

INTERNATIONAL JOURNAL OF LOGIC AND

COMPUTATION (IJLP)

VOLUME 3, ISSUE 1, 2012

EDITED BY

DR. NABEEL TAHIR

ISSN (Online): 2180-1290

International Journal of Logic and Computation (IJLP) is published both in traditional paper form

and in Internet. This journal is published at the website http://www.cscjournals.org, maintained by

Computer Science Journals (CSC Journals), Malaysia.

IJLP Journal is a part of CSC Publishers

Computer Science Journals

http://www.cscjournals.org

INTERNATIONAL JOURNAL OF LOGIC AND COMPUTATION

(IJLP)

Book: Volume 3, Issue 1, October 2012

Publishing Date: 25-10-2012

ISSN (Online): 2180-1290

This work is subjected to copyright. All rights are reserved whether the whole or

part of the material is concerned, specifically the rights of translation, reprinting,

re-use of illusions, recitation, broadcasting, reproduction on microfilms or in any

other way, and storage in data banks. Duplication of this publication of parts

thereof is permitted only under the provision of the copyright law 1965, in its

current version, and permission of use must always be obtained from CSC

Publishers.

IJLP Journal is a part of CSC Publishers

http://www.cscjournals.org

© IJLP Journal

Published in Malaysia

Typesetting: Camera-ready by author, data conversation by CSC Publishing Services – CSC Journals,

Malaysia

CSC Publishers, 2012

EDITORIAL PREFACE

It is a great privilege for me as Editor in Chief of International Journal of Logic and Computation
(IJLP) to present our readers the current issue of Journal which wraps up its third year and first
issue of successful publication. This journal has focused on publishing research that provides
information for practitioners, researchers and academicians with a teaching or research interest in
engineering and science discipline. The first issue of IJLP is organized to presents articles in a
particular area of computer logic and computation to attract readers who are interested in reading
papers related to that special field. The first issue of IJLP provides a better chance to fulfill the
anticipation of a broader community of our audiences.

The initial efforts helped to shape the editorial policy and to sharpen the focus of the journal.
Starting with Volume 4, 2013, IJLP aims to appear with more focused issues. Besides normal
publications, IJLP intend to organized special issues on more focused topics. Each special issue
will have a designated editor (editors) – either member of the editorial board or another
recognized specialist in the respective field.

As EIC of IJLP, I want to encourage contributors to IJLP to submit not only manuscripts
addressing basic and applied research articles but also reviewed articles, practitioner oriented
papers and other exploratory research projects addressing contemporary issues in such areas as
Computational Logic, Knowledge based systems, Application of Logic in Hardware and VLSI, Soft
Computing Techniques, Type theory, Natural Language etc. The review process will remain the
same for these articles as mentioned in the official website of IJLP.

IJLP editors understand that how much it is important for authors and researchers to have their
work published with a minimum delay after submission of their papers. They also strongly believe
that the direct communication between the editors and authors are important for the welfare,
quality and wellbeing of the Journal and its readers. Therefore, all activities from paper
submission to paper publication are controlled through electronic systems that include electronic
submission, editorial panel and review system that ensures rapid decision with least delays in the
publication processes.

To build international reputation of IJLP, we are disseminating the publication information through
Google Books, Google Scholar, Directory of Open Access Journals (DOAJ), Open J Gate,
ScientificCommons, Docstoc, Scribd, CiteSeerX and many more. Our International Editors are
working on establishing ISI listing and a good impact factor for IJLP. I would like to remind you
that the success of the journal depends directly on the number of quality articles submitted for
review. Accordingly, I would like to request your participation by submitting quality manuscripts for
review and encouraging your colleagues to submit quality manuscripts for review. One of the
great benefits that IJLP editors provide to the prospective authors is the mentoring nature of the
review process. IJLP provides authors with high quality, helpful reviews that are shaped to assist
authors in improving their manuscripts.

Editorial Board Members
International Journal of Logic and Computation (IJLP)

EDITORIAL BOARD

EDITOR-in-CHIEF (EiC)

Professor Santosh Kumar Nanda

Eastern Academy of Science and Technology

India

EDITORIAL BOARD MEMBERS (EBMs)

Professor Madhumangal Pal
Vidyasagar University
India

Dr. Nidaa Abdual Muhsin Abbas
University of Babylon
Iraq

Assistant Professor. Jitendra Kumar Das
Synergy Institute of Engineering and Technology
India

Dr. Eng. Sattar B. Sadkhan
University of Babylon
Iraq

International Journal of Logic and Computation (IJLP), Volume (3) : Issue (1) : 2012

TABLE OF CONTENTS

Volume 3, Issue 1, October 2012

Pages

1 - 13 Novel Parallel - Perfix Structure Binary to Residue Number System Conversion Method

Omar Dajani

14 - 26

Design and Simulation of Moore Logic Circuit based SAR Analog to Digital Converter

Osama Q.J. Al-Thahab, Hanaa Mohsin Ali

27 - 33

Automated Education Propositional Logic Tool (AEPLT): Used For Computation in Discrete

J. Mbale

34 - 43

Principal Type Scheme for Session Types

 Alvaro Tasistro, Ernesto Copello, Nora Szasz

Omar Dajani

International Journal of Logic and Computation (IJLP), Volume (3) : Issue (1) : 2012 1

Novel Parallel - Perfix Structure Binary to Residue Number
System Conversion Method

Omar Dajani
Pepe Siy Wayne State Univerisity
Department of Electrical and Computer Engineering

Abstract

In the present world there is always a demand for faster algorithms and techniques that could
boost up the speed of the computations. With the help of VLSI fabrication techniques and
using residue number system (RNS) arithmetic we can achieve the faster speeds. In this paper
we propose a novel parallel prefix binary to residue number system conversion method. The
method that we present in this paper utilizes parallel-prefix technique with multiplexers and
modulo adders as the main building blocks which makes it practical and suitable for VLSI
implementation.

Keywords: Residue Number System, Binary to Residue Conversion, Multiplexer, Modulo
Adder.

1. INTRODUCTION
In the last decade, Residue number system (RNS) has received increased attention due to its
ability to support high speed concurrent arithmetic applications [1-3] such as Fast Fourier
transform (FFT), image processing and digital filters utilize the efficiencies of RNS arithmetic
in addition and multiplication. The advancements in very large scale integration (VLSI)
technology and demand for parallelism computation have enabled researchers to consider
RNS as an alternative approach to high speed concurrent arithmetic.

Several methods are found in literature for binary to RNS conversion. Alia and Martinelli [4]
have proposed a method for binary to residue conversion based on powers of 2. A modification
to the above method was proposed by Cappocelli and Giancarlo [5]. Anandmohan [6] has
proposed a similar method but with difference that his method is based on the cyclic property
of power of 2 moduli set. Behrooa[7] proposed a table lookup schemes for binary to Residue
conversions.

In this paper, we present a novel binary to Residue Number System conversion method that
we used to build Residue Arithmatic logic unit (RALU). RALU has three main units: Binary to
Residue unit, ALU and Residue to Binary unit [8]. The organization of this paper is as follows.
Section two explains RNS system. In section three we present new conversion from binary to
RNS algorithm. Section four and five show illustrative example and implementation selection
techniques. Section six is comparison between the new method and pervious work. Conclusion
is in section seven.

2. RESIDUE NUMBER SYSTEM
Any n-bit nonnegative integer number X, in the range 0 ≤ X ≤ 2

n
-1 is represented in binary

number system as ∑
−

=

− =++++=
1n

0j

j

j

012

2

1n

1-n
b2bb 2b2...b2X

where { }1,0b j ∈ .

Meanwhile in RNS, X is represented by k residue digits xi as X = {x1, x2, x3, …, xk} where xi =

X mod mi and mi belong to set of relatively prime moduli; { }k321i m , ... ,m ,m ,mm ∈ [9]. If

Omar Dajani

International Journal of Logic and Computation (IJLP), Volume (3) : Issue (1) : 2012 2

the moduli are relatively prime numbers, there is a unique RNS representation for each integer

in range i

s

1i m X 0 =∏≤≤

3. NEW NOVEL CONVERSION METHOD FROM BINARY TO RESIDUE

REPRESENTATION
As shown above an integer number X can be represented in Binary system as

∑
−

=

− =++++=
1n

0j

j

j

012

2

1n

1-n b2bb 2b2...b2X

And RNS representation of number X is

2mforb2X
m

1-n

0j m
j

j

m
>= ∑ =

 for m > 2

)1(b2
m

1-n

0j jm

j

∑ =
=

Let]Y,Y,Y,Y)[A,A(M 321001AA 01
= denotes a 2-bit multiplexer where the 2 control bits

(A1, A0) select the inputs (3210 Y,Y,Y,Y) to be outputted

Lemma 1: For any pair of bits bj& bi for j & i ≥ 0,

mji
m

i
m

i

j
m

j Xb2b2 =+

can be implemented using 2-bit multiplexer :

]22,2,2,0)[b,b(M
mm

i

m

j

m

j

m

i

ijji += (2)

Where the control bits (A1, A0) equal (bj, bi)

Proof:

Rewrite equation
m

i
m

i

j
m

j b2b2 + as

)b.b.22()b..b2()b.b.2()b.b.0(ij
mm

i

m

j

ijm

j

ijm

i

ij ++++

This is equivalent to 2-bit multiplexer Mji with control bits (A1, A0) equal (bj, bi). Figure (1)
shows the implementation for equation (2) with bj = b1 and bi= b0

FIGURE 1: Two Bits (b1 & b0) Binary to Residue Number System Conversion

Omar Dajani

International Journal of Logic and Computation (IJLP), Volume (3) : Issue (1) : 2012 3

This pre-processing operator Mji is represented in acyclic graph as node " " in figure (2a),
where all the inputs are constants and pre-calculated .

FIGURE 2: Prefix logic operation and their implementation

In three bit system, let ,Y)[A,A,A(M 0012AAA 012
=]Y,Y,Y,Y,Y,Y,Y 7654321 denotes a 3-bit

multiplexer where the 3 control bits (A2, A1, A0) select the inputs (76543210 Y,Y,Y,Y,Y,Y,Y,Y)

to be outputted.

