

International Journal of

Software Engineering (IJSE)

Volume 1, Issue 2, 2010

Edited By
Computer Science Journals

www.cscjournals.org

International Journal of Software Engineering

(IJSE)

Book: 2010 Volume 1, Issue 2

Publishing Date: July – 2010

Proceedings

ISSN (Online): 2180-1320

This work is subjected to copyright. All rights are reserved whether the whole or

part of the material is concerned, specifically the rights of translation, reprinting,

re-use of illusions, recitation, broadcasting, reproduction on microfilms or in any

other way, and storage in data banks. Duplication of this publication of parts

thereof is permitted only under the provision of the copyright law 1965, in its

current version, and permission of use must always be obtained from CSC

Publishers. Violations are liable to prosecution under the copyright law.

IJSE Journal is a part of CSC Publishers

http://www.cscjournals.org

©IJSE Journal

Published in Malaysia

Typesetting: Camera-ready by author, data conversation by CSC Publishing

Services – CSC Journals, Malaysia

CSC Publishers

 Editorial Preface

The International Journal of Software Engineering (IJSE) provides a forum for software

engineering research that publishes empirical results relevant to both researchers and

practitioners. It is the second issue of first volume of IJSE and it is published bi-monthly,

with papers being peer reviewed to high international standards.

IJSE encourage researchers, practitioners, and developers to submit research papers

reporting original research results, technology trend surveys reviewing an area of

research in software engineering, software science, theoretical software engineering,

computational intelligence, and knowledge engineering, survey articles surveying a broad

area in software engineering and knowledge engineering, tool reviews and book reviews.

Some important topics covered by IJSE usually involve the study on collection and

analysis of data and experience that can be used to characterize, evaluate and reveal

relationships between software development deliverables, practices, and technologies.

IJSE is a refereed journal that promotes the publication of industry-relevant research, to

address the significant gap between research and practice.

IJSE give the opportunity to researchers and practitioners for presenting their research,

technological advances, practical problems and concerns to the software engineering..

IJSE is not limited to a specific aspect of software engineering it cover all Software

engineering topics. In order to position IJSE amongst the most high quality journal on

computer engineering sciences, a group of highly professional scholars are serving on the

editorial board. IJSE include empirical studies, requirement engineering, software

architecture, software testing, formal methods, and verification.

International Editorial Board ensures that significant developments in software

engineering from around the world are reflected in IJSE. The submission and publication

process of manuscript done by efficient way. Readers of the IJSE will benefit from the

papers presented in this issue in order to aware the recent advances in the Software

engineering. International Electronic editorial and reviewer system allows for the fast

publication of accepted manuscripts into issue publication of IJSE. Because we know

how important it is for authors to have their work published with a minimum delay after

submission of their manuscript. For that reason we continue to strive for fast decision

times and minimum delays in the publication processes. Papers are indexed & abstracted

with International indexers & abstractors

Editorial Board Members

International Journal of Software Engineering (IJSE)

International Journal of Software Engineering (IJSE) Volume (1) Issue (2)

Table of Contents

Volume 1, Issue 2, July 2010.

Pages

12 - 23

24 - 31

32 - 50

Particle Swarm Optimization in the fine-tuning of Fuzzy Software

Cost Estimation Models
Prasad Reddy P.V.G.D

Integrating Fuzzy Mde- AT Framework For Urban Traffic Simulation
MANUJ DARBARI, Rishi Asthana, Vivek Kr. Singh

Requirement Engineering Challenges in Development of Software
Applications and Selection of Customer-off-the-Shelf (COTS)
Components

Sohail Asghar, Mahrukh Umar

Prasad Reddy.P.V.G.D

International Journal of Software Engineering (IJSE), Volume (1): Issue (2) 12

Particle Swarm Optimization in the fine-tuning of Fuzzy Software
Cost Estimation Models

Prasad Reddy. P.V.G.D prasadreddy.vizag@gmail.com
Department of Computer Science
and Systems Engineering,
Andhra University,
Visakhapatnam, India,

Abstract:

Software cost estimation deals with the financial and strategic planning of
software projects. Controlling the expensive investment of software development
effectively is of paramount importance. The limitation of algorithmic effort
prediction models is their inability to cope with uncertainties and imprecision
surrounding software projects at the early development stage. More recently,
attention has turned to a variety of machine learning methods, and soft
computing in particular to predict software development effort. Fuzzy logic is one
such technique which can cope with uncertainties. In the present paper, Particle
Swarm Optimization Algorithm (PSOA) is presented to fine tune the fuzzy
estimate for the development of software projects . The efficacy of the developed
models is tested on 10 NASA software projects, 18 NASA projects and
COCOMO 81 database on the basis of various criterion for assessment of
software cost estimation models. Comparison of all the models is done and it is
found that the developed models provide better estimation.

Keywords: Particle Swarm Optimization Algorithm (PSOA), Effort Estimation, Fuzzy Cost Estimation,
software cost estimation

 1. Introduction
Software cost estimation refers to the predictions of the likely amount of effort, time, and staffing
levels required to build a software .Underestimating software costs can have detrimental effects
on the quality of the delivered software and thus on a company’s business reputation and
competitiveness. Overestimation of software cost, on the other hand, can result in missed
opportunities to use funds in other projects [4]. The need for reliable and accurate cost
predictions in software engineering is an ongoing challenge [1]. Software cost estimation
techniques can be broadly classified as algorithmic and non-algorithmic models. Algorithmic
models are derived from the statistical analysis of historical project data [5], for example,
Constructive Cost Model (COCOMO) [2] and Software Life Cycle Management (SLIM) [11]. Non-
algorithmic techniques include Price-to-Win [2], Parkinson [2], expert judgment [5], and machine
learning approaches [5]. Machine learning is used to group together a set of techniques that
embody some of the facets of human mind [5], for example fuzzy systems, analogy, regression
trees, rule induction neural networks and Evolutionary algorithms. Among the machine learning
approaches, fuzzy systems and neural networks and Evolutionary algorithms are considered to
belong to the soft computing group. The algorithmic as well as the non-algorithmic (based on
expert judgment) cost estimation models, however, are not without errors. In the present paper a

Prasad Reddy.P.V.G.D

International Journal of Software Engineering (IJSE), Volume (1): Issue (2) 13

fuzzy estimate is proposed. The parameters of the fuzzy estimate are tuned using the an
optimization technique known as Particle swarm optimization Algorithm (PSOA) .

2. Fuzzy Logic:
One of the new methods, which have recently been used in many applications, is Fuzzy Logic
Control. Fuzzy logic is one of the most useful approaches which deals with fuzziness. Fuzzy logic
is a methodology, to solve problems which are too complex to be understood quantitatively,
based on fuzzy set theory [13,14]. Use of fuzzy sets in logical expression is known as fuzzy logic.
A fuzzy set is characterized by a membership function, which associates with each point in the
fuzzy set a real number in the interval [0, 1], called degree or grade of membership. A triangular
fuzzy MF is described by a triplet (a, m, b), where m is the model value, a and b are the right and
left boundary respectively. Handling the imprecision in input supplied for size requires that size of
software project to be defined as a fuzzy number, instead of crisp number. The uncertainty at the
input level of the model yields uncertainty at the output. This becomes obvious and, more
importantly, bears a substantial significance in any practical endeavor. By changing the size using
fuzzy set, we can model the effort that impacts the estimation accuracy. Therefore, the size is
taken as an input MF and Effort is taken as output MF. The fuzzy estimate E can be computed as
a weighted average Sugeno defuzzification of the input MF.

321

332211)()()(WA



 ----(1)

Where)(1 ,)(2 and)(3 represents the degree of fulfillment of each input. 1 , 2 and
3 are the weights of the fuzzy estimate. The parameters or the weights of the Fuzzy Estimate

are to be tuned properly. The parameters of the fuzzy estimate are tuned using the optimization
technique known as Particle swarm optimization Algorithm (PSOA).

3. Overview of Particle Swarm Optimization Algorithm(PSOA):
PSOA is one of the optimization techniques and a kind of evolutionary computation
technique[6,10]. The method has been found to be robust in solving problems featuring
nonlinearity and non-differentiability, multiple optima, and high dimensionality through adaptation,
which is derived from the social-psychological theory. The features of the method are as follows:
1. The method is developed from research on swarm such as fish schooling and bird flocking.
2. It is based on a simple concept. Therefore, the computation time is short and requires few
memories
3. It was originally developed for nonlinear optimization problems with continuous variables. It is
easily expanded to treat a problem with discrete variables.
According to the research results for birds flocking are finding food by flocking. PSO is basically
developed through simulation of bird flocking in two-dimension space. The position of each agent
is represented by XY axis position and also the velocity is expressed by vx (the velocity of X axis)
and vy (the velocity of Y axis). Modification of the agent position is realized by the position and
velocity information. Bird flocking optimizes a certain objective function. Each agent knows its
best value so far (pbest) and its XY position. This information is analogy of personal experiences
of each agent. Moreover, each agent knows the best value so far in the group (gbest) among
pbest. This information is analogy of knowledge of how the other agents around them have
performed. Namely, each agent tries to modify its position using the following information:
– The current positions (x,y),
– The current velocities (vx, vy),
– The distance between the current position and pbest
– The distance between the current position and gbest
This modification can be represented by the concept of velocity. Velocity of each agent can be
modified by the following equation:

)sgbest(randc)spbest(randcwvv k
i22

k
ii11

k
i

1k
i 

 ----(2)

Prasad Reddy.P.V.G.D

International Journal of Software Engineering (IJSE), Volume (1): Issue (2) 14

Where
k
iv - velocity of agent i at iteration k

w - weighting function
ci - weighting factor
rand - random number between 0 and 1

k
is - current position of agent i at iteration k

pbesti - pbest of agent i
gbest - gbest of the group

The following weighting function is usually utilized in (2).

iter
iter

ww
w

max

minmax 



 ----(3)

where
wmax - initial weight
wmin - final weight
itermax - maximum iteration number
iter - current iteration number

Using Eqs. (2) and (3) a certain velocity, which gradually gets close to pbest and gbest can be
calculated. The current position can be modified by the following equation:

1k
is 

=
k
is +

1k
iv 

 ----(4)
k
is current searching point

1k
is 

modified searching point
k
iv current velocity

1k
iv 

modified velocity

4. Proposed Models:
Case 1:
4.1 Model I based on Kilo Lines of Code (KLOC):
The COnstructive Cost Model (COCOMO) was provided by Boehm [2][3][11]. This model
structure is classified based on the type of projects to be handled. They include the organic,
semidetached and embedded projects. This model structure comes in the following form

Effort = (KLOC) 

This model considers the effect of lines of code only. Model I is proposed taking the fuzzified size
of the software project to account for the impression in size, using triangular fuzzy sets. The
estimated effort now is a fuzzy estimate obtained weighed average defuzzification in (1) as

Fuzzy Estimate E=

















321

321 bma

 ----(5)

 where , α =3.2, ß =0.795, m represents size in KLOC, a=m and b=1.225m

4.2 Model II based on Kilo Lines of Code (KLOC) and Methodology (ME):
Model II is developed considering the effect of methodology (ME), as an element contributing to
the computation of the software developed effort. It is further modified by adding a bias term ‘d’.
The Model II thus takes the following form

Prasad Reddy.P.V.G.D

International Journal of Software Engineering (IJSE), Volume (1): Issue (2) 15

Effort = (KLOC)  + c (ME)+ d

The fuzzy estimated effort for the above model is

Fuzzy Estimate E=














321

321 bma

+c(ME)+d ----(6)

Where , α =3.2, ß =0.795, m=size in KLOC, ME is methodology of the project, a=m and
b=1.225m ,c=-.895;d=19.9

Where 1 , 2 and 3 are the weights of the fuzzy estimate to be tuned. These weights are
tuned using the Particle Swarm optimization technique.

