

INTERNATIONAL JOURNAL OF SOFTWARE
ENGINEERING (IJSE)

VOLUME 4, ISSUE 1, 2013

EDITED BY

DR. NABEEL TAHIR

ISSN (Online): 2180-1320

I International Journal of Software Engineering (IJSE) is published both in traditional paper form

and in Internet. This journal is published at the website http://www.cscjournals.org, maintained by

Computer Science Journals (CSC Journals), Malaysia.

IJSE Journal is a part of CSC Publishers

Computer Science Journals

http://www.cscjournals.org

INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING

(IJSE)

Book: Volume 4, Issue 1, September 2013

Publishing Date: 15 - 09 - 2013

ISSN (Online): 2180-1320

This work is subjected to copyright. All rights are reserved whether the whole or

part of the material is concerned, specifically the rights of translation, reprinting,

re-use of illusions, recitation, broadcasting, reproduction on microfilms or in any

other way, and storage in data banks. Duplication of this publication of parts

thereof is permitted only under the provision of the copyright law 1965, in its

current version, and permission of use must always be obtained from CSC

Publishers.

IJSE Journal is a part of CSC Publishers

http://www.cscjournals.org

© IJSE Journal

Published in Malaysia

Typesetting: Camera-ready by author, data conversation by CSC Publishing Services – CSC Journals,

Malaysia

CSC Publishers, 2013

EDITORIAL PREFACE

The International Journal of Software Engineering (IJSE) provides a forum for software
engineering research that publishes empirical results relevant to both researchers and
practitioners. It is the First Issue of Fourth Volume of IJSE and it is published bi-monthly, with
papers being peer reviewed to high international standards.

The initial efforts helped to shape the editorial policy and to sharpen the focus of the journal.
Started with Volume 4, 2013, IJSE appears with more focused issues. Besides normal
publications, IJSE intend to organized special issues on more focused topics. Each special issue
will have a designated editor (editors) – either member of the editorial board or another
recognized specialist in the respective field.

IJSE encourage researchers, practitioners, and developers to submit research papers reporting
original research results, technology trend surveys reviewing an area of research in software
engineering, software science, theoretical software engineering, computational intelligence, and
knowledge engineering, survey articles surveying a broad area in software engineering and
knowledge engineering, tool reviews and book reviews. Some important topics covered by IJSE
usually involve the study on collection and analysis of data and experience that can be used to
characterize, evaluate and reveal relationships between software development deliverables,
practices, and technologies. IJSE is a refereed journal that promotes the publication of industry-
relevant research, to address the significant gap between research and practice.

IJSE gives the opportunity to researchers and practitioners for presenting their research,
technological advances, practical problems and concerns to the software engineering. IJSE is not
limited to a specific aspect of software engineering it cover all Software engineering topics. In
order to position IJSE amongst the most high quality journal on computer engineering sciences, a
group of highly professional scholars are serving on the editorial board. IJSE include empirical
studies, requirement engineering, software architecture, software testing, formal methods, and
verification.

International Editorial Board ensures that significant developments in software engineering from
around the world are reflected in IJSE. The submission and publication process of manuscript
done by efficient way. Readers of the IJSE will benefit from the papers presented in this issue in
order to aware the recent advances in the Software engineering. International Electronic editorial
and reviewer system allows for the fast publication of accepted manuscripts into issue publication
of IJSE. Because we know how important it is for authors to have their work published with a
minimum delay after submission of their manuscript. For that reason we continue to strive for fast
decision times and minimum delays in the publication processes. Papers are indexed &
abstracted with International indexers & abstractors.

Editorial Board Members
International Journal of Software Engineering (IJSE)

EDITORIAL BOARD

EDITORIAL BOARD MEMBERS (EBMs)

Dr. Richard Millham
University of Bahamas
Bahamas

Dr. Vitus S.W. Lam
The University of Hong Kong
 Hong Kong

Dr Xiaohong (Sophie) Wang
Salisbury University
United States of America

International Journal of Software Engineering (IJSE), Volume (4), Issue (1) : 2013

TABLE OF CONTENTS

Volume 4, Issue 1, September 2013

Pages

1 - 9

Quality Attributes and Software Architectures Emerging Through Agile Development: Pursuit

or Overlooking?

G. H. El-Khawaga, Prof. Dr. Galal Hassan Galal-Edeen, Prof. Dr. A.M. Riad

10 - 22

Determining The Barriers Faced By Novice Programmers

Pranay Kumar Sevella, Young Lee, Jeong Yang

23 - 32

Aspect Oriented Programming Through C#.NET

Harsha Bopuri, Raied Salman

33 - 43

Use of Cell Block As An Indent Space In Python

Hyung Jun Yoo, Young Lee

G. H. El-Khawaga, Prof. Dr. Galal Hassan Galal-Edeen & Prof. Dr. A. M. Riad

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 1

Quality Attributes and Software Architectures Emerging
Through Agile Development: Pursuit or Overlooking?

G. H. El-Khawaga Ghada.elkhawaga@ieee.org
Teaching Assistant, Department of information systems,
Faculty of computers and information,
Mansoura University,
Mansoura, Egypt

Prof. Dr. Galal Hassan Galal-Edeen Galal@acm.org
Computer Science Department,
School of Sciences & Engineering,
American University in Cairo,
Cairo, Egypt

Prof. Dr. A.M. Riad amriad2000@mans.edu.eg

Dean of the faculty of computers & Information,

Mansoura University,

Mansoura, Egypt

Abstract

Software architectures play an important role as an intermediate stage through which system
requirements are translated into full scale working system. The idea of what a system does, what
it does not, and different concerns and requirements can be negotiated and expressed clearly
through the software architecture. Software architectures exist to enhance and provide quality
attributes, while they are quality attributes and their required level of achievement which can offer
numerous number of software architectures for a single software system.

