

INTERNATIONAL JOURNAL OF
EXPERIMENTAL ALGORITHMS (IJEA)

VOLUME 3, ISSUE 1, 2012

EDITED BY

DR. NABEEL TAHIR

ISSN (Online): 2180-1282

International Journal of Experimental Algorithms (IJEA) is published both in traditional paper form

and in Internet. This journal is published at the website http://www.cscjournals.org, maintained by

Computer Science Journals (CSC Journals), Malaysia.

IJEA Journal is a part of CSC Publishers

Computer Science Journals

http://www.cscjournals.org

INTERNATIONAL JOURNAL OF EXPERIMENTAL ALGORITHMS

(IJEA)

Book: Volume 3, Issue 1, October 2012

Publishing Date: 25-10-2012

ISSN (Online): 1985-4129

This work is subjected to copyright. All rights are reserved whether the whole or

part of the material is concerned, specifically the rights of translation, reprinting,

re-use of illusions, recitation, broadcasting, reproduction on microfilms or in any

other way, and storage in data banks. Duplication of this publication of parts

thereof is permitted only under the provision of the copyright law 1965, in its

current version, and permission of use must always be obtained from CSC

Publishers.

IJEA Journal is a part of CSC Publishers

http://www.cscjournals.org

© IJEA Journal

Published in Malaysia

Typesetting: Camera-ready by author, data conversation by CSC Publishing Services – CSC Journals,

Malaysia

CSC Publishers, 2012

EDITORIAL BOARD

ASSOCIATE EDITORS (AEiCs)

Associate Professor Dursun Delen
Oklahoma State University
United States of America

Professor Nizamettin Aydin
Yildiz Technical University
Turkey

EDITORIAL BOARD MEMBERS (EBMs)

Dr. Doga Gursoy
Graz University of Technology (Austria)

Dr. Kenneth Revett
British University in Egypt (Egypt)

International Journal of Experimental Algorithms (IJEA), Volume (3) : Issue (1) : 2012

TABLE OF CONTENTS

Volume 3, Issue 1, October 2012

Pages

1 - 8 An OpenCL Method of Parallel Sorting Algorithms for GPU Architecture

Krishnahari Thouti, S. R. Sathe

9 - 18 A Fast Near Optimal Vertex Cover Algorithm (NOVCA)

Sanjaya Gajurel, Roger Bielefeld

Krishnahari Thouti & S.R.Sathe

International Journal of Experimental Algorithms (IJEA), Volume (3): Issue (1) : 2012 1

An OpenCL Method of Parallel Sorting Algorithms for GPU
Architecture

Krishnahari Thouti kthouti@gmail.com
Department of Computer Science Engg.
Visvesvaraya National Institute of Technology
Nagpur, 440010, Maharashtra, India

S. R. Sathe srsathe@cse.vnit.ac.in
Department of Computer Science Engg.
Visvesvaraya National Institute of Technology
Nagpur, 440010, Maharashtra, India

Abstract

In this paper, we present a comparative performance analysis of different parallel sorting
algorithms: Bitonic sort and Parallel Radix Sort. In order to study the interaction between the
algorithms and architecture, we implemented both the algorithms in OpenCL and compared its
performance with Quick Sort algorithm, the fastest algorithm. In our simulation, we have used
Intel Core2Duo CPU 2.67GHz and NVidia Quadro FX 3800 as graphical processing unit.

Keywords: GPU, GPGPU, Parallel Computing, Parallel Sorting Algorithms, OpenCL.

1. INTRODUCTION

The GPU (Graphics Processing Unit) [1] is a highly tuned, specialized machine, designed
specifically for parallel processing at high speed. In recent years, Graphic Processing Unit (GPU)
has been evolved as massive parallel processor for achieving high computing performance. The
architecture of GPU is suitable not only for graphics rendering algorithms but for also general
parallel algorithms in a wide variety of application domains.

Sorting is one of the fundamental problems of computer science, and parallel algorithms for

sorting have been studied since the beginning of parallel computing. Batcher’s 2(log)nΘ - depth

bitonic sorting network [2] was one of the first methods proposed. Since then many different
parallel sorting algorithms have been proposed [7, 9, 10]. The (log)nΘ - depth sorting circuit was

proposed in [4, 6].

Given, a diversity of parallel architectures and a number of parallel sorting algorithms, there is a
question of which is the best fit for a given problem instance. An extent to which an application
will benefit from these parallel systems, depend on the number of cores available and other
parameters. Thus, many researchers have become interested in harnessing the power of GPUs
for sorting algorithms. Recently, there has been increased interest in such research efforts [8, 11,
16]. However, more studies are needed to claim whether a certain algorithm can be
recommended for a particular parallel architecture.

In this paper, we present an experimental study of two different parallel sorting algorithms: Bitonic
sort and Parallel Radix sort.

This paper is organized as follows. Section - 2 provides previous work done. In Section - 3, we
present GPU architecture and OpenCL Programming model. Parallel Sorting algorithms are
explained in Section - 4. Test results and analysis are provided in Section - 5. Section - 6
concludes our work and makes future research plans.

Krishnahari Thouti & S.R.Sathe

International Journal of Experimental Algorithms (IJEA), Volume (3): Issue (1) : 2012 2

2. RELATED WORK

In this section, we review previous work on parallel sorting algorithms. Study of parallel
algorithms using OpenCL is still in progress and there is not much work done in this topic.
However, an overview of parallel sorting algorithms is given in [5]. Here we review parallel
algorithms with respect to GPU architecture.

A parallel sorting algorithm is presented in [12] for general purpose internal sorting on MIMD
machines where performance of the algorithm on the Fujitsu AP1000 MIMD supercomputer is
discussed. A comparative performance evaluation of parallel sorting algorithms presented in [13].
They implement parallel algorithms with respect to the architecture of the machine. An on-chip
local memory version of radix sort for GPU’s has been implemented [21]. As expected, OpenCL
local memory is much faster than global memory. Bitonic sorting algorithm has been implemented
using stream processing units and Image Stream processors in [17, 15].