Case II:
The COCOMO81 database [14] consists of 63 projects data [15], out of which 28 are Embedded
Mode Projects, 12 are Semi-Detached Mode Projects, and 23 are Organic Mode Projects. Thus,
there is no uniformity in the selection of projects over the different modes. In carrying out our
experiments, we have chosen 53 projects data out of the 63, which have their lines of code (size)
to be less than 100KDSI.
The accuracy of Basic COCOMO is limited because it does not consider the factors like
hardware, personnel, use of modern tools and other attributes that affect the project cost. Further,
Boehm proposed the Intermediate COCOMO[3,4] that adds accuracy to the Basic COCOMO by
multiplying ‘Cost Drivers’ into the equation with a new variable: EAF (Effort Adjustment Factor) .

The EAF term is the product of 15 Cost Drivers [5] that are listed in Table II .The multipliers of the
cost drivers are Very Low, Low, Nominal, High, Very High and Extra High.
If the category values of all the 15 cost drivers are “Nominal”, then EAF is equal to 1.
The 15 cost drivers are broadly classified into 4 categories [15,16].
1. Product : RELY - Required software reliability
 DATA - Data base size
 CPLX - Product complexity
2. Platform: TIME - Execution time
 STOR—main storage constraint
 VIRT—virtual machine volatility
 TURN—computer turnaround time
3. Personnel: ACAP—analyst capability
 AEXP—applications experience
 PCAP—programmer capability
 VEXP—virtual machine experience
 LEXP—language experience
4. Project : MODP—modern programming
 TOOL—use of software tools
 SCED—required development schedule
The cost drivers are as given in Table 3.Depending on the projects, multipliers of the cost drivers
will vary and thereby the EAF may be greater than or less than 1, thus affecting the Effort [15].

The Effort is given by Effort= (KLOC) 




15

1i
iEM

Prasad Reddy.P.V.G.D

International Journal of Software Engineering (IJSE), Volume (1): Issue (2) 16

Table 1: Intermediate COCOMO Cost Drivers with multipliers

5. Experimental Study:
For this study we have taken data of 10 projects of NASA [12]. The experimental results for
various models are as shown in Table 3

Table 2: Estimated Efforts in Man Months of Various Models

S. No
Cost
Driver
Symbol

Very
low Low Nominal High Very

high
Extra
high

1 RELY 0.75 0.88 1.00 1.15 1.40 —

2 DATA — 0.94 1.00 1.08 1.16 —

3 CPLX 0.70 0.85 1.00 1.15 1.30 1.65

4 TIME — — 1.00 1.11 1.30 1.66

5 STOR — — 1.00 1.06 1.21 1.56

6 VIRT — 0.87 1.00 1.15 1.30 —

7 TURN — 0.87 1.00 1.07 1.15 —

8 ACAP — 0.87 1.00 1.07 1.15 —

9 AEXP 1.29 1.13 1.00 0.91 0.82 —

10 PCAP 1.42 1.17 1.00 0.86 0.70 —

11 VEXP 1.21 1.10 1.00 0.90 — —

12 LEXP 1.14 1.07 1.00 0.95 — —

13 MODP 1.24 1.10 1.00 0.91 0.82 —
14 TOOL 1.24 1.10 1.00 0.91 0.83 —

15 SCED 1.23 1.08 1.00 1.04 1.10 —

Size
in
KLOC

Measured
Effort.

Alaa F.
Sheta
G.E [7]
model
Estimate

Alaa F.
Sheta
Model 2
Estimate

Mittal[12]
Model I

Mittal
Model II Model I Model II

2.1 5 8.44042 11.2712 6.357633 4.257633 6.15 4.1304
3.1 7 11.2208 14.45704 8.664902 7.664902 8.393 7.4914
4.2 9 14.01029 19.97637 11.03099 13.88099 10.6849 13.6602
12.5 23.9 31.09857 31.6863 26.25274 24.70274 25.4291 24.1772
46.5 79 81.25767 85.00703 74.60299 77.45299 72.2623 75.9596
54.4 90.8 91.25759 94.97778 84.63819 86.93819 81.8631 85.1229
67.5 98.4 106.7071 107.2547 100.3293 97.67926 97.1814 95.6709
78.6 98.7 119.2705 118.0305 113.238 107.288 109.6851 105.0212
90.2 115.8 131.8988 134.0114 126.334 123.134 122.3703 120.6051
100.8 138.3 143.0604 144.4488 138.001 132.601 132.5814 129.8385

Prasad Reddy.P.V.G.D

International Journal of Software Engineering (IJSE), Volume (1): Issue (2) 17

Figure 1 and 2 show the comparison of estimated effort to measured effort for Model I and Model
II. It is observed that by adding the effect of ME will improve the model prediction quality.

0

20

40

60

80

100

120

140

160

size

Es
tim

at
e

Measured Effort
Estimated Effort

Fig 1: Effort from Model I versus measured effort for 10 NASA projects

0

20

40

60

80

100

120

140

160

size

Es
tim

at
e

Measured Effort
Estimated Effort

Fig 2: Effort from Model II versus measured effort for 10 NASA projects

0

5

10

15

20

25

size

A
bs

ol
ut

e
Er

ro
r

Alaa F. Sheta G.E [7]
Alaa F. Sheta
Mittal[12] Model I
Mittal Model II
Model I
Model II

Fig 3 Comparison of Error for different Models for 10 NASA projects

Prasad Reddy.P.V.G.D

International Journal of Software Engineering (IJSE), Volume (1): Issue (2) 18

0

20

40

60

80

100

120

140

160

size

E
st

im
at

e

Measured Effort
Estimated Effort

Fig 4: Effort from Model I versus measured effort for 18 NASA projects

0

20

40

60

80

100

120

140

160

size

Es
tim

at
e

Measured Effort
Estimated Effort

Fig 5: Effort from Model II versus measured effort for 18 NASA projects

It was also found that adding a bias term similar to the classes of regression models helps to
stabilize the model by reducing the effect of noise in measurements. The efficacy of the models is
tested on NASA projects . A case study based on the COCOMO81 database compares the
proposed model with the Intermediate COCOMO Effort Prediction.

0

200

400

600

800

1000

1200

1400

Project id

E
st

im
at

e

Measured Effort
Estimated Effort

Fig 6 : COCOMO 81 model Project id versus measured effort

Prasad Reddy.P.V.G.D

International Journal of Software Engineering (IJSE), Volume (1): Issue (2) 19

0

200

400

600

800

1000

1200

1400

size

Es
tim

at
e

Measured Effort
Estimated Effort

Fig 7 : COCOMO 81 model project size versus measured effort

0

50

100

150

200

250

300

350

400

450

A
bs

ol
ut

e
Er

ro
r

Absolute error PSO
fuzzy
Absolute error
COCOMO Adjusted

Fig 8 : COCOMO 81 model comparison of Absolute Error

 Figure 3 shows a comparison of error in various models with respect to the estimated effort.
Figure 4 to Figure 8 shows the comparison of estimated effort to measured effort for 18 NASA
projects and COCOMO 81 dataset. Comparison of various models on the basis of various
criterions is given in Figure 9 to Figure 16.

Fig 9 Comparison of % VAF for different Models for 10 NASA projects

98.41

98.93

98.5

99.15

98.55

99.1

97.5

98

98.5

99

99.5

100

Alaa F.
Sheta

Model I

Alaa F.
Sheta
Model

II

Mittal
Model I

Mittal
Model

II

Model I Model
II

% VAF

Prasad Reddy.P.V.G.D

International Journal of Software Engineering (IJSE), Volume (1): Issue (2) 20

26.49

44.75

12.17 10.8 10.87 10.69

Alaa
 F

.She
ta

Mod
el I

Alaa
 F

.She
ta

Mod
el II

Mitta
l M

od
el

I
Mitta

l M
od

el
II

Mod
el I

Mod
el II

%
 M

AR
E

Fig 10 Comparison of % Mean Absolute Relative Error for different Models for 10 NASA projects

18.11

24.07

10.44
9 9.83 9.29

0

5

10

15

20

25

30

Alaa F.
Sheta

Model I

Alaa F.
Sheta

Model II

Mittal
Model I

Mittal
Model II

Model I Model II

%
 M

M
R

E

Fig 11 Comparison of % Mean Magnitude of Relative Error for different Models for 10 NASA
projects

14.73 14.98

8.65

5.2

9.67

6.27

0

2

4

6

8

10

12

14

16

Alaa F.
Sheta

Model I

Alaa F.
Sheta

Model II

Mittal
Model I

Mittal
Model II

Model I Model II

%
M

dM
RE

Fig 12 Comparison of % Median of Magnitude of Relative Error for different Models for 10 NASA

projects

Prasad Reddy.P.V.G.D

International Journal of Software Engineering (IJSE), Volume (1): Issue (2) 21

96.3138

97.5648

96.2157

97.6703

96.3779

98.3906

94

95

96

97

98

99

100

Alaa
 F.She

ta
Mod

el I

Alaa
 F.She

ta
Mod

el II

Mitta
l M

od
el

I

Mitta
l M

od
el

II

Mod
el I

Mod
el II

%
 V

A
F

Fig 13 Comparison of % VAF for different Models for 18 NASA projects

56.1
63.64

38.22

23.73

35.77

19.45

0

10

20

30

40

50

60

70

Alaa F.
Sheta

Model I

Alaa F.
Sheta

Model II

Mittal
Model I

Mittal
Model II

Model I Model II

%
 M

A
R

E

Fig 14 Comparison of % Mean Absolute Relative Error for different Models for 18 NASA projects

85.45

32.25

63.86

17.22
22.46

29.65

0

10
20

30

40
50

60

70
80

90

Alaa F.
Sheta

Model I

Alaa F.
Sheta

Model II

Mittal
Model I

Mittal
Model II

Model I Model II

%
 M

M
RE

Fig 15 Comparison of % Mean Magnitude of Relative Error for different Models for 18 NASA

projects

Prasad Reddy.P.V.G.D

International Journal of Software Engineering (IJSE), Volume (1): Issue (2) 22

35.19
32.89

24.14

16.81

21.37

12.23

0

5

10

15

20

25

30

35

40

Alaa F.
Sheta

Model I

Alaa F.
Sheta

Model II

Mittal
Model I

Mittal
Model II

Model I Model II

%
 M

dM
R

E

Fig 16 Comparison of % Median of Magnitude of Relative Error for different Models for 18 NASA

projects

A first criterion for comparison is Variance-Accounted-For (VAF).The VAF is calculated as:
%VAF=[1 - var (Measured Effort –Estimated Effort)/ var (Measured Effort)] × 100 –(7)
The second criteria is Mean Absolute Relative error (MARE) is calculated as
%MARE=mean(abs(Measured Effort –Estimated Effort)/ (Measured Effort)) × 100 –(8)
%MMRE Mean Magnitude of Relative Error (MMRE) values. It should be less than 25% to be
acceptable.

100MRE
n
1MMRE%

n

1i
i  



Where MRE(Magnitude of Relative Error)= abs(Measured Effort –Estimated Effort)/ (Measured
Effort)] × 100
% MdMRE is Median of MRE values. It should be less than 25% to be acceptable.
% MdMRE for COCOMO 81 dataset is 17.02% and % MMRE for COCOMO 81 dataset is 21.15%
It is observed that the proposed models have higher % VAF, lower % MARE ,lower %
MMRE and lower % MdMRE as compared to previous methods in literature. A model
which gives higher VAF, lower Mean absolute Relative Error would be the best model.
Hence it is obvious that the proposed models give better estimates.

6. Conclusions:
In the present paper two Fuzzy software cost estimation models based on weighed average
defuzzification are considered. The weights of the models are fine tuned using Particle Swarm
Optimization Algorithm. The analysis based on VAF, Mean Absolute Relative Error, Mean
Magnitude of Relative Error and Median Magnitude of Relative Error show that PSOA always
leads to a satisfactory result. The obtained results are superior as compared to previously
reported work in the literature

7. References:
[1] Hodgkinson, A.C. and Garratt, P.W.,A Neuro-Fuzzy Cost Estimator, In (Eds.) Proc. of the 3rd
International Conference on Software Engineering and Applications – SAE , 1999 pp.401-406.
[2] Boehm B. W., Software Engineering Economics, Englewood Cliffs, NJ, Prentice-Hall,1981.
[3]. B. W. Boehm et al., Software Cost Estimation with COCOMO II, Prentice Hall, (2000.)