We believe that the agile approach to architecting is problematic because of agilists’ beliefs about
how to architect a software system, and how critical quality attributes are to achieve a stable yet
flexible architecture. Through this research we clarify these issues, and discuss consequences of
agile architecting on achieved level of quality attributes. We are going to pursue the answer to
how to architect to achieve required level of quality attributes, while adopting an agile process.

Keywords Quality Attributes, Software Architecting, Agile Software Development, Refactoring,
Clean Architecting, Light Architecting.

1. QUALITY ATTRIBUTES AS BEING ENABLER OF SOFTWARE
ARCHITECTURES VARIANCES
Are software architectures there to answer certain quality attributes-related questions? Have we
got to care about arrangements and relationships between software components in response to
quality attributes-related needs? Have the concept of software architectures emerged after being
involved into long era of deficient software resulting from unstructured development? Do software
architectures exist to enhance quality attributes of software systems, or they are quality attributes
which distinguish software architectures? If the answers to these questions are all “yes”, then
there are more questions to ask. Do software architectures emerging through paradigms like agile
software development achieve their purpose of reaching a certain level of quality attributes
defined through a product’s context and concerns’ analysis? Can we truly offer longevity of a

G. H. El-Khawaga, Prof. Dr. Galal Hassan Galal-Edeen & Prof. Dr. A. M. Riad

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 2

software product and its ability to absorb frequent changes all over its production time without
paying attention to how its architecture is formed to offer quality attributes? To find an answer, we
need to begin tackling and defining the relation between a software architecture and quality
attributes.

1.1 Criticality of Quality Attributes
The intent of designing the architecture for a system is to transfer system required functionality,
quality attributes, business goals, and system context into an intermediate state before being
transformed to full-scale developed system. Software architecture is an arrangement of software
building blocks into differentiated types, or categories that are grounded in or derived from the
problem domain, and the way the software might be used and later adapted as an artefact [1].
This definition mainly referred to system requirements as a main driver of an architecture.
Therefore; through architecture creation, architects are supposed to elicit and understand the
received requirements so as to reach clear view of what the system should do, and to begin on
making decisions that shape how the system will work to achieve desired goals. However, it is
emphasized that a software architecture differs from building architecture in that it can’t be limited
to one structure

[2]. In civil engineering, structure is one category of the architecture; while in

software engineering, a system can have thousands of forms, which differ in quality attributes
satisfaction levels, not in the functionality associated and achieved through these forms. If it were
only about functionality, a software system would have been composed of a single module with
no internal structure [2]. Functionality drives the initial decomposition of a system architecture into
a set of components that together perform the functions of the system [3], but it is the mapping of
a system’s functionality into software structures that determines the architecture’s support for
quality

[2]. A quality attribute is a constraint on the manner in which the system implements and

delivers its functionality [4]. Systems are redesigned not only due to functionality dissatisfaction,
but also due to lack of consideration of quality attributes like security, performance,
maintainability, and reliability

[2]. Quality attributes are advanced to functionality considerations,

and this can be argued for by the idea [3] that one of the motivations for creating an architectural
design (addressing quality attributes) before detailed design (addressing functionality) and coding
is to enable improving, measuring, observing the quality of the system, and predicting whether
the system to be built will exhibit certain quality attributes while addressing risks and potential
defects earlier where they are cheaper, easier, and faster to fix. At the same time, software
architecting is a major strategy for enhancing quality attributes of software systems [1].
Architecture plays a central role in realizing many qualities in a system. While we believe that an
architecture embodies decisions about quality priorities and tradeoffs, and represents an early
opportunity to evaluate these decisions, it is argued that an architecture provides only the
foundation for achieving quality; but without paying attention to the details, this foundation will be
in vain

[2].

1.2 Challenges Associated With Quality Attributes’ Specification
Considering, expressing, and evaluating quality attributes is not an easy mission. Challenges of
adopting quality attributes can be categorized into two paths, so as to enable recognizing how to
consider and deal with a system’s desired quality attributes. A path or a category is about what
these quality attributes are, and the other is about how they are considered into a system. The
first category is related to the natural characteristics of quality attributes themselves. Many quality
attributes naturally have architectural and non-architectural aspects. Performance, for example,
has architectural aspects like functionality allocation to components, and communication between
components; while it has non-architectural aspects like the choice of algorithms to achieve
functionality, and how these algorithms are coded [2]. Ignoring this confusing nature of quality
attributes raises many pressures and challenges, like the difficulty of ensuring that a specific
quality attribute has stemmed of nontechnical issues [4]. Much attention should be paid to
architectural and non-architectural aspects of a quality attribute so as to decide how to handle it
while it is affecting other attributes.

Whether positively or negatively, quality attributes affect each other. So they cannot be handled in
isolation. While making an architectural design decision, interactions between quality attributes

G. H. El-Khawaga, Prof. Dr. Galal Hassan Galal-Edeen & Prof. Dr. A. M. Riad

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 3

should be put into consideration, and a decision is to be made based on affected and interacting
quality attributes relative priorities. Conflicts between quality attributes should be discovered as
early as possible, and desired quality attributes achievement levels should be available early so
as to help make a decision about a certain quality attribute preference whenever a conflict exists.
However, this depends on how a development team handles quality attributes; and this is shown
through the second category of challenges in dealing with quality attributes.

