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Abstract 

 
In this paper, we present a comparative performance analysis of different parallel sorting 
algorithms: Bitonic sort and Parallel Radix Sort. In order to study the interaction between the 
algorithms and architecture, we implemented both the algorithms in OpenCL and compared its 
performance with Quick Sort algorithm, the fastest algorithm. In our simulation, we have used 
Intel Core2Duo CPU 2.67GHz and NVidia Quadro FX 3800 as graphical processing unit.  
 
Keywords: GPU, GPGPU, Parallel Computing, Parallel Sorting Algorithms, OpenCL. 

 
 
1. INTRODUCTION 

The GPU (Graphics Processing Unit) [1] is a highly tuned, specialized machine, designed 
specifically for parallel processing at high speed. In recent years, Graphic Processing Unit (GPU) 
has been evolved as massive parallel processor for achieving high computing performance. The 
architecture of GPU is suitable not only for graphics rendering algorithms but for also general 
parallel algorithms in a wide variety of application domains. 
 
Sorting is one of the fundamental problems of computer science, and parallel algorithms for 

sorting have been studied since the beginning of parallel computing. Batcher’s 2(log )nΘ - depth 

bitonic sorting network [2] was one of the first methods proposed. Since then many different 
parallel sorting algorithms have been proposed [7, 9, 10]. The (log )nΘ - depth sorting circuit was 

proposed in [4, 6]. 
 
Given, a diversity of parallel architectures and a number of parallel sorting algorithms, there is a 
question of which is the best fit for a given problem instance. An extent to which an application 
will benefit from these parallel systems, depend on the number of cores available and other 
parameters. Thus, many researchers have become interested in harnessing the power of GPUs 
for sorting algorithms.  Recently, there has been increased interest in such research efforts [8, 11, 
16]. However, more studies are needed to claim whether a certain algorithm can be 
recommended for a particular parallel architecture. 
 
In this paper, we present an experimental study of two different parallel sorting algorithms: Bitonic 
sort and Parallel Radix sort.  
 
This paper is organized as follows. Section - 2 provides previous work done. In Section - 3, we 
present GPU architecture and OpenCL Programming model. Parallel Sorting algorithms are 
explained in Section - 4. Test results and analysis are provided in Section - 5. Section - 6 
concludes our work and makes future research plans. 
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2. RELATED WORK 

In this section, we review previous work on parallel sorting algorithms. Study of parallel 
algorithms using OpenCL is still in progress and there is not much work done in this topic. 
However, an overview of parallel sorting algorithms is given in [5]. Here we review parallel 
algorithms with respect to GPU architecture. 
 
A parallel sorting algorithm is presented in [12] for general purpose internal sorting on MIMD 
machines where performance of the algorithm on the Fujitsu AP1000 MIMD supercomputer is 
discussed. A comparative performance evaluation of parallel sorting algorithms presented in [13]. 
They implement parallel algorithms with respect to the architecture of the machine. An on-chip 
local memory version of radix sort for GPU’s has been implemented [21]. As expected, OpenCL 
local memory is much faster than global memory. Bitonic sorting algorithm has been implemented 
using stream processing units and Image Stream processors in [17, 15].  
 
An O(n) radix sort is implemented in [21]. As reported in [21] radix sort is roughly twice as fast as 
the CUDAPP[19] radix sort. Quick-sort algorithm for GPU’s using CUDA has been implemented 
in [20] where their results suggest that given a large data set of elements, quick-sort still gives 
better performance as compared to radix and Bitonic sort. A portable OpenCL implementation of 
the radix sort algorithm is presented in [24] where authors test radix sort on several GPUs and 
CPUs.  An analysis of parallel and sequential bitonic, odd-even and rank-sort algorithms for 
different CPU and GPU architectures are presented in [23] where they exploit task parallelism 
using OpenCL. 