Prasad Reddy.P.V.G.D

International Journal of Software Engineering (IJSE), Volume (1): Issue (2) 23

[4] L. C. Briand, T. Langley, and I. Wieczorek, A replicated assessment and comparison of
common software cost modeling techniques, In Proceedings of the 2000 International Conference
on Software Engineering, Limerick, Ireland, 2000, pp.377-386.
[5] Schofield C. , Non-Algorithmic Effort Estimation Techniques, Technical Reports, Department
of Computing, Bournemouth University, England, TR98-01 (1998)
[6] Suresh Chandra Satapathy, J.V.R. Murthy, P.V.G.D. Prasad Reddy, B.B. Misra, P.K.
Dash and G. Panda, Particle swarm optimized multiple regression linear model for data
classification Applied Soft Computing , 9, (2), (2009), Pages 470-476
[7] Alaa F. Sheta, Estimation of the COCOMO Model Parameters Using Genetic Algorithms for
NASA Software Projects , Journal of Computer Science 2 (2)(2006) 118-123
[8]Bailey, J.W. and Basili, A Meta model for software development resource expenditure. In: Proc.
Intl. Conf. Software Engineering, (1981)107-115
[9] Putnam, L. H.,A General Empirical Solution to the Macro Software Sizing and Estimating
Problem, IEEE Transactions on Software Engineering, 4(4) (1978). 345 – 361
[10] E. C. Laskari, K. E. Parsopoulos and M.N. Vrahatis, Particle Swarm Optimization for Minimax
Problems , Evolutionary Computation, In: (Eds.) CEC '02 Proceedings of the 2002 Congress
On, 2, 2002, pp. 1576 -158.
[11] J.E. Matson, B.E. Barrett, J.M. Mellichamp, Software Development Cost Estimation Using
Function Points, IEEE Trans. on Software Engineering, 20(4) (1994) 275-287.
[12] Harish Mittal and Pradeep Bhatia Optimization Criteria for Effort Estimation using Fuzzy
Technique CLEI ELECTRONIC JOURNAL, 10(1) (2007) pp1-11
[13] L.A. Zadeh, From Computing with numbers to computing with words-from manipulation of
measurements to manipulation of perceptions, Int. J. Appl. Math. Comut.Sci, 12(3) (2002) 307-
324.
[14] L.A. Zadeh, , Fuzzy Sets, Information and Control, 8, (1965) 338-353.
[15] Kirti Seth, Arun Sharma & Ashish Seth, Component Selection Efforts Estimation– a Fuzzy
Logic Based Approach, IJCSS-83, Vol (3), Issue (3).
 [16] Zhiwei Xu, Taghi M. Khoshgoftaar, Identification of fuzzy models of software cost
estimation, Fuzzy Sets and Systems 145 (2004) 141–163

Manuj Darbari, Rishi Asthana & Vivek Kr. Singh

International Journal of Software Engineering (IJSE), Volume (1): Issue (2) 24

Integrating Fuzzy Mde- AT Framework For Urban Traffic
Simulation

Manuj Darbari manujuma@rediffmail.com

Department of Information Technology & Electrical Engineering
Babu Banarasi Das National Institute of Technology and Management,
A-649, Indira Nagar, Lucknow. 226016, India

Rishi Asthana
Department of Information Technology & Electrical Engineering
Babu Banarasi Das National Institute of Technology and Management,
A-649, Indira Nagar, Lucknow. 226016, India

Vivek Kr. Singh
Department of Information Technology & Electrical Engineering
Babu Banarasi Das National Institute of Technology and Management,
A-649, Indira Nagar, Lucknow. 226016, India

Abstract

This paper focuses on modeling of Urban Traffic System using Model Driven
Engineering (MDE) and Activity Theory (AT) concept. It highlights the relationship
between MDE and A.T. generating a notational framework. This framework is
added with the Cartesian Fuzzy set measures and quantifies the uncertainty in
modeling Urban Traffic System.

Keywords: Fuzzy - MDE, MDE-AT Framework, Urban Traffic System (UTS).

1. INTRODUCTION
Software Modeling plays an important role in order to develop better usability and
understandability of the system. This paper advocates the use of Model Driven Language and
Activity oriented Modeling. This Activity Oriented Model is derived from the basics of Activity
Theory philosophy. Activity Theory is a philosophical conceptual and analytical framework to
study human practices.

Activity Theory have their origins from Vygotskyian concept of tool mediation and Leontev's
notion of Activity. Vygotsky's explanation of his concept tool mediation encompasses both
physical and psychological tools namely : signs and symbols. The notion of tool mediation is
central to Vygotsky's theory because tool allow human to interact more effectively with objects.
Later on Vygotsky's model was refined and expanded by A.N. Leontev and Engestrom. They
developed a final model which represents both the collaboration and Collective nature of human
activity. The model developed is known as "Activity Triangle Model" incorporating components
like : Subjects, Object, Community, Tools, Rules and Division of Labour.

Manuj Darbari, Rishi Asthana & Vivek Kr. Singh

International Journal of Software Engineering (IJSE), Volume (1): Issue (2) 25

FIGURE 1: Activity Triangle

The "object" component portrays the purposeful nature of human activity, which allows individual
to control their own motives and behaviour when carrying out activity.

The "subject" component of the model portrays both the individual and collective nature of human
activity through the use of tools in a social context.

The "Tool" component of the model reflects the mediational aspects of human activity through the
use of both physical and psychological tools. Psychological tools are used to influence behaviour
in one way or another.

The "Community" component represents stakeholders in a particulars activity or those who share
the same overall objectives of an activity.

The "Rules" components highlights the fact that within a community of actors, there are bound to
rules and regulations that effect in one way or another means by which the activity is carried out.

The "Division of Labour" component reflects the allocation of responsibility and variations in job
roles and responsibilities amongst subjects involved in carrying out a particular activity within a
community.

The "Activity System" consists of several sub-activities that are interconnected and united through
the shared objective in which activity is focused.

Overall the structure of Activity is defined as : "An activity pattern is a three- part rule which
establishes a relationship between a context; a contradiction that arises in that context and its
resolution, which takes it from its current state to a more developed one".

Model Driven Engineering successively refines models from analysis to design and then
automatically generates code.

A common pattern in MDA development is to define a platform- independent model of a
distributed application and to apply (parameterized) transformations to PIM to obtain one or more
platform specific models (PSMs). When pursuing platform - independence one could strive for
PIMs, that are neutral with respect to all different classes of middle ware platforms.

We will be using the concept of abstract platform which provides effective methods of exchange
of signals between various modeling agents.

Manuj Darbari, Rishi Asthana & Vivek Kr. Singh

International Journal of Software Engineering (IJSE), Volume (1): Issue (2) 26

MDE supports both behavioural and structural aspects of a system so fuzzy MDE concepts are
propounded in the present study as : Fuzzy structure and Fuzzy Behaviour
The use of Fuzzy with MDE covers the General Activity Diagram linked with Urban Traffic
System. The Table - I represents various parameters in which we can correspond the A.T.
concepts.

S.NO. A.T. Terminology Traffic Agents
1. Activity Set of Modeling elements of Urban Traffic Activity
2. Subject Urban Traffic System
3. Objects Traffic Movements, Road Network
4. Outcome Smooth Flow of Traffic/ Traffic Information
5. Objective Real Time Traffic Movement Control
6. Tool Resource such as S/W and H/W Platforms
7. Community Traffic Police Departments / Stake Holders
8. Rules Information Processing Rules
9. Division of Labour Workflow Design which will help in
10 Artifact Elements of Urban Traffic Simulation & Control

Table I : Mapping A.T. with MDE with Special reference to urban Traffic System.

From this we can have a simple AT- MDE flow Diagram starting from Modeling of Urban Traffic
System to the Tool used to achieve it.

FIGURE 2 : MDE representation of Platform Independent Modeling

The MDE Abstract platform consists of Model Library packages which can be imported by the
PIM of the application information technology.

Manuj Darbari, Rishi Asthana & Vivek Kr. Singh

International Journal of Software Engineering (IJSE), Volume (1): Issue (2) 27

2. THE MODEL
An abstract platform can have an arbitrarily complex behaviour and structure, varying from a
simple one-way message passing mechanisms to a communication system that maintain a log
book entry of sequence of operations.

In order to incorporate both the methodologies we specify the Platform Independent Model of a
simple urban Traffic Control System, it is represent in UML 2.0 of MDE framework to combine
A.T. with MDE.

FIGURE 3. Generalised A.T. Framework

In order to elaborate further we discuss various components in detail.

Traffic Diversion and Signaling :

Figure 4 refers to Traffic Signaling scheme that relates to control aspect of Urban Traffic based
on the traffic condition, the Control and Timing Signal meta-class.

FIGURE 4: MDE-AT profile for the Artifact Traffic Signaling

Manuj Darbari, Rishi Asthana & Vivek Kr. Singh

International Journal of Software Engineering (IJSE), Volume (1): Issue (2) 28

gets activated which is related to activity theory and the type of signal control reaching to the
various crossing are defined through Message Passing. Message Passing is done by the help of
<<Tool>> (i.e. Networking Device).

Physical Road Network:
Physical Road Network consists of all the activity, which is done for smooth flow of traffic. It
consists of three Meta-class diversions on VMS, which is an Interface in terms of MDE and an
Artifact in A.T. semantics. Storage Area also forms a part of the physical Network.

It is connected by Parking and Bus Stop Detector which forms one of the <<interface>> shown as
<<Artifacts>>, connected to a <<Tool>> named Sensor N/W, providing necessary inbound and
outbound signals, hence placed in <<Signal>>. The behavioural pattern is shown in the Figure 5.

FIGURE 5: Physical Road Network Abstract Platform

FUZZY CONSTRAINT OF ABSTRACT URBAN TRAFFIC SYSTEM (UTS)

Figure 6 depicts the final realization of Abstract Urban Traffic system using Fuzzy Logic. The
interaction point that corresponds to Port- 1 exchanges the signal received from the detector
network and accordingly sends the control signal for various junctions and VMS.

Manuj Darbari, Rishi Asthana & Vivek Kr. Singh

International Journal of Software Engineering (IJSE), Volume (1): Issue (2) 29

 FIGURE 6: Fuzzy Platform Independent Modeling
In order to represent the Fuzzy PIM we use Linguistic Variables and Fuzzy rules for entering the
uncertainty into the performance computations. The Fuzzy rule will be based on Activity Theory
notation given by Linguistic description set

We will now implement Fuzzy Relationship within various port of elements of Fuzzy PIM Abstract
Platform.

The fuzzy relation is a fuzzy set defined on the Cartesian product of elements. {X, X2,Xn}
where types (x1, x2.........xn) may have varying degree of membership R (x1,x2,...........xn) =  R
((x1,x2,...........xn)

Applying the above Cartesian Rule to A.T-MDE framework. We start with the elements R
(Physical Road N/W, Sensor Network, Smooth Flow of Traffic, Dynamic binding).

=  R (obtain Storage Area (), Obtain VMS (), Obtain Road Mapping () , Obtain Sensor Signal ()
..............).

Let
X

 = {Obtain Storage Area (), Obtain VMS (), Obtain Road Mapping (),
Obtain Sensor Signal ()}
Y

 =

Manuj Darbari, Rishi Asthana & Vivek Kr. Singh

International Journal of Software Engineering (IJSE), Volume (1): Issue (2) 30

Fuzzy Relationship R (X, Y) can be expressed by nxm matrix as follows :

The R relationship finally can be stated as:

Relationships between objects are the concepts involved in dynamic system applications. The
Classical binary relation represents the presence or absence of connection or absence of a
connection or interaction or association between Model Driven Engineering Concepts and Activity
Theory (A.T.) framework with reference to Urban Traffic System (UTS).