Lemma 2: For any three bits bk, bj & bi for k, j & i ≥ 0,

mkji
m

i
m

i

j
m

j

k
m

k Xb2b2b2 =++ can be

implemented using 3-bit multiplexer :

,2,2,0)[b,b,b(M
m

j

m

i

ijkkji = ,22,2,22
mm

i

m

k

m

k

mm

i

m

j ++

]222,22
mm

i

m

j

m

k

mm

j

m

k +++ (3) (3)

Where control bits (A2, A1, A0) equal (bk,, bj, bi)

Omar Dajani

International Journal of Logic and Computation (IJLP), Volume (3) : Issue (1) : 2012 4

Proof:

Rewrite
m

i
m

i

j
m

j

k
m

k b2b2b2 ++ as

+++)b..bb.2()b.bb.2()b.b.b.0(ijk
m

j

ijk
m

i

ijk

+++)b.b..b2()b..bb.22(ijk
m

k

ijk
mm

i

m

j

++)b.bb,22(ijk
mm

i

m

k ++)b..bb22(ijk
mm

j

m

k

)b..bb.222(ijk
m

i

m

j

m

k ++

Above equation is equivalent to 3-bit multiplexer with bk, bj & bi as selection control inputs.
Figure (3) shows the implementation for equation 3 with bk = b2 bj = b1 and bi= b0

FIGURE 3: Three bits (b2, b1, b0) Binary to Residue Number System Conversion

This pre-processing operator Mkji is represented in acyclic graph as node " " in figure (2b),
where all the inputs are constants and pre-calculated.

Theorem 1: For Any two pairs of bits (bl & bk) (bj & bi for j, i , l & k ≥ 0 with the given
expression

mlkji
m

im

i

jm

j

km

k

lm

l Xb2b2b2b2 =+++

can be implemented using 2-bit multiplexer

,M,)[0b(b),b(b M jiijkllkji ++=]MM,M jilklk + (4)

Where control bits (A1, A0) equal (bl,+bk , bj,+bi)

Proof
m

i
m

i

j
m

j

k
m

k

l
m

l

mlkji b2b2b2b2X +++=

mjilkmlkji MMX += (5)

Where
m

k
m

k

l
m

l

lk b2b2M += and
m

i
m

i

j
m

j

ji b2b2M += by Lemma 1

Let blk = (bl + bk) and bji = (bj+bi)

Rewrite equation (5) as ++)b.b.M()b.b.0(jilkjijilk)b.b.MM()b..bM(jiljilkjilklk k
++ .

And this is equivalent to 2-bit multiplexer Mlkji with control bits (A1, A0) equal (bl+ bk , bj+ bi).
Figure (4) shows implementation for two pair bits (b3, b2) & (b1, b0)

Omar Dajani

International Journal of Logic and Computation (IJLP), Volume (3) : Issue (1) : 2012 5

FIGURE 4: Four Bits Binary to RNS
m

01m

1

2m

2

3m

3

m3..0 bb2b2b2X +++=

Lemma 3:
Combining two pairs of bits (bl & bk) (bj & bi) requires one 2-bit multiplexer and one 2 input

mod adder. The delay time
22 modadder mux Total ττ τ +=

Proof

Equation (4) and figure (4) show that]MM,M,M,)[0b(b),b(b jilklkjiijkl +++

is equivalent to one 2-bit multiplexer and one 2-input mod adder; and delay time is equal to

22 modadder mux τ τ + .

Figure (2c) represents acyclic graph " " for node Mlkji where Mlk & Mji are inputs.

Lemma 4
The parallel prefix operator has the following properties

1) Commutative

lkM jiM = jiM lkM

2) Associative

lkM hgM ()M ji = lk(M)M hg jiM

Proof:

lkM jiM = lkjiM

 ,M,)[0b(b),b(b jiijkl ++=]MM,M jilklk +

m

i
m

i

j
m

j

k
m

k

l
m

l b2b2b2b2 +++= (6)

 jiM lkM = jilkM

 ,M,)[0b(b),b(b klklij ++=]MM,M lkjiji +

m

k
m

k

l
m

l

i
m

i

j
m

j b2b2b2b2 +++= (7)

Omar Dajani

International Journal of Logic and Computation (IJLP), Volume (3) : Issue (1) : 2012 6

Both expressions (6) and (7) are the same by commutative property of "+" hence operator
is commutative

lkM hgM ()M ji = lkM hgjiM

 lkhgjiM =

 +++= h
m

h

k
m

k

k
m

l b2b2b2
m

i
m

i

j
m

j

g
m

g b2b2b2 ++ (8)

lk(M)M hg jiM = lkhgM jiM

 lkhgjiM =

 +++= h
m

h

k
m

k

k
m

l b2b2b2
m

i
m

i

j
m

j

g
m

g b2b2b2 ++ (9)

Both expressions (8) and (9) are the same by associative property of "+" hence operator
is associative

Theorem 2: For any three pairs of bits (bl & bk) ,
(bj & bi) and (bh & bg) for l, k, j, i, h & g ≥ 0 with given expression

 ++++ i
m

i

j
m

j

k
m

k

l
m

l b2b2b2b2
mlkjihg

m
g

m

g

h
m

h
Xb2b2 =+

can be implemented using 3-bit multiplexer

,M)[0,b(b),b(b),b(b M hgghijkllkjihg +++= ,MM,M,MM,M hglklkhgjiji ++

]MMM,MM hgjilkjilk +++ (10)

Where control bits (A2, A1, A0) equal (bl+bk , bj+bi , bh+bg,)

Proof:

+++= j
m

j

k
m

k

l
m

l

mlkjihg b2b2b2X
m

g
m

g

h
m

h

i
m

i
b2b2b2 ++

mhgjilkmlkjihg MMMX ++= (11)

Where
m

k
m

k

l
m

l

lk b2b2M += ,

m

i
m

i

j
m

j

ji b2b2M += and

m
g

m

g

h
m

h

hg b2b2M += by Lemma 1

Let blk = (bl + bk) , bji = (bj + bi) and bhg = (bh + bg)

Rewrite equation (11) as

++)b.bb.M()b.b.b.0(hgjilkhghgjilk
+++)b..bb).MM(()b..bb.M(hgjilkhgjihgjilkji

+++)b.b).bMM(()b.b..bM(hgjilkhglkhgjilklk

++)b..b).bMM((hgjilkjilk

)b..bb).MMM((hgjilkhgjilk ++

This is equivalent to 3-bit multiplexer Mlkjihg with control bits (A2, A1, A0) equal (bl+ bk , bj+ bi ,
bh+ bg)
Figure (5) shows implementation for three pairs of bits (b5, b4), (b3, b2) & (b1, b0)

Omar Dajani

International Journal of Logic and Computation (IJLP), Volume (3) : Issue (1) : 2012 7

FIGURE 5: Six Bits Binary to Residue Number System Conversion

m
01

m

1

2
m

2

3
m

3

4
m

4

5
m

5

m5..0 bb2b2b2b2b2X +++++=

Lemma 5:
Combining three pairs of bits (bl & bk), (bj & bi) & (bh & bg) requires one 3- bit multiplexer and
three 2-input mod adder and one 3-input mod adder. The delay time equals

332 3 modadder muxmodadder muxTotal τττ2τ τ +=+=

Proof

Equation (10) and figure (5) show that ,M,)[0b(b),b(b),b(b hgghijkl +++

,MM,M,MM,M hglklkhgjiji ++]MMM,MM hgjilkjilk +++ is equivalent to one 3-

bit multiplexer and three 2-input mod adder and one 3-input mod adder; and delay time is

equal to
2 3 modadder mux τ2 τ +

Figure (2d) represents acyclic graph for " " for node Mlkhgji where Mlk, Mhg & Mji are inputs

Lemma 6:
The parallel prefix operator has the following properties

1) Commutative

lkjihgM tsrqpoM = tsrqpoM lkjihgM

2) Associative

lkjihgM tsrqpoM ()M zyxwru = lkjihgM ()M tsrqpo zyxwruM

Omar Dajani

International Journal of Logic and Computation (IJLP), Volume (3) : Issue (1) : 2012 8

Proof:
The proof is similar to Lemma 4

4. ILLUSTRATIVE EXAMPLE
In this section, we will use illustrate how theorem 1, theorem 2, lemma 1 and lemma 2 can be

combined to design a binary to residue convertor. Figure (6) shows how
m

X for n = 8 is

computed.
In the first layer, using pre-processing operator each consecutive pair of bits are group
together (b7, b6) (b5 , b4) (b3 , b2) (b1, b0) creating nodes M76, M54, M32, M10 . In the second
layer, using parallel prefix operator each consecutive M node are combined (M76, M54)
(M32, M10) forming nodes M7..4 & M3..0. In the last layer, using parallel prefix operator the last

2 M nodes are combined (M7..4 , M3..0) forming node M7..0 =
m7..0X . Figure (7a) shows the

actual hardware implementation.

FIGURE 6: Prefix Structure of 8 Bits Binary to RNS

Total delay time for this example is calculated by counting the delay introduce by the operator
in each layer
by using lemma 3 as follows

Layer 1: delay time is
2mux τ

pre-processing operator doesn't requires an adder

Layer 2 : delay time is
2 2 modadder mux τ τ +

Layer 3: delay time is
2 2 modadder mux τ τ +

Total delay is the sum of all layers delay time
2 2 modadder muxTotal τ2τ3 τ +=

To show that hardware works, the signal propagation for binary number

6244)01101110(X
710727

=== is illustrated in figure (7b). Similarly, the reader can

try any bit pattern in figure (7b) to check the validity of the design. For example

3255)11111111(X
710727

=== where each multiplexer select line is 3 and the

selected output are shown in parenthesis.

Omar Dajani

International Journal of Logic and Computation (IJLP), Volume (3) : Issue (1) : 2012 9

FIGURE 7A: Eight Bits Binary to Residue Number System Conversion

m
01m2

m

2

3
m

3

4
m

4

5
m

5

6
m

6

7
m

7

m7..0 bb2b2b2b2b2b2b2X +++++++=

Omar Dajani

International Journal of Logic and Computation (IJLP), Volume (3) : Issue (1) : 2012 10

FIGURE 7B: Example for Signal propagation of
72)01101110(and

72)11111111(

5. IMPLEMENTATION SELECTION
There are several possible binary to RNS imp- lementations using a combination of 2-bit and
3-bit multiplexers. Figure (8) shows three different imp- lementations (design 1, design 2 and
design 3) for 10 bits binary to residue conversion system.