 
3. GPU ARCHITECTURE and OPENCL FRAMEWORK 

NVidia GPUs comprises of array of multi-processor units called Streaming Multiprocessors 
(SMs), also called as Compute Units (CU) and each one consists of multiple Scalar Processor 
(SP) cores, also known as Processing Elements (PE). The NVidia Quadro FX 3800 has 24 SMs 
with 8 PEs in each SM as shown in Figure 1. There is on-chip local store called shared memory, 
through which the PEs communicate with SM and different SMs communicate through off-chip 
memory called global memory.  
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FIGURE 1: GPU Architecture  
 
The GPU is programmable using vendor provided API’s such as NVIDIA’s CUDA [18], OpenCL 
specification by Khronos group [22]. While CUDA targets GPU specifically, OpenCL targets 
heterogeneous system which includes GPUs and/or CPUs. OpenCL programming model involves 
a host program on the host (CPU) side that launches Single Instruction Multiple Threads (SIMT) 
based programs called kernels consisting of groups of threads called as warps on the target 
device. Although management of warps is hardware dependent, programmer can organize 
problem domain into several work-items, consisting of one or more work-groups. This is 
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explained as ND-Range in GPU architecture. For more information on managing and optimizing 
ND-Range refer to OpenCL Specifications [22]. In summary, we say, following steps are needed 
to initialize an OpenCL Application. 
 

• Setting Up OpenCL Environment – Declare OpenCL context, choose device type and 
create the context and a command queue. 

• Declare Buffers & Move Data across CPU & GPU – Declare buffers on the device and 
enqueue input data to the device. 

• Runtime Kernel Compilation – Compile the program from the kernel array, build the 
program, and define the kernel. 

• Run the Program – Set kernel arguments and the work-group size and then enqueue 
kernel onto the command queue to execute on the device. 

• Get Results to Host – After the program has run, read back result array from device 
buffer to host memory. 

 
See [25, 26, 27, 22] for more details on this topic.   

 
4. PARALLEL SORTING ALGORITHMS 

In this section we give brief descriptions of two parallel sorting algorithms selected for 
implementation.   
 
4.1 Bitonic Sort  
Batcher’s Bitonic sort [2] is a parallel sorting algorithm which merges two bitonic sequences. 
Bitonic sorting was originally defined in terms of sorting networks. Sorting networks are 
comparison networks that always sort their inputs. A sorting network [14, 3] is a special kind of 
sorting algorithm, where the sequence of comparisons is data independent. This makes sorting 
networks suitable for implementation in hardware or in parallel processor arrays. 
 
A bitonic sequence is a sequence of values a = {a0, a1…, ap-1} with the property that either (1) 
there exist an index k, where 0<k<p-1 such that a0 ≤ a1 ≤…≤ ak ≥ … ≥ap-1 or a0 ≥ a1 ≥…≥ ak ≤ … 
≤ap-1 or (2) there exist a cyclic shift of indices so that (1) is satisfied. For example, (4, 8, 12, 15, 
11, 6, 3, 2) is a bitonic sequence. 
 
Let s = {a1, a2… ap} be bitonic sequence such that a0 ≤ a1 ≤ … ≤ ap/2-1 and

 
ap/2 ≤ ap/2+1 ≤ … ≤ ap-1. 

The bitonic sequence s can be sorted with bitonic split operation which halves the sequence into 
two bitonic sequences s1 and s2 such that all values of s1 are smaller than or equal to all the 
values of s2. That is, bitonic split operation performs: 
 

S1 = {min (a0, ap/2), …, min (ap/2-1, ap-1)} 
S2 = {max (a0, ap/2), …, max (ap/2-1, ap-1)} 

 
  
For example, the bitonic sequence mentioned above s = (4, 8, 12, 15, 11, 6, 3, 2) will be divided 
to two bitonic sequences s1 = (4, 6, 3, 2) and s2 = (11, 8, 12, 15). Thus, given a bitonic sequence, 
we can use bitonic splits recursively to obtain short bitonic sequences until we obtain sequences 
of size one, at which point the input bitonic sequence is sorted. This procedure of sorting a bitonic 
sequence using bitonic splits is called bitonic merge (BM). 
 
The bitonic sorting network for sorting N numbers consists of log(N) bitonic sorting stages, where 
i
th
 stage is composed of N/2

i
 alternating increasing and decreasing bitonic merges of size 2

i
. In 

OpenCL implementation, we set kernel arguments for each of the stages and call the kernel sub-
routine bitonic sort. Algorithm 1, 2, and 3 shows bitonic sorting algorithm on GPU device using 
OpenCL. The algorithm executes on every core in GPU kernel in parallel. 
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__kernel void bitonic_sort(__global *data, int dir) 
{ 
          divide data into in1 and in2 
          sort(in1, ASC) 
          sort(in2, DES) 
          swap(in1, in2, dir) 
          sort(in1, dir) 
          sort(in2, dir) 
     result = (in1, in2) 
} 
 

Algorithm 1: Bitonic Sort Kernel for SIMD Architecture 

 

for each level i = 1, …, log(n) 
{ 
       for each pass of level j = 1 to i +1 
              run_kernel (); 
} 
 

Algorithm 2: Generalized Bitonic Sort 

 
Algorithm 1 is bitonic sort kernel for SIMD architecture where input data is multiple of 8 data 
sequence. Algorithm 2 is generalized bitonic sort and its corresponding kernel is shown in 
algorithm 3. 
 