An O(n) radix sort is implemented in [21]. As reported in [21] radix sort is roughly twice as fast as
the CUDAPP[19] radix sort. Quick-sort algorithm for GPU’s using CUDA has been implemented
in [20] where their results suggest that given a large data set of elements, quick-sort still gives
better performance as compared to radix and Bitonic sort. A portable OpenCL implementation of
the radix sort algorithm is presented in [24] where authors test radix sort on several GPUs and
CPUs. An analysis of parallel and sequential bitonic, odd-even and rank-sort algorithms for
different CPU and GPU architectures are presented in [23] where they exploit task parallelism
using OpenCL.

3. GPU ARCHITECTURE and OPENCL FRAMEWORK

NVidia GPUs comprises of array of multi-processor units called Streaming Multiprocessors
(SMs), also called as Compute Units (CU) and each one consists of multiple Scalar Processor
(SP) cores, also known as Processing Elements (PE). The NVidia Quadro FX 3800 has 24 SMs
with 8 PEs in each SM as shown in Figure 1. There is on-chip local store called shared memory,
through which the PEs communicate with SM and different SMs communicate through off-chip
memory called global memory.

P
E

 1

P
E

 1

P
E

 1

P
E

 2

P
E

 2

P
E

 2

P
E

 8

P
E

 8

P
E

 8

LOCAL MEMORY LOCAL MEMORY LOCAL MEMORY

GLOBAL MEMORY

H
O

S
T

FIGURE 1: GPU Architecture

The GPU is programmable using vendor provided API’s such as NVIDIA’s CUDA [18], OpenCL
specification by Khronos group [22]. While CUDA targets GPU specifically, OpenCL targets
heterogeneous system which includes GPUs and/or CPUs. OpenCL programming model involves
a host program on the host (CPU) side that launches Single Instruction Multiple Threads (SIMT)
based programs called kernels consisting of groups of threads called as warps on the target
device. Although management of warps is hardware dependent, programmer can organize
problem domain into several work-items, consisting of one or more work-groups. This is

Krishnahari Thouti & S.R.Sathe

International Journal of Experimental Algorithms (IJEA), Volume (3): Issue (1) : 2012 3

explained as ND-Range in GPU architecture. For more information on managing and optimizing
ND-Range refer to OpenCL Specifications [22]. In summary, we say, following steps are needed
to initialize an OpenCL Application.

• Setting Up OpenCL Environment – Declare OpenCL context, choose device type and
create the context and a command queue.

• Declare Buffers & Move Data across CPU & GPU – Declare buffers on the device and
enqueue input data to the device.

• Runtime Kernel Compilation – Compile the program from the kernel array, build the
program, and define the kernel.

• Run the Program – Set kernel arguments and the work-group size and then enqueue
kernel onto the command queue to execute on the device.

• Get Results to Host – After the program has run, read back result array from device
buffer to host memory.

See [25, 26, 27, 22] for more details on this topic.

4. PARALLEL SORTING ALGORITHMS

In this section we give brief descriptions of two parallel sorting algorithms selected for
implementation.

4.1 Bitonic Sort
Batcher’s Bitonic sort [2] is a parallel sorting algorithm which merges two bitonic sequences.
Bitonic sorting was originally defined in terms of sorting networks. Sorting networks are
comparison networks that always sort their inputs. A sorting network [14, 3] is a special kind of
sorting algorithm, where the sequence of comparisons is data independent. This makes sorting
networks suitable for implementation in hardware or in parallel processor arrays.

A bitonic sequence is a sequence of values a = {a0, a1…, ap-1} with the property that either (1)
there exist an index k, where 0<k<p-1 such that a0 ≤ a1 ≤…≤ ak ≥ … ≥ap-1 or a0 ≥ a1 ≥…≥ ak ≤ …
≤ap-1 or (2) there exist a cyclic shift of indices so that (1) is satisfied. For example, (4, 8, 12, 15,
11, 6, 3, 2) is a bitonic sequence.

Let s = {a1, a2… ap} be bitonic sequence such that a0 ≤ a1 ≤ … ≤ ap/2-1 and

ap/2 ≤ ap/2+1 ≤ … ≤ ap-1.

The bitonic sequence s can be sorted with bitonic split operation which halves the sequence into
two bitonic sequences s1 and s2 such that all values of s1 are smaller than or equal to all the
values of s2. That is, bitonic split operation performs:

S1 = {min (a0, ap/2), …, min (ap/2-1, ap-1)}
S2 = {max (a0, ap/2), …, max (ap/2-1, ap-1)}

For example, the bitonic sequence mentioned above s = (4, 8, 12, 15, 11, 6, 3, 2) will be divided
to two bitonic sequences s1 = (4, 6, 3, 2) and s2 = (11, 8, 12, 15). Thus, given a bitonic sequence,
we can use bitonic splits recursively to obtain short bitonic sequences until we obtain sequences
of size one, at which point the input bitonic sequence is sorted. This procedure of sorting a bitonic
sequence using bitonic splits is called bitonic merge (BM).

The bitonic sorting network for sorting N numbers consists of log(N) bitonic sorting stages, where
i
th
 stage is composed of N/2

i
 alternating increasing and decreasing bitonic merges of size 2

i
. In

OpenCL implementation, we set kernel arguments for each of the stages and call the kernel sub-
routine bitonic sort. Algorithm 1, 2, and 3 shows bitonic sorting algorithm on GPU device using
OpenCL. The algorithm executes on every core in GPU kernel in parallel.

Krishnahari Thouti & S.R.Sathe

International Journal of Experimental Algorithms (IJEA), Volume (3): Issue (1) : 2012 4

__kernel void bitonic_sort(__global *data, int dir)
{
 divide data into in1 and in2
 sort(in1, ASC)
 sort(in2, DES)
 swap(in1, in2, dir)
 sort(in1, dir)
 sort(in2, dir)
 result = (in1, in2)
}

Algorithm 1: Bitonic Sort Kernel for SIMD Architecture

for each level i = 1, …, log(n)
{
 for each pass of level j = 1 to i +1
 run_kernel ();
}

Algorithm 2: Generalized Bitonic Sort

Algorithm 1 is bitonic sort kernel for SIMD architecture where input data is multiple of 8 data
sequence. Algorithm 2 is generalized bitonic sort and its corresponding kernel is shown in
algorithm 3.