Another challenge that stems of natural characteristics of quality attributes is how to measure and
evaluate an architecture’s achievement of certain quality attributes. This challenge is due to that
many quality attributes are qualitative in nature, rather than being quantitative [3]. For example, a
software system into operation can be tested for its performance by quantitative measures, while
maintainability of a system should be observed and reasoned about through qualitative measures
like questionnaires. Considering a qualitative or a quantitative quality attribute for assessment is
critical to deciding when to carry out an evaluation phase.

The second category of challenges is related to how quality attributes are handled through the
development process, and where they are located into development participants’ consideration.
There is a wide agreement that modelling methods are weak in representing quality attributes [3],
and that architectural analysis techniques focusing on quality attributes are rare [4]. This drives
software architects to deal with quality attributes with an informal process [2]. However, informal
and incomplete specifications of quality attributes increase dependability on the architect to fill in
blanks and mediate the conflicts, and increases possibilities of redesigning the system to meet
missed quality attributes. It is confirmed that quality, cost, and schedule are not independent as
poor quality affect cost, and schedule [5].

Another challenge stems from that architects and developers –especially agilists- tend to deal
with quality attributes as an afterthought [4]. This was attributed to the development team’s
attention to business stakeholders rather than technical ones, and to the team’s belief that some
quality attributes don’t have direct impact on the cost-benefit for a system [6]. Business
stakeholders won’t be able to ask questions other than those about functionality, and they won’t
be aware of these questions that can help in analyzing and assessing the desired system’s
architecture [3]. The way of handling quality attributes raises technical future risks which if not
handled early, they can break the system, and consequently will impact the cost-benefit of
obtaining and operating the system threatened. It is argued that the costs for maintaining and
extending an application will account for most of the cost of the application over its lifetime [3].

Agilists architect software in a way that exposures resulting architectures to risks associated with
the challenges defined through this section. We are going to explain this more through the
coming sections.

2. THE AGILE WAY TO TACKLE QUALITY ATTRIBUTES
Agilists regard architecting in light of traditional development as being associated with heavy-
weighted practices which don’t yield value on the short term. Of course we are totally against
these beliefs, but it is out of scope to discuss and argue about how far these claims from reality.
What we are concerned about here is to discuss architecting practices that agilists use and have
influence on quality attributes. The main agile techniques to tackle quality attributes are
architectural spiking, and refactoring. Architectural spiking is about implementing a feature that
the development team believe to be exposed to and affected by the highest number of
architectural design decisions. We believe architectural spikes are not efficient at evaluating
architecture design decisions, because those decisions were originally made to satisfy certain
quality attribute concerns. Quality attributes cross-cut a software architecture, while quality
attribute concerns differ across various parts of an architecture. To take a vertical slice of an
architecture as a means to judge the level of achievement of a quality attribute, while knowing
that this quality attribute would be heterogeneous across the whole architecture; this doesn’t
seem to be a viable way to evaluate an architecture’s conformance to its basic role. Agilists claim

G. H. El-Khawaga, Prof. Dr. Galal Hassan Galal-Edeen & Prof. Dr. A. M. Riad

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 4

they do only practices that add value, and we strongly believe conducting architectural spikes is a
practice that missed its basic value. Agilists use architectural refactoring to make high-level
changes to achieve quality attributes. However, not all quality attributes such as security can be
accommodated later in implementation through refactoring [9]. Some quality attributes’
components and mechanisms must be designed early in the life cycle. Issues associated with the
way agilists handle changes through architectural refactorings and these issues’ implications are
explored through the coming section.

Agilists believe in simplifying design to achieve a barely good enough design to begin with. The
point here is that while software architecture is believed to be the magical work for achieving
system qualities such as performance, security, and maintainability [7], agilists consider designing
for system qualities to be heavy work about unforeseen changes, and this work should be
eliminated if not avoided. While adopting this attitude; they ignore foreseen changes that would
come up on the long term. As a consequence; agile methods are accused of ignoring quality
attributes such as reliability, scalability and changeability [8]. As change is inevitable,
mechanisms should be employed to enable software to smoothly be adapted to changing
circumstances in the development game.

3. AGILE ARCHITECTURAL REFACTORINGS: INTENDED TO PROVIDE A
CHANCE, AND RESULTING IN A THREAT
Adding quality attributes through a software system’s life cycle introduces new requirements, thus
it can be considered some sort of perfective changes because they introduce new requirements
and they aim at non-functional optimizations [10]. Lientz et al. –as cited in [10]- reported that
60.3% of the maintenance effort was categorized as perfective. This percentage is close to the
results reported by Mockus & Votta’s study [11] conducted which concluded that perfective
changes accounted for 45% of all the modification requests. The challenges accompanying
quality attributes’ accommodation -whether these challenges are in general or are attributed to
the usage of agile methodologies in software development- have resulted in having perfective
changes to be of the highest percentage of the total maintenance efforts. The study conducted in
[11] revealed that perfective changes -as well as being the highest to add more lines of code- are
more time consuming than adaptive and corrective changes.

To study a change’s implications on cost and schedule; the proposed change shouldn’t be
attached only to the code level. Instead, and with the aid of a big picture of the system under
consideration; a proposed change should be studied at a global level rather than being localized
only at the code level. A proposed change to code shan’t be left till it violates the principal
architectural design decisions that govern the application. In the way of identifying how change
can affect a system’s architecture, practitioners [4] tried to borrow some architectural concepts
from physical buildings’ literature. They were inspired by Stewart Brand’s Shearing Layers of
change. Brand categorized elements that make up a building into six categories. Brand’s layers of
change [4]:

1. Site: the geographical setting, and legally defined lot.

2. Structure: the foundation and load-bearing elements which are expensive to change.

3. Skin: exterior surfaces; they change so frequently to keep up with technology or for repair.

4. Services: the working guts of a building like electrical wiring.

5. Space plan: the interior layout; like doors, and floors.

6. Stuff: all the things that can be changed on a daily to monthly basis.

G. H. El-Khawaga, Prof. Dr. Galal Hassan Galal-Edeen & Prof. Dr. A. M. Riad

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 5

This categorization is organized in a manner that reflects the velocity and the hardness of
changing the elements classified, from the slower and harder to change to the faster and easier.