__kernel sort(__global *data, int stage i, int pass_of_stage j, 
int dir) 
{  
      /* using values of i, j, dir – get left_Id & right_Id */ 
      left_child = data [left_Id] 
      right_child = data [right_Id] 
      compare(left_child, right_child) 
 
      /* copy left & right child values to data with respect to dir 
*/ 
      data [left_child] = max(left_child, right_child) 
      data [right_child] = min(left-child, right_child) 
} 

Algorithm 3: Generalized Bitonic Sort Kernel Using OpenCL 

 
Initially, the host (CPU) device distributes unsorted vector in form of work_groups to GPU cores 
using the global_size and local_size OpenCL Parameters. Alternate work_items in work_group 
perform sorting in ascending and descending order. Next, merging stage is performed and result 
is obtained. For more information, on this parameters please refer OpenCL Specifications [22]. 
 
4.2 Parallel Radix Sort 
Like the bitonic sort, the radix sort [14] uses a divide-and-conquer strategy; it splits the dataset 
into subsets and sorts the elements in the subsets. But instead of sorting bitonic sequences, the 
radix sort is a multiple pass distribution sort algorithm that distributes each item to a bucket 
according to least significant digit of the elements. After each pass, items are collected from the 
buckets, keeping the items in order, then redistributed according to the next most significant digit.  
 
Suppose, the input elements are 34, 12, 42, 32, 44, 41, 34, 11, 32, 63.  
 
After First Pass: {[41, 11],   [12, 42, 32, 32],   [63],    [34, 44, 34]} 
 
After Second Pass: {[11, 12], [32, 32, 34, 34], [41, 42, 44], [63]} 
 
When we collect them they are in order: {11, 12, 32, 32, 34, 34, 41, 42, 44, 63} 
 



Krishnahari Thouti & S.R.Sathe 

International Journal of Experimental Algorithms (IJEA), Volume (3): Issue (1) : 2012 5 

In OpenCL, the first step of each pass is to compute histogram to identify the least significant 
digit. Let ‘p’ be the number of number of processing elements available on GPU device. Each 

processing element is responsible for /n p    input elements. In next step, each processing 

element counts the number of its elements and then computes the prefix sums of these counts. 
Next, the prefix sums of all processing elements are combined by computing the prefix sums of 
the processing element-wise prefix sums. Finally, each processing element places its elements in 
the output array. More details are given in the pseudo-code below. 
 

b ← no. of bits 
A← Input Data 
cmp ← 1 
cnt0 ← contains zero’s count 
cnt1 ← contains one’s count 
One, Zero ← Bucket Arrays 
Mask ← Temporary Array 
 
for ( i = 0 to 2

b
 – 1) 

{ 
      for ( j = 0 to A.size) 
      { 
            if (A [j] && cmp) 
                 cnt1 ++ 
                 One [cnt1]  ← a[j] 
            else 
                cnt0 ++ 
                Mask [cnt0] ← j 
      } 
      for( j = cnt0 to A.size) 
      Mask [j] ← A.size – cnt0 + j 
   
   A ← shuffle(A, one, Mask) 
   cmp ← left_shift(cmp) 
} 
result ← A 

 
Pseudo-code: Parallel Radix Sort Kernel 

 
The code performs bitwise AND with cmp. If AND result is non-zero, code places the element in 
One array and increments one’s counter. If the result is zero, the code set appropriate value in 
Mask array and increment zero’s counter. Once every element is analyzed, the Mask array is 
further updated to identify each element in One;s array. The shuffle function re-arranges the 
Mask array data and then process continues.    
 
The computation of histogram is shown in algorithm 4. After this step, histogram is scanned and 
prefix sum is calculated using the algorithm 5. After this step, re-ordering of histogram takes place 
and finally result is obtained by transposing the re-ordered histogram. Other implementation 
details are not mentioned here; only the method is presented in this paper. For more information 
refer [27].  