__kernel sort(__global *data, int stage i, int pass_of_stage j,
int dir)
{
 /* using values of i, j, dir – get left_Id & right_Id */
 left_child = data [left_Id]
 right_child = data [right_Id]
 compare(left_child, right_child)

 /* copy left & right child values to data with respect to dir
*/
 data [left_child] = max(left_child, right_child)
 data [right_child] = min(left-child, right_child)
}

Algorithm 3: Generalized Bitonic Sort Kernel Using OpenCL

Initially, the host (CPU) device distributes unsorted vector in form of work_groups to GPU cores
using the global_size and local_size OpenCL Parameters. Alternate work_items in work_group
perform sorting in ascending and descending order. Next, merging stage is performed and result
is obtained. For more information, on this parameters please refer OpenCL Specifications [22].

4.2 Parallel Radix Sort
Like the bitonic sort, the radix sort [14] uses a divide-and-conquer strategy; it splits the dataset
into subsets and sorts the elements in the subsets. But instead of sorting bitonic sequences, the
radix sort is a multiple pass distribution sort algorithm that distributes each item to a bucket
according to least significant digit of the elements. After each pass, items are collected from the
buckets, keeping the items in order, then redistributed according to the next most significant digit.

Suppose, the input elements are 34, 12, 42, 32, 44, 41, 34, 11, 32, 63.

After First Pass: {[41, 11], [12, 42, 32, 32], [63], [34, 44, 34]}

After Second Pass: {[11, 12], [32, 32, 34, 34], [41, 42, 44], [63]}

When we collect them they are in order: {11, 12, 32, 32, 34, 34, 41, 42, 44, 63}

Krishnahari Thouti & S.R.Sathe

International Journal of Experimental Algorithms (IJEA), Volume (3): Issue (1) : 2012 5

In OpenCL, the first step of each pass is to compute histogram to identify the least significant
digit. Let ‘p’ be the number of number of processing elements available on GPU device. Each

processing element is responsible for /n p   input elements. In next step, each processing

element counts the number of its elements and then computes the prefix sums of these counts.
Next, the prefix sums of all processing elements are combined by computing the prefix sums of
the processing element-wise prefix sums. Finally, each processing element places its elements in
the output array. More details are given in the pseudo-code below.

b ← no. of bits
A← Input Data
cmp ← 1
cnt0 ← contains zero’s count
cnt1 ← contains one’s count
One, Zero ← Bucket Arrays
Mask ← Temporary Array

for (i = 0 to 2

b
 – 1)

{
 for (j = 0 to A.size)
 {
 if (A [j] && cmp)
 cnt1 ++
 One [cnt1] ← a[j]
 else
 cnt0 ++
 Mask [cnt0] ← j
 }
 for(j = cnt0 to A.size)
 Mask [j] ← A.size – cnt0 + j

 A ← shuffle(A, one, Mask)
 cmp ← left_shift(cmp)
}
result ← A

Pseudo-code: Parallel Radix Sort Kernel

The code performs bitwise AND with cmp. If AND result is non-zero, code places the element in
One array and increments one’s counter. If the result is zero, the code set appropriate value in
Mask array and increment zero’s counter. Once every element is analyzed, the Mask array is
further updated to identify each element in One;s array. The shuffle function re-arranges the
Mask array data and then process continues.

The computation of histogram is shown in algorithm 4. After this step, histogram is scanned and
prefix sum is calculated using the algorithm 5. After this step, re-ordering of histogram takes place
and finally result is obtained by transposing the re-ordered histogram. Other implementation
details are not mentioned here; only the method is presented in this paper. For more information
refer [27].

5. EXPERIMENTAL RESULTS
In this section, we discus machine specifications on which experiments were carried out and
present our experimental results. In all cases, the elements to be sorted were randomly
generated 10 bit integers. All experiments were repeated 30 times and the results were reported
are averaged over 30 runs.

Krishnahari Thouti & S.R.Sathe

International Journal of Experimental Algorithms (IJEA), Volume (3): Issue (1) : 2012 6

Let n = no. of elements
wi = no. of work_items
wg = no. of work_groups

/* wi & wg can be computed using clDeviceInfo()
 : see [22] */
for (i = wi to wi + wg)
{
 Extract the group of bits of pass i,and
 Store the result in hist []
}

Algorithm 4: Compute Histogram

for each processing element, PE i
{
 sum[i] = list [(n/p) * i]
 for (j = 1 to n/p)
 sum[i] = sum[i] + list[(n/p) * i + j]

 result = ∑(sum)
}

Algorithm 5: Parallel Prefix Sum

5.1 Machine Descriptions
The GPU device used for testing simulation is NVidia Quadro FX 3800 which has 192 processing
cores and 1 GB device global memory. For comparison purpose, we have implemented and
tested the results of quick-sort algorithm on 2.66GHz Intel Core2DUO CPU E7300 with 1GB
RAM. The cache specifications are 32KB data cache, 32KBinstruction cache and 3MB shared L2
cache.

5.2 Comparison of the Algorithms
Figure 2 shows the comparison of above mentioned algorithms for different size of input
sequence. For comparison purpose, we have taken the sequential version of Quick sort and have
compared with OpenCL version of Parallel Bitonic Sort and Parallel Radix Sort. As expected, in
all cases, radix sort is fastest, followed by Bitonic sort, and then quick sort. GPU is a large
computation unit and thus we measured the GPU runtime called as GPU PROFILE time only,
excluding the time for GPU memory allocation, data and memory transfer between CPU and
GPU. However, if we take into account, all the parameters concerning GPU application, as
explained in Section – 3, we find that quick sort is still the fastest.

0 2 4 6 8 10 12 14 16 18

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Ti
m

e
(m

s)

No. of Elements in M units (1M = 2^20)

 Quick Sort
 Bitonic Sort
 Radix Sort

FIGURE 2: Comparison of Sorting Algorithms

Krishnahari Thouti & S.R.Sathe

International Journal of Experimental Algorithms (IJEA), Volume (3): Issue (1) : 2012 7

6. CONCLUSION AND FUTURE SCOPE
We have presented an analysis of parallel bitonic and radix sort algorithms for GPUs using
OpenCL and their comparison with the serial implementation of quicksort on CPU Dual-core
machine. We have shown their GPU performance and compared with CPU implementation of
quick sort. Our finding reports that radix sort is still the fastest, followed by Bitonic sort, and then
quick sort. In future work, along with these sorting algorithms, we are planning to investigate
some other parallel sorting algorithms including quick sort and use different GPU architecture
from different vendors for our analysis.