Practitioners tried to make benefit of this categorization in software [4]. According to [4], the site
layer in software denotes the usage context which may be an organization; the structure layer
denotes the software system architecture as it identifies a system’s load-bearing elements; the
skin layer denotes user interfaces; the stuff layer may denote user settings. We believe that
grouping elements by their similar change rates can help separate concerns, localize changes,
and hence increase a software systems’ responsiveness to changes. Such categorization can aid
in identifying the necessary techniques to apply a given change, as well as the time and cost to
achieve it [4]. Adhering to these groupings, it can be concluded that changes to software system
architecture are to be the most expensive, difficult, and complex to implement.

Besides the important role an architecture plays in preparing for how the system will change and
in localizing the effects of change, the profound changes to a system’s architecture are induced
by quality attributes’ accommodation [4]. As mentioned before, agilists use refactoring as a main
technique for adding quality attributes late in development lifecycle. Refactoring to introduce or
modify quality attributes can imply modifying a component’s internal specification; for example,
introducing new components to increase performance implies changes to connectors [4].
Therefore, the consequences of making changes that can affect architecture elements –
especially those resulting from making changes to accommodate quality attributes- should be
studied carefully. Quality attributes are prevailing and affecting huge portions of code and
functionality, thus modifying quality attributes is believed to be costly [7]. Not accommodating
these changes early in the development process is sufficient to tear down the myth of having
better quality using agile methods.

Frequent non-systemic modifications to requirements can result in architectural degradation,
which leads to a mismatch between the actual functions of the system and its original design [12],
and subsequently upgrades and fixes become expensive to implement. This case is called
architectural erosion [11]. Architectural erosion is defined as the regressive deviance of an
application from its original intended architecture resulting from successive changes [4].
Architectural erosion leads to increasing resistance to change and subsequently high cost of
maintenance [13]. Architectural degradation causes are mainly mapped to late-lifecycle changes
which are considered to be the most crucial, risky, and expensive when they are changes to
requirements [12]. Therefore, the earlier to make changes is the better, and the earlier to consider
quality attributes is the best. The difficulty, the choice of suitable technique, and the cost of
supporting a given change are all deeply influenced by the development level at which a change
is implemented [4]. As a result, late-lifecycle refactorings affecting the architecture of a software
system are considered to be the most risky and expensive changes.

Among the important triggers of architectural refactoring are architectural smells which are
believed to be negatively impacting system quality [14]. Architecture violations are considered to
be the main architectural smells’ type for which architectural refactorings are carried out [15]. This
way we can conclude that refactoring to overcome certain architecture violations is likely to
produce other architecture violations, and even they can be of a greater number than the ones
these refactorings were carried out to overcome. Therefore, refactoring to reduce or eliminate an
architectural smell can be risky and complex [14]; as it requires decisions that seem to be local
while they have broad effects and involve uncertain consequences. The problem is more complex
and risky in case of the absence of a well-defined architecture, and this may be the case while
adopting an agile method in software development.

Architectural refactoring effectiveness for achieving quality is another issue that rises here.
Architectural refactoring is effective in increasing an application’s maintainability and
consequently reducing costs [15]. However, architectural refactoring’s effect on other quality
attributes like performance, and security should be considered as well. Also, mutual influences of
quality attributes and sometimes conflicts are critical aspects to be considered. Not all quality

G. H. El-Khawaga, Prof. Dr. Galal Hassan Galal-Edeen & Prof. Dr. A. M. Riad

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 6

attributes can be achieved in the same time; their achievement is proportional and they can’t be
treated in isolation of each other. Thus for example, refactoring to increase performance can
affect reliability negatively, and so on.

We believe that architectural refactoring can alter a product’s perceived behavior whenever these
refactorings are conducted to incorporate quality attributes. This claim sounds reasonable as long
as the main aim of refactoring is to alter internal structure without changing external behaviour,
and it also raises critical questions about the viability of refactoring –in the context of agile
development- to leverage a system’s architecture and alter it later to insert missed quality
attributes. Refactoring to fix architectural problems was firmly emphasized to be inefficient [16].
Refactoring, as considered to be a small activity with limited effect, is almost a local activity,
whereas architecture is a global concern.

The discussion above highlights two issues; the first is that the need for spending some time
planning architecture upfront is not something to be ignored. The second issue is that depending
on refactoring to bring good code structure and hoping that code units together will form a good
architecture that will stand and accommodate all upcoming changes won’t be a viable
development strategy in most cases.

4. SALVATION THROUGH CLEAN LIGHT ARCHITECTING
It is now clear that the way software architectures developed in the context of agile development
is deficient regarding how quality attributes are accommodated. Agile architecting begins with
overlooking quality attributes’ accommodation and ends with risky and expensive pursuit.
Problems discussed through this research are the main inspiration for our suggested recipe here
to achieve a framework to architect in the context of agile software development. The ingredients
of the proposed recipe are clean architecting; light architecting.