To simplify comparison, the following reasonable assumptions are made

2 33 2 modadder modadder muxmux τ2τ;ττ ==

Design 1 uses nine 2-bit multiplexers and four 2-input mod adders with

Layer 1: delay time is
2mux τ

Layer 2: delay time is
2 2 modadder mux τ τ +

Omar Dajani

International Journal of Logic and Computation (IJLP), Volume (3) : Issue (1) : 2012 11

Layer 3: delay time is
2 2 modadder mux τ τ +

Layer 4: delay time is
2 2 modadder mux τ τ +

Total delay is sum of all layers delay time
2 2 modadder muxTotal τ34τ τ +=

FIGURE 8: Prefix Structure of 10 Bits Binary to RNS

m
01m2m

2

3m

3

4m

4

5m

5

6m

6

7m

7

8m

8

9m

9

m9..0 bb2b2b2b2b2b2b2b2b2X +++++++++=

Design 2 uses four 3-bit multiplexers, one 2-bit multiplexers, four 2-input mod adders and one
3-input adder with

Layer 1: delay time is
3muxτ

Layer 2: delay time is
2 3 modadder mux τ2 τ +

Omar Dajani

International Journal of Logic and Computation (IJLP), Volume (3) : Issue (1) : 2012 12

Layer 3: delay time is
2 2 modadder mux τ τ +

2 32 modadder muxmuxTotal τ3τ2 ττ ++=

2 2 modadder mux τ3τ3 +=

Design 3 uses three 3-bit multiplexers, three 2-bit multiplexer and three 2-input mod adders
with

Layer 1: delay time is
3muxτ

Layer 2 : delay time is
2 2 modadder mux τ τ +

Layer 3: delay time is
2 2 modadder mux τ τ +

2 32 modadder muxmuxTotal τ2τ2τ τ ++=

2 2 modadder mux τ2τ3 +=

From Table (1), it shows that Design 3 uses less hardware and the fastest

 Design Hardware count

Time Delay Mux2 Mux3
Mod
add2

Mod
add3

1 2 2 modadder mux τ34τ +
9 0 4 0

2 2 2 modadder mux τ3τ3 +
1 4 4 1

3 2 2 modadder mux τ2τ3 +
3 3 3 0

TABLE 1: shows comparison between the three designs implementation for n = 10

6. COMPARISON SELECTION TO PERVIOUS WORK
This Novel method has hardware advantages than any competitive converters. In 1984, Alia
and Martinelli [3] published binary to RNS conversion design based on power 2 mod mi . The
design uses processing elements (PE) and each PE is associated with two registers. Each of

these registers is serially loaded with
m

1i

m

i 2 and2 +
 respectively and it enabled to put their

content or zeros' out depending on value 1 or 0 of bj and bj+1 respectively. The two outputs are
added in a modular adder. Thus, at first level, n/2 PEs are required. The number of stages in
this method is [log2 n] and after successive transformation and addition, the residue result is
available. Cappocelli and Giancarlo [4] suggested the use of t PEs where t = n/ log2 n, each
PE computing the residue corresponding to k- bit binary word where k = log2 n, the residue 2

kt

mod mi is serially fed to thk̂ PE (=k̂ 0, 1, 2, …, t-1), Based on these initial residues, the

residues corresponding to the next (k-1) powers are computed by first doubling and then
weighting according to the input bits in each PE. The partial residues of k-bit words computed
over parallel t PEs are then added to yield the final residue. Anandmohan [5] has proposed a
similar method but with a difference that X is divided into t sections based on the cyclic
property of 2

j
 mod mi. Using the fact that, 2

j,
 2

j+lo
 and 2

j+2lo
 have the same residues due to

periodicity of period lo , lo bits are first added. The width of the result is confined to lo bits by
adding the carry bit resulting from previous addition to LSB of the result. The residue results is
then determined by using methods given in [3]

7. CONCLUSIONS
In this paper we presented a new novel binary to Residue conversion method that eliminates
the need for processing elements (PE) as the above competitive converter designs and doesn't
use table lookup as in Behrooa Parhami [6]. The new method that we present here is based on
multiplexers concept which makes it practical and suitable for VLSI implementation

Omar Dajani

International Journal of Logic and Computation (IJLP), Volume (3) : Issue (1) : 2012 13

8. REFERENCES
[1] M.A. Bayoumi, "Digital filter VLSI systolic arrays over finite fields for DSP applications,"

in Proc. 6th IEEE annual Phoenix Conf. Computers and Communications, pp 194-199,
Feb 1987.

[2] M. A. Soderstrand et al., Eds., "Residue Number System Arithmetic: Modern

Applications in Digital Signal Processing" New York: IEEE Press, 1986

[3] K. Konstantinides and V. Bhaskaran, “Monolithic architectures for image processing and

compression,”IEEE Computer Graphics & Applications, pp. 75-86, Nov. 1992

[4] G. Alia and E. Martinelli, "A VLSI algorithm for direct and reverse conversion from

weighted binary number to residue number system," IEEE Trans. Circuits Syst., vol. 31,
pp. 1425–1431, Dec. 1984.

[5] R. M. Capocelli and R. Giancarlo, "Efficient VLSI networks for converting an integer

from binary system to residue number system and vice versa," IEEE Trans. Circuits
Syst., vol. 35, pp. 1425–1431, Nov. 1988.

[6] A. Mohan, “Novel design for binary to RNS converters,” in Proc. Int.Symp. Circuits and

Systems, London, U.K., 1994, pp. 357–360.

[7] Behrooa Parhami, "Optimal Table-Lookup Schemes for Binary-to-Residue and Residue-

to-Binary Conversions," IEEE Trans, Circuits Syst., 1993

[8] Mohamed. Akkal and Pepe Siy, "A new Mixed Radix Conversion algorithm", Journal of

Systems Architecture, Volume 5, Iusse 9, September 2007, Pages 577-586

[9] N. S. Szabo and R. I. Tanaka, " Residue Arithmetic and Its Applications to Computer

Technology". New York: McGraw Hill, 1967.

Design and Simulation of Moore Logic Circuit based
SAR Analog to Digital Converter

Osama Q.J Al-Thahab
Engineering Faculity/Electgrical Department oalthahab@yahoo.com
University of Babylon
Babylon, Iraq

Hanaa mohsin ali
Engineering Faculity/Electgrical Department ahanaamohsin@yahoo.com
University of Babylon
Babylon, Iraq

Abstract

Keywords:

1. Introduction

2. Types of ADC

2.1 Flash ADC

2.2 Digital ramp ADC

FIGURE1:

FIGURE2: .

Lo
gi

c
En

co
d

er

2.3 Tracking ADC

FIGURE

2.4 Successive Approximation ADC

.

FIGURE4

3. proposed Moore SAR Logic circuit

FIGURE 5:

FIGURE 6:

previous State Next State
y4 y3 y2 y1 X= 0 X= 1

TABLE 1: TABLE 2:

Input (X= 0) Input (X= 1)

J4K4 J3K3 J2K2 J1K1 J4K4 J3K3 J2K2 J1K1

0000

1100

1110 1010 0110 0010

1111 1101 1011 1001 0111 0101 0011 0001

0100

1000

0

1

0 1

0 1

0 1 0 1

0 1

0 1 0 1

0
1

X

CLK

y1

y2

y3

y4

J Q

~QK

RESET

CLK

SET

J Q

~QK

RESET

CLK

SET

J Q

~QK

RESET

CLK

SET

J Q

~QK

RESET

CLK

SET

y1y2y3y4

X

5 V

jksarblock

X
X

CLK
CLK y1

y1

y2
y2

y3
y3

y4
y4

TABLE 3:

FIGURE 8:

4. Digital To Analog Circuit

 000 001 011 010 110 111 101 100

00

01

11

 10

R2R RR

2R 2R 2R 2R
Ref

MSBLSB

O

Do D1 D2 D3

DAC

y1
y1

y2
y2

y3
y3

y4
y4

O
O

Clouck

VCC
GND

CLK

 ⁄

 (b)

FIGURE 9:

5. Comparator

6. Clock

FIGURE 10:

7. JK-Counter

DLatch1

y1
y1

y2
y2

y3
y3

y4
y4

CLK
CLK

Q1
Q1

Q2
Q2

Q3
Q3

Q4
Q4

JK-counter

CLK
CLK

y1
y1

y2
y2

y3
y3

CLK

y1

y2

y3
J Q

~QK

RESET

CLK

SET

J Q

~QK

RESET

CLK

SET

J Q

~QK

RESET

CLK

SET

y1y2y3

VCC

5V

y1

y2

y3

y4

CLK

Q1

Q2

Q3

Q4

D Q

~Q

RESET

CLK

SET

D Q

~Q

RESET

CLK

SET

D Q

~Q

RESET

CLK

SET

D Q

~Q

RESET

CLK

SET

8. Latch

FIGURE 11:

X

COMPARATOR_VIRTUAL

DCD_HEX_DIG_RED

Clouck

VCC
GND

CLK

5V

jksarblock

X
X

CLK
CLK y1

y1

y2
y2

y3
y3

y4
y4

DLatch1

y1
y1

y2
y2

y3
y3

y4
y4

CLK
CLK

Q1
Q1

Q2
Q2

Q3
Q3

Q4
Q4

JK-counter

CLK
CLK

y1
y1

y2
y2

y3
y3

DAC

y1
y1

y2
y2

y3
y3

y4
y4

O
O

A B C D

G

T

Vref

X

COMPARATOR_VIRTUAL

DCD_HEX_DIG_RED

Clouck

VCC
GND

CLK

5V

jksarblock

X
X

CLK
CLK y1

y1

y2
y2

y3
y3

y4
y4

DLatch1

y1
y1

y2
y2

y3
y3

y4
y4

CLK
CLK

Q1
Q1

Q2
Q2

Q3
Q3

Q4
Q4

JK-counter

CLK
CLK

y1
y1

y2
y2

y3
y3

DAC

y1
y1

y2
y2

y3
y3

y4
y4

O
O

A B C D

G

T

Vref

3 V

9. Proposed Moore SAR ADC

10. Results and Discussion

FIGURE 12:

FIGURE 13

COMPARATOR_VIRTUAL

DCD_HEX_DIG_RED

DLatch1

y1
y1

y2
y2

y3
y3

y4
y4

CLK
CLK

Q1
Q1

Q2
Q2

Q3
Q3

Q4
Q4

DAC

y1
y1

y2
y2

y3
y3

y4
y4

O
O

A B C D

G

T

Vref

1.5 V

FIGURE 14:

FIGURE 15:

COMPARATOR_VIRTUAL

DCD_HEX_DIG_RED

DLatch1

y1
y1

y2
y2

y3
y3

y4
y4

CLK
CLK

Q1
Q1

Q2
Q2

Q3
Q3

Q4
Q4

DAC

y1
y1

y2
y2

y3
y3

y4
y4

O
O

A B C D

G

T

Vref

5 V

COMPARATOR_VIRTUAL

DCD_HEX_DIG_RED

DLatch1

y1
y1

y2
y2

y3
y3

y4
y4

CLK
CLK

Q1
Q1

Q2
Q2

Q3
Q3

Q4
Q4

DAC

y1
y1

y2
y2

y3
y3

y4
y4

O
O

A B C D

G

T

Vref

5 Vpk

10 Hz

0°

FIGURE 16:

 FIGURE 17:

11. Conclusion

12. Future work

13. REFERENCES

 Engineering.