REFERENCES
[1] General Purpose Computations Using Graphics Hardware, http://www.gpgpu.org/

[2] K. E. Batcher. “Sorting networks and their applications”. in AFIPS Spring Joint Computer

Conference, Arlington, VA, Apr. 1968, pages 307–314.

[3] D.E. Knuth. The Art of Computer Programming. Vol. 3: Sorting and Searching (second

edition). Menlo Park: Addison-Wesley, 1981.

[4] M. Ajtai, J. Komlos, Szemeredi. “Sorting in parallel steps”. Combinatorica 3. 983, pp. 1 -19.

[5] S. G. Akl. “Parallel Sorting Algorithms”, Academic Press, 1985.

[6] J. H. Reif, L. G. Valiant. “A Logarithmic Time Sort for Linear Size Networks”. Journals of the

ACM, 34(1): 60 – 76, 1987.

[7] G.E. Blelloch,” Vector Models for Data-Parallel Computing”. The MIT Press, 1990.

[8] G.E. Blelloch, C.E. Leiserson, B.M. Maggs, C.G. Plaxton, S.J. Smith, M. Zagha. “A

Comparison of Sorting Algorithms for the Connection Machine CM-2”. in Annual ACM
Symp. Paral. Algo: Arc. 1991, Pages 3 -16.

[9] F. T. Leighton, “Introduction to Parallel Algorithms and Architectures: Arrays, Trees and

Hypercubes”. Morgan Kaufmann, 1992.

[10] J.H. Reif. ”Synthesis of Parallel Algorithms”. Morgan Kaufmann, San Mateo, CA, 1993.

[11] H. Li, K.C. Sevcik. “Parallel Sorting by Over-partitioning”. in Annual ACM Symp. Paral.

Algor.Arch. 1994, pages 46 – 56.

[12] A. Tridgell, R. P. Brent. “A general-purpose parallel sorting algorithm” in International J. of

High Speed Computing 7 (1995), pp. 285-301.

[13] N. Amato, R. Iyer, S. Sundaresan, Y. Wu. “A Comparison of Parallel Sorting Algorithms on

Different Architectures” Texas A & M University, College Station, TX, 1998.

[14] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein. Introduction to Algorithms. 2nd edition,

The MIT Press. 2001.

[15] T. J. Purcell, C. Donner, M. Cammarano, H. Jensen, P. Hanrahan “Photon mapping on

programmable graphics hardware”, in Annual ACM SIGGRAPH / Eurographics conference
on Graphics Hardware, 2003, pp. 41 – 50.

[16] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn, T. J. Purcell.

“A Survey of General-Purpose Computation on Graphics Hardware.” in Eurographics 2005,
State of the Art Reports, August 2005, pp. 21-51.

Krishnahari Thouti & S.R.Sathe

International Journal of Experimental Algorithms (IJEA), Volume (3): Issue (1) : 2012 8

[17] A. Greb, G. Zachmann. “GPU-AbiSort: Optimal Parallel Sorting on Stream Architectures” in

IPDPS'06 Proceedings of the 20th international conference on Parallel and distributed
processing. 2006.

[18] NVidia CUDA GPGPU Framework. http://www.nvidia.com/

[19] S. Sengupta, M. Harris, Y. Zhang, J. D. Owens. “Scan primitives for GPU computing,” in

Graphics Hardware 2007, Aug. 2007, pp. 97–106.

[20] D. Cedermann, P. Tsigas. “A practical quicksort algorithm for graphic processors”, Tech.

Rep, Chalmers University of Technology and Goteberg University, 2008.

[21] N. Satish, M. Harris, M. Garland. “Designing efficient sorting algorithms for manycore

GPUs”. In Proceedings of the 2009 IEEE International Symposium on Parallel & Distributed
Processing. May 23-29, 2009, pp.1-10.

[22] OpenCL Specification, http://www.khronos.org/opencl/

[23] F. Gul, O. Usman Khan, B. Montrucchio, P. Giaccone. “Analysis of Fast Parallel Sorting

Algorithms for GPU Architectures”. in Proceeding FIT '11 Proceedings of the 2011 Frontiers
of Information Technology Pages 173-178.

[24] P. Helluy. “A portable implementation of the radix sort algorithm in OpenCL”.

http://code.google.com/p/ocl-radix-sort/ May 2011

[25] B. Gaster, L. Howes, D.R. Kaeli, P. Mistry, D. Schaa. Heterogeneous Computing with

OpenCL. Morgan Kaufmann. 2011.

[26] AMD Accelerated Parallel Processing OpenCL Programming Guide, Advanced Micro

Devices, Inc. 2012. http://developer.amd.com/appsdk

[27] M. Scarpino. OpenCL in Action. Manning Publications, 2011.

Sanjaya Gajurel & Roger Bielefeld

International Journal of Experimental Algorithms (IJEA), Volume (3) : Issue (1) : 2012 9

A Fast Near Optimal Vertex Cover Algorithm (NOVCA)

Sanjaya Gajurel sxg125@case.edu
Advanced Research Computing
Case Western Reserve University
Cleveland, OH, US

Roger Bielefeld rab5@case.edu
Advanced Research Computing
Case Western Reserve University
Cleveland, OH, US

Abstract

This paper describes an extremely fast polynomial time algorithm, the Near Optimal Vertex Cover
Algorithm (NOVCA) that produces an optimal or near optimal vertex cover for any known
undirected graph G (V, E). NOVCA is based on the idea of (i) including the vertex having
maximum degree in the vertex cover and (ii) rendering the degree of a vertex to zero by including
all its adjacent vertices. The two versions of algorithm, NOVCA-I and NOVCA-II, have been
developed. The results identifying bounds on the size of the minimum vertex cover as well as
polynomial complexity of algorithm are given with experimental verification. Future research
efforts will be directed at tuning the algorithm and providing proof for better approximation ratio
with NOVCA compared to any other available vertex cover algorithms.

Keywords: Vertex Cover Problem, Combinatorial Problem, NP-Complete Problem,
Approximation Algorithm.

1. INTRODUCTION
The Vertex Cover (VC) of a graph G(V,E) with vertex set V and edge set E is a subset of vertices

C of V (C ⊆ V) such that every edge of G has at least one endpoint in C. In 1972 Richard Karp
[1] showed that identification of minimal VC in a graph is an NP-complete problem.