• Clean Architecting: actually the morals of this trend are similar to those which triggered clean
coding. Clean coding aims at enabling readability of code and hence backward tracing of a
solution. This is exactly the same aim of clean architecting. A clear rationale of architectural
decisions whenever being traceable through an architecture would guide through highlighting
architecturally significant requirements (ASR)s. These ASRs include functional requirements,
quality attribute requirements, design constraints, and any requirement that can influence
architectural design decisions made to form an architecture. Clean coding aims at facilitating
testing and discovering refactoring positions. We argue that clean architecting is about providing
forward traceability of potential changes to be conducted. As changes are irresistible for an agile
software system, and -as explained- changes have critical effects on architecture; there is a need
to conduct change impact analysis. Change impact analysis is about analyzing potential
consequences of changing a factor, component, connector, configuration upon other
components, connectors, configurations, or upon the quality attribute achieved through the
previous state before change. Change impact analysis also enables defining potential conflicts
between various quality attributes. This way, clean architecting should also enable early
evaluation of architectural design decisions; and this is aligned with agile software development
mindset which encourages short feedback cycles and early changes’ discovery.

• Light Architecting: it complements and enables clean architecting. To enable architecting while
saving agile values, a light architecting process should be revolving around creating an initial
minimal architecture at the preproduction or chartering level of a product development process,
and leaving non-critical architectural decisions -that are more potential to changes and aren’t
about cross-cutting decisions- to be made incrementally and iteratively at the release and
iteration levels. This highlights again the need for impact analysis to decide which decisions can
affect a broader portion of software features. To eliminate the gap between customer
requirements captured informally and architectures which are believed to be captured explicitly;
software architects should be involved through the development life process. This way we can
consider software architecting as a continuous process which is about role collaboration, and

G. H. El-Khawaga, Prof. Dr. Galal Hassan Galal-Edeen & Prof. Dr. A. M. Riad

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 7

which enables collaboration and communication among team members. Communicating “what a
software product is” is a basic moral of architecting. Therefore; choosing the suitable way to
share information among team members and to keep it for further usage, is purely a team free
choice. This way we can consider informal diagrams on a whiteboard to be a viable document.
Light architecting facilitates developing clean architectures thanks to two reasons. First, time
constraints which result in dirty architecting are halted through incremental and iterative
architecting. Second, when architecting becomes a shared responsibility among team members,
it is easier to increase learning curve and enable making benefit of all team members’ skills;
therefore, there is more possibility to come up with a clean architecture.

A few approaches were suggested to overcome the absence of a mechanism to create flexible
yet static architectures in the context of agile development. Most of suggested approaches
revolve around systemizing and providing a context for conducting architectural refactorings.
Among these approaches are developer stories writing [17], and Continuous Architectural
Refactoring (CAR) & Real Architecture Qualification (RAQ) [18]. These approaches are criticized
for accrediting refactoring as the only way to introduce quality attributes in resulting architectures,
while ignoring the need for designing initial architectures upfront depending on careful analysis of
concerns about quality attributes.

To achieve clean light architecting while planning for quality attributes in the context of agile
software development, we suggest an architecting process which is comprised of a hybrid of
three complementing methods. The first is Quality Attribute Workshop (QAW), because it
facilitates capturing quality attribute requirements through collaborative brainstorming sessions, in
the form of scenarios which is light enough to be placed into the product backlog. This way we
argue this method is qualified to be integrated into a development process obtaining the agile
mindset. The second method is Attribute-Driven Design (ADD), because it enables developing an
initial architecture incrementally based on quality attributes. The initial version will be based on
highest priority requirements, and it will evolve through product development releases and
iterations till the architecture reaches its final form. This way ADD also enables incorporation of
requirements changes as they come up. ADD contains checkpoints where design is checked for
being consistent with customer requirements. The third method is Architecture Tradeoff Analysis
Method (ATAM), which is a collaborative architecture evaluation method which early detection of
architectural design decisions which are inconsistent with customer requirements. This method
facilitates discovering conflicts and tradeoff points between quality attributes, and risks that can
results whenever an architectural design decision is changed. This way, change impact analysis
is facilitated and a team can be aware of their architectural decisions implications on various
quality attributes. A proposed framework to achieve clean light architecting is under development
and will be demonstrated in upcoming papers.

Considering quality attributes early while designing translates into business value, and we know
that agile teams are pursuing business value in all their decisions and practices. By designing for
including quality attributes right from the beginning, resulting architecture is shaped around a long
term goal rather than short-sighted goals; besides, the number of architectural refactorings that
would be needed over time is expected to be reduced. Agile methods would be more qualified for
developing safety-critical systems, where performance and reliability are a must. Agile teams
won’t be able to go for large-scale products without an architecture that offers maintainability,
reusability, scalability, interoperability, and other quality attributes that can be achieved through
having a light clean architecture developed incrementally and iteratively.

5. CONCLUSION
Agile architects should advocate a development culture that values making architectural design
decisions based on careful analysis of requirements and give a due care to quality attribute
requirements in advance, especially that they do not change as rapidly as functional
requirements. There is also a need for analyzing resulting architecture carefully to assess its
adoption of needed quality attributes, and to deal with conflicts between several qualities at the
earliest possible development level. Planning for quality attributes in advance not only prevents

G. H. El-Khawaga, Prof. Dr. Galal Hassan Galal-Edeen & Prof. Dr. A. M. Riad

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 8

problems of missed quality attributes and implications of redesigning a system to incorporate
these quality attributes, but also provides a more stable basis for the architectural design as well.
Planning an architecture based on quality attributes while keeping the process light and agile is
not a myth. Comprising an architecting process which harmonizes both clean and light
architecting is a dream that can be easily achieved if architecting and agile development morals
are well-absorbed and tackled.

6. REFERENCES

[1] Galal, G. H., (1998), “Software architecting: from requirements to building blocks within an
architectural style”, Workshop W2: Techniques, Tools and Formalisms for capturing and
assessing Architectural Quality in Object-Oriented Software, the 12th European Conference on
Object Oriented Programming (ECOOP'98), Brussels, Belgium, 20-24 July.