3. CONSLUSION & FUTURE SCOPE

This paper presents a framework aimed to facilitate the modeling of Urban Traffic System. It
focuses on the method engineering approach for systematic modeling of a system. The use of
Activity Theory (AT) provides sociological intentions of modeling a system. The help of
relationship link of Fuzzy Set theory achieves the mapping of various entities of Abstract Model.
The existence of uncertainty in message passing and control between different entities is
evaluated by Cartesian framework.

Manuj Darbari, Rishi Asthana & Vivek Kr. Singh

International Journal of Software Engineering (IJSE), Volume (1): Issue (2) 31

The future development will be to incorporate Stochastic Algebra into the framework for
necessary constraint checks on the Fuzzy relationships.

REFERENCES

[1] Aliaa A. Youssif, Ashraf A. Darwish, Ahmed Roshdy, (2010), “Development of
Information Agent Reranking by Using Weight Measure” , International Journal of
Computer Science and Security, Vol 4, Issue 2, CSC Journal, Malaysia.

[2] Arango, G (1989), "Domain Analysis: from AA Form to Engineering Discipline", ACM

SIGSOFT Software Engineering Notes, Vol. 14, No. 3.

[3] Baldwin JF and Guild NC (1980),"Modeling Controllers using Fuzzy Relations", Cyber

Net.

[4] Bernadi, S. (2002), "From UML Sequence Diagram and State Charts to Analyzable
Petri Net Models", Proceedings of the Third International Workshop on Software and
Performance, ACM Press.

[5] Bart Kosko, (1992), "Neutral Networks and Fuzzy System" Prentice- Hall, NJ.

[6] Bart Kosko, (1993), "Fuzzy Logic", Scientific American.

[7] Dubois D, Prade H, (1996), "What are fuzzy rules and how to use them", Fuzzy Sets

and Systems.

[8] D'. Frankel, (2000), ”UML Profiles and Model - Centric Architecture, Java Report,
June 2000, Vol. 5.

[9] Fowler M, (1997), "UML Distilled", Addison - Wesley, 1997.

[10] Novak. V, (1999), "Mathematical Principals of Fuzzy logic", Kluwer, Boston.

[11] Sanchez E (1976), "Resolution of Composite Fuzzy relation equations", Information

and Control.

 [12] Prasad Reddy , Sudha.K.R., Rama Sree P , Ramesh (2010), “Fuzzy Based
 Appraoch for predicting Software Development Effort”, International Journal
 Software Engineering, Vol. 1, Issue 1, CSC Journal, Malaysia.

[13] Zadeh L.A. (1973), "Outline of a new approach to the analysis of complex systems and
decision processes". IEEE Transaction on systems, Man and Cyber net.

Dr. Sohail Asghar & Mahrukh Umar

International Journal of Software Engineering (IJSE), Volume (1): Issue (2) 32

Requirement Engineering Challenges in Development of Software
Applications and Selection of Customer-off-the-Shelf (COTS)

Components

Dr. Sohail Asghar Sohail.Asghar@jinnah.edu.pk
Center of Research in Data Engineering (CORDE)
Mohammad Ali Jinnah University (MAJU)
Islamabad, Pakistan, 44000.

Mahrukh Umar Mahrukhumar@yahoo.com
Department of Computer Science,
Shaheed Zulfikar Ali Institute of Science
and Technology (SZABIST),
Islamabad, 44000,Pakistan.

Abstract

Requirement Engineering acts as foundation for any software and is one of the most
important tasks. Entire software is supported by four pillars of requirement engineering
processes. Functional and non-functional requirements work as bricks to support
software edifice. Finally, design, implementation and testing add stories to construct
entire software tower on top of this foundation. Thus, the base needs to be well-built to
support rest of software tower. For this purpose, requirement engineers come across
with numerous challenges to develop successful software. The paper has highlighted
requirement engineering challenges encountered in development of software
applications and selection of right customer-off-the-shelf components (COTS).
Comprehending stakeholder’s needs; incomplete and inconsistent process description;
verification and validation of requirements; classification and modeling of extensive
data; selection of COTS product with minimum requirement modifications are foremost
challenges faced during requirement engineering. Moreover, the paper has discussed
and critically evaluated challenges highlighted by various researchers. Besides, the
paper presents a model that encapsulates seven major challenges that recur during
requirement engineering phase. These challenges have been further categorized into
problems. Furthermore, the model has been linked with previous research work to
elaborate challenges that have not been specified earlier. Anticipating requirement
engineering challenges could assist requirement engineers to prevent software tower
from any destruction.

Keywords: Requirement Engineering, Customer-off-the-shelf (COTS), Multi-site software development.

1. INTRODUCTION
Software requirements describe the services provided by an application and reflect stakeholder’s needs.
Requirements are generated from the way people actually work in application domain. The process of
eliciting, analyzing, specifying, validating and maintaining requirements is known as Requirement
Engineering (RE). The main goal of requirement engineering is to meet the degree of end user’s
satisfaction in minimum cost and time.

Dr. Sohail Asghar & Mahrukh Umar

International Journal of Software Engineering (IJSE), Volume (1): Issue (2) 33

Requirement elicitation phase investigates the problems in existing system. However, errors in
requirement phase are not identified during application development. Rather they remain concealed until
system becomes fully operational and stakeholder’s needs are not met [14]. The observation from various
researchers [14, 38] illustrate that the cost of fixing an error initially in elicitation process is of little value
as compare with other phases of software development. Thus, requirement elicitation plays an imperative
role in application development. Requirement engineers have to face myriad problems and difficulties to
consult requirements from stakeholders. These problems are then compiled and accumulated into
challenges. However, anticipating problems will therefore help requirement engineers to take actions
beforehand and prevent software from misfortune.

Additionally, unstructured elicited requirements from operational domain are difficult to manage and
model. Requirements need to be concise and well formatted based on any standard requirement
specification template [44, 45]. This help stakeholders and maintenance team to understand
requirements. Besides, it’s a good practice to model requirements so that they can easily be validated by
stakeholders. However, poor requirement specifications accelerate the level of ambiguity and
requirements become difficult to quantify - resulting in failure of software application.

System requirements explain the detailed description of what software is suppose to do. These
requirements are classified as functional requirements which deal with system functionality and non-
functional requirements which are software constraints. These requirements are essential for each other
and equally critical to achieve. However, decomposition, refinement and validation of these requirements
are foremost challenges faced by requirement engineers.

Additionally, most of software applications focus on reusable components for quick development in
minimum cost and time frame. Thus, selection of COTS components becomes a major challenge faced
by requirement engineers to match stakeholder’s requirements with available COTS products [15].
Besides, this introduces new challenges in requirement engineering. Selection of COTS components is
often based on subjective judgment. Vendors may take advantage of this and introduce new version for a
component, as a result original requirements are modified based on product available in the market.
Furthermore, there are no additional specifications provided by vendors for COTS component’s internal
architecture and descriptions. Thus, requirement engineers have minimum chance to verify whether
integrating a particular components with software will meet end user’s desire requirements or not.
Moreover, some of COTS components are often not tested by real-world users [15].

Prior research studies have often investigated challenges in one particular domain of requirement
engineering. However, this paper has merged RE challenges from different domains and accumulated
them here. The paper presents and categorized its background study into quadrant that is requirement
engineering process, system requirements, applications and product. They are further sub-categorized
accordingly. Later, each sub-categorized headings are discussed to identify problems and challenges in
that particular area. The paper summarizes different literatures and critically evaluates them.
Furthermore, it depicts a framework which elaborates RE challenges that were not highlighted earlier.
The framework specifies seven major challenges and classified those challenges into problems. The
major factors highlighted in the framework include technological crisis, economic crisis, external events,
requirement engineering process difficulties, organizational issues, stakeholder’s conflicts and time.
Besides, these factors are linked with quadrants of background study to provide a bigger picture of overall
RE challenges.

This paper is organized as followed. Section 2 gives an overview of prior research studies in a particular
area. In Section 3 challenges highlighted in previous work are critically evaluated. A framework and
description of the model is illustrated in Section 4. Finally, section 5 describes the conclusion and future
work. References are illustrated in section 6.

2. BACKGROUND STUDY
There are numerous challenges identified by researchers in various requirements engineering domain.
Prior studies have usually investigated challenges in only single area of interest such as challenges in

Dr. Sohail Asghar & Mahrukh Umar

International Journal of Software Engineering (IJSE), Volume (1): Issue (2) 34

requirement elicitation and analysis [17] or challenges encounter in selection of COTS components [15].
However this section merges those challenges from different literatures. The section categorized
background study into four quadrants. These quadrants are further sub-categorized accordingly. Figure1.
Shows four major research areas covered in background study. These areas include requirement
engineering process, system requirements, applications and product. These areas have been further sub-
divided correspondingly. Requirement elicitation, requirement specification and requirement validation
have been categorized under requirement engineering process. System Requirement has been sub-
divided as functional and non-functional requirements. Application covers challenges in requirement
engineering for enterprise application and multi-site software development. Categorically, customer off-
the shelf (COTS) have been titled under products. These domains are sum-up in more depth as follow:

Figure1. Quadrant of research areas for background study

2.1 Requirement Engineering Process
Requirement elicitation, requirement specification and requirement validation have been categorized
under requirement engineering process.

2.1.1 Requirement Elicitation and Analysis:
Goldin and Finkelstein study highlighted that it has been a great challenge to comprehend stakeholder’s
needs and manage unexpected growth of requirements [17]. Quality of the software are contingent to
requirement elicitation, requirement analysis and requirement management [18]. The researchers have
proposed a method ‘abstraction-based requirement management (AbstRM)’ to conquer elicitation’s
challenges in requirement engineering. The information becomes contradictory and incompatible as it has
been acquired from different sources. Moreover, manual requirement analysis, discovery of important
processes and detection of abstractions (main concept) from scenarios have been foremost challenges
for requirement elicitor [19]. The researchers proposed a tool known as AbstFinder [20] which lists
important terms known as ‘abstraction identifiers.’ The meta-concept has been used to classified array of
identifiers into different categories such as agents, entities, actions, goals. Explanation for each
abstraction identifier is retrieved from scenarios. Furthermore, the identifiers and relationship among them
are represented in abstraction network. Omitted information is initially identified by elicitor from AbstRM’s
network diagram. Besides, impacts of modifications within requirement are also exhibited. Executive

Dr. Sohail Asghar & Mahrukh Umar

International Journal of Software Engineering (IJSE), Volume (1): Issue (2) 35

summary and software requirement specification can be written precisely from abstraction identifiers [17].
The researchers have made an empirical assessment of AbstRM method by integration of AbstFinder
and DOORS tools. Systematic improvements in requirement engineering process can be made from
proposed method.

But however there are certain limitations in proposed tool. A lot of work ought to be done by elicitor to
review abstraction identifiers. A situation may occur where noun and verb are not distinguished by
AbstRM. For instance a sentence says “book a flight.” Humans can understand that it has been referred
to flight reservation [20]. Unfortunately, tool may consider word ‘book’ as a noun. Elicitors have to cross-
validate words from source what it really means. Irrelevant or redundant data can also be stated by tool.
Additionally, product features and their characteristics have only been specified for requirement
engineering tools. They do not explain to what degree the product can be integrated with another
requirement tool. Although, the websites like Volere [21] or Requirement tools [22] explained capabilities
and integration features, still do not specify those ‘elements’ which can be integrated or which cannot
[23]. Hence, a deep analysis of both products is required for integration of requirement engineering tools.
Besides, a costly software development life cycle is initiated within requirement engineering process that
becomes a challenge.

2.1.2 Requirement Specification:
Firesmith explained the problems in requirement specifications and solutions to prevail over them [26].
Traditional manual based documentation (often used in waterfall development cycle) usually consists of
incomplete and vague processes descriptions. Configuration and requirements management are
strenuous in manual based specifications. Besides, it is expensive to make copies of specification and
distribute to different stakeholders. The paradigm shift from traditional requirement engineering to modern
iterative requirement engineering has overcome most of these problems [27]. Iterative approach involves
requirement engineering process to be performed repeatedly for identification of bugs in requirements.
But substantial time is required for frequent elicitation and specification of software with loads of
requirements. Researcher has suggested to structure requirements into models (use- cases) for logical
specifications. Object oriented or extended relational databases can be used to store requirements into
repository for quick access and verification. Requirement specifications template and requirement
engineering tools can also assist in software requirement specifications. The paper has focused on
modeling the specifications for minimum traceability issues of requirements.

