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EDITORIAL PREFACE 

 
It is a great privilege for me as Editor in Chief of International Journal of Logic and Computation 
(IJLP) to present our readers the current issue of Journal which wraps up its third year and first 
issue of successful publication. This journal has focused on publishing research that provides 
information for practitioners, researchers and academicians with a teaching or research interest in 
engineering and science discipline. The first issue of IJLP is organized to presents articles in a 
particular area of computer logic and computation to attract readers who are interested in reading 
papers related to that special field. The first issue of IJLP provides a better chance to fulfill the 
anticipation of a broader community of our audiences. 

 
The initial efforts helped to shape the editorial policy and to sharpen the focus of the journal. 
Starting with Volume 4, 2013, IJLP aims to appear with more focused issues. Besides normal 
publications, IJLP intend to organized special issues on more focused topics. Each special issue 
will have a designated editor (editors) – either member of the editorial board or another 
recognized specialist in the respective field. 
 
As EIC of IJLP, I want to encourage contributors to IJLP to submit not only manuscripts 
addressing basic and applied research articles but also reviewed articles, practitioner oriented 
papers and other exploratory research projects addressing contemporary issues in such areas as 
Computational Logic, Knowledge based systems, Application of Logic in Hardware and VLSI, Soft 
Computing Techniques, Type theory, Natural Language etc. The review process will remain the 
same for these articles as mentioned in the official website of IJLP. 
 
IJLP editors understand that how much it is important for authors and researchers to have their 
work published with a minimum delay after submission of their papers. They also strongly believe 
that the direct communication between the editors and authors are important for the welfare, 
quality and wellbeing of the Journal and its readers. Therefore, all activities from paper 
submission to paper publication are controlled through electronic systems that include electronic 
submission, editorial panel and review system that ensures rapid decision with least delays in the 
publication processes.  
 
To build international reputation of IJLP, we are disseminating the publication information through 
Google Books, Google Scholar, Directory of Open Access Journals (DOAJ), Open J Gate, 
ScientificCommons, Docstoc, Scribd, CiteSeerX and many more. Our International Editors are 
working on establishing ISI listing and a good impact factor for IJLP. I would like to remind you 
that the success of the journal depends directly on the number of quality articles submitted for 
review. Accordingly, I would like to request your participation by submitting quality manuscripts for 
review and encouraging your colleagues to submit quality manuscripts for review. One of the 
great benefits that IJLP editors   provide to the prospective authors is the mentoring nature of the 
review process. IJLP provides authors with high quality, helpful reviews that are shaped to assist 
authors in improving their manuscripts.  
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Novel Parallel - Perfix Structure Binary to Residue Number 
System Conversion Method 

 
 

Omar Dajani  
Pepe Siy Wayne State Univerisity 
Department of Electrical and Computer Engineering 

Abstract 
 

In the present world there is always a demand for faster algorithms and techniques that could 
boost up the speed of the computations. With the help of VLSI fabrication techniques and 
using residue number system (RNS) arithmetic we can achieve the faster speeds. In this paper 
we propose a novel parallel prefix binary to residue number system conversion method. The 
method that we present in this paper utilizes parallel-prefix technique with multiplexers and 
modulo adders as the main building blocks which makes it practical and suitable for VLSI 
implementation. 
 
Keywords: Residue Number System, Binary to Residue Conversion, Multiplexer, Modulo 
Adder. 

 

 
1. INTRODUCTION 
In the last decade, Residue number system (RNS) has received increased attention due to its 
ability to support high speed concurrent arithmetic applications [1-3]  such as  Fast Fourier 
transform (FFT), image processing and digital filters utilize the efficiencies of RNS arithmetic 
in addition and multiplication. The advancements in very large scale integration (VLSI) 
technology and demand for parallelism computation have enabled researchers to consider 
RNS as an alternative approach to high speed concurrent arithmetic. 
 
Several methods are found in literature for binary to RNS conversion. Alia and Martinelli [4] 
have proposed a method for binary to residue conversion based on powers of 2. A modification 
to the above method was proposed by Cappocelli and Giancarlo [5]. Anandmohan [6] has 
proposed a similar method but with difference that his method is based on the cyclic property 
of power of 2 moduli set. Behrooa[7]  proposed a table lookup schemes for binary to Residue 
conversions.  
 
In this paper, we present a novel binary to Residue Number System conversion method that 
we used to build   Residue Arithmatic logic unit (RALU).  RALU has three main units: Binary to 
Residue unit, ALU and Residue to Binary unit [8]. The organization of this paper is as follows. 
Section two explains RNS system. In section three we present new conversion from binary to 
RNS algorithm.  Section four and five show illustrative example and implementation selection 
techniques. Section six is comparison between the new method and pervious work. Conclusion 
is in section seven.  

  
2. RESIDUE NUMBER SYSTEM 
Any n-bit nonnegative integer number X, in the range 0 ≤ X ≤ 2

n
-1 is represented in binary 

number system as  ∑
−

=

− =++++=
1n

0j

j

j

012

2

1n

1-n
b2bb 2b2...b2X   

where { }1,0b j ∈ . 

Meanwhile in RNS, X is represented by k residue digits xi as X = {x1, x2, x3, …, xk}  where xi  = 

X mod mi   and mi belong to set of relatively prime moduli; { }k321i m , ... ,m ,m ,mm ∈  [9]. If 
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the moduli are relatively prime numbers, there is a unique RNS representation for each integer 

in range i

s

1i m X 0 =∏≤≤  

 
3. NEW NOVEL CONVERSION METHOD FROM BINARY TO RESIDUE 

REPRESENTATION 
As shown above an integer number X can be represented in Binary system as 

∑
−

=

− =++++=
1n

0j

j

j

012

2

1n

1-n b2bb 2b2...b2X

 
And   RNS representation of number X  is 
 

2mforb2X
m

1-n

0j m
j

j

m
>= ∑ =

  for   m  >  2 

)1(b2
m

1-n

0j jm

j

∑ =
=    

 

Let ]Y,Y,Y,Y)[A,A(M 321001AA 01
=   denotes a 2-bit multiplexer where the 2 control bits 

(A1, A0) select the inputs ( 3210 Y,Y,Y,Y  ) to be outputted 

 
Lemma 1:   For any pair of bits bj& bi   for j & i  ≥ 0, 

mji
m

i
m

i

j
m

j Xb2b2 =+
    

can be implemented using 2-bit multiplexer : 

]22,2,2,0)[b,b(M
mm

i

m

j

m

j

m

i

ijji +=          (2) 

Where the control bits (A1, A0) equal (bj, bi) 

Proof: 

Rewrite equation 
m

i
m

i

j
m

j b2b2 +   as 

)b.b.22()b..b2()b.b.2()b.b.0( ij
mm

i

m

j

ijm

j

ijm

i

ij ++++   

This is equivalent to 2-bit multiplexer Mji with control bits (A1, A0) equal (bj, bi). Figure (1) 
shows the implementation for equation (2) with bj = b1 and bi= b0 
 

 

 
 

FIGURE 1: Two Bits (b1 & b0) Binary to Residue Number System Conversion 
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This pre-processing operator Mji is represented in acyclic graph as node  "   " in figure (2a), 
where all the inputs are constants and pre-calculated .   

 

 
 

FIGURE 2: Prefix logic operation and their implementation 
 

In three bit system, let ,Y)[A,A,A(M 0012AAA 012
=   ]Y,Y,Y,Y,Y,Y,Y 7654321  denotes a 3-bit 

multiplexer where the 3 control bits (A2, A1, A0) select the inputs ( 76543210 Y,Y,Y,Y,Y,Y,Y,Y )  

to be outputted. 
 