 
5. EXPERIMENTAL RESULTS 
In this section, we discus machine specifications on which experiments were carried out and 
present our experimental results. In all cases, the elements to be sorted were randomly 
generated 10 bit integers. All experiments were repeated 30 times and the results were reported 
are averaged over 30 runs.  
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Let n = no. of elements 
wi = no. of work_items 
wg = no. of work_groups 
 
/* wi & wg can be computed using clDeviceInfo()    
    : see [22] */ 
for ( i = wi to wi + wg) 
{ 
      Extract the group of bits of pass i,and 
      Store the result in hist [] 
} 

Algorithm 4: Compute Histogram 

 
for each processing element, PE i 
{ 
      sum[i] = list [ (n/p) * i] 
      for ( j = 1 to n/p) 
      sum[i] = sum[i] + list[(n/p) * i + j ] 
 
   result = ∑(sum) 
}

 

 
Algorithm 5: Parallel Prefix Sum 

 
5.1 Machine Descriptions  
The GPU device used for testing simulation is NVidia Quadro FX 3800 which has 192 processing 
cores and 1 GB device global memory. For comparison purpose, we have implemented and 
tested the results of quick-sort algorithm on 2.66GHz Intel Core2DUO CPU E7300 with 1GB 
RAM. The cache specifications are 32KB data cache, 32KBinstruction cache and 3MB shared L2 
cache.   
 
5.2 Comparison of the Algorithms  
Figure 2 shows the comparison of above mentioned algorithms for different size of input 
sequence. For comparison purpose, we have taken the sequential version of Quick sort and have 
compared with OpenCL version of Parallel Bitonic Sort and Parallel Radix Sort.  As expected, in 
all cases, radix sort is fastest, followed by Bitonic sort, and then quick sort. GPU is a large 
computation unit and thus we measured the GPU runtime called as GPU PROFILE time only, 
excluding the time for GPU memory allocation, data and memory transfer between CPU and 
GPU. However, if we take into account, all the parameters concerning GPU application, as 
explained in Section – 3, we find that quick sort is still the fastest.  
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FIGURE 2: Comparison of Sorting Algorithms  
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6. CONCLUSION AND FUTURE SCOPE 
We have presented an analysis of parallel bitonic and radix sort algorithms for GPUs using 
OpenCL and their comparison with the serial implementation of quicksort on CPU Dual-core 
machine. We have shown their GPU performance and compared with CPU implementation of 
quick sort. Our finding reports that radix sort is still the fastest, followed by Bitonic sort, and then 
quick sort. In future work, along with these sorting algorithms, we are planning to investigate 
some other parallel sorting algorithms including quick sort and use different GPU architecture 
from different vendors for our analysis. 
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Abstract 

 
This paper describes an extremely fast polynomial time algorithm, the Near Optimal Vertex Cover 
Algorithm (NOVCA) that produces an optimal or near optimal vertex cover for any known 
undirected graph G (V, E). NOVCA is based on the idea of (i) including the vertex having 
maximum degree in the vertex cover and (ii) rendering the degree of a vertex to zero by including 
all its adjacent vertices. The two versions of algorithm, NOVCA-I and NOVCA-II, have been 
developed. The results identifying bounds on the size of the minimum vertex cover as well as 
polynomial complexity of algorithm are given with experimental verification. Future research 
efforts will be directed at tuning the algorithm and providing proof for better approximation ratio 
with NOVCA compared to any other available vertex cover algorithms. 
 
Keywords: Vertex Cover Problem, Combinatorial Problem, NP-Complete Problem, 
Approximation Algorithm. 

 
 
1. INTRODUCTION 
The Vertex Cover (VC) of a graph G(V,E) with vertex set V and edge set E is a subset of vertices 

C of  V (C ⊆ V) such that every edge of G has at least one endpoint in C. In 1972 Richard Karp 
[1] showed that identification of minimal VC in a graph is an NP-complete problem. 
 
Various algorithmic approaches have been used to tackle NP complete problems. The Vertex 
Cover problem, one of the NP complete problems, has been actively studied because of its 
important research and application implications. Polynomial-time approximation and heuristic 
algorithms for VC have been developed but none of them guarantee optimality. By using the 
definition of approximation ratio, VC has an approximation ratio of ρ(n) for any input of size n. The 
solution C produced by approximation algorithm is within the factor of ρ(n) of the solution C* of an 
optimal algorithm i.e. C*/C ≤ ρ(n). Also, the approximation algorithm has approximation ratio of 2 
– ε, where 0 < ε < 1. A 2-approximation [2] algorithm has been trivially obtained and similar 
approximation algorithms have been developed [3], [4] with an approximation of (2 – (ln (ln n)/2ln 
n)), where n is the number of vertices. Halperin [5] achieved an approximation factor of (2 – (1 – 
o(1))(2ln (ln Δ)/ ln Δ)) with maximum degree at most Δ. Karakostas [6] attained an approximation 
factor of (2 – θ(1/(log n)1/2))), the best approximation yet, by using the semidefinite programming 
relaxation of VC. Evolutionary algorithms (EA) that are randomized search heuristics have also 
been used for solving combinatorial optimization problems including VC [7], [8]. 
 
