing and a good impact factor for IJEA.

The initial efforts helped to shape the editorial policy and to sharpen the focus of the journal.
Started with Volume 2, 2011, IJEA appears in more focused issues. Besides normal publications,
IJEA intend to organized special issues on more focused topics. Each special issue will have a
designated editor (editors) — either member of the editorial board or another recognized specialist
in the respective field.

We are open to contributions, proposals for any topic as well as for editors and reviewers. We
understand that it is through the effort of volunteers that CSC Journals continues to grow and
flourish.

IJEA LIST OF TOPICS
The realm of International Journal of Experimental Algorithms (IJEA) extends, but not limited, to
the following:

e Algorithm Engineering e Heuristics

e Algorithmic Code e Mathematical Programming For Algorithms
e Algorithmic Engineering e Metaheuristic Methodologies

e Algorithmic Network Analysis e Network Design

e Analysis of Algorithms e Parallel Processing

e Approximation Techniques e Randomized Techniques in Algorithms
e Cache Oblivious algorithm ¢ Routing and Scheduling

e Combinatorial Optimization e Searching and Sorting

e Combinatorial Structures and Graphs e Topological Accuracy

e Computational Biology e Visualization Code

e Computational Geometry e VLSI Design

e Computational Learning Theory e Graphics

e Computational Optimization

Data Structures
e Distributed and Parallel Algorithms
e Dynamic Graph Algorithms

e Experimental Techniques and Statistics
e Graph Manipulation

CALL FOR PAPERS

Volume: 2 - Issue: 2
i. Paper Submission: August 31, 2012 ii. Author Notification: September 30, 2012

iii. Issue Publication: October 2012

CONTACT INFORMATION

Computer Science Journals Sdn BhD
B-5-8 Plaza Mont Kiara, Mont Kiara
50480, Kuala Lumpur, MALAYSIA

Phone: 006 03 6204 5627
Fax: 006 03 6204 5628

Email: cscpress@cscjournals.org

COMPUTER SCIENCE JOURNALS (CSC JOURNALS)
B-5-8 PLAZA MONT KIARA, MONT KIARA
50480, KUALA LUMPUR, MALAYSIA
PHONE: 00603 6204 3627

FAX: 00603 6204 5628

URL: http://www.cscjournals.org