Lemma 2:   For any three bits bk, bj & bi   for k, j & i  ≥ 0, 

mkji
m

i
m

i

j
m

j

k
m

k Xb2b2b2 =++ can be   

implemented using 3-bit multiplexer : 

,2,2,0)[b,b,b(M
m

j

m

i

ijkkji = ,22,2,22
mm

i

m

k

m

k

mm

i

m

j ++  

]222,22
mm

i

m

j

m

k

mm

j

m

k +++                         (3)  (3) 

Where control bits (A2, A1, A0) equal (bk,, bj, bi) 
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Proof: 

Rewrite  
m

i
m

i

j
m

j

k
m

k b2b2b2 ++   as  

+++ )b..bb.2()b.bb.2()b.b.b.0( ijk
m

j

ijk
m

i

ijk

+++ )b.b..b2()b..bb.22( ijk
m

k

ijk
mm

i

m

j
 

++ )b.bb,22( ijk
mm

i

m

k ++ )b..bb22( ijk
mm

j

m

k
   

)b..bb.222( ijk
m

i

m

j

m

k ++       

 
Above equation is equivalent to 3-bit multiplexer with bk, bj & bi as selection control inputs. 
Figure (3) shows the implementation for equation 3 with bk = b2  bj = b1 and bi= b0 

 

 
 

FIGURE 3:  Three bits (b2, b1, b0) Binary to Residue Number System Conversion 
 
This pre-processing operator Mkji is represented in acyclic graph as node "  " in figure (2b), 
where all the inputs are constants and pre-calculated. 

 
Theorem 1:   For Any two pairs of bits (bl & bk ) (bj & bi for j, i , l & k  ≥ 0 with the given 
expression  

mlkji
m

im

i

jm

j

km

k

lm

l Xb2b2b2b2 =+++  

can be implemented using 2-bit multiplexer 

,M,)[0b(b),b(b M jiijkllkji ++= ]MM,M jilklk +        (4) 

Where control bits (A1, A0) equal (bl,+bk ,  bj,+bi) 

Proof
m

i
m

i

j
m

j

k
m

k

l
m

l

mlkji b2b2b2b2X +++=  

mjilkmlkji MMX +=       (5)  

Where 
m

k
m

k

l
m

l

lk b2b2M +=    and   
m

i
m

i

j
m

j

ji b2b2M +=   by Lemma 1  

Let   blk = (bl + bk)   and  bji = (bj+bi)     

Rewrite equation (5)  as ++ )b.b.M()b.b.0( jilkjijilk  )b.b.MM()b..bM( jiljilkjilklk k
++ .    

And this is equivalent to  2-bit multiplexer Mlkji with control bits (A1, A0) equal  (bl+ bk , bj+ bi). 
Figure (4) shows implementation for two pair bits (b3, b2) & (b1, b0) 
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FIGURE 4: Four Bits Binary to RNS 
m

01m

1

2m

2

3m

3

m3..0 bb2b2b2X +++=  

Lemma 3: 
Combining two pairs of bits (bl & bk ) (bj & bi ) requires one 2-bit multiplexer and one 2 input 

mod adder.   The delay time 
22 modadder mux Total ττ τ +=  

Proof 

Equation (4) and figure (4) show that ]MM,M,M,)[0b(b),b(b jilklkjiijkl +++  

is equivalent to one 2-bit multiplexer and  one 2-input mod adder;  and delay time is equal to 

 
22 modadder mux τ τ + .   

Figure (2c) represents acyclic graph "  " for node Mlkji   where Mlk & Mji  are inputs. 
 
Lemma 4  
The parallel prefix operator   has the following properties 
 

1) Commutative  

lkM   jiM     =  jiM    lkM      

 
2) Associative 

lkM  hgM  (  )M ji  = lk(M  )M hg   jiM  

 
Proof: 

lkM   jiM     =     lkjiM  

      ,M,)[0b(b),b(b jiijkl ++= ]MM,M jilklk +  

      
m

i
m

i

j
m

j

k
m

k

l
m

l b2b2b2b2 +++=  (6) 

    jiM     lkM   =     jilkM  

        ,M,)[0b(b),b(b klklij ++= ]MM,M lkjiji +  

      
m

k
m

k

l
m

l

i
m

i

j
m

j b2b2b2b2 +++= (7) 
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Both expressions (6) and (7) are the same by commutative property of  "+"  hence  operator 
is commutative  

lkM   hgM  (   )M ji   =   lkM   hgjiM   

             lkhgjiM =          

             +++= h
m

h

k
m

k

k
m

l b2b2b2      
m

i
m

i

j
m

j

g
m

g b2b2b2 ++              (8) 

lk(M    )M hg       jiM  =  lkhgM   jiM  

              lkhgjiM =  

               +++= h
m

h

k
m

k

k
m

l b2b2b2    
m

i
m

i

j
m

j

g
m

g b2b2b2 ++            (9) 

 
Both expressions (8) and (9) are the same by associative property of  "+"  hence   operator 
is associative 
 
Theorem 2:   For any three pairs of bits ( bl & bk) ,  
(bj & bi ) and (bh & bg )  for l, k, j, i, h & g ≥ 0  with given expression  

  ++++ i
m

i

j
m

j

k
m

k

l
m

l b2b2b2b2   
mlkjihg

m
g

m

g

h
m

h
Xb2b2 =+   

can be implemented using 3-bit multiplexer  
 

,M)[0,b(b),b(b),b(b M hgghijkllkjihg +++= ,MM,M,MM,M hglklkhgjiji ++

 ]MMM,MM hgjilkjilk +++       (10) 

Where control bits (A2, A1, A0) equal (bl+bk , bj+bi , bh+bg,) 
 
Proof: 

+++= j
m

j

k
m

k

l
m

l

mlkjihg b2b2b2X   
m

g
m

g

h
m

h

i
m

i
b2b2b2 ++  

 

mhgjilkmlkjihg MMMX ++=              (11) 

Where 
m

k
m

k

l
m

l

lk b2b2M +=   ,     

 
m

i
m

i

j
m

j

ji b2b2M +=      and  

m
g

m

g

h
m

h

hg b2b2M +=  by Lemma 1  

 
Let   blk = (bl + bk) , bji = (bj + bi)   and   bhg = (bh + bg)    
 
Rewrite equation (11)   as 

++ )b.bb.M()b.b.b.0( hgjilkhghgjilk
+++ )b..bb).MM(()b..bb.M( hgjilkhgjihgjilkji   

+++ )b.b).bMM(()b.b..bM( hgjilkhglkhgjilklk  

++ )b..b).bMM(( hgjilkjilk  

)b..bb).MMM(( hgjilkhgjilk ++  

 
This is equivalent to 3-bit multiplexer Mlkjihg with control bits (A2, A1, A0) equal   (bl+ bk , bj+ bi , 
bh+ bg ) 
Figure (5) shows implementation for three pairs of bits (b5, b4), (b3, b2) & (b1, b0) 
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FIGURE 5: Six Bits Binary to Residue Number System Conversion 
 

m
01

m

1

2
m

2

3
m

3

4
m

4

5
m

5

m5..0 bb2b2b2b2b2X +++++=  

Lemma 5: 
Combining three pairs of bits (bl & bk ), (bj & bi ) & (bh & bg )  requires one 3- bit multiplexer and 
three 2-input mod adder  and one 3-input mod adder.  The delay time equals 

332 3 modadder muxmodadder muxTotal τττ2τ τ +=+=   

 
Proof 

Equation (10) and figure (5) show that ,M,)[0b(b),b(b),b(b hgghijkl +++  

,MM,M,MM,M hglklkhgjiji ++ ]MMM,MM hgjilkjilk +++  is equivalent to one 3- 

bit multiplexer and three 2-input mod adder  and one 3-input mod adder;  and  delay time is 

equal to 
2 3 modadder mux τ2 τ +  

Figure (2d) represents acyclic graph for "  " for node Mlkhgji    where Mlk,  Mhg  & Mji  are inputs   
 
Lemma 6: 
The parallel prefix operator   has the following properties   
 
1) Commutative  

lkjihgM   tsrqpoM     =   tsrqpoM      lkjihgM   

2) Associative 

lkjihgM   tsrqpoM (   )M zyxwru   =  lkjihgM (    )M tsrqpo       zyxwruM  
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Proof: 
The proof is similar to Lemma 4 
 

4. ILLUSTRATIVE EXAMPLE 
In this section, we will use illustrate how theorem 1, theorem 2, lemma 1 and lemma 2 can be 

combined to design a binary to residue convertor. Figure (6) shows how 
m

X  for n = 8 is 

computed.  
In the first layer,  using pre-processing operator   each consecutive pair of bits are group 
together (b7, b6 )  (b5 , b4 ) (b3 , b2 )  (b1, b0 ) creating nodes M76, M54, M32, M10 . In the second 
layer, using parallel prefix operator   each consecutive M node are combined (M76, M54) 
(M32, M10) forming nodes M7..4 & M3..0.  In the last layer, using parallel prefix operator  the last 

2 M nodes are combined (M7..4 ,  M3..0)  forming node M7..0 =   
m7..0X .  Figure (7a) shows the 

actual hardware implementation.  
 