Vertex Cover problems have been solved in O (1.2738k + kn) time [9] by using a bounded search 
technique where a function of a parameter restricts the search space. Abu-Khazm et al. have 
identified crown structure to reduce the size of both n and k [10]. It has been known that when 
relevant parameters are fixed, NP-complete problems can be solved in polynomial time. In both 
[10] and [11], n is the input size and k is the positive integer parameter. Though not guaranteed to 
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find a minimum vertex cover, an approximation of 3/2 for almost every single graph was obtained 
in [11]. According to Dinur and Safra [12], it is NP-Hard to get ε < 1.3606. 
 
The paper is organized as follows: the NOVCA algorithm is described in Section 2; Section 3 
provides experimental results; Section 4 is the conclusion. 
 
2. NEAR OPTIMAL VERTEX COVER ALGORITHMS (NOVCA) 
NOVCA is motivated by the fact that a vertex cover candidates are those that are adjacent to 
minimum degree vertex so that its degree will be forcibly rendered to zero without choosing it. 
This fact has been reinforced during tie when the vertex with neighbors having maximum degrees 
is preferred over other minimum vertices. Without any optimization effort, the complexity of 
NOVCA is O(E (V + log2V)); with V = n, the complexity becomes O(n2 (n + log2n)) which is 
polynomial. The pseudo-code of NOVCA is presented in Fig. 1. Network Bench Node Degree 
algorithm [13] has been applied to determine the degree of each node. Then, the sum of the 
degree of adjacent nodes for each node is calculated. Both these values are included as data 
structures in a node - deg[v]/adj_deg_sum[v] as showed in Fig. 2. Initially, vertex cover set VC is 
empty.  
 
NOVCA-I [14] constructs the vertex cover by repeatedly adding, at each step, all vertices 
adjacent to the vertex of minimal degree; in the case of a tie, it selects the one having the 
maximum sum of degrees of its neighbors. NOVCA-II, on the other hand, builds vertex cover by 
including vertices in descending order of degree; in the case of a tie, it chooses the vertex having 
the minimum sum of degrees of its neighbors. The vertices are chosen in increasing order of their 
degrees i.e. the adjacent vertices of minimum degree vertex are included in VC first. The magic 
function GetMinVertex () breaks a tie in selecting the best candidate vertex in a vertex cover. The 
implementation forcibly renders the degree of low degree vertices to zero without choosing them. 
 
Declarations: 

V is the set of vertices of G 
E is the set of edges of G 
deg[V] is an integer array indexed by V for a set 
       of vertices V 
sum_adj_deg[V] is an integer array indexed by V for 
               a set of vertices V 
VC is the set of vertices comprising a vertex cover  
Qsum_adj_deg is the set of vertices having min deg[V] 
         (local variable in GetMinVertex()) 
 

Functions: 
Degree(v) is the degree of the vertex v є V 
Adj(v) gives the set of vertices that are adjacent 
       to v є V 
GetMinVertex() identifies the next adjacent 
               vertices to include in the cover 
 
Heap_MIN(deg) returns the value of min. deg[V] 
HEAP_MAX(Qsum_adj_deg) returns the vertex having max  
                   Qsum_adj_deg 

 
 
 
   for each v є V {  
      deg[v] = Degree(v) 
   } 
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   for each v є V { 
    
    sum_adj_deg[v] =Σ v’ε Adj(v)deg[v’]  
  } 
 
  E’ = E 
  VC = ф 
 
  while (E’≠ ф){ 
    vc = GetMinVertex(deg, sum_adj_deg)  
    VC = VC + { Adj(vc) } 
    for each v є Adj(Adj(vc)){  //for NOVCA-I 
    //for each v є Adj(vc){  //for NOVCA-II               
     E' = E – { (adj(vc), v) } 
  deg[v] = deg[v] – 1 
    } 
    V = V – { Adj(vc) } //for NOVCA-I 
   //V = V – { vc } //for NOVCA-II 
  for each v є V{             
          If (Adj(v) == ф) continue 
   sum_adj_deg[v] = Σ v’ε Adj(v)deg[v’] 
    } 
   } //end while 
 