J. Mbale

International Journal of Logic and Computation (IJLP), Volume (3) : Issue (1) : 2012 27

Automated Education Propositional Logic Tool (AEPLT): Used
For Computation in Discrete Mathematics

J. Mbale mbalej@yahoo.com
Centre of Excellence in Telecommunications (CoE)
Department of Computer Science
Faculty of Science
University of Namibia
Windhoek, 340, Namibia

Abstract

The Automated Education Propositional Logic Tool (AEPLT) is envisaged. The AEPLT is an
automated tool that simplifies and aids in the calculation of the propositional logics of compound
propositions of conjuction, disjunction, conditional, and bi-conditional. The AEPLT has an
architecture where the user simply enters the propositional variables and the system maps them
with the right connectives to form compound proposition or formulas that are calculated to give
the desired solutions. The automation of the system gives a guarantee of coming up with correct
solutions rather than the human mind going through all the possible theorems, axioms and
statements, and due to fatigue one would bound to miss some steps. In addition the AEPL Tool
has a user friendly interface that guides the user in executing operations of deriving solutions.

Keywords: Compound proposition, propositional variables, propositional logic, truth table,

connective and SEMINT specific parser.

1. INTRODUCTION

This work envisages a solution of automating the calculation of the propositional logic which is
user friendly. This paper introduces the Automated Education Propositional Logic Tool (AEPLT)
designed for the stated task. The AEPLT automatically calculates the propositional logics of
compound propositions of conjuction, disjunction, conditional, and bi-conditional. The AEPLT
architecture is composed of the following components: Proposition Process (PP), Operator,
SEMINT Specific Parser, Assumption Statements, T/F and Truth Table. Once the user activates
the system, the SEMINT Specific Parser automatically extracts the propositional variables from
the PP and connectives from Operator. The SEMINT Specific Parser has the ability of forwarding
the compound propositions or formulas to the right Assumption Statements. In these right
Assumption Statements, the formulas are examined against various statements. After this
examination, the system is ready to give results whether Truth False value, which is then
recorded in the truth table. Once the results are recorded, the user can access the results from
the truth table for the intended application. The work also demonstrates an algorithm that clearly
illustrates the stages of calculating and implementing the tool. The system’s application is
comprehensively demonstrated by its interface, which guides the use of the system and makes
this tool user friendly.

1.1 Statement of Problem
During the Discrete Mathematics classes, students struggle to calculate the propositional logics of
compound proposition. Yet in this cutting edge era, the Information Communication Technology
(ICT) tools have been employed and applied to automate all challenging mathematical, physics,
engineering and any other scientific problems. Considering all the theorems, axioms and
statements the student has to undergo in order to derive the logic that would help him come up
with results, the process tends to be cumbersome. It is in view of this that the AEPLT was
introduced to automate the calculation of the propositional logic of the conjuction, disjunction,
conditional and bi-conditional.

J. Mbale

International Journal of Logic and Computation (IJLP), Volume (3) : Issue (1) : 2012 28

1.2 Literature Review
The propositional logic is one of the topics under Discrete Mathematics course or discipline. Before
tackling propositional logic, it is inevitable to first look at the Discrete Mathematics which is the
overall course. In fact, the significance of Discrete Mathematics as the basis for formal approaches
to software development has been noted by many scholars such as Dijkstra, Gries, and Schneider
[1,2,3]. This position continues to be espoused by the ITiCSE working group [4] among others
[5,6,7,8]. The idea that Discrete Mathematics can be viewed as software engineering mathematics
has been popularized by the Woodcock and Loomes textbook [9]. In [1] it was emphasized that the
application of Discrete mathematics to the software development problem has been the subject of
extensive research. He added that much of the initial effort was directed to formal verification, the
process of showing the equivalence of two software system presentations. He also indicated that
Discrete Mathematics pedagogy has a rich background. Whereas in [10,11,12,13] they pointed out
that Discrete Mathematics literature dates back even to the first proposed computing curricula. In
[14, 15] they described Discrete Mathematics as the study of mathematical structures and objects
that are fundamentally discrete rather than continuous. They gave some examples of objects with
discrete values as integers, graphs, or statement in logic. From their description they also pointed
out that concepts from Discrete Mathematics were useful for describing objects and problems in
computer algorithms and programming languages. They further emphasized that these had
applications in cryptography, automated theorem proving and software development. This
description is also supported in [16] where they discussed Discrete Mathematics as the study of
mathematical structures that do not support or require the notion of continuity. They outlined the
topics of Discrete Mathematics to include: logic, sets, numbers theory, combinatorics, graphs,
algorithms, probability, information, complexity, computability, etc. Also in [1] it was pointed out
Discrete Mathematics underlying modern software engineering theory that included: propositional
and first-order predicate logic, reasoning, proof techniques, induction, finite set theory, relations

and graphs. the Discrete Mathematics classes, students struggle to calculate the propositional

logics of compound proposition.

The research on the propositional logic was envisaged as far back as 1854 by a Mathematician
George Boole [17, 18] who established the rules of symbolic logic in his book titled, The Laws of
Thought. Since then, a lot of scholars had been researching on the significance of propositions
towards building the reasoning capacity of the learners, engineers and other scientists. Many
scholars have come up with various definitions to the concepts of propositional logic. Others have
separated definitions of propositional and logic. [19] defined logic as the science of reasoning
correctly. He further emphasised that this subject has a long history, and narrates that the person
generally agreed to have founded formal logic was Aristotle who is method of formal reasoning
was called the syllogism. He also pointed out that in nineteen century philosophers and
mathematicians like Boole, De Morgan, Frege and others, became interested in modeling the
laws of thought. In [14] he classified logic as the branch of philosophy concerned with analyzing
the patterns of reasoning by which a conclusion is drawn from a set of premises, without
reference to meaning or context. They further emphasized its importance as a formalization of
reasoning, a formal language for deducing knowledge from a small number of explicit stated
premises, hypotheses, axioms and facts. They also pointed out that logic was a formal framework
for representing knowledge. They also defined proposition as the underlying meaning of a simple
declarative sentence, which is either true or false. In this definition, the truth or falsehood of a
proposition was indicated by assigning it one of the truth values T, for true and F for false. They
also cited some examples of propositions as: mammals are warm blooded, the sun orbits the
earth, four is a prime number, Joan is taller than John, etc. A practical example was given from a
statement: “In 1938 Hitler seized Austria, (and) in 1939 he seized former Czechoslovakia and in
1941 he attacked the former USSR while still having a non-aggression pact with it.” This
statement was expressed in atomic propositions as: p = in 1939 Hitler seized Austria; q = 1939 he
seized former Czechoslovakia; r = 1941 he attacked the former USSR, and s = in 1949 Hitler had
a non-aggression pact with the USSR. This was formalized in propositional logic as:

srqs ∧∧∧ .

J. Mbale

International Journal of Logic and Computation (IJLP), Volume (3) : Issue (1) : 2012 29

[20] pointed out that many mathematical statements were constructed by combining one or more
propositions. He further stated that new prepositions called compound propositions are formed
from the existing propositions using logical connectives or operators. Whereas [19] defined
compound statements as the combination of primitive statements by means of logic connectives.
[19, 20] stated that letters were used to denote propositional variables or statement variables.
They gave the conventional letters used for propositional variables as: p, q, r, s, etc. The authors
also defined the truth table which displays the relationships between truth values that are true
(denoted T) if it is true proposition and false (denoted F) otherwise. They classified these
propositions as: (i) negation of p and denoted ¬ p. They defined as the truth value of the negation
of p was the opposite of the truth value of p, read as “not p”; (ii) the compound proposition
conjunction denoted p ∧ q, is true when both p and q are true and false otherwise; (iii) the
compound proposition disjunction denoted p ∨ q is false when both p and q are false and true
otherwise; the compound proposition conditional denoted p → q, is false when p is true and q is

false, and is true otherwise; (iv) the compound proposition exclusive or denoted p ⊕ q, is true

when exactly one of p and q is true and is false otherwise; (v) the compound proposition bi-
conditional denoted by p ↔ q, is true when p and q have the same truth value, and is false

otherwise.

2. THE AELPT SYSTEM ARCHITECTURE

The Propositional Computation architecture given in Figure 1 is an automated model which is
used to calculate the values of compound propositions: conjunction, disjunction, conditional and
bi-conditional. The architecture is composed of the following components: Proposition Process
(PP), Operator, SEMINT Specific Parser, Assumption Statements, T/F and Truth Table.

Assumption

Statements

Conjuction

Assumption

Statements

Disjunction

Assumption

Statements

Conditional

Assumption

Statements

Bi-conditional

Proposition Process (PP)

p,q,r,s, etc

T/F

SEMINT Specific Parser (SemSP)

Truth Table

Operator

FIGURE 1: Preposition computation architecture.

The user activates the Propositional Process (PP) which holds the propositional variables such as
the p, q, r, s, etc. Once the PP is activated, the SEMINT Specific Parser (SemSP) automatically
extracts the propositional variables and the logical connectives from the Operator, forming a

compound statement or formula such as p ∧ q, p ∨ q, p → q, p ⊕ q and p ↔ q. The SemSP is

intelligently designed to automatically pass the compound statement to the right Assumption
Statements component. The Assumption Statement has pre-programmed statements that
determine the final computed propositional statement whether true or false. Then either the true
(T) or false (F) is selected from the T/F decision box and this result is recorded in underlying Truth

J. Mbale

International Journal of Logic and Computation (IJLP), Volume (3) : Issue (1) : 2012 30

Table. This Truth Table then holds the results of the computed compound proposition such as
conjuction, disjunction, conditional and bi-conditional. Then the user can pick the results his/her
application purposes.

3. IMPLEMENTATION OF AUTOMATED EDUCATION PROPOSITIONAL
LOGIC TOOL

The implementation of Automated Education Propositional Logic Tool is done by the algorithm
illustrated in Figure 2.

Yes

Proposition

p,q,r,s, etc

P=Null Exit
No

Conjuction

Truth TablePi=Pj

Disjuction

Map T/T/F/F

Condictional

Bi-Condictional

FIGURE 2: Preposition implementation algorithm.