[2] Bass, L., Clements, P. & Kazman, R., (2003), Software Architecture in Practice, Addison-
Wesley Professional, Boston, USA.

[3] Albin, S. T., (2003), The Art of Software Architecture: Design Methods and Techniques, Wiley
publishing, Indianapolis, Indiana, USA.

[4] Taylor, R., Medvidovic, N. & Dashofy, E., (2009), Software Architecture: Foundations, Theory,
and Practice, Wiley publishing, Indianapolis, Indiana, USA.

[5] Barbacci, M. R., Klein, M. H. & Weinstock, C. B., (1997), “Principles for Evaluating the Quality
Attributes of a Software Architecture”, CMU, Software Engineering Institute, Pittsburgh, PA, USA.

[6] Mcgovern, J., Ambler, S. W., Stevens, M. E., Linn, J., Sharan, V. & JO, E. K., (2003), A
Practical Guide to Enterprise Architecture, Prentice Hall, Upper Saddle River, New Jersey, USA.

[7] Faber, R., (2010), “Architects as service providers”, IEEE Software, vol. 27, no. 2, pp. 33-40.

[8] Sharifloo, A. A., Saffarian, A. S. & Shams, F., (2008), “Embedding Architectural Practices into
Extreme Programming”, proceedings of the 19th Australian Software Engineering Conference
(ASWEC 2008), Perth, Western Australia, Australia, 26-28 Mar., IEEE Computer Society, pp.
310-319.

[9] Barbacci, M., Ellison, R., Lattanze, A., Stafford, J., Weinstock, C. & Wood, W., (2003), “Quality
Attribute Workshops (QAWs)”, CMU Software Engineering Institute, Pittsburgh, PA, USA.

[10] Mohagheghi, P. & Conradi, R., (2004), “An empirical study of software change: origin,
acceptance rate, and functionality vs. quality attributes”, Proceedings of the 2004 International
Symposium on Empirical Software Engineering, (ISESE '04), Redondo Beach, CA, USA, 19-20
Aug, IEEE, pp.7-16.

[11] Mockus, A. & Votta, L. G. (2000), “Identifying reasons for software changes using historic
databases”, Proceedings of the International Conference on Software Maintenance, San Jose,
CA, USA, 11-14 Oct., IEEE, pp. 120-130.

[12] Williams, B. J. & Carver, J. C., (2007), “Characterizing Software Architecture Changes: An
Initial Study”, proceedings of the First International Symposium on Empirical Software
Engineering and Measurement, (ESEM'07), Madrid, Spain, 20-21 Sept., IEEE, pp. 410-419.

[13] Perry, D. & Wolf, A., (1992) “Foundations for the study of software architecture”, ACM
SIGSOFT Software Engineering Notes, Vol. 17, No. 4, pp. 40-52.

G. H. El-Khawaga, Prof. Dr. Galal Hassan Galal-Edeen & Prof. Dr. A. M. Riad

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 9

[14] Garcia, J., Popescu, D., Edwards, G. & Medvidovic, N., (2009), “Identifying Architectural Bad
Smells”, proceedings of the 13th European Conference on Software Maintenance and
Reengineering, (CSMR '09), Kaiserslautern, Germany, 24-27 March, Winter, A., Ferenc, R. &
Knodel, J. (Eds.), IEEE, pp. 255-258.

[15] Bourquin, F. & Keller, R. K., (2007), “High-impact Refactoring Based on Architecture
Violations”, Proceedings of the 11th European Conference on Software Maintenance and
Reengineering, (CSMR '07),Amsterdam, Holland, 21-23 Mar., IEEE, pp. 149-158.

[16] Coplien, J. O. & Bjornvig, G., (2010), Lean Architecture: for Agile Software Development,
Wiley Publishing, Indianapolis, Indiana, USA

[17] Jensen, R. N., Moller, T., Sonder, P. & Tornehoj, G., (2006), “Architecture and Design in
eXtreme Programming; Introducing Developer Stories”, proceedings of Extreme Programming
and Agile Processes in Software Engineering, 7th International Conference (XP 2006), Oulu,
Finland, 17-22 June, Springer Verlag, pp. 133-142.

[18] Sharifloo, A. A., Saffarian, A. & Shams, F., (2008), “Embedding Architectural Practices into
Extreme Programming”, proceedings of the 19th Australian Conference on Software Engineering
(ASWEC'08) Perth, WA, Australia, 26-28 March, IEEE, pp. 310-319.

Pranay Kumar Sevella, Young Lee & Jeong Yang

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 10

Determining The Barriers Faced By Novice Programmers

Pranay Kumar Sevella pranay_kumar.sevella@students.tamuk.edu
Dept. of Electrical Engineering and Computer Science
Texas A&M University–Kingsville
Kingsville, 78363, U.S.A

Young Lee young.lee@tamuk.edu
Dept. of Electrical Engineering and Computer Science
Texas A&M University–Kingsville
Kingsville, 78363, U.S.A

Jeong Yang jeong.yang@tamuk.edu
Dept. of Electrical Engineering and Computer Science
Texas A&M University–Kingsville
Kingsville, 78363, U.S.A

Abstract

Most of the novice programmers find glitches at various phases while trying to complete a
program in their Computer Science programming course. These phases can be while
constructing the code, finding errors in the code at the time of compilation of the program,
debugging these errors while executing the program. Novice programmers are unable to
understand some of the concepts in programming. Computer Science programming course
instructors are experiencing difficulty in finding these barriers faced by the students. These
barriers are forcing students to drop programming course from their degree plan and becoming a
concern to the professors teaching programming course. In this research ActivePresenter
software is used. This software recorded the full motion video with crystal clear quality and helped
in capturing screen shots automatically with a click of a mouse or pressing any key on the
keyboard of the students who are trying to complete a programming assignment. By analyzing all
the recordings collected from different students, these barriers are determined.