 
  

FIGURE 6: Prefix Structure of 8 Bits Binary to RNS 
 
Total delay time for this example is calculated by counting the delay introduce by the operator 
in each layer  
by using lemma 3  as follows  

Layer 1:  delay time is  
2mux τ  

pre-processing operator  doesn't requires an adder 

Layer 2 :  delay time is  
2 2 modadder mux τ τ +   

Layer 3:  delay time is   
2 2 modadder mux τ τ +  

Total delay is the sum of all layers delay time  
2 2 modadder muxTotal τ2τ3 τ +=  

 
To show that hardware works, the signal propagation for binary number 

6244)01101110(X
710727

===   is illustrated in figure (7b). Similarly, the reader can 

try any bit pattern in figure (7b) to check the validity of the design. For example 

3255)11111111(X
710727

===  where each multiplexer select line is 3 and the 

selected output are shown in parenthesis. 
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FIGURE 7A: Eight Bits Binary to Residue Number System Conversion 
 

m
01m2

m

2

3
m

3

4
m

4

5
m

5

6
m

6

7
m

7

m7..0 bb2b2b2b2b2b2b2X +++++++=  



Omar Dajani 

 
International Journal of Logic and Computation (IJLP), Volume (3) : Issue (1) : 2012 10 

 
 

FIGURE 7B: Example for Signal propagation of   
72)01101110(  and 

72)11111111(  

 

5. IMPLEMENTATION SELECTION 
There are several possible binary to RNS imp- lementations using a combination of 2-bit and 
3-bit multiplexers. Figure (8) shows three different imp- lementations (design 1, design 2 and  
design 3) for 10 bits binary to residue conversion system.  

 
To simplify comparison, the following reasonable assumptions are made  

2 33 2 modadder modadder muxmux τ2τ;ττ ==  

 
Design 1 uses nine 2-bit multiplexers and four 2-input mod adders with  

Layer 1:  delay time is  
2mux τ    

Layer 2:  delay time is  
2 2 modadder mux τ τ +   
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Layer 3:  delay time is   
2 2 modadder mux τ τ +   

Layer 4:  delay time is  
2 2 modadder mux τ τ +  

Total delay is sum of all layers delay time  
2 2 modadder muxTotal τ34τ τ +=   

 
 

 
 

FIGURE 8: Prefix Structure of 10 Bits Binary to RNS 
 

m
01m2m

2

3m

3

4m

4

5m

5

6m

6

7m

7

8m

8

9m

9

m9..0 bb2b2b2b2b2b2b2b2b2X +++++++++=

 

 
Design 2 uses four 3-bit multiplexers, one 2-bit multiplexers, four 2-input mod adders and one  
3-input adder with  

Layer 1:  delay time is  
3muxτ  

Layer 2:  delay time is  
2 3 modadder mux τ2 τ +  
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Layer 3:  delay time is   
2 2 modadder mux τ τ +  

2 32 modadder muxmuxTotal τ3τ2 ττ ++=   

            
2 2 modadder mux τ3τ3 +=  

Design 3 uses three 3-bit multiplexers, three 2-bit multiplexer and three 2-input mod adders 
with  

Layer 1:  delay time is  
3muxτ  

Layer 2 :  delay time is  
2 2 modadder mux τ τ +  

Layer 3:  delay time is   
2 2 modadder mux τ τ +  

2 32 modadder muxmuxTotal τ2τ2τ τ ++=   

          
2 2 modadder mux τ2τ3 +=  

From Table (1), it shows that Design 3 uses less hardware and the fastest 
 

 Design  Hardware  count 

# Time Delay  Mux2 Mux3 
Mod 
add2 

Mod 
add3 

1 2 2 modadder mux τ34τ +   
9 0 4 0 

2 2 2 modadder mux τ3τ3 +   
1 4 4 1 

3 2 2 modadder mux τ2τ3 +   
3 3 3 0 

 
TABLE 1: shows comparison between the three designs implementation for n = 10 
 
6. COMPARISON SELECTION TO PERVIOUS WORK   
This Novel method has hardware advantages than any competitive converters.  In 1984, Alia 
and Martinelli [3] published binary to RNS conversion design based on power 2 mod mi . The 
design uses processing elements (PE) and each PE is associated with two registers. Each of 

these registers is serially loaded with 
m

1i

m

i 2  and2 +
 respectively and it enabled to put their 

content or zeros' out depending on value 1 or 0 of bj and bj+1 respectively. The two outputs are 
added in a modular adder. Thus, at first level, n/2 PEs are required. The number of stages in 
this method is [log2 n] and after successive transformation and addition, the residue result is 
available.  Cappocelli and Giancarlo [4] suggested the use of t PEs where t = n/ log2 n, each 
PE computing the residue corresponding to k- bit binary word where k = log2 n, the residue  2

kt
 

mod mi is serially fed to thk̂ PE ( =k̂ 0, 1, 2, …, t-1), Based on these initial residues, the 

residues corresponding to the next (k-1) powers are computed by first doubling and then 
weighting according to the input bits in each PE. The partial residues of k-bit words computed 
over parallel t PEs are then added to yield the final residue. Anandmohan [5] has proposed a 
similar method but with a difference that X is divided into t sections based on the cyclic 
property of 2

j
 mod mi. Using the fact that, 2

j,
 2

j+lo
 and 2

j+2lo
 have the same residues due to 

periodicity of period lo , lo bits are first added. The width of the result is confined to lo bits by 
adding the carry bit resulting from previous addition to LSB of the result. The residue results is 
then determined by using methods given in [3]  
 
7. CONCLUSIONS   
In this paper we presented a new novel binary to Residue conversion method that eliminates 
the need for processing elements (PE) as the above competitive converter designs and doesn't 
use table lookup as in Behrooa Parhami [6]. The new method that we present here is based on 
multiplexers concept which makes it practical and suitable for VLSI implementation  
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Abstract 

 
The Automated Education Propositional Logic Tool (AEPLT) is envisaged. The AEPLT is an 
automated tool that simplifies and aids in the calculation of the propositional logics of compound 
propositions of conjuction, disjunction, conditional, and bi-conditional. The AEPLT has an 
architecture where the user simply enters the propositional variables and the system maps them 
with the right connectives to form compound proposition or formulas that are calculated to give 
the desired solutions. The automation of the system gives a guarantee of coming up with correct 
solutions rather than the human mind going through all the possible theorems, axioms and 
statements, and due to fatigue one would bound to miss some steps. In addition the AEPL Tool 
has a user friendly interface that guides the user in executing operations of deriving solutions.  
 
Keywords: Compound proposition, propositional variables, propositional logic, truth table, 

connective and SEMINT specific parser. 

 

 
1. INTRODUCTION 

This work envisages a solution of automating the calculation of the propositional logic which is 
user friendly. This paper introduces the Automated Education Propositional Logic Tool (AEPLT) 
designed for the stated task. The AEPLT automatically calculates the propositional logics of 
compound propositions of conjuction, disjunction, conditional, and bi-conditional. The AEPLT 
architecture is composed of the following components: Proposition Process (PP), Operator, 
SEMINT Specific Parser, Assumption Statements, T/F and Truth Table. Once the user activates 
the system, the SEMINT Specific Parser automatically extracts the propositional variables from 
the PP and connectives from Operator. The SEMINT Specific Parser has the ability of forwarding 
the compound propositions or formulas to the right Assumption Statements. In these right 
Assumption Statements, the formulas are examined against various statements. After this 
examination, the system is ready to give results whether Truth False value, which is then 
recorded in the truth table.  Once the results are recorded, the user can access the results from 
the truth table for the intended application. The work also demonstrates an algorithm that clearly 
illustrates the stages of calculating and implementing the tool. The system’s application is 
comprehensively demonstrated by its interface, which guides the use of the system and makes 
this tool user friendly.  
 