From Figure 2, the propositional variables are activated into the decision box. In the decision box,
if the propositional variables are null, then the process is exit. This would imply that the variables
are empty and the process can not be continued. At the same instance, if the propositional
variables are not null, the pair or set of such statements are passed on to the adjacent decision
box. Let Pi be the first propositional variable and Pj be the second one. The pair or the set of
propositional variables are mapped to a connective forming a compound statement or formula.
Then the mapped propositional variables are forwarded to the right compound proposition where
the formula would be computed through a series of statements. These statements make a
complete algorithm that determines true and false solution. Below, the statements are discussed:
A. Conjuction (p ∧ q):

• True and True is True, because both sides of the conjuction are True, then the
proposition holds True

• True and False is False, because a proposition cannot be both True and False at
the same time, hence False

• False and True is False, because a proposition cannot be both True and False at
the same time, therefore False

• False and False is False, because a proposition holds to be False on both sides of
conjuction, hence False.

B. Disjunction (p ∨ q):

• True or True is True, because both sides of the disjunction are True, then the
proposition holds True

• True or False is True, because at least one side of the disjunction is True, therefore,
the proposition is True

• False or True is True, because at least one side of the disjunction is True, hence,
the proposition is True

J. Mbale

International Journal of Logic and Computation (IJLP), Volume (3) : Issue (1) : 2012 31

• False or False is False, because all the sides of disjunction hold False, then the
proposition is False.

C. Conditional (p → q):

• True implies True is True, hence the proposition holds True

• True implies False is False, this result takes precedence to make the proposition
False

• False implies True is True, this result takes precedence to make the proposition
True

• False implies False is False, which is True from the statement, hence the
proposition is True.

D. Bi-Conditional (p ↔ q):

• True implies True and is implied by true, it gives True, hence the proposition holds
True

• True implies False and False implies True, therefore the proposition is False
because what is False is never True and vice versa

• False implies True and True implies False, hence the proposition is False because
it is not True that what is False is True and vice versa

• False implies False and False implies False, hence the proposition is True,
because False is False.

After the formulas examine the four compound statements, then from the decision box the
results are produced and recorded in the Truth Table. Therefore, the user can pick the
results for the intended application.

E. The Application Interface: Propositional Tool:
The AEPLT has a user friendly interface. It has a pull down menu, where the user can select
what he/she wants to calculate such as conjuction, disjunction, conditional, and bi-
conditional as illustrated in Figure 3.

FIGURE 3: Compound propositional input window.

From Figure 3, if you select conjuction from a pull down menu, then the Figure 4 appears. This
figure has entry or input spaces for entering the variables of propositions p and q that are True (T)
and False (F). Every after entering values True (T) and False (F), one can still view the individual
results without checking on the Truth Table by pressing on the button “View Result”. When you
press on “View Button”, the system will display Truth Table conjuction results. Similar calculations
can be done on others such as the disjunction, conditional and bi-conditional.

J. Mbale

International Journal of Logic and Computation (IJLP), Volume (3) : Issue (1) : 2012 32

FIGURE 4: The Conjuction Window for Input.

4. CONCLUSION

Development in all sectors of work, require correct planning in order to provide tools that will yield
the intended results. As in [19], logic was defined as the science of reasoning correctly. Once the
implementers reason correctly in strategizing and planning in executing their tasks, positive
results would be achieved. Hence, in this work, the AEPLT was envisaged to come up with
automated systems which will always give a precise propositional logic results. The system has
an architecture where the user simply enters the propositional variables and whole calculation is
done giving accurate results.

The envisaging of this model, Automated Education Propositional Logic Tool (AEPLT) has scored
a number of achievements. First it has allowed the users, who are in this case the students to
concretely use this automated model, rather than calculating the propositional logic of compound
propositions of conjuction, disjunction, conditional and bi-conditional manually. Secondly, the
automated model has a user friendly interface where the student enters the propositional
variables and then the system automatically maps them with the right connectives to form
compound proposition or formula that are calculated to yield the intended results. Thirdly, during
the execution, this automated system gives a guarantee of producing correct results rather than
when it is done manually whereby due to fatigue or exhaustion, the user may bound to key-in
incorrect input and thereafter result into wrong output.

5. REFERENCES
[1] J. P. Cohoon and J. C. Knight. “Connecting Discrete Mathematics and Software

Engineering,” 36th ASEE/IEEE Frontiers in Education Conference, San Diego, CA, October
28 – 31, 2006.

[2] E. W. Dijkstra. “On the cruelty of really teaching computing science,” Communications of the
ACM, December 1989, pp. 1398-1404.

[3] D. Gries, and F. B. Schneider. “A logical approach to discrete math,” Springer-Verlag, New
York, 1993.

[4] V. L. Almstrum, C. N. Dean, D. Goelman, T. B. Hilburn, and J. Smith. “ITiCSE 2000 working
group report: support for teaching formal methods,” SIGCSE Bulletin, June 2001.

J. Mbale

International Journal of Logic and Computation (IJLP), Volume (3) : Issue (1) : 2012 33

[5] A. E. Fleury. “Evaluating discrete mathematics exercises”, SIGCSETechnical Symposium on
Computer Science Education, 1993, pp. 73-77.

[6] J. W. McGuffee. “The discrete mathematics enhancement project”, Journal of Computing in
Small Colleges, 2002, pp. 162-166.

[7] H. Saiedian. “Towards more formalism in software engineering education”, SIGCSE
Technical Symposium on Computer Science Education, 1993, pp. 193-197.

[8] K. Heninger. “Specifying Software Requirements Complex Systems: New Techniques and
Their Application”, IEEE Transactions on Software Engineering, Vol. SE-6, No. 1, January
1980.

[9] J. Woodcock, and M. Loomes. “Software Engineering Mathematics” Software Engineering
Institute, Series in Software Engineering, 1988.

[10] A. T. Berztiss. “The why and how of discrete structures”, SIGCSE Technical Symposium on
Computer Science Education, 1976, pp. 22-25.

[11] R. E. Prather. “Another look at the discrete structures course”, SIGCSE Technical
Symposium on Computer Science Education, 1976, pp. 247-252.

[12] J. P. Tremblay, and R. Manohar. “A first course in discrete structures with applications to
computer science,” SIGCSE Technical Symposium on Computer Science Education, 1974,
pp. 155-160.

[13] A. Tucker, (editor). “Computing curricula 1991: report of the ACM/IEEE-CS Joint curriculum
task force”, ACM Press, 1991.

[14] http://www.cs.pitt.edu/

[15] http://gear.kku.ac.pitt.edu/

[16] mason.gmu.edu/~asamsono/teaching/math125/Lecture1.pdf · PDF file

[17] http://docs.google.com/

[18] www-groups.dcs.st-and.ac.uk/history/Mathematicians/Boole.html

[19] Robin Hirsch. www.cs.ecl.ac.uk/staff/r.hirsch//teaching/1b12/

[20] www.coursehero.com/file/2552944/s11propositionallogicBW

Alvaro Tasistro, Ernesto Copello & Nora Szasz

International Journal of Logic and Computation (IJLP), Volume (3) : Issue (1) : 2012 34

Principal Type Scheme for Session Types

Álvaro Tasistro tasistro@ort.edu.uy
Universidad ORT Uruguay
11100, Montevideo, Uruguay

Ernesto Copello copello@ort.edu.uy
Universidad ORT Uruguay
11100, Montevideo, Uruguay

Nora Szasz szasz@ort.edu.uy
Universidad ORT Uruguay
11100, Montevideo, Uruguay

Abstract

Session types as presented in [1] model communication between processes as a structure of
dialogues. The dialogues are specified by sequences of types of messages, where each type
describes the format and direction of the message. The resulting system imposes a type
discipline that guarantees compatibility of interaction patterns between processes of a well-typed
program. The system is polymorphic in Curry’s style, but no formal treatment of this aspect has
been provided yet. In this paper we present a system assigning type schemes to programs and
an algorithm of inference of the principal type scheme of any typable program for a significant
fragment of the calculus which allows delegation of communication, i.e. transmission of channels.
We use classical syntax for variables and channels, i.e. just one sort of names in each case for
either bound of free occurrences. We prove soundness and completeness of the algorithm,
working on individual terms rather than on α-equivalence classes. The algorithm has been
implemented in Haskell and partially checked in the proof assistant Agda.

Keywords: types, principal type scheme, type inference algorithm.

1. INTRODUCTION

Systems of (dyadic) session types allow to structure programs which consist of communicating
processes as networks of dialogues. Each such dialogue is called a session and is carried out
through a specific sort of communication entity called a channel. Channels are created by a
special kind of interaction occurring at ordinary ports, which we explain at once: using syntax
close to that in the original presentation of session types [2], we write acc a(k).P to represent a
process that is willing to accept a session at port a. This can interact with concurrent req a(k’).Q
which can be thought of requesting such session. As a consequence of the interaction, a new
channel is created that will communicate the continuation processes P and Q. In these
processes, the names k and k’ will (respectively) represent the two ends of the newly created
channel. Thus, and as a consequence of the dialogue restriction, each channel end in the system
belongs to one and only one process.
Once the channel is created, the session takes place, i.e. a sequence of messages is
interchanged. The system of types allows characterizing each session as a sequence of message
formats, where each format specifies the direction and type of contents of the message. Such
characterization is a session type. A process like P or Q above can in turn be characterized by
the (session) types of its (free) channels, which are determined by the actions performed by the
process at each of its channel ends. Let us call the set of channel types of a process its typing.
Now, in acc a(k).P and req a(k).P the name k becomes bound and the process ceases to depend
on it; that is to say, the typing of acc a(k).P shall not mention k anymore. The port a is, however,
assigned the type of k. And thus it becomes in principle possible to check whether two processes
acc a(k).P and req a(k’).Q that expect to establish a session through a do indeed hold compatible

Alvaro Tasistro, Ernesto Copello & Nora Szasz

International Journal of Logic and Computation (IJLP), Volume (3) : Issue (1) : 2012 35

interactions. Compatible means actually dual, i.e. an output in one process must be mirrored by
an input in the other, and with contents of the same type. Thereby, type correctness ensures
absence of compatibility errors in communication and freedom from interference of third parties in
the dialogues. The safety property can be characterized as freedom from dead-lock in the case
that sessions do not overlap.

As already said, session types appeared in [3,2]. Next to that, [4] allowed the transmission of
channels in sessions, i.e. the possibility of implementing delegation: a process can then delegate
a session to another process that takes over the dialogue. It does so by sending the second
process the corresponding channel end (which is then definitely lost by the original process.)