Keywords: Novice Programmer, Programming Barrier, Programming Education.

1. INTRODUCTION
Computer Science education researchers have tried since the 1980s to find how the Computer
Science professors can effectively serve their students. Computer Science students who are
considered as novice programmers registering in introductory programming courses are facing
difficulties in programming and dropping from the course after attending few lecture classes.
Computer Science programming instructors are facing difficulty in recognizing these barriers.

Purpose
The main purpose of this research is to find the barriers faced by the novice programmers. These
barriers are considered to be challenges to the computer science programming instructors.

Method
All the students are given a C programming assignment to complete in one hour in the computer
lab. While students are trying to complete the given assignment, their computer screens are
automatically recorded in video. These video files, which record student’s activity on the
assignments, are analyzed and the barriers are determined.

Pranay Kumar Sevella, Young Lee & Jeong Yang

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 11

The method used for determining these barriers is categorized into three stages.

Stage 0: Before Experiment Conducted

• Identifying a problem
• Preparing Classified Barriers
• Preparing questions to be asked to students
• IRB approval
• Setup experiments
• Find and invite novice programmer students
• Setup video recording on the computer lab

Stage 1: At the time of experiment

• Give an instruction to the students get consent to attend this experiment
• Recording the screen of the students trying to complete programming assignment

Stage 2: After the experiment

• Analyzing the recordings of each student individually
• Finding the barriers
• Classifying each barrier

Result
By thoroughly analyzing the recorded data, all the barriers faced by the Novice programmers are
determined. And even the concepts which the Novice programmers face difficulty in
understanding are also determined.

1.1 About C Programming
C language is the most popular and widely used programming language. Dennis Ritchie
developed C language between 1969 and 1973. Most of the other programming languages are
derived directly or indirectly from C language. C is sometimes considered as “High-Level
assembly language”.

1.2 Novice Programmer
Any person, who is a beginner in programming, is called a Novice Programmer. In this research,
freshmen students who have knowledge about C programming which is one of the courses in
their previous semester are considered to be novice programmers.

2. RELATED WORK AND SUMMARY OF REFERENCES
2.1 Background
Previously, several studies have been done to understand the behavior of a Novice programmer.
One such study is [1], the authors estimate the final grade of the student based on how the
students do their respective lab assignments and how they react to errors they face while
programming [3]. Authors have recorded the data affective states and behavioral states of the
students. Then, they applied the linear regression using each behavioral activity and affective
activity. In this study, the teaching assistants collected the data by periodically observing the
activities of each student.

The authors [5] have developed a syntax error preprocessing and integrated semantic system
that helps novice programmers to decipher the compile-time error messages. By this system,
novice programmers stress more on issues related to design rather than issues related to
implementation. All the syntax errors that are checked are collected by a survey [6]–[7] of former
and current teaching instructors. There are discrepancies observed between the errors identified
by the instructors and the errors encountered by the students. In this paper, the authors have
developed a real-time system with machine controlled error collection that records a hundred
percent of java errors in a database. All the errors encountered by the students, faculty, and users
using this IDE are collected in the database. Hence in this paper, it is concluded that there are

Pranay Kumar Sevella, Young Lee & Jeong Yang

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 12

five errors .The instructors have identified that those errors are also collected by the automated
system. The system also verified that there are discrepancies between error encountered by
students and errors identified by instructors. And through the use of this system, most common
errors faced by Novice programmers are also identified.

The authors [11] claim that there are many big gaps brought by present methods of programming
education in understanding programming by novice programmers. Due to these big gaps, the
novice programmers are losing confidence in continuing with the programming course. Hence to
reduce these big gaps the authors have introduced an AtoP method. In this method, novice
programmers are given a checklist along with the programming assignment. This checklist
consists of small exercises, which help students to write source code for the assignment.
Teaching assistants help students [12-15] to complete all the small exercises in the checklist
along with the programming assignment. The authors have also developed a site called AtoP
which records all the results from interactive assessments of Novice programmers. Novice
programmers can retrieve their data at any time. With this AtoP method the big gaps for students
are reduced.

2.2 Recording Programmers’ Activity
For recording the activity of programmer in the computer, software for recording the screen of the
student is required. Once software is started, it starts recording the screen of the students so that
all the activities of students can be recorded. This data is saved in video format.
	
3. RESEARCH QUESTION
3.1 Problem
Many of the novice programmers take C programming as their Computer Science programming
course. But some students are dropping this course after attending few lecture classes. Students
who are continuing with the course are facing difficulties in the subject. Some students are easily
able to complete their assignments on their own. On the other hand, some students are unable to
complete given assignments on their own and instead, they take the help of their Instructor or
Teaching Assistants to complete their assignments.

3.2 Goal
The goal is to find the specific phases or activities in the programming course where the novice
programmers find difficulty in understanding and also implementing some C programming
concepts in their program. Once the instructor finds the part or activity of the program where the
novice programmer is facing problems, the instructor can guide the students to overcome this
problem.

3.3 Hypothesis
The main hypothesis that is expected before the start of the research is that most of the barriers
faced by the students are conceptual barriers rather than basic programming barriers.

Main concept oriented barriers can be as follows:

• Loops
The barriers that can be faced in loops are understanding the concept of loops,
understanding syntax, format, working, and control flow of program in for, while and do-
while loops.

• Nested statements

. The barriers that can be faced in nested statements are understanding the concept of
nested statements if, else-if and nested-if statements. Understanding syntax, format,
control flow of program in these statements. Novice programmers cannot understand
when if block statements are executed and when the else block is executed.