There are few limitations in specifying the requirements into use-cases [28]. But however the technique is
most often used for modeling specifications. However, storing requirements into requirement warehouse
can become problematic. Requirement engineers have to enter terabytes of requirements into repository
and modify each time when end users change their requirements.

2.1.3 Requirement Validation:
Sequeda has highlighted one of crucial task for requirement engineers are confirmation of requirement
specifications. [29] The specifications are usually not guaranteed with completeness and correctness.
Requirements are often ambiguous or vague which are difficult to verify. Quality of specifications can be
improved from different requirement verification and validation techniques. However, it becomes a
challenge for requirement engineers to select among different techniques that best corresponds with
requirement specifications. To overcome these problems researcher has proposed a model - taxonomy of
requirement specifications. The model divides the specifications into executable and non-executable
specifications. Non-executable specifications are written in natural language. These specifications can be
verified through using experimental requirement management (ERM) tool. Requirement document is
inserted in ERM which saves document in XML format. XSLT is later used to verify document [30, 31]. On
the other hand executable specifications are written in declarative languages such as java modeling
languages, which are verified through developing prototypes. The paper has explained different
requirement verification and validation techniques. Problems in requirements are identified initially which
enables to reduce errors in software.

Dr. Sohail Asghar & Mahrukh Umar

International Journal of Software Engineering (IJSE), Volume (1): Issue (2) 36

However, expertise in ERM and XSLT is required by requirement engineers in addition to domain
knowledge. Besides, building a prototype for user’s requirement cannot ensure validation of non-
functional requirements.

2.2 System Requirement
System Requirement has been sub-divided as functional and non-functional requirements.

2.2.1 Functional Requirement:
Ya-ning, Shu-jiun, Sum, and Lin investigate various challenges and recommendations to overcome
problems in functional requirements [32]. Functional requirements are engaged with comprehensive
explanations and complicated structure models which are difficult to reveal. Preliminary unexplored
issues for requirement engineers are what functions need to be performed by software and how these
requirements should be illustrated. Besides, decomposition of requirements into activities is a
complicated task for requirement engineers [33]. Functional requirements gathered by different analysts
may become redundant and conflicting. To accomplish the objective of software, researchers have made
some recommendations. Gathered requirements need to be categorized and refined. Functional
requirements that are gathered by different analysts essentially be coordinated and synchronized. These
requirements need to be well understood and expressed systematically by requirement engineers.
Furthermore, confirmation of functional requirements needs to be made with stakeholders to reduce
future challenges. Concluding, the researchers have advice some recommendations for requirement
analysts to overcome challenges in functional requirements.

However, requirement management and traceability of requirements becomes really complex with
manually written functional requirements. Therefore, to keep these challenges aside formal methods play
imperative role in development of software. ‘Formalizing the requirement specification’ means specifying
the requirement mathematically from set theory and logic. These specifications are verified from set of
mathematical based rules to ensure that they meet formal specifications and they are then refined and
developed. Besides, formal specifications are concise and often complete which help to understand
problem domain and investigate errors. Although implementation of formal methods is costly and gave
myriad challenges but they endow with accurate result. Formal specification can also assist to develop
test cases easily with minimum human’s throughput. Moreover, another approach can be applying
Attribute Grammar Rules with Software Process Measurement Application [56]. This approach can assist
to determine the decomposition and structure of software processes.

2.2.2 Non- Functional Requirement:
Thomas review specifies that architectural structures are often modified by non-functional requirements
[14]. These requirements are poorly specified by stakeholders or they acquired substantial work to be
done. Considerably, architectural structure of software is selected among choices based on criteria’s
such as latency, throughput or high-availability. Therefore, non-functional requirements are not essential
to achieve if functional requirements have been fulfilled. Moreover, they are ambiguous to examine. “The
system shall be maintainable and robust.” Besides, these requirements are not verified by any method
[16].The paper illustrated the importance of architectural structure and functional requirements, to achieve
desire quality goals.

The paper has got various drawbacks. Functional requirements are what need to be done by system?
While non-functional requirements states ‘how’ the system should achieved that ‘what’? Consequently,
both requirements are equally critical to achieve [4]. Non-functional requirements are concerned with
emergent properties, for instance: reliability, performances or reparability etc [3]. These are constraints
and boundaries which are essential to be acknowledged in software development. The importance of
non-functional requirement has been grown-up with increased complexity of software and high demand of
quality products [1]. However, non-functional requirements to be elicited correctly and completely gave a
challenge; interactions with the knowledgeable stakeholders are needed. Researchers have found
strategy used in language extended lexicon (LEL) to elicit non-functional requirements [6]. LEL is used to
capture terms (phrases or words) peculiar to application field. The vocabulary system consisted of
symbols and each symbol is expressed in terms of notations and behavioral response in the operating
environment [5]. Additionally, non-functional requirements can be validated by developing tools and

Dr. Sohail Asghar & Mahrukh Umar

International Journal of Software Engineering (IJSE), Volume (1): Issue (2) 37

applying abstract interpretation-based static analysis of source program and choosing abstract domains
[2]. Although, non-functional requirements gave challenge to be accomplished but they play ‘imperative
role’ in the system.

2.3 Product
Customer off-the shelf (COTS) have been titled under products.

2.3.1 Commercial off-the shelf (COTS):
Alves explained the challenges faced by requirement engineers in selection of COTS products [15].
Generally, organization specifications are not matched with COTS characteristics and requirements are
accommodated according to the features present in product. “Let the available COTS feature determine
the requirement [15].” Moreover, new updated strategies in COTS might be introduced by vendors. As a
result, an erratic situation occurred at times when customers are forced or misguided by suppliers to have
adverse product for their organization [12]. The author has justified goal-oriented approach to achieve
optimum balance between the requirements and COTS features [13]. The activities involved in goal-
oriented approach are identification of goals or objective of the system. Once the goals are established,
possible COTS in the market are identified based on their quality and functional aspects. Evaluations of
the COTS are matched with the goals. The balance is achieved when the goals collaborated with the
COTS features. At the end, the desired COTS product matched with the goals is selected [15].

The limitation of the paper is that the researcher has not focused on the relationship between the COTS
features and technology. The specification of the technology in the goals may eliminate assessment of
many products in the market. For instance, we may evaluate a product that works on the client-server
architecture, while the organization has been operated in distributed system. In such case, it becomes a
challenge to judge the right product for the organization requirements. Besides, the modification of
requirements according to COTS product available in market may results in the change of business
strategies, which become a great risk. COTS components can be evaluated by using fuzzy logic
approach [58]. Fuzzy logic is a mathematical based technique to deal with imprecision, uncertainty and
information granularity. The approach takes functionality, reusability, performance, security, and
portability as input and gives a crisp value of selection efforts.

2.4 Applications
Application covers challenges in requirement engineering for enterprise application and multi-site
software development.

2.4.1 Enterprise Application:
Salim highlighted requirement engineering challenges in the development of an enterprise application [7].
The problems encountered by requirement engineers in understanding application domain and business
processes are enlightened. Classification of extensive data, providing insufficient information has been a
great challenge. Besides, stakeholders have inadequate knowledge or there are no end users for entirely
new system [8]. Furthermore, the documentation of software requirements based on standards gave a
vital responsibility. Validation and changes within the requirements are also complex [9] [10].
Furthermore, lack of human resources, technical expertise in quality management, knowledge of
formalized systems, inadequate knowledge in internal auditing are the foremost challenges faced in small
and medium-sized enterprises (SMEs) [57]. The paper can be a helpful source of the material.
Requirement engineers can broader their vision to focus on major problems what exist today and how
they can better control these challenges to make effective decisions in future.

However, enterprise applications are developed from coalition of business and IT strategies. But
unfortunately, there are extensive communication gaps between functional departments. Therefore, it
becomes a crucial task for requirement engineers to understand and synchronize the strategies initiated
by business departments.

Dr. Sohail Asghar & Mahrukh Umar

International Journal of Software Engineering (IJSE), Volume (1): Issue (2) 38

2.4.2 Multi-site Software Development:
Berenbach emphasized on challenges and issues in distributed requirement engineering process [24].
End user’s requirements are gathered by requirement analysts who are geographically dispersed.
Collected requirements are integrated later for a single software development. Researcher has explained
some of distributed structures in distributed requirement process. The problems emerged in these
structures have also been pointed out. Inconsistent processes gathered from remote sites create
complexity in the requirements. Besides lack of synchronization among analysts are problematic.
Requirements gathered from different sites may diverge in applied techniques. For example, site A have
used use cases while site B have flow charts. Consequently, requirements are failed to come up with a
conclusion what system actually suppose to do? Moreover, un-cleared responsibilities also become
confronting [25]. Task assigned to an analyst may presume the responsibility of other analyst. Solutions
to these challenges have also been recommended by the researcher. Project manager needs to inspect,
a particular tasks has been performed by analysts. Priorities ought to set initially to avoid ambiguities.
Additionally, requirements need to be cross-reviewed regularly from remote sites. To achieve an improve
coordination among analysts at different sites a facilitator need to be hire. The study aim to find problems
in distributed requirement engineering. Researcher has discussed real world scenario of Siemens
Corporate.

However, integrated requirements might not correspond with all site’s needs. A system may be successful
for one site and a failure for another due to miscellaneous organizational culture. Hence, distributed
requirement engineering process is also engaged with significant challenges.

The literature review has been summarized in Table 1. The table shows summary for prior researches,
main key points and limitations according to particular requirement engineering domain. The limitations in
table have been explored by us.

3. CRITICAL EVALUATION
The following section deals with our contribution to prior work. Each of the themes of literatures in
previous section is compare among each other.
There are variety of techniques used to collaborate between requirement analysts and end users to elicit
requirements. For instance, interviews, questionnaire, ethnography or even return-on-investment (ROI)
analysis can identify end user’s current operating environment [38, 39, and 44]. However, there are
certain advantages and disadvantages in these processes discovery that depends on organization’s
environment [40].

According to Goldin and Finkelstein, abstraction-based requirement management (AbstRM) surmounts
challenges in requirement elicitation [17]. The technique identifies important terms known as ‘abstraction
identifiers’ from application domain. These abstraction identifiers can overcome the challenges
highlighted by Firesmith [26] in requirement specifications by formalizing and structuring requirements.
For instance, the identified terms can determine name for a particular use case. In addition, variables or
objects declared in a prototype for validation of requirements as suggested by Sequeda [29] could be
related to general terms used in operating environment. This would help end users to gain better
understanding about software requirements and minimize the consequence of requirement engineering
challenges. AbstRM does not only state identifiers but distinguish sub-identifiers as well. For instance,
identifier ‘name’ comprise of first name, middle name and last name. Meta-concept used in AbstRM then
categorized these identifiers into agent, goals or entities. Thus, the technique can aid to classify extensive
data into categories in development of enterprise application and conquer the challenges highlighted by
Salim [7]. Moreover, inconsistent processes gathered from remote areas which becomes a challenge in
multisite software development explain by Berenbach [24] can be cross-reviewed through network
diagram. Contradictory process description identified from incomplete relationships in network diagram
can be piloted to navigate and attain further process description.

Dr. Sohail Asghar & Mahrukh Umar

International Journal of Software Engineering (IJSE), Volume (1): Issue (2) 39

Domain Summary Key Points Limitations
Requirement
Elicitation and
Analysis

Comprehending stakeholder’s
needs is a great challenge. AbstRM
has been proposed to overcome
elicitation challenges. [17]

AbstRM has been developed
by integrating AbstFinder
and Doors tools.

AbstRM may not distinguish
between nouns and verbs;
integration of tools is a
challenge.

Requirement
Specification

Requirement specifications need to
be structured into models (use-
cases). [26]

Requirements need to store
in a repository for quick
access.

Requirement engineers
have to enter terabytes of
requirements into repository
and modify them.