The system of types was later refined in [1], following ideas of [5]. That is the system that we shall
consider in this paper. The problem to study is that of type inference, i.e. of performing type
checking even when (some) type declarations are omitted. Actually the system in [1] is
polymorphic in Curry’s style and admits a definition of principal type scheme. The principal type
scheme can be computed for each well-formed process, even without any type declaration of
variables, channels or ports. Such is the contribution of this paper: a formal treatment of session
type polymorphism, in which we give an inference algorithm and prove its soundness and
completeness. We here carry out the work for a fragment of the original type system including
channel delegation but not choice or recursion. These restrictions are not essential, as we shall
indicate. We have implemented our algorithm in Haskell and in the proof assistant Agda [6], in
which the proof of soundness has been completely fomalized.

This kind of work has not been done elsewhere, as far as we know. In [5] a type checking (not
inference) algorithm is given and its soundness proven, for a system more expressive than the
one considered here, since it allows for subtyping in the session types. In [7] a simple version of
session types is studied. in which only two implicit channels can be simultaneously used. As a
consequence of this, delegation of channels is not possible. The type system is also simplified not
allowing recursive types. In this work type safety is proven and an OCaml implementation of an
inference algorithm is presented, for which proofs of some basic results are given.

There are some other related works that embed session types in other programming languages.
In [8] and [9] session types are implemented in Haskell, making use of its powerful polymorphic
type system and type classes with functional dependencies [10]. In the first work only one
channel is implemented and soundness of the embedded system is proven. In the second one
multiple channels are allowed but no soundness property is given. In [11] a more general
technique is given to embed session types with multiple channels, thus earning more portability in
the host language. In particular, any polymorphic language can be used as host. Soundness is
proven but only for one channel.

The rest of the paper is organized as follows: in the next section we introduce the process
language and the type system, adapted from the one in [1]. We notice it is polymorphic and then
introduce the notion of type scheme, employing type variables. In section 3 we formulate our
algorithm of type inference which computes, for every typable program, its principal type scheme,
i.e. a type scheme assignable to the program and from which every other typing of the program
can be obtained as a type substitution instance. We give detailed proofs of soundness and
completeness of the algorithm. We expose conclusions and remaining work in section 4.

2. SESSION TYPES

Syntax of processes is as follows:

P : − 0 | k!e ; P | k?x. P | k!!k’ ; P | k??k’. P | acc a(k). P | req a(k). P | P |Q

Alvaro Tasistro, Ernesto Copello & Nora Szasz

International Journal of Logic and Computation (IJLP), Volume (3) : Issue (1) : 2012 36

We now informally explain their meaning. In what follows channel and channel end are used
interchangeably:

 0 is the inactive process.

 In the term k!e ; P, k is a channel end and e an expression whose value is data to be sent along
k. Then the process continues behaving as P.

 In k?x. P, data is received in the channel end k. The variable x is bound in the term.

 The term k!!k’ ; P sends the channel end k’ along the channel k and then becomes P.

 Dually, k??k’. P receives a channel in the channel end k. The name k’ becomes bound in the
term.

 The meaning of acc a(k). P and req a(k). P is related to session initiation and has already been
explained. The name k is bound in both terms.

 Finally, P |Q, is the parallel composition of processes P and Q.

As usual, we assume denumerable sets of channel names and of variables. Also, as is evident
from the syntax above, we assume a class of data expressions to be specified separately.
The syntax has been chosen so as to include those cases that are essential for the study of
compatibility of interaction. In this regard, the only constructs that could be said missing are the
choice operators. But consideration of these adds only technical difficulties that lie somehow
beside the problem we are interested in. Also for completing a sufficiently expressive language
we should include recursion or replication. We shall comment on this later.

We now turn to the consideration of types. We shall assume that an appropriate type system
exists for the data expressions, whose properties are to be stated when necessary. Let for the
moment δ stand for data types. Then session types are as follows:

α,β : − 1 | ↑δ ; α | ↓δ ; α | ↑α ; β | ↓α ; β

i.e. they are finite sequences of message formats, each of which specifies the direction (↑ = out, ↓
= in) and type of the contents of the message (type of data or type of a channel being sent or
received in delegation). 1 stands for impossibility of communication. Should we consider
recursion, we would have to allow for (finite descriptions of) infinite sequences. Also if we
considered choice there would have to be a branching construct.

The dual α of a type α is defined as follows:

1 = 1
↑δ; α = ↓δ; α
↓δ; α = ↑δ; α
↑α; β = ↓α;

β

↓α; β = ↑α; β

A typing judgement is of the form Γ; Π |– P  ∆, where:

 P is the program being typed.

 ∆ is the channel context, recording the types of the free channels of the program P.

 Γ is the data context, containing the declarations of the free (data) variables of P.

 Π is the port context, with the declarations of the ordinary ports of P.

Data contexts Γ are finite partial functions from data variables to data types. The application of
function F to argument a will be written F a. The union of two data contexts Γ, Γ’ is still a valid data
context when Γ x = Γ’ x for every variable x which is defined (declared) in both Γ and Γ’. Port
contexts Π are, similarly, finite partial functions from sort names to session types.
Channel contexts ∆ are instead total functions from channel names to channel types, 1 almost
everywhere. This choice proves to be convenient and reflects the fact that unused and unusable
(inactive) channels are indistinguishable. In particular, 1 is the constant function everywhere
equal to 1. Two channel typings ∆ and ∆’ are disjoint, to be written ∆ / ∆’ iff for every channel k, at

Alvaro Tasistro, Ernesto Copello & Nora Szasz

International Journal of Logic and Computation (IJLP), Volume (3) : Issue (1) : 2012 37

least one of ∆k and ∆’k is 1. The union of two disjoint channel typings, to be written ∆.∆’, is such
that for every channel k, (∆.∆’)k is the sum of ∆k and ∆’k, where sum has 1 as (left and right)

identity element. Overriding a function F with a pair (a, b) is written F≺+a → b and gives value F x
for every x ≠ a, whereas it gives value b for argument a. In the case of channel and data contexts,
we will write : in overridings instead of the symbol →. When treating channel contexts it will prove
sometimes convenient to use a notation for a strong form of overriding to be written · and that can
be called extension. Specifically, ∆ · k : α means the overriding of ∆ with the pair (k, α) but
requiring further ∆k = 1.

The type system is exposed in Figure 1.

inact:

Γ; Π |– 0  1

snd:
Γ |– e : δ Γ; Π |– P  ∆

Γ ; Π |– k!e ; P  ∆ ≺+ k:δ ; ∆k

rcv:
Γ≺+ x: δ ; Π |– P  ∆

Γ ; Π |– k?x. P  ∆ ≺+ k:↓δ ; ∆k

thrw:
Γ ; Π |– P  ∆

Γ ; Π |– k!!k’ ; P  ∆ ≺+ k:↑α ; Δk · k’:α

ctch:
Γ ; Π |– P  ∆ · k’:α

Γ ; Π |– k??k’. P  ∆ ≺+ k: ↓α ; ∆k

acc:
Γ ; Π |- P  ∆ · k: Πa

Γ; Π |– acc a(k). P  ∆

req:
Γ ; Π |- P  ∆ · k: Πa

Γ; Π |– req a(k). P  ∆

conc:
Γ ; Π |– P  ∆ Γ ; Π |– Q  ∆’

∆/∆’
Γ; Π |– P | Q  ∆.∆’

FIGURE 1: The Type System

We proceed to explain the rules:

 First, the rule inact establishes that any channel is completed (no longer usable) in process 0.

 The next snd rule corresponds to the event of sending data through the channel k. We assume
the existence of a type system for data expressions in which it is possible to type these under
declarations of its variables, which are of course the variables of our programs. That explains
the first premise of the rule. The second premise types the continuation process P, and then the
conclusion updates the typing of P with the new type of k, obtained by prefixing ↑δ to the type
sequence characterizing k in the continuation process.

 The third rule rcv corresponds to receiving data through a channel. A variable x is used and its
declaration updates the data context in the typing of the continuation process P. The type
declared to x is of course the type of the data received in the resulting typing in the conclusion
of the rule.

 Next comes the rule thrw corresponding to sending (throwing) a channel end through a channel.
The thrown channel end must be named with a fresh identifier, i.e. one not occurring in the
continuation process P. This reflects the fact that the channel end will no longer belong to the
process that just threw it over. In the rule the condition is imposed by the use of the extension
operator · in the conclusion. Notice that the rule can be applied for whatever type is associated
to the thrown channel.

Alvaro Tasistro, Ernesto Copello & Nora Szasz

International Journal of Logic and Computation (IJLP), Volume (3) : Issue (1) : 2012 38

 The next rule ctch is for receiving (catching) a channel sent over by a communicating process.
The name k’ used to represent the received channel end becomes bound, which is reflected in
the fact that it cannot appear in the typing ∆. Syntactically, this is enforced by use of the
extension operator in the premise. In fact, the names k and k’ could coincide (since after all no
restriction should be placed in the choice of the name k’). In this case the resulting typing of the
process at hand depends on k and reflects that it becomes unusable after the catching.

 The rule acc is for accepting a session. The channel end k becomes bound and similar
considerations as above apply. But there is a detail to comment, which concerns the type
assigned to k in order to type the continuation process. This type is the same that the port a has
in the port context Π. This means two things: firstly, a has to be declared in Π, and this ought to
be made explicit as a side condition to the rule. The reason why we have omitted this has to do
only with brevity of the presentation and will become clearer below. Secondly, the rule reflects
that the typing of the ordinary ports is the type of the channel end created by interaction at that
port.

 This is to be linked to the next, dual, rule req for typing a request of session. What we require in
this case is that the channel behaves in a manner dual to the type of the port, and that will make
it dual to the type of the opposite end of the channel created at the interaction of acceptance
and request. That is to say, in a parallel composition of an acceptance and a request of a
session the port is typed uniformly in both cases, and it is the channel ends which have to
receive dual types.

 Finally, the rule conc of concurrent composition of processes requires that no channel end
belongs to more than one process (disjointness of the channel typings) and that all variables
and ports are uniformly typed in both processes.

Notice that no type declaration is required in the syntax of terms for any of the variables, ports or
channels. This is coincident with the formulation in [1], of which the system presented here is a
slight variant. The system is thus polymorphic à la Curry. Examples of polymorphic terms are: acc
a(k).k?x.k!x; 0 and acc a(k).acc b(k’). . . . k!!k’; P .
This motivates the investigation of type schemes. We therefore consider a denumerable set of
type variables a

t
 and define the (session) type schemes as follows:

α : − a

t
 | a

t
 | 1 |↑δ ; α| ↓δ; α| ↑α ; α| ↓α ; α

The scheme a

t
is there just to stand as the dual of type variable a

t
(and its dual is of course a

t
).