1.1 Statement of Problem 
During the Discrete Mathematics classes, students struggle to calculate the propositional logics of 
compound proposition. Yet in this cutting edge era, the Information Communication Technology 
(ICT) tools have been employed and applied to automate all challenging mathematical, physics, 
engineering and any other scientific problems. Considering all the theorems, axioms and 
statements the student has to undergo in order to derive the logic that would help him come up 
with results, the process tends to be cumbersome. It is in view of this that the AEPLT was 
introduced to automate the calculation of the propositional logic of the conjuction, disjunction, 
conditional and bi-conditional.  
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1.2 Literature Review 
The propositional logic is one of the topics under Discrete Mathematics course or discipline. Before 
tackling propositional logic, it is inevitable to first look at the Discrete Mathematics which is the 
overall course. In fact, the significance of Discrete Mathematics as the basis for formal approaches 
to software development has been noted by many scholars such as Dijkstra, Gries, and Schneider 
[1,2,3]. This position continues to be espoused by the ITiCSE working group [4] among others 
[5,6,7,8]. The idea that Discrete Mathematics can be viewed as software engineering mathematics 
has been popularized by the Woodcock and Loomes textbook [9]. In [1] it was emphasized that the 
application of Discrete mathematics to the software development problem has been the subject of 
extensive research. He added that much of the initial effort was directed to formal verification, the 
process of showing the equivalence of two software system presentations. He also indicated that 
Discrete Mathematics pedagogy has a rich background. Whereas in [10,11,12,13] they pointed out 
that Discrete Mathematics literature dates back even to the first proposed computing curricula. In 
[14, 15] they described Discrete Mathematics as the study of mathematical structures and objects 
that are fundamentally discrete rather than continuous. They gave some examples of objects with 
discrete values as integers, graphs, or  statement in logic. From their description they also pointed 
out that concepts from Discrete Mathematics were useful for describing objects and problems in 
computer algorithms and programming languages. They further emphasized that these had 
applications in cryptography, automated theorem proving and software development. This 
description is also supported in [16] where they discussed Discrete Mathematics as the study of 
mathematical structures that do not support or require the notion of continuity. They outlined the 
topics of Discrete Mathematics to include: logic, sets, numbers theory, combinatorics, graphs, 
algorithms, probability, information, complexity, computability, etc. Also in [1] it was pointed out 
Discrete Mathematics underlying modern software engineering theory that included: propositional 
and first-order predicate logic, reasoning, proof techniques, induction, finite set theory, relations 

and graphs. the Discrete Mathematics classes, students struggle to calculate the propositional 

logics of compound proposition.  
 
The research on the propositional logic was envisaged as far back as 1854 by a Mathematician 
George Boole [17, 18] who established the rules of symbolic logic in his book titled, The Laws of 
Thought. Since then, a lot of scholars had been researching on the significance of propositions 
towards building the reasoning capacity of the learners, engineers and other scientists. Many 
scholars have come up with various definitions to the concepts of propositional logic. Others have 
separated definitions of propositional and logic. [19] defined logic as the science of reasoning 
correctly. He further emphasised that this subject has a long history, and narrates that the person 
generally agreed to have founded formal logic was Aristotle who is method of formal reasoning 
was called the syllogism. He also pointed out that in nineteen century philosophers and 
mathematicians like Boole, De Morgan, Frege and others, became interested in modeling the 
laws of thought. In [14] he classified logic as the branch of philosophy concerned with analyzing 
the patterns of reasoning by which a conclusion is drawn from a set of premises, without 
reference to meaning or context. They further emphasized its importance as a formalization of 
reasoning, a formal language for deducing knowledge from a small number of explicit stated 
premises, hypotheses, axioms and facts. They also pointed out that logic was a formal framework 
for representing knowledge. They also defined proposition as the underlying meaning of a simple 
declarative sentence, which is either true or false. In this definition, the truth or falsehood of a 
proposition was indicated by assigning it one of the truth values T, for true and F for false. They 
also cited some examples of propositions as: mammals are warm blooded, the sun orbits the 
earth, four is a prime number, Joan is taller than John, etc. A practical example was given from a 
statement: “In 1938 Hitler seized Austria, (and) in 1939 he seized former Czechoslovakia and in 
1941 he attacked the former USSR while still having a non-aggression pact with it.” This 
statement was expressed in atomic propositions as: p = in 1939 Hitler seized Austria; q = 1939 he 
seized former Czechoslovakia; r = 1941 he attacked the former USSR, and s = in 1949 Hitler had 
a non-aggression pact with the USSR. This was formalized in propositional logic as: 

srqs ∧∧∧ . 
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[20] pointed out that many mathematical statements were constructed by combining one or more 
propositions. He further stated that new prepositions called compound propositions are formed 
from the existing propositions using logical connectives or operators. Whereas [19] defined 
compound statements as the combination of primitive statements by means of logic connectives. 
[19, 20] stated that letters were used to denote propositional variables or statement variables. 
They gave the conventional letters used for propositional variables as: p, q, r, s, etc. The authors 
also defined the truth table which displays the relationships between truth values that are true 
(denoted T) if it is true proposition and false (denoted F) otherwise. They classified these 
propositions as: (i) negation of p and denoted ¬ p. They defined as the truth value of the negation 
of p was the opposite of the truth value of p, read as “not p”; (ii) the compound proposition 
conjunction denoted p ∧ q, is true when both p and q are true and false otherwise; (iii) the 
compound proposition disjunction denoted p ∨ q is false when both p and q are false and true 
otherwise; the compound proposition conditional denoted p → q, is false when p is true and q is 

false, and is true otherwise; (iv) the compound proposition exclusive or denoted p ⊕ q, is true 

when exactly one of p and q is true and is false otherwise; (v) the compound proposition bi-
conditional denoted by p ↔ q, is true when p and q have the same truth value, and is false 

otherwise.  

 
2. THE AELPT SYSTEM ARCHITECTURE 

The Propositional Computation architecture given in Figure 1 is an automated model which is 
used to calculate the values of compound propositions: conjunction, disjunction, conditional and 
bi-conditional. The architecture is composed of the following components: Proposition Process 
(PP), Operator, SEMINT Specific Parser, Assumption Statements, T/F and Truth Table. 
 

Assumption

Statements

Conjuction

Assumption

Statements

Disjunction

Assumption

Statements

Conditional

Assumption

Statements

Bi-conditional

Proposition Process (PP)

p,q,r,s, etc

T/F

SEMINT  Specific Parser (SemSP)

Truth Table

Operator

 

 

FIGURE 1: Preposition computation architecture. 

 
The user activates the Propositional Process (PP) which holds the propositional variables such as 
the p, q, r, s, etc. Once the PP is activated, the SEMINT Specific Parser (SemSP) automatically 
extracts the propositional variables and the logical connectives from the Operator, forming a 

compound statement or formula such as p ∧ q, p ∨ q, p → q, p ⊕ q and p ↔ q. The SemSP is 

intelligently designed to automatically pass the compound statement to the right Assumption 
Statements component. The Assumption Statement has pre-programmed statements that 
determine the final computed propositional statement whether true or false. Then either the true 
(T) or false (F) is selected from the T/F decision box and this result is recorded in underlying Truth 
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Table. This Truth Table then holds the results of the computed compound proposition such as 
conjuction, disjunction, conditional and bi-conditional. Then the user can pick the results his/her 
application purposes.  
 

3. IMPLEMENTATION OF AUTOMATED EDUCATION PROPOSITIONAL 
LOGIC TOOL 

The implementation of Automated Education Propositional Logic Tool is done by the algorithm 
illustrated in Figure 2.  
 

Yes

Proposition

p,q,r,s, etc

P=Null Exit
No

Conjuction

Truth TablePi=Pj

Disjuction

Map T/T/F/F

Condictional

Bi-Condictional
 

 

FIGURE 2: Preposition implementation algorithm. 

 
From Figure 2, the propositional variables are activated into the decision box. In the decision box, 
if the propositional variables are null, then the process is exit. This would imply that the variables 
are empty and the process can not be continued. At the same instance, if the propositional 
variables are not null, the pair or set of such statements are passed on to the adjacent decision 
box. Let Pi be the first propositional variable and Pj be the second one. The pair or the set of 
propositional variables are mapped to a connective forming a compound statement or formula. 
Then the mapped propositional variables are forwarded to the right compound proposition where 
the formula would be computed through a series of statements. These statements make a 
complete algorithm that determines true and false solution. Below, the statements are discussed: 
A. Conjuction (p ∧ q): 

• True and True is True, because both sides of the conjuction  are True, then the 
proposition holds True 

• True and False is False, because a proposition cannot be both True and False at 
the same time, hence False 

• False and True is False, because a proposition cannot be both True and False at 
the same time, therefore False  

• False and False is False, because a proposition holds to be False on both sides of 
conjuction, hence False. 