Requirement
Validation

A model ‘taxonomy of requirement
specifications’ has been proposed.
The model has divided requirements
into executable and non-executable
specifications for convenient
requirement validation. [29]

Different requirement
verification and validation
techniques have been
discussed to overcome the
problems initially.

Expertise in ERM and
XSLT is required.

Functional
Requirement

Problems lie in identifying what
software should do? And how to
illustrated the requirements;
Decomposition of requirements is
complicated; Confirmation of
functional requirements is essential.
[32]

Recommendations can
assist requirement analysts
to look into the problem
deeply.

Static and dynamic
requirements which are
correlated with functional
requirements have not
been focused.

Non-
Functional
Requirement
(NFRs)

Architectural structures are modified
by non-functional requirements.
These requirements are not
important if functional requirements
have been fulfilled. They are difficult
to elicit and verify. [14]

Architectural structures and
functional requirements play
important role in software
development.

Both the system
requirements are critical to
achieve; Language
extended lexicon can be
used to elicit non-functional
requirements.

Commercial
off-the shelf
(COTS)

Selection of COTS products gives a
major challenge. Goal-oriented
approach can be used to achieve
optimum balance between end
user’s requirement and COTS
features. [15]

A model has been proposed
for activities involved in
COTS selection which also
explain how to achieve
optimum balance between
the goals and COTS

No relationship between
COTS features and
technology has been
identified; change of
requirements based on
COTS available may
change business strategies.

Enterprise
Application

Problems in understanding
application domain; stakeholder’s
lack of knowledge; standard based
documentation; changes within
requirements are some of foremost
challenges in enterprise application
development. [7]

Requirement engineers can
analyze deeply to the
problems that exists today
and how they can better
control these challenges.

Synchronization of the
strategies initiated by
organization departments is
a challenge.

Multi-site
Software
Development

Inconsistency of processes; lack of
synchronization among dispersed
analysts; use of different
techniques, ambiguity in
responsibilities are some of
challenges in distributed
requirement engineering. [24]

Researcher has discussed
real world scenario of
Siemens Corporate.

Integrating requirements
may not correspond with all
sites needs due to diverse
organization culture.

Table1. Summary of Literature Review

Dr. Sohail Asghar & Mahrukh Umar

International Journal of Software Engineering (IJSE), Volume (1): Issue (2) 40

Software requirement specification illustrates a problem and end user’s need. Complete requirement
specifications have provided software market with substantial assistance to develop and manage
software. Researchers have made conclusive studies for requirement specification quality characteristics
such as completeness, correctness, conciseness, validation and verifiable [41]. However, requirements
gathered in elicitation process needs to be specified and structured. Internet search on ‘requirement
engineering tools’ will list down thousands of tools to generate requirements or depict diagrams or models
(use-case).
Automated Requirement Measurement (ARM) Tool [42] is also one of them which endow quality software
requirement specifications, to overcome the challenges highlighted by Firesmith in specifying standard
based requirements [26]. AbstRM technique suggested by Goldin and Finkelstein search for identifiers
and categorizes them; [17] while ARM discovers indicators and generates reports for rectification in
specifying requirements [42]. However, DOORS integration with AbstFinder for development of AbstRM
needs knowledge of ‘Domino Xml Language’ (DXL) scripting language. Whereas, ARM has graphical
user interface that is more easy and convenient for analysts to specify requirements. Besides, various
existing requirement engineering templates [3, 45] can be selected and refined according to
organization’s requirements [26, 44]. These templates can assist analysts to write consistent and
complete specifications. In addition, complex specifications can lead to implicit requirements. Poorly
gathered requirements are often redundant and contradictory as identified by Firesmith [26]. To overcome
this problem, Sequeda [29] highlighted requirement specifications need to be validated.

Requirement validation and Requirement verification are often used interchangeably. However at times,
these terms become bewildering and problematic in identifying either to validate or verify requirements.
Requirement validation ensures “Building the right system” or requirements are compiled with correctness
and conciseness. Whereas, Requirement verification certify “Building the system right” guarantees that
end user’s requirements have been completely fulfilled. [9, 49] Validation entails stakeholder’s full
involvement in reviewing requirement artifacts. [47, 48] Elicited requirements are usually unrefined as
they are haphazardly captured from stakeholders. Therefore, to ensure that gathered requirements also
reflect correct functionalities about software, requirements need to be validated. “Have we got the
requirements right?” is a key question to be initially answered. Goldin and Finkelstein [17] approach to
elicit requirements (AbstRM) provide requirement validation through abstraction network diagram. The
links between nodes can be used to navigate and obtain more information about a particular area. [17]
However, such manual technique needs number of people to review network diagram and requires a lot
of time to check missing requirements. Whereas, testing of requirements through execution of prototypes
and XSLT method suggested by Sequeda [29] provides much simpler way to validate requirements.
Besides, stakeholders are able to visualize and understand requirements more precisely to recognize
omitted requirements. Firesmith [26] investigated challenges in reviewing of requirement specifications
which are known to be tedious and at same time one of the vital tasks. However, requirement engineers
find it difficult to stay attentive and remember the relevant requirements. Therefore, requirement
engineering validation tools such as Requirements Assistant [50], SAT [51] or RavenFlow [52] are often
used to review or particularize high-quality requirements. These tools ensure to prevent requirements
from errors and omissions. Nevertheless, to operate on such requirement validation tools proficient skills
and expertise are required. However, in contrast to requirement engineering validation tools Sequeda [29]
proposed a model- ‘taxonomy of requirement specifications’ for validation of requirements. In addition, the
method is more efficient rather than deciding and selecting one tool among thousands of requirement
validation tools which becomes a challenge for requirement engineers. Furthermore, use of pre-existing
components to develop software not only reduce costs but also provides with quality software in timely
means. [53] According to Alves, requirements are accommodated with available products in market. [15]
This generates new requirements to software development. Therefore, validation of requirements for
COTS components need full analysis for a particular component and matching it with end user’s
requirements. As Salim [7] and Berenbach, [24] explained requirement validation and inconsistent
process in development of enterprise application and multi-site software is one of the major challenges in
requirement engineering. Requirements needs to be complete, feasible and unambiguous but very
seldom these criteria are fulfilled [50].

Dr.Sohail Asghar & Mahrukh Umar

41
International Journal of Software Engineering (IJSE)), Volume (1): Issue (2)

Figure2. Overview of prior research work and their association

Ya-ning, Shu-jiun, Sum and Lin elucidated that functional requirements express a process in
terms of relationship between inputs and resulting outputs. [32] These processes are usually
missed or undefined and gave major challenges. Hence, omitted process can initially be identified
by elicitor from AbstRM’s network diagram suggested by Goldin and Finkelstein. [17] Network
diagram exhibits association and interdependency among identifiers which can assist to confirm
requirements with stakeholders. Furthermore, functional requirements play a vital role in software
development and express the behavior of software. These behavior requirements are usually
depicted as use-cases in specifications suggested by Firesmith. [26] ‘A picture is worth a
thousand words’ hence, functional requirement become simple and easy to understand rather
intricate explanations. Besides, use-case assists analysts to systematically define and confirm
requirements as suggested by Ya-ning, Shu-jiun, Sum and Lin [32]. Moreover, scattered
requirements need to be categorized and refined. Thus, Firesmith research gave an idea to
compile and store requirements in repository for quick access and verification. [26] Furthermore,
functional requirements needs to be validated to ensure that they accept correct data types and
are categorized and refined as suggested by Ya-ning, Shu-jiun, Sum and Lin. [32] Thomas review
highlighted that functional requirements are important and should only be achieved. [14]
However, functional and non-functional requirements are both critically important to achieve.
Moreover, requirements are often unclear and vague when elicited from the stakeholders as
challenges highlighted by Goldin and Finkelstein. [17] Therefore, introduction of goal oriented
approach suggested by Alves [15] in selection of COTS components offers a way to clarify
functional requirements through decomposition and refinement of requirement statements. [54]

Non-functional requirements are critical to achieve. However, if these requirements are well
elicited, they can reduce the challenges highlighted by Thomas. [14] Therefore, whenever non-

Dr.Sohail Asghar & Mahrukh Umar

42
International Journal of Software Engineering (IJSE)), Volume (1): Issue (2)

functional requirements are appended or changed; network diagram proposed by Goldin and
Finkelstein [17] can trace the impact it produce on other software requirements. In addition,
Thomas argues non-functional are ambiguous to examine [14]. However, non-functional
requirements are equally important as functional or behavioral requirements. They are concerned
with emergent properties that exhibited by software. These requirements are constraints to
software such as reliability, performance or maintainability [3]. Unlike behavioral requirements,
non-functional requirements are not represented in use-cases. However, these constraints are
usually specified as suggested by Firesmith [26] in graphical notations [43] or in mathematical
terms. Furthermore, non-functional requirements are not verified by any method [14]. However,
Cortesi and Logozzo suggested that non-functional requirements can be validated by developing
prototypes or tools and applying abstract interpretation-based static analysis of source program
and selecting abstract domain. [2] Moreover, the identification of goals suggested by Alves [15]
direct to ask ‘what’, ‘why’, ‘how’ questions. Therefore, goal-oriented approach will provide
requirement engineers to understand non-functional requirements and analyzing them with more
potential alternatives.

Most of the software application development focuses on reusable components for quick
development in minimum cost and time frame. Thus, selection of COTS component becomes a
major challenge faced by requirement engineer to match the requirements with available COTS.
Therefore, to reduce the challenges as highlighted by Salim [7] and Berenbach [24] in enterprise
applications and multi-site software, there need to be a systematic process for selection of COTS
components for efficient development of software application. Thus, Alves [15] suggested goal-
oriented approach to achieve optimum balance between requirements and COTS features. In
addition to select COTS components from goal-oriented approach, abstraction identifiers
suggested by Goldin and Finkelstein [17] can also assist requirement engineers to make a
checklist in selection of COTS for important terms and ensure that these characteristics have
been fulfilled by the evaluated component. Besides, as new updated strategies in COTS are
introduced by vendors, COTS-based software requirements are tremendously affecting
requirement specifications. As there is cumulative change in requirements corresponding to
products evaluated therefore, requirement specifications are also modified resulting in incomplete
and out-dated requirements; giving rise to challenges identified by Firesmith [12, 26].

Moreover, Salim [7] explained enterprise applications are complex information systems. They
include people, processes, information and technology that interact with each other for
accomplishment of goals and objectives. [46] Hence, at times requirement specifications for
enterprise applications are complex. Classification of extensive data providing insufficient
information; stakeholders inadequate knowledge; no standard based requirement documentation
are adding layers to challenges identified by Firesmith [26], Sequeda [29] Ya-ning, Shu-jiun, Sum
and Lin [32], Alves [15] and Berenbach [24].

Although different emerging standards like ‘IEEE software engineering standards’ [3] gave an
efficient approach to document specifications, but however there is lack of focus on collecting
overall organization’s requirements that should be enclosed with development of enterprise
application. Consequently, requirement specifications often missed critical and important activity
operated in organization environment introducing challenges for requirement engineers and
stakeholders. [7]

Berenbach [24] explained emerging collaboration of distinct organizations leads to development
of complex multi-site software. [25] Requirements are elicited by analysts at different sites. They
may use different techniques and notations for specifying requirements, which becomes difficult
to comprehend and cross-review. [24] To prevail over such issue, requirement specifications
gather from disperse sites can be stored in distributed requirement repository as suggested by
Firesmith [26]. This would help to avoid ambiguities and requirement redundancy in
specifications. Furthermore, requirement engineering often directed towards requirement
conflicts. For example, analysts at multi-site software have divergent perceptions and directions.
Alves suggested [15] identification of goals initially for selection of COTS. However, the approach

Dr.Sohail Asghar & Mahrukh Umar

43
International Journal of Software Engineering (IJSE)), Volume (1): Issue (2)

can be useful to deal with analyst’s conflict as well. Meeting one goal may also interfere with
achieving of other goal. [54]

Furthermore, above critical evaluation is depicted in Figure 2. The diagram shows an overview of
previous research work. Besides, these research studies have been associated among each
other as described in above paragraphs and illustrated in diagram through arrows from different
colors.