Various algorithmic approaches have been used to tackle NP complete problems. The Vertex
Cover problem, one of the NP complete problems, has been actively studied because of its
important research and application implications. Polynomial-time approximation and heuristic
algorithms for VC have been developed but none of them guarantee optimality. By using the
definition of approximation ratio, VC has an approximation ratio of ρ(n) for any input of size n. The
solution C produced by approximation algorithm is within the factor of ρ(n) of the solution C* of an
optimal algorithm i.e. C*/C ≤ ρ(n). Also, the approximation algorithm has approximation ratio of 2
– ε, where 0 < ε < 1. A 2-approximation [2] algorithm has been trivially obtained and similar
approximation algorithms have been developed [3], [4] with an approximation of (2 – (ln (ln n)/2ln
n)), where n is the number of vertices. Halperin [5] achieved an approximation factor of (2 – (1 –
o(1))(2ln (ln Δ)/ ln Δ)) with maximum degree at most Δ. Karakostas [6] attained an approximation
factor of (2 – θ(1/(log n)1/2))), the best approximation yet, by using the semidefinite programming
relaxation of VC. Evolutionary algorithms (EA) that are randomized search heuristics have also
been used for solving combinatorial optimization problems including VC [7], [8].

Vertex Cover problems have been solved in O (1.2738k + kn) time [9] by using a bounded search
technique where a function of a parameter restricts the search space. Abu-Khazm et al. have
identified crown structure to reduce the size of both n and k [10]. It has been known that when
relevant parameters are fixed, NP-complete problems can be solved in polynomial time. In both
[10] and [11], n is the input size and k is the positive integer parameter. Though not guaranteed to

Sanjaya Gajurel & Roger Bielefeld

International Journal of Experimental Algorithms (IJEA), Volume (3) : Issue (1) : 2012 10

find a minimum vertex cover, an approximation of 3/2 for almost every single graph was obtained
in [11]. According to Dinur and Safra [12], it is NP-Hard to get ε < 1.3606.

The paper is organized as follows: the NOVCA algorithm is described in Section 2; Section 3
provides experimental results; Section 4 is the conclusion.

2. NEAR OPTIMAL VERTEX COVER ALGORITHMS (NOVCA)
NOVCA is motivated by the fact that a vertex cover candidates are those that are adjacent to
minimum degree vertex so that its degree will be forcibly rendered to zero without choosing it.
This fact has been reinforced during tie when the vertex with neighbors having maximum degrees
is preferred over other minimum vertices. Without any optimization effort, the complexity of
NOVCA is O(E (V + log2V)); with V = n, the complexity becomes O(n2 (n + log2n)) which is
polynomial. The pseudo-code of NOVCA is presented in Fig. 1. Network Bench Node Degree
algorithm [13] has been applied to determine the degree of each node. Then, the sum of the
degree of adjacent nodes for each node is calculated. Both these values are included as data
structures in a node - deg[v]/adj_deg_sum[v] as showed in Fig. 2. Initially, vertex cover set VC is
empty.

NOVCA-I [14] constructs the vertex cover by repeatedly adding, at each step, all vertices
adjacent to the vertex of minimal degree; in the case of a tie, it selects the one having the
maximum sum of degrees of its neighbors. NOVCA-II, on the other hand, builds vertex cover by
including vertices in descending order of degree; in the case of a tie, it chooses the vertex having
the minimum sum of degrees of its neighbors. The vertices are chosen in increasing order of their
degrees i.e. the adjacent vertices of minimum degree vertex are included in VC first. The magic
function GetMinVertex () breaks a tie in selecting the best candidate vertex in a vertex cover. The
implementation forcibly renders the degree of low degree vertices to zero without choosing them.

Declarations:

V is the set of vertices of G
E is the set of edges of G
deg[V] is an integer array indexed by V for a set
 of vertices V
sum_adj_deg[V] is an integer array indexed by V for
 a set of vertices V
VC is the set of vertices comprising a vertex cover
Qsum_adj_deg is the set of vertices having min deg[V]
 (local variable in GetMinVertex())

Functions:
Degree(v) is the degree of the vertex v є V
Adj(v) gives the set of vertices that are adjacent
 to v є V
GetMinVertex() identifies the next adjacent
 vertices to include in the cover

Heap_MIN(deg) returns the value of min. deg[V]
HEAP_MAX(Qsum_adj_deg) returns the vertex having max
 Qsum_adj_deg

 for each v є V {
 deg[v] = Degree(v)
 }

Sanjaya Gajurel & Roger Bielefeld

International Journal of Experimental Algorithms (IJEA), Volume (3) : Issue (1) : 2012 11

 for each v є V {

 sum_adj_deg[v] =Σ v’ε Adj(v)deg[v’]
 }

 E’ = E
 VC = ф

 while (E’≠ ф){
 vc = GetMinVertex(deg, sum_adj_deg)
 VC = VC + { Adj(vc) }
 for each v є Adj(Adj(vc)){ //for NOVCA-I
 //for each v є Adj(vc){ //for NOVCA-II
 E' = E – { (adj(vc), v) }
 deg[v] = deg[v] – 1
 }
 V = V – { Adj(vc) } //for NOVCA-I
 //V = V – { vc } //for NOVCA-II
 for each v є V{
 If (Adj(v) == ф) continue
 sum_adj_deg[v] = Σ v’ε Adj(v)deg[v’]
 }
 } //end while

 /// Magic Function GetMinVertex() Declarations ///

 Vertex GetMinVertex(deg, sum_adj_deg){
 Qsum_adj_deg = ф
 vmin_deg = HEAP_MIN(deg) //for NOVCA-I
 //vmax_deg = HEAP_MAX(deg) //for NOVCA-II
 for each v є V{
 If (deg[v] == vmin_deg) //for NOVCA-I
 //If (deg[v] == vmax_deg) //for NOVCA-II
 Qsum_adj_deg = Qsum_adj_deg + {v}
 }
 return Heap_MAX(Qsum_adj_deg) //for NOVCA-I
 //return Heap_MIN(Qsum_adj_deg) //for NOVCA-II
 }

FIGURE 1: Pseudo-code for NOVCA; E[G]: set of edges of graph G; VC: Vertex Cover Set; Q: Priority

Queue; note that the commented bold statements are for NOVCA-II.