B. Disjunction (p ∨ q): 

• True or True is True, because both sides of the disjunction  are True, then the 
proposition holds True 

• True or False is True, because at least one side of the disjunction is True, therefore, 
the proposition is True 

• False or True is True, because at least one side of the disjunction is True, hence, 
the proposition is True  
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• False or False is False, because all the sides of disjunction hold False, then the 
proposition is False. 

C. Conditional (p → q): 

• True implies True is True, hence the proposition holds True 

• True implies False is False, this result takes precedence to make the proposition 
False 

• False implies True is True, this result takes precedence to make the proposition 
True  

• False implies False is False, which is True from the statement, hence the 
proposition is True. 

D. Bi-Conditional (p ↔ q): 

• True implies True and is implied by true, it gives True, hence the proposition holds 
True 

• True implies False and False implies True, therefore the proposition is False 
because what is False is never True and vice versa 

• False implies True and True implies False, hence the proposition is False because 
it is not True that  what is False is True and vice versa  

• False implies False and False implies False, hence the proposition is True, 
because False is False. 

After the formulas examine the four compound statements, then from the decision box the 
results are produced and recorded in the Truth Table. Therefore, the user can pick the 
results for the intended application.  

E. The Application Interface: Propositional Tool: 
The AEPLT has a user friendly interface. It has a pull down menu, where the user can select 
what he/she wants to calculate such as conjuction, disjunction, conditional, and  bi-
conditional as illustrated in Figure 3. 

 

 

 

FIGURE 3: Compound propositional input window. 

 
From Figure 3, if you select conjuction from a pull down menu, then the Figure 4 appears. This 
figure has entry or input spaces for entering the variables of propositions p and q that are True (T) 
and False (F). Every after entering values True (T) and False (F), one can still view the individual 
results without checking on the Truth Table by pressing on the button “View Result”. When you 
press on “View Button”, the system will display Truth Table conjuction results. Similar calculations 
can be done on others such as the disjunction, conditional and bi-conditional. 
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FIGURE 4: The Conjuction Window for Input. 

 

4. CONCLUSION 

Development in all sectors of work, require correct planning in order to provide tools that will yield 
the intended results. As in [19], logic was defined as the science of reasoning correctly. Once the 
implementers reason correctly in strategizing and planning in executing their tasks, positive 
results would be achieved. Hence, in this work, the AEPLT was envisaged to come up with 
automated systems which will always give a precise propositional logic results. The system has 
an architecture where the user simply enters the propositional variables and whole calculation is 
done giving accurate results.  
 
The envisaging of this model, Automated Education Propositional Logic Tool (AEPLT) has scored 
a number of achievements. First it has allowed the users, who are in this case the students to 
concretely use this automated model, rather than calculating the propositional logic of compound 
propositions of conjuction, disjunction, conditional and bi-conditional manually. Secondly, the 
automated model has a user friendly interface where the student enters the propositional 
variables and then the system automatically maps  them with the right connectives to form 
compound proposition or formula that are calculated to yield the intended results. Thirdly, during 
the execution, this automated system gives a guarantee of producing correct results rather than 
when it is done manually whereby due to fatigue or exhaustion, the user may bound to key-in 
incorrect input and thereafter result into wrong output. 
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Abstract 

 
Session types as presented in [1] model communication between processes as a structure of 
dialogues. The dialogues are specified by sequences of types of messages, where each type 
describes the format and direction of the message. The resulting system imposes a type 
discipline that guarantees compatibility of interaction patterns between processes of a well-typed 
program. The system is polymorphic in Curry’s style, but no formal treatment of this aspect has 
been provided yet. In this paper we present a system assigning type schemes to programs and 
an algorithm of inference of the principal type scheme of any typable program for a significant 
fragment of the calculus which allows delegation of communication, i.e. transmission of channels. 
We use classical syntax for variables and channels, i.e. just one sort of names in each case for 
either bound of free occurrences. We prove soundness and completeness of the algorithm, 
working on individual terms rather than on α-equivalence classes. The algorithm has been 
implemented in Haskell and partially checked in the proof assistant Agda. 

 
Keywords: types, principal type scheme, type inference algorithm. 

 
 
1. INTRODUCTION 
 
Systems of (dyadic) session types allow to structure programs which consist of communicating 
processes as networks of dialogues. Each such dialogue is called a session and is carried out 
through a specific sort of communication entity called a channel. Channels are created by a 
special kind of interaction occurring at ordinary ports, which we explain at once: using syntax 
close to that in the original presentation of session types [2], we write acc a(k).P to represent a 
process that is willing to accept a session at port a. This can interact with concurrent req a(k’).Q 
which can be thought of requesting such session. As a consequence of the interaction, a new 
channel is created that will communicate the continuation processes P and Q. In these 
processes, the names k and k’ will (respectively) represent the two ends of the newly created 
channel. Thus, and as a consequence of the dialogue restriction, each channel end in the system 
belongs to one and only one process. 
Once the channel is created, the session takes place, i.e. a sequence of messages is 
interchanged. The system of types allows characterizing each session as a sequence of message 
formats, where each format specifies the direction and type of contents of the message. Such 
characterization is a session type. A process like P or Q above can in turn be characterized by 
the (session) types of its (free) channels, which are determined by the actions performed by the 
process at each of its channel ends. Let us call the set of channel types of a process its typing. 
Now, in acc a(k).P and req a(k).P the name k becomes bound and the process ceases to depend 
on it; that is to say, the typing of acc a(k).P shall not mention k anymore. The port a is, however, 
assigned the type of k. And thus it becomes in principle possible to check whether two processes 
acc a(k).P and req a(k’).Q that expect to establish a session through a do indeed hold compatible 
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interactions. Compatible means actually dual, i.e. an output in one process must be mirrored by 
an input in the other, and with contents of the same type. Thereby, type correctness ensures 
absence of compatibility errors in communication and freedom from interference of third parties in 
the dialogues. The safety property can be characterized as freedom from dead-lock in the case 
that sessions do not overlap. 
 
As already said, session types appeared in [3,2]. Next to that, [4] allowed the transmission of 
channels in sessions, i.e. the possibility of implementing delegation: a process can then delegate 
a session to another process that takes over the dialogue. It does so by sending the second 
process the corresponding channel end (which is then definitely lost by the original process.) 
 
The system of types was later refined in [1], following ideas of [5]. That is the system that we shall 
consider in this paper. The problem to study is that of type inference, i.e. of performing type 
checking even when (some) type declarations are omitted. Actually the system in [1] is 
polymorphic in Curry’s style and admits a definition of principal type scheme. The principal type 
scheme can be computed for each well-formed process, even without any type declaration of 
variables, channels or ports. Such is the contribution of this paper: a formal treatment of session 
type polymorphism, in which we give an inference algorithm and prove its soundness and 
completeness. We here carry out the work for a fragment of the original type system including 
channel delegation but not choice or recursion. These restrictions are not essential, as we shall 
indicate. We have implemented our algorithm in Haskell and in the proof assistant Agda [6], in 
which the proof of soundness has been completely fomalized. 
 
This kind of work has not been done elsewhere, as far as we know. In [5] a type checking (not 
inference) algorithm is given and its soundness proven, for a system more expressive than the 
one considered here, since it allows for subtyping in the session types. In [7] a simple version of 
session types is studied. in which only two implicit channels can be simultaneously used. As a 
consequence of this, delegation of channels is not possible. The type system is also simplified not 
allowing recursive types. In this work type safety is proven and an OCaml implementation of an 
inference algorithm is presented, for which proofs of some basic results are given. 
 
There are some other related works that embed session types in other programming languages. 
In [8] and [9] session types are implemented in Haskell, making use of its powerful polymorphic 
type system and type classes with functional dependencies [10]. In the first work only one 
channel is implemented and soundness of the embedded system is proven. In the second one 
multiple channels are allowed but no soundness property is given. In [11] a more general 
technique is given to embed session types with multiple channels, thus earning more portability in 
the host language. In particular, any polymorphic language can be used as host. Soundness is 
proven but only for one channel. 
 