We then consider the type system given before with two modifications: first, we assign type
schemes in place of types; and, secondly, only for the sake of simplicity of the treatment, we shall
consider port contexts as total functions from port names to type schemes. The (new) port
contexts shall be built by successive instantiations from an original context in which every port
name has associated a different type variable. We call this the void or purely generic port context
and write it Ω. It can be implemented by assuming that each port name a can be encoded

uniquely as a type variable a
t
. We define dom Π = {a | Πa  a

t
} for port context Π. This set will

always be finite. We further define two port contexts Π and Π´ to be compatible when for every
port a, either Πa = Π´a or one of them is a type variable. For compatible port contexts Π and Π´,
define the union Π.Π´ to take, for each port a, the common value at a of Π and Π´ if such is the
case, or the more instantiated one otherwise. We insist in that these considerations are only for
simplicity in the treatment to be presented below and are not essential to it. Otherwise, the
system with type schemes is exactly like the one above. In particular, the rules are the same as
displayed in Figure 1.

We have also to consider type substitutions. These are finite partial functions from type variables
to type schemes and their action on type schemes is defined in the obvious way. We only have to
remark that substitution of type scheme α for a

t
 in a

t
 yields α.

Alvaro Tasistro, Ernesto Copello & Nora Szasz

International Journal of Logic and Computation (IJLP), Volume (3) : Issue (1) : 2012 39

Finally, we assume that a similar extension to type schemes can be applied to the system of
typing of data expressions. Then the following two basic results are obtained, provided they hold
too for the system of data expressions:

Lemma 1 (Weakening). If Γ; Π |– P  ∆ and Γ  Γ’ then Γ’; Π |– P  ∆.

Proof. Immediate induction on the type system. Use that Γ ≺+ x: δ  Γ’ ≺+ x: δ if Γ  Γ’.

Lemma 2 (Closure under type substitution). If Γ; Π |– P  ∆ then for any type substitution θ,
Γθ; Πθ |– P  ∆θ.

Proof. Induction on the type system. Use that for any type substitution σ and type scheme α, ασ =
ασ.

3. TYPE INFERENCE

An inference algorithm for the given type system is displayed in Figure 2.

We make use of the form of judgement Γ; Π  P  ∆ with the obvious meaning, i.e. given
program P the algorithm infers (if possible) the contexts Γ, Π and ∆. Further, as shall be proven
presently, the typing inferred in case of success is the most general that can be assigned to P in
the type system, i.e. it is the principal type scheme of P. This means that every other typing of P
can be obtained from the one inferred by applying to this a suitable type substitution.
A simple inspection reveals that for each program P the inferred typing is unique up to the choice
of the type variables used to construct it. The type variables are introduced in the (conclusions of
the) rules rcv2 and thrw, and as will be shown, the choice of particular names is immaterial once
certain basic conditions of freshness are ensured, namely that the names are fresh w.r.t. the set
of type variables used in each rule’s premise. This allows us to make the following convention in
order to simplify the presentation: in rules with two premises, no type variable is used in both
premises. And in rules in which we introduce type variables, these are fresh w.r.t. the set of type
variables used in the premises.

inact:

; Ω  0  1

snd:
Γ  e  δ Γ’; Π  P  ∆

Γ
θ
 Γ’

Γθ  Γ’θ; Πθ  k!e ; P  ∆θ ≺+ k:δθ ; (Δθ)k

rcv1:
Γ ; Π  P  ∆

x  dom Γ
Γ \ x ; Π  k?x. P  ∆ ≺+ k:↓Γx ; ∆k

rcv2:
Γ ; Π  P  ∆

x  dom Γ
Γ ; Π  k?x. P  ∆ ≺+ k:↓a

t
 ; ∆k

thrw:
Γ ; Π  P  ∆

Γ ; Π  k!!k’ ; P  ∆ ≺+ k:↑a

t
 ; ∆k · k’:a

t

ctch:
Γ ; Π  P  ∆

Γ ; Π  k??k’ ; P  ∆ \ k’ ≺+ k: ↓∆k’ ; (∆\k’)k

acc:
Γ ; Π  P  ∆

Πa 
θ
 ∆k

Γθ; Πθ  acc a(k). P  ∆θ \ k

req:
Γ ; Π  P  ∆

Πa 
θ
 ∆k

Γθ; Πθ  req a(k). P  ∆θ \ k

Alvaro Tasistro, Ernesto Copello & Nora Szasz

International Journal of Logic and Computation (IJLP), Volume (3) : Issue (1) : 2012 40

conc:
Γ ; Π  P  ∆ Γ’ ; Π’  Q  ∆’

∆/∆’ , (Γ,Π) 
θ
(Γ’,Π’)

Γθ  Γ’θ; Πθ.Π’θ  P | Q  ∆θ.∆’θ

FIGURE 2: The Inference Algorithm

We now explain the rules. The general idea is of course to infer the minimal and most general
contexts that fit the given program.
First, the rule inact assigns to 0 the void contexts.
In the snd (send) rule use is made of inference of type of data expressions –we assume such
algorithm to be available– which gives the first premise. The second premise corresponds to the
(recursive) inference of typing of the continuation process P. Then the condition for success of
the rule is that the two inferred contexts Γ and Γ’ unify, i.e. that the (data) type schemes at their
common variables unify. This is (we assume) standard first order unification, which is decidable
and yields in case of success a most general unifier θ. This is what is expressed by the side

condition Γ
θ
 Γ' to the rule. The conclusion obtains immediately by realizing that every context

has to be instantiated by θ and Γ and Γ’ have to be put together. Besides, the typing of the
process at hand has to be updated with the type inferred for the channel k.
For the rcv (receive) rule there are two subcases. Once the continuation process P has been
recursively typed one checks whether the data variable x is used in P or not. In the first case, the
type assigned to x in the data context is recorded in the type of the channel as being received. If
otherwise the variable is not used in P, then any type does since any value can be received.
Therefore we update the channel k with the mark of input of a fresh type variable. According to
the convention given above, this variable can be any one not occurring in the premise of the rule.
A situation entirely similar to this last subcase arises in the next rule, in which the thrown out
channel k’ can be typed with any type whatsoever.
In the rule catch the point is to delete the bound name k’ so that it does not occur in the resulting
channel context. The rest of the manipulation has to do with considering the case in which the
names k and k’ coincide.
In the rest of the rules the novelty is the use of a unification algorithm over session types. This is
expressed in the side conditions to the rules. Now session types are also first order trees if data
types are and therefore such algorithm exists under the assumptions that we have established.
This is actually the point on which all our development rests.

We can now prove the full correctness of our algorithm. For this we have to suppose correct the
algorithm of data type inference.

Proposition 3 (Soundness of Type Inference). If Γ; Π  P  ∆ then Γ; Π |– P  ∆.

Proof. By induction on the rules of the inference algorithm.
Case inact: Immediate.
Case snd: Assume Γ |– e : δ (soundness of expression type inference) and Γ’ ; Π |– P  ∆

(induction hypothesis). Assume further Γ 
θ
 Γ’ (side condition to the rule in the inference

algorithm.) We then know both Γθ |– e : δθ and Γ’θ; Πθ |– P  ∆θ because of the property of
preservation of typing under type substitution in both type systems (expressions and session
types). Now, since Γ and Γ’ unify under θ, Γθ ∪ Γ’θ is defined and, by weakening of both type

systems, we get Γθ ∪ Γ’θ |– e : δθ and Γθ ∪ Γ’θ; Πθ |– P  ∆θ. Hence, by rule snd of the session
type system, Γθ ∪ Γ’θ; Πθ |– k!e; P  ∆ ≺+ k: ↑ δθ; (∆θ)k, as required.

Case rcv1: Assume Γ; Π |– P  ∆ (induction hypothesis) and x ∈ dom Γ (side condition to the

rule.) We then know Γ = Γ \ x ≺+ x : Γx and therefore, because of the rule rcv of the type system,
we have Γ \ x; Π |– k?x.P  ∆ ≺+ k : ↓Γx; ∆k, as required.

Case rcv2: Assume Γ; Π |– P  ∆ (induction hypothesis) and the side condition x  dom Γ. Also,
as indicated before, assume a

t
 fresh in (Γ, Π, ∆). Then Γ ⊆ Γ≺+ x : a

t
 and therefore by weakening,

Alvaro Tasistro, Ernesto Copello & Nora Szasz

International Journal of Logic and Computation (IJLP), Volume (3) : Issue (1) : 2012 41

Γ≺+ x: a
t
 ; Π |– P  ∆. Now, using rule rcv of the type system, we arrive at the desired Γ; Π |–

k?x.P  ∆ ≺+ k: ↓a
t
 ; ∆k.

Case thrw: Immediate. Notice that the side condition needs not be used.
Case ctch: Immediate once one writes ∆ = (∆ \ k’)· k’ : ∆k’ .

Case acc: Assume Γ; Π |– P  ∆ and side condition Πa 
θ
 ∆k. By preservation of typing under

type substitutions we know Γθ; Πθ |– P  ∆θ. Now ∆θ = (∆θ \ k) · k: (∆θ)k. And (∆θ)k = (∆k)θ =

(since Πa 
θ
 ∆k) = (Πa)θ = (Πθ)a, whence the required Γθ; Πθ |– acc a(k).P  ∆θ \ k by use of the

rule acc of the type system.
Case req: Identical to the preceding one.
Case conc: Use the unification side condition, preservation of typing under type substitution, and
weakening, just the same as in case snd.

Proposition 4 (Completeness of Type Inference). Γ; Π |– P  ∆ implies Γ1; Π1  P → ∆1 for
contexts Γ1, Π1, ∆1 and type substitution θ such that Γ1θ ⊆ Γ, Π1θ = Π and ∆1θ = ∆.

Proof. By induction on the rules of the type system.
Case inact: Define θa

t
 = Πa for every a ∈ dom Π.