3. EXPERIMENTAL WORK AND RESULTS
Experiments to corroborate the theoretical results have been conducted on the CWRU High
Performance Computing Resource using compute nodes with 3.0 GHz Intel Xeon processors
running Red Hat Enterprise Linux 4 and using the gcc 3.4.6 compiler. Tests are performed in both
serial and parallel environments. Results for all example graphs as described above always
return optimal (minimum) vertex cover. We have selected Complete Graph as a test graph to
determine time complexity of NOVCA for two reasons:

 optimal vertex cover is known; n – 1; where n is the number of vertices
 requires exhaustive search; there is an edge from each vertex to all other vertices

The shell script in Fig. 2 “graph_gen.sh” generates a complete graph of size n entered as input.
This graph is then fed to executable “vc (serial) or vc_openmp (parallel)” (C++ program compiled
with g++ compiler) to get vertex cover for that particular graph. The outputs are showed in Fig. 3.

Sanjaya Gajurel & Roger Bielefeld

International Journal of Experimental Algorithms (IJEA), Volume (3) : Issue (1) : 2012 12

#PBS -l walltime=36:00:00
#PBS -l nodes=1:ppn=4:quad
#PBS -N graph1000
#PBS -j oe
cd $PBS_O_WORKDIR
/usr/local/bin/pbsdcp -s vc graph_gen.sh $TMPDIR
cd $TMPDIR
sh graph_gen.sh 1000
cp gen_graph graph1000
time ./vc graph1000 #vc_openmp for parallel
/usr/local/bin/pbsdcp -g '*' $PBS_O_WORKDIR
cd $PBS_O_WORKDIR

FIGURE 2: The graph_gen.sh takes 1000 (number of vertices) as an input that creates a netlist in a file,
graph1000, input to the executable vc; execuatable vc will be vc_openmp and ppn = 4 respectively for

parallel implementation.

The cover consists of the following vertices:
 0 1 2 3 4 5 6 7
 8 9 10 11 12 13 14 15
…
…
994 995 996 997 998
There are 999 vertices in the cover.
real 0m7.161s
user 0m7.156s
sys 0m0.004s

FIGURE 3: Output showing the vertices in a vertex cover, number of vertices, and execution time

We have recorded the computation time for different sizes of the graphs for both serial and
parallel implementation to elucidate the polynomial complexity of NOVCA algorithm as depicted in
Fig. 4(a)(b). We used MATLAB’s polyfit(x,y,n) command to verify polynomiality as shown in Fig. 5
and Fig 6(a)(b).

(a)

Sanjaya Gajurel & Roger Bielefeld

International Journal of Experimental Algorithms (IJEA), Volume (3) : Issue (1) : 2012 13

(b)

FIGURE 4: Computational Time of NOVCA for different sizes of complete graphs for (a) Serial and (b)

Parallel

x = [1000,2000,3000,4000,5000,6000,7000];
y=[7.124,129.21,437.274,1046.93,2061.037,2882.444,4666.
 976]; % from serial implementation
y=[7.083,65.08,238.669,589.784,971.582,1649.391,2223.02
 0]; % from parallel implementation
p = polyfit(x,y,2)
p = 0.0001 -0.3592 258.4364
x2 = 1000:500:7000;
y2 = polyval(p,x2);
plot(x,y,'o',x2,y2)

FIGURE 5: MATLAB commands used for output data (computation time) from simulation for both serial and

parallel implementation

Sanjaya Gajurel & Roger Bielefeld

International Journal of Experimental Algorithms (IJEA), Volume (3) : Issue (1) : 2012 14

(a)

(b)

FIGURE 6: MATLAB plot using polyfit with n=2; (a) Serial and (b) Parallel

NOVCA has approximation ratio smaller than 1.3606 for all available bench mark (Table 1, Table
2[15]; not showed all of the instances) graphs. For some instances like c-fat, Johnson, and
random graphs NOVCA provides optimal cover. Noticeably, the execution time of NOVCA for any
instance is remarkable. NOVCA has been found to perform very well compared to other available
algorithms. For the instances where it provides near optimal solutions, it outperforms other
algorithms in terms of execution time. We have compared NOVCA with COVER [16]. COVER is a
stochastic local search algorithm for k-vertex cover. It constructs the initial candidate solution C
greedily. When the several vertices satisfy the criterion for inclusion in C, COVER selects one of
them randomly with uniform probabilities. The COVER algorithm terminates when either the
vertex cover is found or max number of steps (MAX_ITERATIONS), has been reached. NOVCA,
on the other hand doesn’t have any randomness element and terminates when there are no more
vertices in V. So, it has only one run unlike average execution time calculated using random
seeds in different runs in COVER.

Though COVER is found to obtain better vertex cover in most of the instances of the
benchmarks, NOVCA is very simple and it outperforms COVER in execution time. In case of the
graph instance, MANN_a81, where both NOVCA and COVER return the same value 2225,
NOVCA is 20 times faster. Though NOVCA-I outperforms NOVCA-II in terms of approximation
ratio in almost all instances except keller, p-hat, and sanr, NOVCA-II has better execution time
than NOVCA-I. For the challenge instances of frb100-40 [15], NOVCA-I is off by just 17 vertices
(NOVCA returns 3917 vertices whereas the optimal vertex cover is 3900), but the execution time
is just remarkable; only 2013.667 sec. The challenge is stated as “Based on theoretical analysis
and experimental results of smaller instances, I conjecture that in the next 20 years or more (from
2005), these two benchmarks cannot be solved on a PC (or alike) in a reasonable time (e.g. 1
day) [15].” The graphs for number of vertices returned and the execution times, as showed in Fig.
7 and Fig. 8 respectively, portray that NOVCA, though comparable to COVER in terms of number
of vertices returned, is significantly faster than COVER. We have also carried out comparisons of
NOVCA against two other heuristic Minimum Vertex Cover (MVC) Algorithms, PLS [17] and
EWCC [18], with similar results (not explicitly tabulated here).