The rest of the paper is organized as follows: in the next section we introduce the process 
language and the type system, adapted from the one in [1]. We notice it is polymorphic and then 
introduce the notion of type scheme, employing type variables. In section 3 we formulate our 
algorithm of type inference which computes, for every typable program, its principal type scheme, 
i.e. a type scheme assignable to the program and from which every other typing of the program 
can be obtained as a type substitution instance. We give detailed proofs of soundness and 
completeness of the algorithm. We expose conclusions and remaining work in section 4. 

 

 

2. SESSION TYPES 
 
Syntax of processes is as follows: 
 
P : − 0 | k!e ; P | k?x. P | k!!k’ ; P | k??k’. P | acc a(k). P | req a(k). P |  P |Q 
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We now informally explain their meaning. In what follows channel and channel end are used 
interchangeably: 

 0 is the inactive process.  

 In the term k!e ; P, k is a channel end and e an expression whose value is data to be sent along 
k. Then the process continues behaving as P.  

 In k?x. P, data is received in the channel end k. The variable x is bound in the term.  

 The term k!!k’ ; P sends the channel end k’ along the channel k and then becomes P.  

 Dually, k??k’. P receives a channel in the channel end k. The name k’ becomes bound in the 
term.  

 The meaning of acc a(k). P and req a(k). P is related to session initiation and has already been 
explained. The name k is bound in both terms.  

 Finally, P |Q, is the parallel composition of processes P and Q. 
 
As usual, we assume denumerable sets of channel names and of variables. Also, as is evident 
from the syntax above, we assume a class of data expressions to be specified separately. 
The syntax has been chosen so as to include those cases that are essential for the study of 
compatibility of interaction. In this regard, the only constructs that could be said missing are the 
choice operators. But consideration of these adds only technical difficulties that lie somehow 
beside the problem we are interested in. Also for completing a sufficiently expressive language 
we should include recursion or replication. We shall comment on this later. 
 
We now turn to the consideration of types. We shall assume that an appropriate type system 
exists for the data expressions, whose properties are to be stated when necessary. Let for the 
moment δ stand for data types. Then session types are as follows: 
 
α,β : − 1 | ↑δ ; α | ↓δ ; α | ↑α ; β | ↓α ; β 
 
i.e. they are finite sequences of message formats, each of which specifies the direction (↑ = out, ↓ 
= in) and type of the contents of the message (type of data or type of a channel being sent or 
received in delegation). 1 stands for impossibility of communication. Should we consider 
recursion, we would have to allow for (finite descriptions of) infinite sequences. Also if we 
considered choice there would have to be a branching construct. 
 
The dual α of a type α is defined as follows:  
 
1 = 1  
↑δ; α = ↓δ; α 
↓δ; α = ↑δ; α 
↑α; β = ↓α; 

 
β 

↓α; β = ↑α; β 
 
A typing judgement is of the form Γ; Π  |–  P  ∆, where: 
 

 P is the program being typed. 

 ∆ is the channel context, recording the types of the free channels of the program P. 

 Γ is the data context, containing the declarations of the free (data) variables of P. 

 Π is the port context, with the declarations of the ordinary ports of P. 
 
Data contexts Γ are finite partial functions from data variables to data types. The application of 
function F to argument a will be written F a. The union of two data contexts Γ, Γ’ is still a valid data 
context when Γ x = Γ’ x for every variable x which is defined (declared) in both Γ and Γ’. Port 
contexts Π are, similarly, finite partial functions from sort names to session types. 
Channel contexts ∆ are instead total functions from channel names to channel types, 1 almost 
everywhere. This choice proves to be convenient and reflects the fact that unused and unusable 
(inactive) channels are indistinguishable. In particular, 1 is the constant function everywhere 
equal to 1. Two channel typings ∆ and ∆’ are disjoint, to be written ∆ / ∆’ iff for every channel k, at 
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least one of ∆k and ∆’k is 1. The union of two disjoint channel typings, to be written ∆.∆’, is such 
that for every channel k, (∆.∆’)k is the sum of ∆k and ∆’k, where sum has 1 as (left and right) 

identity element. Overriding a function F with a pair (a, b) is written F≺+a → b and gives value F x 
for every x ≠ a, whereas it gives value b for argument a. In the case of channel and data contexts, 
we will write : in overridings instead of the symbol →. When treating channel contexts it will prove 
sometimes convenient to use a notation for a strong form of overriding to be written · and that can 
be called extension. Specifically, ∆ · k : α means the overriding of ∆ with the pair (k, α) but 
requiring further ∆k = 1. 
 
The type system is exposed in Figure 1. 
 

inact: 
   

Γ; Π  |–  0  1  

 

snd: 
Γ |– e :  δ        Γ; Π |– P  ∆ 

 
Γ ; Π |– k!e ; P  ∆ ≺+ k:δ ; ∆k  

 

rcv: 
Γ≺+ x: δ ; Π |– P  ∆ 

  
Γ ; Π |– k?x. P  ∆ ≺+ k:↓δ ; ∆k  

 

thrw: 
Γ ; Π |– P  ∆ 

 
Γ ; Π |– k!!k’ ; P  ∆ ≺+ k:↑α ; Δk · k’:α  

 

ctch: 
Γ ; Π |– P  ∆ · k’:α 

 
Γ ; Π |– k??k’. P  ∆ ≺+ k: ↓α ; ∆k  

 

acc: 
Γ ; Π |- P  ∆ · k: Πa 

 
Γ; Π |– acc a(k). P  ∆  

 

req: 
Γ ; Π |- P  ∆ · k: Πa 

  
Γ; Π |– req a(k). P  ∆  

 

conc: 
Γ ; Π |– P  ∆        Γ ; Π |– Q  ∆’ 

∆/∆’  
Γ; Π |– P | Q  ∆.∆’  

 

FIGURE 1:  The Type System 
 
We proceed to explain the rules:  

 First, the rule inact establishes that any channel is completed (no longer usable) in process 0. 

 The next snd rule corresponds to the event of sending data through the channel k. We assume 
the existence of a type system for data expressions in which it is possible to type these under 
declarations of its variables, which are of course the variables of our programs. That explains 
the first premise of the rule. The second premise types the continuation process P, and then the 
conclusion updates the typing of P with the new type of k, obtained by prefixing ↑δ  to the type 
sequence characterizing k in the continuation process. 

 The third rule rcv corresponds to receiving data through a channel. A variable x is used and its 
declaration updates the data context in the typing of the continuation process P. The type 
declared to x is of course the type of the data received in the resulting typing in the conclusion 
of the rule. 

 Next comes the rule thrw corresponding to sending (throwing) a channel end through a channel. 
The thrown channel end must be named with a fresh identifier, i.e. one not occurring in the 
continuation process P. This reflects the fact that the channel end will no longer belong to the 
process that just threw it over. In the rule the condition is imposed by the use of the extension 
operator · in the conclusion. Notice that the rule can be applied for whatever type is associated 
to the thrown channel. 
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 The next rule ctch is for receiving (catching) a channel sent over by a communicating process. 
The name k’ used to represent the received channel end becomes bound, which is reflected in 
the fact that it cannot appear in the typing ∆. Syntactically, this is enforced by use of the 
extension operator in the premise. In fact, the names k and k’ could coincide (since after all no 
restriction should be placed in the choice of the name k’). In this case the resulting typing of the 
process at hand depends on k and reflects that it becomes unusable after the catching. 

 The rule acc is for accepting a session. The channel end k becomes bound and similar 
considerations as above apply. But there is a detail to comment, which concerns the type 
assigned to k in order to type the continuation process. This type is the same that the port a has 
in the port context Π. This means two things: firstly, a has to be declared in Π, and this ought to 
be made explicit as a side condition to the rule. The reason why we have omitted this has to do 
only with brevity of the presentation and will become clearer below. Secondly, the rule reflects 
that the typing of the ordinary ports is the type of the channel end created by interaction at that 
port.  

 This is to be linked to the next, dual, rule req for typing a request of session. What we require in 
this case is that the channel behaves in a manner dual to the type of the port, and that will make 
it dual to the type of the opposite end of the channel created at the interaction of acceptance 
and request. That is to say, in a parallel composition of an acceptance and a request of a 
session the port is typed uniformly in both cases, and it is the channel ends which have to 
receive dual types. 

 Finally, the rule conc of concurrent composition of processes requires that no channel end 
belongs to more than one process (disjointness of the channel typings) and that all variables 
and ports are uniformly typed in both processes. 