4. REQUIREMENT ENGINEERING CHALLENGES
Requirement Engineering is a core process for software development life cycle. Bugs in
requirements are not identified during development rather they remain concealed until system
becomes operational and customer requirements are not met. Poor requirements lead to not only
modifications in requirement specifications but require re-designing, re-implementing and re-
testing for entire software. Therefore, requirement engineers have to struggle and conquer
uncountable numbers of challenges for development of effective and efficient software.

Anticipating requirement engineering challenges will grant opportunities for requirement
engineers to enhance software success rate. There have been many investigations conducted to
explore different challenges in various domains of requirement engineering. However, these
investigations proposed models and gave recommendations to defeat challenges only in a single
particular area of requirement engineering (as highlighted in section 2).

In addition to previous research work [17, 26, 29, 32, 14, 15, 7, and 24] and background study,
we present a framework for requirement engineering challenges as demonstrated in figure 3. In
addition to requirement engineering challenges that are depicted in figure 2 and highlighted in
section 3; the model has illustrated more challenges that recur in development of software
application and selection of COTS components. Requirement engineering process, System
requirements, and Application encounters all these seven major challenges. Whereas, COTS
component title under the product only encounters technological, economic crisis and
requirement engineering process challenges. The empty spaces in model indicate future
problems that can recur in those seven challenges that are highlighted in model.

The model encapsulates overall challenges faced in requirement engineering rather than
identifying them in any particular domain. Besides, the model provides with a systematic
understanding for requirement engineers to broader their vision and identifies upcoming problems
and risks in requirement engineering. Additionally, the model is linked with previous research
work to elaborate challenges which were not identified earlier by researchers. Requirement
engineering challenges have been categorized into seven components. These components
include:

 Technological crisis
 Economic crisis
 External events
 Requirement engineering process
 Organizational issues
 Stakeholder’s conflicts
 Time.

These categorized challenges are further classified into problems that occur during requirement
engineering phase. Conclusively, the framework model identifies different problems and later
integrates those problems to explore what provoke challenges in requirement engineering.

Requirement engineering problems and challenges presented in the model are explained as
follow:

Dr.Sohail Asghar & Mahrukh Umar

44
International Journal of Software Engineering (IJSE)), Volume (1): Issue (2)

4.1 Technology
Obsolete requirement engineering tool may not provide with accurate functionality for instances,
requirement tools for development of prototypes or stimulations. Discarding these requirements
engineering tool completely and installing new tool may not be able to convert or emulate the file
format. Besides, integrating collaborative features of two requirement engineering tools to obtain
functionalities requires deep structural and functional analysis of both available tools, which
becomes cumbersome.

In additional, procurement of Customer-off-the shelf (COTS) product is ad-hoc which becomes a
challenge later. Selection for COTS products is usually subjective or vague and does not meet
customer’s needs. The requirements are modified according to available products in market.
Besides, configurations in COTS may have major influence on selected product. The new version
might not have features that were being evaluated. Thus, underestimating these challenges in
selecting accurate component may lead to software failure that does not meet customer’s
requirements.

4.2 Economic Crisis
IT market is all about new emerging technologies and challenges [35]. Unsolved challenges may
increase overall cost of software. For instance unclear software requirements may increase
maintenance cost. Besides, there are various other challenges that can come across -
Organization developing a system or customers may face financial downfalls during development
of software. Increase in accounts payable, out of control spending and poorly planned budgeting
strategies can initiate bankruptcy of customer or organization. In addition, variation in
depreciation, taxes or stock exchange rates may create difficulties for requirement engineers to
manage requirement and select COTS in allocated budget.

4.3 External Events
Targeted effectiveness in software can be achieved if challenging external threats and risk are
addressed beforehand [36]. Accidental deletion of valuable data, file corruption, virus-infection or
hardware failure may create catastrophe situation for requirement engineers. Besides, external
events such as fire, bomb blast or unusual climatic condition may affect requirement engineering
process. Consequently, such unpleasant incidents fine an astronomical amount of cost within
requirement engineering.

4.4 Requirement Engineering Process
The goal of requirement engineering process is to investigate what tasks need to be performed
and what are the boundaries and constraints in software. Acquiring and comprehending
requirements for complex domains or critical systems have always been great challenges for
requirement engineers. Additionally, stakeholders do not articulate their requirements precisely
during requirement discovery process. As a result, requirement specifications are vague,
perplexing and ambiguous. Hence, decomposition, modeling of requirements and identification of
business processes becomes complicated. Besides, there are over requirement specification
which usually defines solutions rather than identifying true problems. Consequently, poor
requirement specifications act out as poor process definitions that develop poor software.
Validation of requirements improves likelihood of project’s success therefore prototypes are
developed to ensure requirements and right solution. However, prototype may provide insufficient
details due to error occurrence and correcting those errors may allow software to get behind
schedule.

Dr.Sohail Asghar & Mahrukh Umar

45
International Journal of Software Engineering (IJSE)), Volume (1): Issue (2)

Figure3. Framework for Requirement Engineering Challenges

4.5 Organizational
Software applications are developed from collaboration of business and IT strategies. However,
unfortunately there is extensive diversity of perceptions within organizational departments.
Hence, aligning and synchronizing strategies recommended by different departments become
critical task for requirement engineers.

Additionally, an effective business process represents efficient functioning of an organization. In
spite, organizations are rapidly focusing on re-designing of business processes to make
substantial changes and improvements in their level of performance. Eventually, changes within
business process also transform software requirements. Thus, it acquires substantial efforts to
manage these volatile requirements, which set great challenges in requirement engineering.

Dr.Sohail Asghar & Mahrukh Umar

46
International Journal of Software Engineering (IJSE)), Volume (1): Issue (2)

4.6 Stakeholders
A successful project has a great influence on knowledgeable and experienced stakeholders.
Otherwise, software may face significant risks [37]. Inadequate technical skills with requirement
engineers and lack of domain knowledge can have a major impact on software. Requirement
engineers are unable to adequately address problems and end user’s needs. Besides, some
pioneer requirement engineers may be ignorant to emergent requirement engineering tools.
Therefore, ineffective performance by requirement engineers may results in outdated and error
prone requirements.

However, difference in perception or unclear roles and responsibilities leads to confrontations
among requirement engineers. These intra-group conflicts may eliminate effective coordination
between stakeholders which may have negative impact on performance. Besides, requirement
engineer might not be available at critical time or resign from their job. Recruiting and training
new employee perhaps not be feasible for successfully completing the development of software
within timeframe and budget.

4.7 Time
Scheduling is a process for planning and managing time. Scheduling time is one of the
predominantly difficult job and entirely critical to software success. However, usually the time
required in completion of tasks during requirement engineering phase is underestimated. As a
result, delivery of milestones gets delayed particularly when tasks are on critical path. Great
challenges endure for requirement engineers to manage and accomplish seemingly unlimited
tasks. Hence, requirement engineers start to take short cuts or sometimes ignore to emphasize
and focus on important aspects. Consequently, requirements are poorly established or gets
behind schedule. Besides, these futile requirements also lead to downstream failure of entire
software.

5. CONSLUSION & FUTURE WORK
Understanding stakeholder’s needs; incomplete process description; verification and validation of
requirements; selection of COTS products with minimum requirement modifications are foremost
challenges faced during requirement engineering. The paper illustrates several problems in
requirement engineering domain. These problems have been reviewed from various literatures.
Our study is categorized into quadrant of requirement engineering process, system requirements,
applications and product. These quadrants are then sub-categorized correspondingly. The
challenges and techniques presented by prior literatures have been summarized and critically
reviewed. Besides, the paper has made a comparison between different techniques presented in
various literatures and had associated those techniques among each other. Moreover, it
represents a framework which illustrated those challenges that were not identified by previous
research work. The major challenges highlighted in the framework include technological crisis,
economic crisis, external events, requirement engineering process difficulties, organizational
issues, stakeholder’s conflicts and time. These challenges have also been sub-divided into
problems. Besides, these challenges are linked with quadrant of background study to provide a
bigger picture. Requirement engineering process, system requirements, and application
encounter all seven major challenges. Whereas, product only encounters technological,
economic crisis and requirement engineering process challenges. There are empty spaces in the
framework point to future work in identifying more problems and challenges.
In future, we will be looking forward to prioritize these challenges by calculating the impact of
each challenge on development of software applications.

6. REFERENCES

1. G. Maria C. de and J.Brelaz de. “Improving the Separation of Non-Functional Concerns in
Requirements Artifacts.” In proceedings of the 12th IEEE International Conference on
Requirements Engineering (RE 2004), 6-10 September 2004, Kyoto, Japan 2004.

Dr.Sohail Asghar & Mahrukh Umar

47
International Journal of Software Engineering (IJSE)), Volume (1): Issue (2)

2. A. Cortesi and F. Logozzo. “Abstract Interpretation-Based Verification of Non-functional
Requirements.” Lecture Notes in Computer Science, Springer Berlin/Heidelberg, 3454: 54-59,
2005.

3. IEEE. IEEE Recommended Practice for Software Requirement Specification, 1988.

4. L. Chung, B.A. Nixon, E. Yu, and J. Mylopoulos. “Non-Functional Requirements in
Software Engineering” Springer Berlin / Heidelberg, pp.363-379 (2009)

5. L. M.Cysneiros and E.Yu. “Perspectives on software engineering”, Julio Cesar Sampaio
do Prado Leite, Jorge H. Doorn, Kluwer Academic Publishers, pp. 114-138 (2004).

6. L. Marcio and J.C. S. do Prado. “Using the Language Extended Lexicon to Support Non-
Functional Requirements Elicitation.” Anais do WER01 - Workshop em Engenharia de
Requisitos, Buenos Aires, Argentina. November 22-23, 2001.

7. J. Salim. “Requirement Engineering for Enterprise Application Development: Seven
Challenges in Higher Education Environment.” World academy of Science, Engineering and
Technology, 4:101, 2005.

8. H. d. Vries, H. Verheul and H. Willemse. “Stakeholder Identification in IT standardization
processes.” Standard Making: A Critical Research Frontier for Information Systems MISQ Special
Issue Workshop, 2003.

9. A.T. Bahill. and S. J. Henderson. “Requirements Development, Verification and
Validation Exhibited in Famous Failures”. Wiley Periodicals, Inc, Systems Engineering, 8(1): 1-14,
2005.

10. F.T. Sheldon and H. Y. Kim. “Validation of guidance control software requirements
specification for reliability and fault-tolerance.” In IEEE annual proceedings on Reliability and
Maintainability Symposium, Washington, DC, USA 2002.

11. M.Oktay, A.B. Gülbağcı, and M.Sarıöz. “Architectural, Technological and performance
issues in enterprise applications.” World Academy of Science, Engineering and Technology, 27:
224-230, 2007.

12. C. Alves, J. B.P. Filho, J.Castro. “Analyzing the tradeoffs among requirements,
architectures and COTS components.” pp. 23-26, 2001.
Website: http://wer.inf.pucrio.br/WERpapers/artigos/artigos_WER01/alves.pdf
Access Date: November 2008.

13. C.Alves and A.Finkelstein. “Investigating Conflicts in Cots Decision-Making.” International
Journal of Software Engineering and Knowledge Engineering, 13(3):1-21, 2003.

14. B.Thomas. “Meeting the challenges of Requirement Engineering.” News at Software
Engineering Institute. 2009. Website: http://www.sei.cmu.edu/library/abstracts/news-at-
sei/spotlightmar99pdf.cfm. Access date: January 2010.

15. C.Alves and A.Finkelstein. “Challenges in COTS Decision-Making: A Goal Driven
Requirements Engineering Perspective.” In Proceedings of the 14th international conference on
Software engineering and knowledge engineering. Ischia, Italy, 2002.

16. C.J. Fidge and A.M. Lister. “The challenges of Non-functional computing requirements.”
Pp. 6-7.Website: http://sky.fit.qut.edu.au/~fidgec/Publications/fidge93c.pdf.
 Access Date: November 2008.