Sanjaya Gajurel & Roger Bielefeld

International Journal of Experimental Algorithms (IJEA), Volume (3) : Issue (1) : 2012 15

Instances |V| |C*|
NOVCA-I

|C|
NOVCA-I
|C|/|C*|

NOVCA-I
Time (sec)

COVER
|C|avg

COVER
Timeavg (sec)

frb59-26-1 1534 1475 1485 1.007 80.258 1477 18611.3
frb59-26-2 1534 1475 1484 1.006 79.297 1478 18589.5
frb100-40 4000 3900 3917 1.004 2013.667 - -
broc200_1 200 179 181 1.011 0.115 179 768.2
broc800_4 800 774 782 1.010 10.832 775 4051.2
C2000.9 2000 1922 1932 1.005 207.060 1922 21489.7

c-fat200-5 200 142 142 1 0.092 142 1549.1
c-fat500-10 500 374 374 1 2.117 374 4401.2

gen200_p0.9_44 200 156 163 1.045 0.092 156 1543.6
hamming10-2 1024 512 512 1 10.297 512 2412.2
hamming10-4 1024 984 988 1.004 21.505 986 3457.6
johnson16-2-4 120 112 112 1 0.076 112 297.9
johnson32-2-4 496 480 480 1 2.273 480 2351.9

keller4 171 160 164 1.025 0.007 160 985.7
keller5 776 749 761 1.016 9.125 749 2364.9

MANN_a27 378 252 253 1.004 0.493 252 756.3
MANN_a81 3321 2221 2225 1.002 773.963 2225 15672.1
p_hat500-1 500 491 492 1.002 2.683 491 1810.2
p_hat1500-3 1500 1406 1414 1.006 74.991 1406 1298.9

san200_0.7_1 200 170 183 1.077 0.117 170 713.7
san1000 1000 985 991 1.006 22.901 989 4972.8

sanr200_0.7 200 183 185 1.011 0.857 183 788.2
sanr400_0.7 400 379 382 1.008 1.030 380 2112.5
graph50-10 50 35 35 1 0.006 35 124.5
graph100-10 100 70 70 1 0.034 70 205.3
graph200-05 200 150 150 1 0.114 150 854.1
graph250-05 250 200 200 1 0.300 200 988.5
graph500-05 500 290 290 1 1.604 290 22555.2

TABLE 1: Performance Comparison between NOVCA-I and COVER on DIMACS and BHOSLIB

benchmarks |V|: number of vertices; |C*|: optimal cover; NOVCA |C|: cover returned by NOVCA; COVER
|C|avg: Cover returned by COVER; NOVCA Time (sec): Execution time for NOVCA; COVER Timeavg:

Average execution time for COVER; no data available for the instance frb100-40 in COVER

Sanjaya Gajurel & Roger Bielefeld

International Journal of Experimental Algorithms (IJEA), Volume (3) : Issue (1) : 2012 16

Instances |V| |C*|
NOVCA-II

|C|
NOVCA-II

|C|/|C*|
NOVCA-II
Time (sec)

COVER
|C|avg

COVER
Timeavg (sec)

frb59-26-1 1534 1475 1494 1.014 34.770 1477 18611.3
frb59-26-2 1534 1475 1496 1.014 35.686 1478 18589.5
frb100-40 4000 3900 3944 1.011 885.860 - -
broc200_1 200 179 182 1.017 1.316 179 768.2
broc800_4 800 774 786 1.016 6.162 775 4051.2
C2000.9 2000 1922 1942 1.010 88.604 1922 21489.7

c-fat200-5 200 142 142 1 1.238 142 1549.1
c-fat500-10 500 374 374 1 1.514 374 4401.2

gen200_p0.9_44 200 156 170 1.090 1.514 156 1543.6
hamming10-2 1024 512 512 1 5.584 512 2412.2
hamming10-4 1024 984 992 1.008 10.350 986 3457.6
johnson16-2-4 120 112 112 1 1.248 112 297.9
johnson32-2-4 496 480 480 1 2.245 480 2351.9

keller4 171 160 162 1.013 1.500 160 985.7
keller5 776 749 761 1.016 5.115 749 2364.9

MANN_a27 378 252 261 1.036 1.641 252 756.3
MANN_a81 3321 2221 2241 1.009 297.236 2225 15672.1
p_hat500-1 500 491 492 1.002 2.595 491 1810.2

p_hat1500-3 1500 1406 1412 1.004 34.535 1406 1298.9
san200_0.7_1 200 170 185 1.088 1.535 170 713.7

san1000 1000 985 992 1.007 11.657 989 4972.8
sanr200_0.7 200 183 184 1.005 1.351 183 788.2
sanr400_0.7 400 379 384 1.013 1.947 380 2112.5
graph50-10 50 35 35 1 1.667 35 124.5

graph100-10 100 70 70 1 1.552 70 205.3
graph200-05 200 150 150 1 1.523 150 854.1
graph250-05 250 200 200 1 1.653 200 988.5
graph500-05 500 290 290 1 2.366 290 22555.2

TABLE 2: Performance Comparison between NOVCA-II and COVER on DIMACS and BHOSLIB

benchmarks |V|: number of vertices; |C*|: optimal cover; NOVCA |C|: cover returned by NOVCA; COVER
|C|avg: Cover returned by COVER; NOVCA Time (sec): Execution time for NOVCA; COVER Timeavg:

Average execution time for COVER; no data available for the instance frb100-40 in COVER

FIGURE 7: Number of Vertices returned by NOVCA-I, NOVCA-II, and COVER; no results from COVER for

the instance frb100-40

Sanjaya Gajurel & Roger Bielefeld

International Journal of Experimental Algorithms (IJEA), Volume (3) : Issue (1) : 2012 17

FIGURE 8: Execution time for NOVCA-I, NOVCA-II, and COVER; no results from COVER for the instance
frb100-40

4. CONCLUSION AND FUTURE WORK
NOVCA algorithm provides optimal or near optimal vertex cover for known benchmark graphs.
The experimental results depict that the algorithm is extremely fast compared to other available
state-of-the-art MVC algorithms including COVER, PLS, and EWCC.

Future research will be focused in two areas: deriving a mathematical statement regarding the
closeness of the approximation ratio to 1, and investigating approaches to parallelizing the
NOVCA algorithm.

5. ACKNOWLEDGEMENT
I would like to thank Geeta Dahal and Pujan Joshi for suggesting counter examples to early
versions of the algorithm.

REFERENCES
[1] R. Karp. “Reducibility among combinatorial problems”. In R. E. Miller and J. W. Thatcher

(eds.). Complexity of Computer Computations, Plenum Press, NY, pp. 85-103, 1972.