 
Notice that no type declaration is required in the syntax of terms for any of the variables, ports or 
channels. This is coincident with the formulation in [1], of which the system presented here is a 
slight variant. The system is thus polymorphic à la Curry. Examples of polymorphic terms are: acc 
a(k).k?x.k!x; 0 and acc a(k).acc b(k’). . . . k!!k’; P . 
This motivates the investigation of type schemes. We therefore consider a denumerable set of 
type variables a

t
 and define the (session) type schemes as follows: 

 
α : − a

t
 | a

t
 | 1 |↑δ ; α| ↓δ; α| ↑α ; α| ↓α ; α 

 
The scheme a

t  
is there just to stand as the dual of type variable a

t 
(and its dual is of course a

t
). 

 
We then consider the type system given before with two modifications: first, we assign type 
schemes in place of types; and, secondly, only for the sake of simplicity of the treatment, we shall 
consider port contexts as total functions from port names to type schemes. The (new) port 
contexts shall be built by successive instantiations from an original context in which every port 
name has associated a different type variable.  We call this the void or purely generic port context 
and write it Ω. It can be implemented           by assuming that each port name a can be encoded 

uniquely as a type variable a
t
.  We define dom Π =   {a | Πa  a

t
} for port context Π. This set will 

always be finite. We further define two port contexts Π and Π´ to be compatible when for every 
port a, either Πa = Π´a or one of them is a type variable. For compatible port contexts Π and Π´, 
define the union Π.Π´ to take, for each port a, the common value at a of Π and Π´ if such is the 
case, or the more instantiated one otherwise. We insist in that these considerations are only for 
simplicity in the treatment to be presented below and are not essential to it. Otherwise, the 
system with type schemes is exactly like the one above. In particular, the rules are the same as 
displayed in Figure 1. 
 
We have also to consider type substitutions. These are finite partial functions from type variables 
to type schemes and their action on type schemes is defined in the obvious way. We only have to 
remark that substitution of type scheme α for a

t
 in a

t
 yields α. 
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Finally, we assume that a similar extension to type schemes can be applied to the system of 
typing of data expressions. Then the following two basic results are obtained, provided they hold 
too for the system of data expressions: 
 

Lemma 1 (Weakening). If Γ; Π |– P  ∆ and Γ  Γ’ then Γ’; Π |– P  ∆. 
 

Proof. Immediate induction on the type system. Use that Γ ≺+ x: δ  Γ’ ≺+ x: δ if Γ  Γ’. 
 
Lemma 2 (Closure under type substitution). If Γ; Π |– P  ∆ then for any type substitution θ,  
Γθ; Πθ |– P  ∆θ. 
 
Proof. Induction on the type system. Use that for any type substitution σ and type scheme α, ασ = 
ασ. 

 
3. TYPE INFERENCE 

 
An inference algorithm for the given type system is displayed in Figure 2. 

We make use of the form of judgement Γ; Π  P  ∆ with the obvious meaning, i.e. given 
program P the algorithm infers (if possible) the contexts Γ, Π and ∆. Further, as shall be proven 
presently, the typing inferred in case of success is the most general that can be assigned to P in 
the type system, i.e. it is the principal type scheme of P. This means that every other typing of P 
can be obtained from the one inferred by applying to this a suitable type substitution. 
A simple inspection reveals that for each program P the inferred typing is unique up to the choice 
of the type variables used to construct it. The type variables are introduced in the (conclusions of 
the) rules rcv2 and thrw, and as will be shown, the choice of particular names is immaterial once 
certain basic conditions of freshness are ensured, namely that the names are fresh w.r.t. the set 
of type variables used in each rule’s premise. This allows us to make the following convention in 
order to simplify the presentation: in rules with two premises, no type variable is used in both 
premises. And in rules in which we introduce type variables, these are fresh w.r.t. the set of type 
variables used in the premises. 
 
 

inact: 
   

; Ω  0  1   

 

snd: 
Γ  e   δ        Γ’; Π  P  ∆ 

Γ
θ
 Γ’ 

Γθ  Γ’θ; Πθ  k!e ; P  ∆θ ≺+ k:δθ ; (Δθ)k  
 

rcv1: 
Γ ; Π  P  ∆ 

x  dom Γ 
Γ \ x ; Π  k?x. P  ∆ ≺+ k:↓Γx ; ∆k  

 

rcv2: 
Γ ; Π  P  ∆ 

x  dom Γ 
Γ ; Π  k?x. P  ∆ ≺+ k:↓a

t
 ; ∆k  

 

thrw: 
Γ ; Π  P  ∆ 

 
Γ ; Π  k!!k’ ; P  ∆ ≺+ k:↑a

t
 ; ∆k · k’:a

t
  

 

ctch: 
Γ ; Π  P  ∆ 

 
Γ ; Π  k??k’ ; P  ∆ \ k’ ≺+ k: ↓∆k’ ; (∆\k’)k  

 

acc: 
Γ ; Π  P  ∆ 

Πa 
θ
 ∆k 

Γθ; Πθ  acc a(k). P  ∆θ \ k  
 

req: 
Γ ; Π  P  ∆ 

Πa 
θ
 ∆k 

Γθ; Πθ  req a(k). P  ∆θ \ k  
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conc: 
Γ ; Π  P  ∆        Γ’ ; Π’  Q  ∆’ 

∆/∆’ , (Γ,Π) 
θ 
(Γ’,Π’) 

Γθ  Γ’θ; Πθ.Π’θ  P | Q  ∆θ.∆’θ  
 
 

FIGURE 2:  The Inference Algorithm 
 

 
We now explain the rules. The general idea is of course to infer the minimal and most general 
contexts that fit the given program.  
First, the rule inact assigns to 0 the void contexts.  
In the snd (send) rule use is made of inference of type of data expressions –we assume such 
algorithm to be available– which gives the first premise. The second premise corresponds to the 
(recursive) inference of typing of the continuation process P. Then the condition for success of 
the rule is that the two inferred contexts Γ and Γ’ unify, i.e. that the (data) type schemes at their 
common variables unify. This is (we assume) standard first order unification, which is decidable 
and yields in case of success a most general unifier θ. This is what is expressed by the side 

condition Γ
θ
 Γ' to the rule. The conclusion obtains immediately by realizing that every context 

has to be instantiated by θ and Γ and Γ’ have to be put together. Besides, the typing of the 
process at hand has to be updated with the type inferred for the channel k. 
For the rcv (receive) rule there are two subcases. Once the continuation process P has been 
recursively typed one checks whether the data variable x is used in P or not. In the first case, the 
type assigned to x in the data context is recorded in the type of the channel as being received. If 
otherwise the variable is not used in P, then any type does since any value can be received. 
Therefore we update the channel k with the mark of input of a fresh type variable. According to 
the convention given above, this variable can be any one not occurring in the premise of the rule. 
A situation entirely similar to this last subcase arises in the next rule, in which the thrown out 
channel k’ can be typed with any type whatsoever. 
In the rule catch the point is to delete the bound name k’ so that it does not occur in the resulting 
channel context. The rest of the manipulation has to do with considering the case in which the 
names k and k’ coincide. 
In the rest of the rules the novelty is the use of a unification algorithm over session types. This is 
expressed in the side conditions to the rules. Now session types are also first order trees if data 
types are and therefore such algorithm exists under the assumptions that we have established. 
This is actually the point on which all our development rests. 
 
We can now prove the full correctness of our algorithm. For this we have to suppose correct the 
algorithm of data type inference. 
 

Proposition 3 (Soundness of Type Inference). If Γ; Π  P  ∆ then Γ; Π |– P  ∆. 
 
Proof. By induction on the rules of the inference algorithm. 
Case inact: Immediate. 
Case snd: Assume Γ |– e : δ (soundness of expression type inference) and Γ’ ; Π |– P  ∆ 

(induction hypothesis). Assume further Γ 
θ
 Γ’ (side condition to the rule in the inference 

algorithm.) We then know both Γθ |– e : δθ and Γ’θ; Πθ |– P  ∆θ because of the property of 
preservation of typing under type substitution in both type systems (expressions and session 
types). Now, since Γ and Γ’ unify under θ, Γθ ∪ Γ’θ is defined and, by weakening of both type 

systems, we get Γθ ∪ Γ’θ |– e : δθ  and Γθ ∪ Γ’θ; Πθ |– P  ∆θ. Hence, by rule snd of the session 
type system, Γθ ∪ Γ’θ; Πθ |– k!e; P  ∆ ≺+ k: ↑ δθ; (∆θ)k, as required. 