   /// Magic Function GetMinVertex() Declarations /// 
 
   Vertex GetMinVertex(deg, sum_adj_deg){ 
     Qsum_adj_deg =  ф 
     vmin_deg = HEAP_MIN(deg)   //for NOVCA-I 
     //vmax_deg = HEAP_MAX(deg) //for NOVCA-II 
     for each v є V{ 
       If (deg[v] == vmin_deg)   //for NOVCA-I 
       //If (deg[v] == vmax_deg) //for NOVCA-II 
         Qsum_adj_deg = Qsum_adj_deg + {v} 
     } 
     return Heap_MAX(Qsum_adj_deg)   //for NOVCA-I 
     //return Heap_MIN(Qsum_adj_deg) //for NOVCA-II 
   } 

 
FIGURE 1: Pseudo-code for NOVCA; E[G]: set of edges of graph G; VC: Vertex Cover Set; Q: Priority 

Queue; note that the commented bold statements are for NOVCA-II. 
 

3. EXPERIMENTAL WORK AND RESULTS 
Experiments to corroborate the theoretical results have been conducted on the CWRU High 
Performance Computing Resource using compute nodes with 3.0 GHz Intel Xeon processors 
running Red Hat Enterprise Linux 4 and using the gcc 3.4.6 compiler. Tests are performed in both 
serial and parallel environments. Results for all example graphs as described above always 
return optimal (minimum) vertex cover. We have selected Complete Graph as a test graph to 
determine time complexity of NOVCA for two reasons: 
 

 optimal vertex cover is known; n – 1; where n is the number of vertices 
 requires exhaustive search; there is an edge from each vertex to all other vertices 

  
The shell script in Fig. 2 “graph_gen.sh” generates a complete graph of size n entered as input. 
This graph is then fed to executable “vc (serial) or vc_openmp (parallel)” (C++ program compiled 
with g++ compiler) to get vertex cover for that particular graph. The outputs are showed in Fig. 3. 



Sanjaya Gajurel & Roger Bielefeld 

International Journal of Experimental Algorithms (IJEA), Volume (3) : Issue (1) : 2012 12 

 
#PBS -l walltime=36:00:00 
#PBS -l nodes=1:ppn=4:quad 
#PBS -N graph1000 
#PBS -j oe 
cd $PBS_O_WORKDIR 
/usr/local/bin/pbsdcp -s vc graph_gen.sh $TMPDIR 
cd $TMPDIR 
sh graph_gen.sh 1000 
cp gen_graph graph1000 
time ./vc graph1000 #vc_openmp for parallel 
/usr/local/bin/pbsdcp -g '*' $PBS_O_WORKDIR 
cd $PBS_O_WORKDIR 
 

FIGURE 2: The graph_gen.sh takes 1000 (number of vertices) as an input that creates a netlist in a file, 
graph1000, input to the executable vc; execuatable vc will be vc_openmp and ppn = 4 respectively for 

parallel implementation. 
 
The cover consists of the following vertices: 
  0      1      2      3      4      5      6      7 
  8      9     10     11     12     13     14     15  
… 
… 
994    995    996    997    998 
There are 999 vertices in the cover. 
real    0m7.161s 
user    0m7.156s 
sys     0m0.004s 
 

FIGURE 3: Output showing the vertices in a vertex cover, number of vertices, and execution time 
 
We have recorded the computation time for different sizes of the graphs for both serial and 
parallel implementation to elucidate the polynomial complexity of NOVCA algorithm as depicted in 
Fig. 4(a)(b). We used MATLAB’s polyfit(x,y,n) command to verify polynomiality as shown in Fig. 5 
and Fig 6(a)(b). 
 