[2] T. Cormen, C. Leiserson, R. Rivest. Introduction to Algorithms. The MIT Press, pp. 1022-
1024, 2001.

[3] R. Bar-Yehuda and S. Even. “A local-ratio theorem for approximating the weighted vertex
cover problem”. North-Holland Mathematics Studies, vol. 109, pp. 27-45, 1985.

[4] B. Monien and E. Speckenmeyer. “Ramsey numbers and an approximation algorithm for
the vertex cover problem”. Acta Informatica, vol. 22, pp. 115-123, 1985.

Sanjaya Gajurel & Roger Bielefeld

International Journal of Experimental Algorithms (IJEA), Volume (3) : Issue (1) : 2012 18

[5] E. Halperin. “Improved approximation algorithms for the vertex cover problem in graphs
and hypergraphs”. SIAM J. on Computing, vol. 31, pp. 1608-1623, 2002. Also in Proc. of
11th SODA, pp. 329-337, 2000.

[6] G. Karakostas. “A better approximation ratio for the vertex cover problem”. ICALP, pp.
1043-1050, 2005.

[7] G. Rudolph. “Finite Markov chain results in evolutionary computation”. A tour d’horizon,
Fundamenta Informaticae, vol. 35, pp. 67-89, 1998.

[8] P. Oliveto, J. He, X. Yao. “Evolutionary algorithms and the Vertex Cover problem”. CEC,
pp. 1430-1438, 2007.

[9] J. Chen, I. Kanj and G. Xia. “Simplicity Is Beauty: Improved Upper Bounds for Vertex
Cover”. Technical report TR05-008, School of CTI, DePaul University, 2005.

[10] F. Abu-Khazm, M. Fellows, M. Langston, and W. Suters. “Crown Structures for Vertex
Cover Kernelization”. Theory Comput. Systems, vol. 41, pp. 411-430, 2007.

[11] E. Asgeirsson and C. Stein. “Vertex Cover Approximation on Random Graphs”. WEA
2007, LNCS 4525, pp. 285–296, 2007.

[12] I. Dinur and S. Safra. “The importance of being biased”. STOC’02, pp. 33-42, 2002.

[13] NWB Team. Network Workbench Tool. Indiana University, North Eastern University, and
University of Michigan, http://nwb.slis.indiana.edu/, 2006.

[14] S. Gajurel, R. Bielefeld. “A Simple NOVCA: Near Optimal Vertex Cover Algorithm”.
Procedia Computer Science, vol. 9, pp 747-753, 2012.

[15] K. Xu. “Vertex Cover Benchmark Instances (DIMACS and BHOSLIB)”.
http://www.cs.hbg.psu.edu/benchmarks/vertex_cover.html, 2012.

[16] S. Richter, M. Helmert, and C. Gretton. “A Stochastic Local Search Approach to Vertex
Cover”. In Proceedings of the 30th German Conference of Artificial Intelligence (KI), pp
412-426, 2007.

[17] S. Cai, K. Su and A. Sattar. “Local Search with Edge Weighting and Configuration
Checking Heuristics for Minimum Vertex Cover”. Artif. Intell., vol. 175 pp. 1672-1696,
2011.

[18] W. Pullan. “Phased Local Search for the Maximum Clique Problem”. J. Comb. Optim.,
vol. 12, pp. 303-323, 2006.

INSTRUCTIONS TO CONTRIBUTORS

Experimental Algorithmics studies algorithms and data structures by joining experimental studies
with the more traditional theoretical analyses. With this regard, the aim of The International
Journal of Experimental Algorithms (IJEA) is (1) to stimulate research in algorithms based upon
implementation and experimentation; in particular, to encourage testing, evaluation and reuse of
complex theoretical algorithms and data structures; and (2) to distribute programs and testbeds
throughout the research community and to provide a repository of useful programs and packages
to both researchers and practitioners. IJEA is a high-quality, refereed, archival journal devoted to
the study of algorithms and data structures through a combination of experimentation and
classical analysis and design techniques. IJEA contributions are also in the area of test
generation and result assessment as applied to algorithms.

To build its International reputation, we are disseminating the publication information through
Google Books, Google Scholar, Directory of Open Access Journals (DOAJ), Open J Gate,
ScientificCommons, Docstoc and many more. Our International Editors are working on
establishing ISI listing and a good impact factor for IJEA.

The initial efforts helped to shape the editorial policy and to sharpen the focus of the journal.
Started with Volume 3, 2012, IJEA appears in more focused issues. Besides normal publications,
IJEA intend to organized special issues on more focused topics. Each special issue will have a
designated editor (editors) – either member of the editorial board or another recognized specialist
in the respective field.

We are open to contributions, proposals for any topic as well as for editors and reviewers. We
understand that it is through the effort of volunteers that CSC Journals continues to grow and
flourish.

IJEA LIST OF TOPICS
The realm of International Journal of Experimental Algorithms (IJEA) extends, but not limited, to
the following:

• Algorithm Engineering • Heuristics

• Algorithmic Code • Mathematical Programming For Algorithms

• Algorithmic Engineering

• Metaheuristic Methodologies

• Algorithmic Network Analysis

• Network Design

• Analysis of Algorithms

• Parallel Processing

• Approximation Techniques • Randomized Techniques in Algorithms

• Cache Oblivious algorithm • Routing and Scheduling

• Combinatorial Optimization • Searching and Sorting

• Combinatorial Structures and Graphs • Topological Accuracy

• Computational Biology • Visualization Code

• Computational Geometry • VLSI Design

• Computational Learning Theory • Graphics

• Computational Optimization

• Data Structures

• Distributed and Parallel Algorithms

• Dynamic Graph Algorithms

• Experimental Techniques and Statistics

• Graph Manipulation

CALL FOR PAPERS

Volume: 3 - Issue: 2

i. Paper Submission: October 31, 2012 ii. Author Notification: November 30, 2012

iii. Issue Publication: December 2012

CONTACT INFORMATION

Computer Science Journals Sdn BhD

B-5-8 Plaza Mont Kiara, Mont Kiara
50480, Kuala Lumpur, MALAYSIA

Phone: 006 03 6204 5627

Fax: 006 03 6204 5628

Email: cscpress@cscjournals.org