Case rcv1: Assume Γ; Π |– P  ∆ (induction hypothesis) and x ∈ dom Γ (side condition to the 

rule.) We then know Γ = Γ \ x ≺+ x : Γx  and therefore, because of the rule rcv  of the type system, 
we have  Γ \ x; Π |– k?x.P  ∆ ≺+ k : ↓Γx; ∆k, as required. 

Case rcv2: Assume Γ; Π |– P  ∆ (induction hypothesis) and the side condition x  dom Γ. Also, 
as indicated before, assume a

t
 fresh in (Γ, Π, ∆). Then Γ ⊆ Γ≺+ x : a

t
 and therefore by weakening, 
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Γ≺+ x: a
t
 ; Π |– P  ∆. Now, using rule rcv of the type system, we arrive at the desired Γ; Π |– 

k?x.P  ∆ ≺+ k: ↓a
t
 ; ∆k. 

Case thrw: Immediate. Notice that the side condition needs not be used. 
Case ctch: Immediate once one writes ∆ = (∆ \ k’)· k’ : ∆k’ . 

Case acc: Assume Γ; Π |– P  ∆ and side condition Πa 
θ
 ∆k. By preservation of typing under 

type substitutions we know Γθ; Πθ |– P  ∆θ.  Now ∆θ = (∆θ \ k) · k: (∆θ)k. And (∆θ)k = (∆k)θ = 

(since Πa 
θ
 ∆k) = (Πa)θ = (Πθ)a, whence the required Γθ; Πθ |– acc a(k).P  ∆θ \ k by use of the 

rule acc of the type system. 
Case req: Identical to the preceding one. 
Case conc: Use the unification side condition, preservation of typing under type substitution, and 
weakening, just the same as in case snd. 
 

Proposition 4 (Completeness of Type Inference). Γ; Π |– P  ∆ implies Γ1; Π1  P → ∆1 for 
contexts Γ1, Π1, ∆1 and type substitution θ such that Γ1θ ⊆ Γ, Π1θ = Π and ∆1θ = ∆. 
 
Proof. By induction on the rules of the type system. 
Case inact: Define θa

t
 = Πa for every a ∈ dom Π. 

Case snd: Assume Γ1 ← e → δ1 with Γ1θ ⊆ Γ and δ1θ= δ for appropriate type substitution θ (this 
corresponds to completeness of the data expression type inference system.) Assume the 
induction hypothesis, i.e. Γ1’ ; Π1’ ← P → ∆1’  with Γ1’θ’ ⊆ Γ, Π1’θ’ = Π and ∆1’θ’ = ∆ for appropriate 
type substitution θ’. Assume further that the type variables employed in Γ1 and Γ1’ are disjoint. 
Hence without loss of generality we can also take θ and θ’ to possess disjoint domains. Now the 

union σ of these two substitutions makes both Γ1σ ⊆ Γ and Γ1’σ ⊆ Γ, which means that there is a 
subcontext of Γ that is a type substitution instance of both Γ1 and Γ1’. Hence these two have a 

most general unifier ζ and we can apply rule snd of the inference algorithm to obtain Γ1ζ ∪ Γ1’ζ ; 

Π1’ζ ← k!e ; P → ∆1’ζ ≺+ k : ↑ δζ ; (∆1’ζ )k.  Also because ζ is the m.g.u. of Γ1 and Γ1’, we know 
that there exists ζ’ such that σ = ζζ’. Further, since θ’ is the subset of σ acting on the type 
variables of Γ1’, Π1’ and ∆1’, we have Γ1’θ’ = Γ1’ζζ’ and similarly for Π1’ and ∆1’. Therefore in the 

inference above we have what is required to prove, namely (Γ1ζ  Γ1’ζ)ζ’ = Γ1ζζ’  Γ1’ζζ’ = Γ1θ  
Γ1’θ’ ⊆ Γ , Π1’ζζ’ = Π1’θ’ = Π and [∆1’ζ ≺+ k : ↑δζ ; (∆1’ζ)k]ζ’ = ∆ ≺+ k : ↑δ; ∆k, where the latter can 
be easily checked by just distributing the substitution ζ’. 

Case rcv: Assume the induction hypothesis, i.e. Γ1; Π1  P → ∆1 with Γ1θ ⊆ Γ≺+x: δ, Π1θ= Π and 
∆1θ = ∆ for appropriate type substitution θ.  

If now x ∈ dom Γ1 then we can apply rule rcv1 of the inference algorithm to get Γ1\x; Π1 ← k?x.P 

→ ∆1 ≺+ k : ↓Γ1x; ∆1k. Moreover, we have (Γ1\x)θ ⊆ Γ, which follows from Γ1θ ⊆ Γ≺+x: δ, and, by 
hypothesis, Π1θ= Π. Finally, [∆1≺+ k: ↓Γ1x; ∆1k]θ = ∆ ≺+k: ↓δ; ∆k, which can be checked by 
distributing θ and using ∆1θ = ∆ as well as (Γ1x)θ = (Γ1θ)x = δ. 

If otherwise x  dom Γ1, we choose a sufficiently fresh type variable a
t
 and apply rule rcv2  to get 

Γ1; Π1 ← k?x.P → ∆1 ≺+ k: ↓a
t
 ; ∆1k and taking θ’ = θ · a

t
  δ, the required conditions Γ1θ’ ⊆ Γ, 

Π1θ’= Π, and [∆1≺+ k: ↓a
t
 ; ∆1k]θ’ = ∆ ≺+ k: ↓δ; ∆k all hold. 

Notice that here is a place where we introduce type variables into the inferred type scheme. It 
should be clear that the procedure works whatever freshness conditions are imposed to type 
variable a

t
 besides the basic one we have agreed upon, namely that a

t
 is fresh in the contexts Γ1, 

Π1 and ∆1. 
Case thrw: Similar to the last case above. A sufficiently fresh type variable is introduced. 
Case ctch: Immediate once one notes that (∆ · x : α) \ x= ∆. 

Case acc: Assume the induction hypothesis, i.e.  Γ1 ; Π1 ← P → ∆1 , with Γ1θ ⊆ Γ, Π1θ = Π and 

∆1θ=∆ · k: Πa. Notice that (Π1a)θ = (Π1θ)a = Πa = (∆1θ)k = (∆1k)θ. Therefore, Π1a 
ζ
 ∆1k  and θ = 

ζζ’. We can then apply rule acc of the inference algorithm to obtain Γζ ; Πζ ← acc a(k). P → ∆ζ \ 
k.  And, besides, Γ1ζζ’ ⊆ Γ, Π1ζζ’ = Π and (∆1ζ \ k)ζ’ =∆ζζ’ \ k= ∆, as required. 
Case req: Identical to the preceding one. 
Case conc: Similar to first case snd. 
 
Soundness and completeness, together with unicity of inference of typing (up to choice of type 
variables) give the result on principal type scheme. Actually a principal type scheme for P is, by 
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definition, one that is assignable to P and that satisfies the conditions exposed in the 
completeness theorem for all the typings Γ; Π |– P  ∆ assignable to P. 

 

4. CONCLUSION 
 
The classical result of (implicitly) simply typed λ calculus, of existence and effective computability 
of principal type scheme of any typable term can be extended to session types. This fact has 
been mentioned in passing in [4] and [1] but only now has it been proven formally. What remains 
for us to make this result complete is to extend our present development to types of choice 
(branching) and recursive types. Of these, the latter seem to constitute the interesting problem. 
But, as pointed out above, the key point on which the given algorithm and proofs rest is the 
existence of a unification algorithm for session types. And, as remarked out in e.g. [12], this 
algorithm can be extended to unification of regular trees with all other details of the proof holding 
without modifications. 
We have also formalized a great part of the present development in the proof assistant Agda [6], 
which implements a version of constructive type theory. Besides, we have implemented the 
inference algorithm in Haskell. All this is available in [13] and we expect to soon complete the 
formalization of the whole development. Notice that the treatment presented in this paper does 
not depend on identifying α-convertible terms and is therefore amenable to direct formalization. 
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