Dr.Sohail Asghar & Mahrukh Umar

48
International Journal of Software Engineering (IJSE)), Volume (1): Issue (2)

17. L.Goldin and A.Finkelstein. “Abstraction-based requirements management.” In
Proceedings of the international workshop on Role of abstraction in software engineering.
Shanghai, China, 2006.

18. A.V.Lamsweerde. “Requirements engineering in the year 00: a research perspective.” In
proceedings of the 22nd international conference on Software engineering, Limerick, Ireland.
2000.

19. Endava: White paper on Requirements gathering and analysis, pp. 7-10, 2007.
http://www.endava.com/resources/Endava.com-WhitePaper-RequirementsGathering.pdf Access
Date: October 2008.

20. L.Goldin and D.Berry. “AbstFinder, A Prototype Natural Language Text Abstraction
Finder for Use in Requirement Elicitation.” In IEEE Requirements Engineering, 1994.
Proceedings of the First International Conference.

21. Volere. Website: http://www.volere.co.uk/tools.htm Access date: November 2008.

22. Requirement tools. Website: http://easyweb.easynet.co.uk/~iany/other/vendors.htm
 Access date: November 2008.

23. L. K. Meisenbacher. “The Challenges of Tool Integration for Requirements Engineering.”
In Proceedings of SREP’05, Paris, France, 2005.

24. B.Berenbach. “Impact of organizational structure on distributed requirements engineering
processes: lessons learned.” In Proceedings of the 2006 international workshop on Global
software development for the practitioner. Shanghai, China 2006.

25. S. Timea, H. Andrea and P. Barbara. “The challenges of Distributed Software
Engineering and Requirements Engineering: Results of an Online Survey.” pp.9-13. Website:
http://www-swe.informatik.uni-
heidelberg.de/research/publications/TR_Distributed_RE_Version1.pdf. Access Date: October
2008

26. D.G. Firesmith. “Modern Requirements Specification.” Journal of Object Technology,
2(2):53-64, March-April 2003.

27. M.Gerdom and Dr. U. Rastofer. “Rapid requirements engineering – Does a specification
Always need to come at the start?” pp.7.
Website: http://www.compaid.com/caiinternet/ezine/mp-requirements.pdf Access Date:
Novemeber 2005.

28. M. Glinz. “Problems and deficiencies of UML as a requirement specification language.” In
Proceedings of IEEE 10th International Workshop on Software Specification and Design.
Washington, DC, USA, 2000.

29. F.S. Juan. “Taxonomy of verification and validation of software requirement and
specifications.” Website: http://www.cs.utexas.edu/~jsequeda/pub/Sequeda_VV_req_spec.pdf
Access Date: November 2008.

30. Advanced XML validation.
Website: http://www.ibm.com/developerworks/xml/library/x-crsfldvalid/index.html
Access Date: November 2008

31. Schematron: Validating XML using XSLT.
Website: http://www.ldodds.com/papers/schematron_xsltuk.html

Dr.Sohail Asghar & Mahrukh Umar

49
International Journal of Software Engineering (IJSE)), Volume (1): Issue (2)

Access Date: November 2008.

32. Y.Chen, S.Chen, H.Sum and S.C.Lin. “Functional requirements of metadata system: from
user needs perspective.” In Proceedings of the international conference on Dublin Core and
metadata applications: supporting communities of discourse and practice---metadata research &
applications. Seattle, Washington 2003.

33. J.H.Hausmann, R.Heckel, G.Taentzer. “Detection of conflicting functional requirements in
a use case-driven approach: a static analysis technique based on graph transformation.” In
proceedings of the 24th International Conference on Software Engineering. Orlando, Florida
2002.

34. A.I. Anton, J. H. Dempster and D.F. Siege. “Managing Use Cases During Goal-Driven
Requirements Engineering: Challenges Encountered and Lessons Learned.” Technical Report:
TR-99-16, 1999.

35. DK.M: “Opportunities and Challenges of 21st Century Emerging Technologies.”
Website: http://mi2g.net/cgi/mi2g/reports/speeches/220108.pdf
Access Date: November 2008.

36. K.Thiagarajan. “Making provisions for external risks.”
Website:http://www.thehindubusinessline.com/iw/2001/03/11/stories/0511e012.htm
Access Date: December 2008.

37. N. Turbit. “Key Stakeholder Support”
Website:http://www.projectperfect.com.au/info_key_stakeholder.php Access Date: December
2008.

38. B.Nuseibeh and S.Easterbrook. “Requirements engineering: a roadmap.” In Proceedings
of the Conference on the Future of Software Engineering. Limerick, Ireland 2000.

39. Ian Sommerville: “Software Engineering” 7th Edition, Addison.W, pp.168-180 (2004)

40. Search software quality.
Website:http://searchsoftwarequality.techtarget.com/expert/KnowledgebaseAnswer/0,289625,sid
92_gci1335438,00.html
Access Date: January 2009.

41. W.M. Wilson, L.H. Rosenberg , L.E. Hyatt. “Automated analysis of requirement
specifications.” In Proceedings of the 19th international conference on Software engineering
Boston, Massachusetts, United States 1997.

42. Automated Requirement measurement tool.
Website: http://satc.gsfc.nasa.gov/tools/arm/ Access Date: January 2009.

43. Non Functional Requirements.
Website: http://www.threesl.com/pages/webletter-
February06/Non_Functional_Requirements.php. Access Date: January 2009.

44. L. V., J. Donn. “Writing Software Requirements Specifications.”
Website:http://www.techwrl.com/techwhirl/magazine/writing/softwarerequirementspecs.html
Access date: January 2009.

45. Templates. Website: http://www.stcsig.org/mgt/reference.htm
Access Date: January 2009.

Dr.Sohail Asghar & Mahrukh Umar

50
International Journal of Software Engineering (IJSE)), Volume (1): Issue (2)

46. Jeffrey L. W., Lonnie D. B. and, Kevin C. D. “Systems Analysis & Design Methods.”
International Edition, Irwin Professional Publishing; pp. 12 (2000)

47. K. Ryan. “The role of natural language in requirements engineering.” In proceedings of
IEEE International Symposium on Requirement Engineering, San Diego, CA, 1993.”

48. B.H. C. Cheng and J. M. Atlee. “Research Direction in Requirement Engineering.” In
International Conference on Software Engineering on Future of Software Engineering.
Washington, DC, USA, 2007.

49. AOF Requirements and Acceptance.
Webiste:http://www.aof.mod.uk/aofcontent/tactical/randa/content/vandv.htm
Access Date: January 2009.

50. Requirements Assistant. Website: http://www.requirementsassistant.nl/
Access Date: January 2009.

51. SAT. Website: http://www.cassbeth.com/
Access Date: January 2009.

52. RavenFlow. http://www.ravenflow.com/
Access Date: January 2009.

53. W.J.Lloyd. “A Common Criteria Based Approach for COTS Component Selection.”
Journal of Object Technology, 4(3):27-34, 2004.

54. E.Yu and J.Mylopoulos. “Why Goal-Oriented Requirements Engineering.”
Website: http://www.cs.toronto.edu/pub/eric/REFSQ98.html. Access Date: January 2009.

55. L. Chung. “Representing and Using Non-Functional Requirements for Information System
Development: A Process-Oriented Approach.”
Website: http://www.cs.toronto.edu/~jm/Pub/TSE92.pdf. Access Date: January 2009.

56. R. Atan, A. A. Abd. Ghani, M. H. Selamat, R. Mahmod. “Automating Measurement for
Software Process Models using Attribute Grammar Rules”. International Journal of Engineering, 1
(2): 24-33, 2007.

57. A.S.Poza, M. Altinkilinc, C. Searcy. “Implementing a Functional ISO 9001 Quality
Management System in Small and Medium-Sized Enterprises”. International Journal of
Engineering (IJE), 3(3): 220-228, 2009.

58. Kirti Seth, Arun Sharma, Ashish Seth. “Component Selection Efforts Estimation– a Fuzzy
Logic Based Approach”. International Journal of Computer Science and Security, (IJCSS), 3 (3):
210-215, 2009.

CALL FOR PAPERS

Journal: International Journal of Software Engineering (IJSE)
Volume: 1 Issue: 2
ISSN: 2180-1320
URL: http://www.cscjournals.org/csc/description.php?JCode=IJSE

About IJSE

The International Journal of Software Engineering (IJSE) provides a
forum for software engineering research that publish empirical results
relevant to both researchers and practitioners. IJSE encourage researchers,
practitioners, and developers to submit research papers reporting original
research results, technology trend surveys reviewing an area of research in
software engineering and knowledge engineering, survey articles surveying a
broad area in software engineering and knowledge engineering, tool reviews
and book reviews. The general topics covered by IJSE usually involve the
study on collection and analysis of data and experience that can be used to
characterize, evaluate and reveal relationships between software
development deliverables, practices, and technologies. IJSE is a refereed
journal that promotes the publication of industry-relevant research, to
address the significant gap between research and practice.

IJSE List of Topics

The realm of International Journal of Computer Networks (IJSE) extends, but
not limited, to the following:

 Ambiguity in Software
Development

 Application of Object-Oriented
Technology to Engin

 Architecting an OO System for
Size Clarity Reuse E

 Composition and Extension

 Computer-Based Engineering
Techniques

 Data Modeling Techniques

 History of Software Engineering  IDEF
 Impact of CASE on Software

Development Life Cycle
 Intellectual Property

 Iterative Model  Knowledge Engineering
Methods and Practices

 Licensing  Modeling Languages
 Object-Oriented Systems  Project Management
 Quality Management  Rational Unified Processing
 SDLC  Software Components
 Software Deployment

 Software Design and
applications in Various Domain

 Software Engineering
Demographics

 Software Engineering
Economics

 Software Engineering Methods
and Practices

 Software Engineering
Professionalism

 Software Ergonomics  Software Maintenance and
Evaluation

 Structured Analysis  Structuring (Large) OO
Systems

 Systems Engineering  Test Driven Development
 UML

CFP SCHEDULE

Volume: 1
Issue: 2
Paper Submission: July 31 2010
Author Notification: September 1 2010
Issue Publication: September/October 2010

CALL FOR EDITORS/REVIEWERS

CSC Journals is in process of appointing Editorial Board Members for
International Journal of Software Engineering (IJSE). CSC
Journals would like to invite interested candidates to join IJSE network
of professionals/researchers for the positions of Editor-in-Chief,
Associate Editor-in-Chief, Editorial Board Members and Reviewers.

The invitation encourages interested professionals to contribute into
CSC research network by joining as a part of editorial board members
and reviewers for scientific peer-reviewed journals. All journals use an
online, electronic submission process. The Editor is responsible for the
timely and substantive output of the journal, including the solicitation
of manuscripts, supervision of the peer review process and the final
selection of articles for publication. Responsibilities also include
implementing the journal’s editorial policies, maintaining high
professional standards for published content, ensuring the integrity of
the journal, guiding manuscripts through the review process,
overseeing revisions, and planning special issues along with the
editorial team.

A complete list of journals can be found at
http://www.cscjournals.org/csc/byjournal.php. Interested candidates
may apply for the following positions through
http://www.cscjournals.org/csc/login.php.

Please remember that it is through the effort of volunteers such as
yourself that CSC Journals continues to grow and flourish. Your help

with reviewing the issues written by prospective authors would be very
much appreciated.

Feel free to contact us at coordinator@cscjournals.org if you have any
queries.

Contact Information

Computer Science Journals Sdn BhD
M-3-19, Plaza Damas Sri Hartamas
50480, Kuala Lumpur MALAYSIA

Phone: +603 6207 1607
 +603 2782 6991
Fax: +603 6207 1697

BRANCH OFFICE 1
Suite 5.04 Level 5, 365 Little Collins Street,
MELBOURNE 3000, Victoria, AUSTRALIA

Fax: +613 8677 1132

BRANCH OFFICE 2
Office no. 8, Saad Arcad, DHA Main Bulevard
Lahore, PAKISTAN

EMAIL SUPPORT
Head CSC Press: coordinator@cscjournals.org
CSC Press: cscpress@cscjournals.org
Info: info@cscjournals.org