Case snd: Assume Γ1 ← e → δ1 with Γ1θ ⊆ Γ and δ1θ= δ for appropriate type substitution θ (this
corresponds to completeness of the data expression type inference system.) Assume the
induction hypothesis, i.e. Γ1’ ; Π1’ ← P → ∆1’ with Γ1’θ’ ⊆ Γ, Π1’θ’ = Π and ∆1’θ’ = ∆ for appropriate
type substitution θ’. Assume further that the type variables employed in Γ1 and Γ1’ are disjoint.
Hence without loss of generality we can also take θ and θ’ to possess disjoint domains. Now the

union σ of these two substitutions makes both Γ1σ ⊆ Γ and Γ1’σ ⊆ Γ, which means that there is a
subcontext of Γ that is a type substitution instance of both Γ1 and Γ1’. Hence these two have a

most general unifier ζ and we can apply rule snd of the inference algorithm to obtain Γ1ζ ∪ Γ1’ζ ;

Π1’ζ ← k!e ; P → ∆1’ζ ≺+ k : ↑ δζ ; (∆1’ζ)k. Also because ζ is the m.g.u. of Γ1 and Γ1’, we know
that there exists ζ’ such that σ = ζζ’. Further, since θ’ is the subset of σ acting on the type
variables of Γ1’, Π1’ and ∆1’, we have Γ1’θ’ = Γ1’ζζ’ and similarly for Π1’ and ∆1’. Therefore in the

inference above we have what is required to prove, namely (Γ1ζ  Γ1’ζ)ζ’ = Γ1ζζ’  Γ1’ζζ’ = Γ1θ 
Γ1’θ’ ⊆ Γ , Π1’ζζ’ = Π1’θ’ = Π and [∆1’ζ ≺+ k : ↑δζ ; (∆1’ζ)k]ζ’ = ∆ ≺+ k : ↑δ; ∆k, where the latter can
be easily checked by just distributing the substitution ζ’.

Case rcv: Assume the induction hypothesis, i.e. Γ1; Π1  P → ∆1 with Γ1θ ⊆ Γ≺+x: δ, Π1θ= Π and
∆1θ = ∆ for appropriate type substitution θ.

If now x ∈ dom Γ1 then we can apply rule rcv1 of the inference algorithm to get Γ1\x; Π1 ← k?x.P

→ ∆1 ≺+ k : ↓Γ1x; ∆1k. Moreover, we have (Γ1\x)θ ⊆ Γ, which follows from Γ1θ ⊆ Γ≺+x: δ, and, by
hypothesis, Π1θ= Π. Finally, [∆1≺+ k: ↓Γ1x; ∆1k]θ = ∆ ≺+k: ↓δ; ∆k, which can be checked by
distributing θ and using ∆1θ = ∆ as well as (Γ1x)θ = (Γ1θ)x = δ.

If otherwise x  dom Γ1, we choose a sufficiently fresh type variable a
t
 and apply rule rcv2 to get

Γ1; Π1 ← k?x.P → ∆1 ≺+ k: ↓a
t
 ; ∆1k and taking θ’ = θ · a

t
  δ, the required conditions Γ1θ’ ⊆ Γ,

Π1θ’= Π, and [∆1≺+ k: ↓a
t
 ; ∆1k]θ’ = ∆ ≺+ k: ↓δ; ∆k all hold.

Notice that here is a place where we introduce type variables into the inferred type scheme. It
should be clear that the procedure works whatever freshness conditions are imposed to type
variable a

t
 besides the basic one we have agreed upon, namely that a

t
 is fresh in the contexts Γ1,

Π1 and ∆1.
Case thrw: Similar to the last case above. A sufficiently fresh type variable is introduced.
Case ctch: Immediate once one notes that (∆ · x : α) \ x= ∆.

Case acc: Assume the induction hypothesis, i.e. Γ1 ; Π1 ← P → ∆1 , with Γ1θ ⊆ Γ, Π1θ = Π and

∆1θ=∆ · k: Πa. Notice that (Π1a)θ = (Π1θ)a = Πa = (∆1θ)k = (∆1k)θ. Therefore, Π1a 
ζ
 ∆1k and θ =

ζζ’. We can then apply rule acc of the inference algorithm to obtain Γζ ; Πζ ← acc a(k). P → ∆ζ \
k. And, besides, Γ1ζζ’ ⊆ Γ, Π1ζζ’ = Π and (∆1ζ \ k)ζ’ =∆ζζ’ \ k= ∆, as required.
Case req: Identical to the preceding one.
Case conc: Similar to first case snd.

Soundness and completeness, together with unicity of inference of typing (up to choice of type
variables) give the result on principal type scheme. Actually a principal type scheme for P is, by

Alvaro Tasistro, Ernesto Copello & Nora Szasz

International Journal of Logic and Computation (IJLP), Volume (3) : Issue (1) : 2012 42

definition, one that is assignable to P and that satisfies the conditions exposed in the
completeness theorem for all the typings Γ; Π |– P  ∆ assignable to P.

4. CONCLUSION

The classical result of (implicitly) simply typed λ calculus, of existence and effective computability
of principal type scheme of any typable term can be extended to session types. This fact has
been mentioned in passing in [4] and [1] but only now has it been proven formally. What remains
for us to make this result complete is to extend our present development to types of choice
(branching) and recursive types. Of these, the latter seem to constitute the interesting problem.
But, as pointed out above, the key point on which the given algorithm and proofs rest is the
existence of a unification algorithm for session types. And, as remarked out in e.g. [12], this
algorithm can be extended to unification of regular trees with all other details of the proof holding
without modifications.
We have also formalized a great part of the present development in the proof assistant Agda [6],
which implements a version of constructive type theory. Besides, we have implemented the
inference algorithm in Haskell. All this is available in [13] and we expect to soon complete the
formalization of the whole development. Notice that the treatment presented in this paper does
not depend on identifying α-convertible terms and is therefore amenable to direct formalization.

Acknowledgements Ernesto Copello was partially supported by a graduate student

scholarship from ANII (Agencia Nacional de Investigación e Innovación), Uruguay.

5. REFERENCES

[1] N. Yoshida and V. T. Vasconcelos. “Language primitives and type discipline for structured

communication-based programming revisited: Two systems for higher-order session
communication”. In 1st International Workshop on Security and Rewriting Techniques, volume
171(4) of ENTCS, pages 73–93. Elsevier, 2007.

[2] K. Takeuchi, K. Honda, and M. Kubo. “An interaction-based language and its typing system”. In
Constantine Halatsis, Dimitris G. Maritsas, George Philokyprou, and Sergios Theodoridis,
editors, PARLE, volume 817 of Lecture Notes in Computer Science, pages 398–413. Springer,
1994.

[3] K. Honda. “Types for dyadic interaction”. In Eike Best, editor, CONCUR’93, volume 715 of
Lecture Notes in Computer Science, pages 509–523. Springer Berlin / Heidelberg, 1993.
10.1007/3-540-57208-2_35.

[4] K. Honda, V. T. Vasconcelos, and M. Kubo. “Language primitives and type disciplines for
structured communication-based programming”. In ESOP’98, volume 1381 of LNCS, pages 22–
138. Springer, 1998.

[5] S. J. Gay and M. Hole. “Subtyping for session types in the pi calculus”. Acta Inf., pages 191–
225, 2005.

[6] U. Norell. “Towards a practical programming language based on dependent type theory”. PhD
thesis, Department of Computer Science and Engineering, Chalmers University of Technology,
SE-412 96 Göteborg, Sweden, September 2007.

[7] L. G. Mezzina. “How to infer finite session types in a calculus of services and sessions”. In
Proceedings of the 10th international conference on Coordination models and languages,
COORDINATION’08, pages 216–231, Berlin, Heidelberg, 2008. Springer-Verlag.

[8] M. Neubauer and P. Thiemann. “An implementation of session types”. In Bharat Jayaraman,
editor, PADL, volume 3057 of Lecture Notes in Computer Science, pages 56–70. Springer,
2004.

Alvaro Tasistro, Ernesto Copello & Nora Szasz

International Journal of Logic and Computation (IJLP), Volume (3) : Issue (1) : 2012 43

[9] M. Sackman and S. Eisenbach. “Session Types in Haskell: Updating Message Passing for the
21st Century”. Technical report, June 2008.

[10] M. P. Jones. “Type classes with functional dependencies”. In Proceedings of the 9th European
Symposium on Programming Languages and Systems, ESOP ’00, pages 230–244, London,
UK, 2000. Springer-Verlag.

[11] R. Pucella and J. A. Tov. “Haskell session types with (almost) no class”. SIGPLAN Not.,
44(2):25–36, September 2008.

[12] F. Cardone and M. Coppo. “Type inference with recursive types: Syntax and semantics”. Inf.

Comput., 92(1):48–80, 1991.

[13] Ernesto Copello. Inferencia de tipos de sesión. Master’s thesis, Universidad ORT Uruguay,

2012.

INSTRUCTIONS TO CONTRIBUTORS

The International Journal of Logic and Computation aims to promote the growth of logic and
computing research from the perspectives of logic, mathematics and computer science, but
emphasizes semantics of programs, in contrast with the traditional treatment of formal languages
as sets of strings. IJLP promote this new field with its comprehensive selection of technical
scientific papers and regular contributions such as letters, reviews and discussions for logical
systems using classical and non-classical logic, constructive logic, categorical logic, modal logic,
type theory, logical issues in logic programming, knowledge-based systems and automated
reasoning programing; logical programming issues in knowledge representation, non-monotonic
reasoning, logics and semantics of programming and applications of logic in hardware and VLSI.

To build its International reputation, we are disseminating the publication information through
Google Books, Google Scholar, Directory of Open Access Journals (DOAJ), Open J Gate,
ScientificCommons, Docstoc and many more. Our International Editors are working on
establishing ISI listing and a good impact factor for IJLP.

The initial efforts helped to shape the editorial policy and to sharpen the focus of the journal.
Starting with Volume 4 2013, IJLP will aim to appear with more focused issues. Besides normal
publications, IJLP intend to organized special issues on more focused topics. Each special issue
will have a designated editor (editors) – either member of the editorial board or another
recognized specialist in the respective field.

We are open to contributions, proposals for any topic as well as for editors and reviewers. We
understand that it is through the effort of volunteers that CSC Journals continues to grow and
flourish.

IJLP LIST OF TOPICS
The realm of International Journal of Logic and Computation (IJLP) extends, but not limited, to the
following:

• Categorical Logic • Challenges in Natural Language and
Reasoning

• Classical and Non-Classical Logic • Computer Logical Reasoning

• Constructive Logic • Knowledge-Based Systems and
Automated Reasoning Pr

• Logic Representation Techniques • Logical Issues in Logic Programming

• Logical Programming Issues in
Knowledge Representa

• Logics and Semantics of Programming

• Modal Logic • Natural Language

• Non-Monotonic Reasoning • Programming Expressiveness

• Programming Reasoning Test Collection • Reasoning Systems

• Semantic Representation in Logic
Programming

• State-Based Semantics

CALL FOR PAPERS

Volume: 4 - Issue: 1

i. Submission Deadline: January 31, 2013 ii. Author Notification: March 15, 2013

iii. Issue Publication: April 2013

CONTACT INFORMATION

Computer Science Journals Sdn BhD

B-5-8 Plaza Mont Kiara, Mont Kiara
50480, Kuala Lumpur, MALAYSIA

Phone: 006 03 6207 1607

006 03 2782 6991

Fax: 006 03 6207 1697

Email: cscpress@cscjournals.org