 
(a) 
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(b) 

 
FIGURE 4: Computational Time of NOVCA for different sizes of complete graphs for (a) Serial and (b) 

Parallel 
 
x = [1000,2000,3000,4000,5000,6000,7000]; 
y=[7.124,129.21,437.274,1046.93,2061.037,2882.444,4666. 
  976]; % from serial implementation 
y=[7.083,65.08,238.669,589.784,971.582,1649.391,2223.02 
  0]; % from parallel implementation 
p = polyfit(x,y,2) 
p = 0.0001   -0.3592  258.4364 
x2 = 1000:500:7000; 
y2 = polyval(p,x2); 
plot(x,y,'o',x2,y2) 
 
FIGURE 5: MATLAB commands used for output data (computation time) from simulation for both serial and 

parallel implementation 
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(a) 
 

 
(b) 

 
FIGURE 6: MATLAB plot using polyfit with n=2; (a) Serial and (b) Parallel 

 
NOVCA has approximation ratio smaller than 1.3606 for all available bench mark (Table 1, Table 
2[15]; not showed all of the instances) graphs.  For some instances like c-fat, Johnson, and 
random graphs NOVCA provides optimal cover. Noticeably, the execution time of NOVCA for any 
instance is remarkable. NOVCA has been found to perform very well compared to other available 
algorithms. For the instances where it provides near optimal solutions, it outperforms other 
algorithms in terms of execution time. We have compared NOVCA with COVER [16]. COVER is a 
stochastic local search algorithm for k-vertex cover. It constructs the initial candidate solution C 
greedily. When the several vertices satisfy the criterion for inclusion in C, COVER selects one of 
them randomly with uniform probabilities. The COVER algorithm terminates when either the 
vertex cover is found or max number of steps (MAX_ITERATIONS), has been reached. NOVCA, 
on the other hand doesn’t have any randomness element and terminates when there are no more 
vertices in V. So, it has only one run unlike average execution time calculated using random 
seeds in different runs in COVER.  
 
Though COVER is found to obtain better vertex cover in most of the instances of the 
benchmarks, NOVCA is very simple and it outperforms COVER in execution time. In case of the 
graph instance, MANN_a81, where both NOVCA and COVER return the same value 2225, 
NOVCA is 20 times faster. Though NOVCA-I outperforms NOVCA-II in terms of approximation 
ratio in almost all instances except keller, p-hat, and sanr, NOVCA-II has better execution time 
than NOVCA-I. For the challenge instances of frb100-40 [15], NOVCA-I is off by just 17 vertices 
(NOVCA returns 3917 vertices whereas the optimal vertex cover is 3900), but the execution time 
is just remarkable; only 2013.667 sec. The challenge is stated as “Based on theoretical analysis 
and experimental results of smaller instances, I conjecture that in the next 20 years or more (from 
2005), these two benchmarks cannot be solved on a PC (or alike) in a reasonable time (e.g. 1 
day) [15].” The graphs for number of vertices returned and the execution times, as showed in Fig. 
7 and Fig. 8 respectively, portray that NOVCA, though comparable to COVER in terms of number 
of vertices returned, is significantly faster than COVER. We have also carried out comparisons of 
NOVCA against two other heuristic Minimum Vertex Cover (MVC) Algorithms, PLS [17] and 
EWCC [18], with similar results (not explicitly tabulated here). 
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Instances |V| |C*| 
NOVCA-I 

|C| 
NOVCA-I 
|C|/|C*| 

NOVCA-I 
Time (sec) 

COVER 
|C|avg 

COVER 
Timeavg (sec) 

frb59-26-1 1534 1475 1485 1.007 80.258 1477 18611.3 
frb59-26-2 1534 1475 1484 1.006 79.297 1478 18589.5 
frb100-40 4000 3900 3917 1.004 2013.667 - - 
broc200_1 200 179 181 1.011 0.115 179 768.2 
broc800_4 800 774 782 1.010 10.832 775 4051.2 
C2000.9 2000 1922 1932 1.005 207.060 1922 21489.7 

c-fat200-5 200 142 142 1 0.092 142 1549.1 
c-fat500-10 500 374 374 1 2.117 374 4401.2 

gen200_p0.9_44 200 156 163 1.045 0.092 156 1543.6 
hamming10-2 1024 512 512 1 10.297 512 2412.2 
hamming10-4 1024 984 988 1.004 21.505 986 3457.6 
johnson16-2-4 120 112 112 1 0.076 112 297.9 
johnson32-2-4 496 480 480 1 2.273 480 2351.9 

keller4 171 160 164 1.025 0.007 160 985.7 
keller5 776 749 761 1.016 9.125 749 2364.9 

MANN_a27 378 252 253 1.004 0.493 252 756.3 
MANN_a81 3321 2221 2225 1.002 773.963 2225 15672.1 
p_hat500-1 500 491 492 1.002 2.683 491 1810.2 
p_hat1500-3 1500 1406 1414 1.006 74.991 1406 1298.9 

san200_0.7_1 200 170 183 1.077 0.117 170 713.7 
san1000 1000 985 991 1.006 22.901 989 4972.8 

sanr200_0.7 200 183 185 1.011 0.857 183 788.2 
sanr400_0.7 400 379 382 1.008 1.030 380 2112.5 
graph50-10 50 35 35 1 0.006 35 124.5 
graph100-10 100 70 70 1 0.034 70 205.3 
graph200-05 200 150 150 1 0.114 150 854.1 
graph250-05 250 200 200 1 0.300 200 988.5 
graph500-05 500 290 290 1 1.604 290 22555.2 

 
TABLE 1: Performance Comparison between NOVCA-I and COVER on DIMACS and BHOSLIB 

benchmarks |V|: number of vertices; |C*|: optimal cover; NOVCA |C|: cover returned by NOVCA; COVER 
|C|avg: Cover returned by COVER; NOVCA Time (sec): Execution time for NOVCA; COVER Timeavg: 

Average execution time for COVER; no data available for the instance frb100-40 in COVER 
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Instances |V| |C*| 
NOVCA-II 

|C| 
NOVCA-II 

|C|/|C*| 
NOVCA-II 
Time (sec) 

COVER 
|C|avg 

COVER 
Timeavg (sec) 

frb59-26-1 1534 1475 1494 1.014 34.770 1477 18611.3 
frb59-26-2 1534 1475 1496 1.014 35.686 1478 18589.5 
frb100-40 4000 3900 3944 1.011 885.860 - - 
broc200_1 200 179 182 1.017 1.316 179 768.2 
broc800_4 800 774 786 1.016 6.162 775 4051.2 
C2000.9 2000 1922 1942 1.010 88.604 1922 21489.7 

c-fat200-5 200 142 142 1 1.238 142 1549.1 
c-fat500-10 500 374 374 1 1.514 374 4401.2 

gen200_p0.9_44 200 156 170 1.090 1.514 156 1543.6 
hamming10-2 1024 512 512 1 5.584 512 2412.2 
hamming10-4 1024 984 992 1.008 10.350 986 3457.6 
johnson16-2-4 120 112 112 1 1.248 112 297.9 
johnson32-2-4 496 480 480 1 2.245 480 2351.9 

keller4 171 160 162 1.013 1.500 160 985.7 
keller5 776 749 761 1.016 5.115 749 2364.9 

MANN_a27 378 252 261 1.036 1.641 252 756.3 
MANN_a81 3321 2221 2241 1.009 297.236 2225 15672.1 
p_hat500-1 500 491 492 1.002 2.595 491 1810.2 

p_hat1500-3 1500 1406 1412 1.004 34.535 1406 1298.9 
san200_0.7_1 200 170 185 1.088 1.535 170 713.7 

san1000 1000 985 992 1.007 11.657 989 4972.8 
sanr200_0.7 200 183 184 1.005 1.351 183 788.2 
sanr400_0.7 400 379 384 1.013 1.947 380 2112.5 
graph50-10 50 35 35 1 1.667 35 124.5 

graph100-10 100 70 70 1 1.552 70 205.3 
graph200-05 200 150 150 1 1.523 150 854.1 
graph250-05 250 200 200 1 1.653 200 988.5 
graph500-05 500 290 290 1 2.366 290 22555.2 

 
TABLE 2: Performance Comparison between NOVCA-II and COVER on DIMACS and BHOSLIB 

benchmarks |V|: number of vertices; |C*|: optimal cover; NOVCA |C|: cover returned by NOVCA; COVER 
|C|avg: Cover returned by COVER; NOVCA Time (sec): Execution time for NOVCA; COVER Timeavg: 

Average execution time for COVER; no data available for the instance frb100-40 in COVER 
 

 
 
FIGURE 7: Number of Vertices returned by NOVCA-I, NOVCA-II, and COVER; no results from COVER for 

the instance frb100-40 
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FIGURE 8: Execution time for NOVCA-I, NOVCA-II, and COVER; no results from COVER for the instance 
frb100-40 

 
4. CONCLUSION AND FUTURE WORK 
NOVCA algorithm provides optimal or near optimal vertex cover for known benchmark graphs. 
The experimental results depict that the algorithm is extremely fast compared to other available 
state-of-the-art MVC algorithms including COVER, PLS, and EWCC. 
 
Future research will be focused in two areas: deriving a mathematical statement regarding the 
closeness of the approximation ratio to 1, and investigating approaches to parallelizing the 
NOVCA algorithm. 
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