Pranay Kumar Sevella, Young Lee & Jeong Yang

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 13

• Switch concepts
The barriers that Novice programmers can face in switch concept are the format of switch
statement, the syntax, defining each case in switch statement, and understanding the
control flow of program.

• Arrays concepts
The barriers that Novice programmers can face in the concept of arrays are initialization
of arrays, addressing any particular element in an array and conditions for applying basic
arithmetic operations to arrays.

• Concept of functions
The barriers faced by Novice programmers in the concept of functions are defining a
function and if the function has arguments, passing arguments to that function and calling
the function.

• Files concepts
The barriers faced by Novice programmers in files concept can be initializing a variable to
the file, accessing data present in the file, and reading or writing data from a file.

The basic programming barriers can be as follows:

• Header files declaration
Declaring header files correctly can be a barrier to Novice programmers. This comes
under basic programming barrier because in every programming code, header files have
to be declared.

• Syntax errors
Writing correct syntax is a necessity for all the concepts in C programming. Since every
concept has particular syntax, writing correct syntax is a basic programming barrier for
novice programmers.

• Basic programming format
Writing basic format of programming can also be one of the barriers faced by Novice
Programmer.

4. METHOD
This approach is implemented on Under-Graduate students of Electrical Engineering and
Computer Science Department of Frank H. Dotterwhich College of Engineering at Texas A & M
University - Kingsville who have taken Computer Science as their major studies.

In order to collect the screen recordings of students and analyze their recorded videos, an
approval from Institutional Review Board (IRB) granted by the office of Research and Sponsored
Programs at Texas A & M University – Kingsville is required because humans are considered as
subjects in this research.

The students who participated in this approach were asked to sign and agree a consent form that
was approved by IRB. Some of the important points from the consent form are as follows:

• Students do not get any benefits if they participate in this research
• Students can back out from participation at any moment
• Students agree to record their screen while they are completing their programming

assignment
• Students agree to review their screen recording
• All the students participating in this experiment are above 18 years of age.

Pranay Kumar Sevella, Young Lee & Jeong Yang

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 14

Twenty students came forward to participate in the experiment. Six different programming
assignments were prepared and one randomly selected assignment among these six
assignments was given to each student.

Six programming assignments cover different topics of C programming. The assignments were
based on following C programming concepts:

• if and nested-if statements
• Iteration concepts (using for or while or do-while)
• switch statements
• files (manipulating data in files using C programming)
• functions (defining a function, calling that function and passing arguments to function)
• arrays (applying mathematical operations to arrays)

The categorization of each programming assignment distributed to each student in the respective
programming concepts is explained in the Table 1.

Program Programming Concepts
Program 1 if and nested-if statements
Program 2 Iteration concepts
Program 3 switch statements
Program 4 Files concepts
Program 5 Functions concepts
Program 6 Arrays concepts

TABLE 1: Categorization of Each Programming Assignment In The Respective Programming Concepts.

Students are given one hour to complete their programming assignment. Each student is
assigned with one computer system in a one-to-one student to computer ratio in the Computer
Laboratory.
The basic method of approach can be categorized into three different categories. They are as
follows:

• Collecting data
• Method of collecting data
• Analyzing data

The control flow of these three categories can be represented as follows:

FIGURE 1: Control Flow of Method.

The detailed procedure of these three categories is explained below.

4. 1 Collecting Data
All the students from the Computer Science programming course who are interested in taking part
in this research are given a C programming assignment. Students have to complete these
programming assignments in the lab. Data is collected while the students are working on their

Collecting
Data	

Analyzing Data Method of
Collecting Data

Pranay Kumar Sevella, Young Lee & Jeong Yang

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 15

programming assignment. Data is collected individually from each novice programmer. The data
collected is the screen recordings of the students.

4. 2 Method of Collecting Data
The data is collected by video recording and saved in video format. For Screen Recording no
external hardware is required, as the software itself can record the screen of the novice
programmers and the recorded data is saved in video format.

The software used to record the computer screen was ActivePresenter Free Edition Version 3.7.2
(Released 01.08.2013). It is a product of Atomi Systems, Inc. This software records the full
motion video with crystal clear quality. This software also helps in capturing screenshots
automatically with a click of mouse or by pressing any key on the keyboard. With this software,
the collected data, which is in video format, can be exported to various other video formats like
AVI, MP4, WMV, WebM.

Students use Dev C++ 4.9.9.2 version as their IDE (Integrated Developing Environment) for C
programming. Dev C++ is used as IDE for both C and C++ Programming.

4.3 Analyzing Data
The assembled data is processed for analysis. The screen recording of each student is taken one
at a time and properly analyzed.

Whenever any ambiguity is found, which is, when there is a long pause in student’s programming
activity, it means that student is facing some problem in writing further programming code. This
pause can be starting from two minutes to any amount of time. This problem can be one of the
barriers faced by the novice programmer.

Once the student completes programming code and tries to execute the program, compile time
errors are found. When the student is unable to rectify these compile time errors, this can be
considered as barrier faced by the novice programmer.

After the program is compiled, the student executes the program and gets unexpected output.
This can also be considered as one of the barriers faced by the novice programmer.

Once all the barriers faced by the students are observed, then the programming code of the
students is analyzed and the mistakes made by the student in their programming code are noted.

Later, how the student overcomes these barriers is observed. Students are allowed to utilize
online resources by browsing the Internet and trying to correct their programming code.

This process is carried out for each individual student recording.

FIGURE 2: Classification of Barriers.

Barriers

Long Pause Runtime errors/
Unexpected Output

Compile time Errors

Pranay Kumar Sevella, Young Lee & Jeong Yang

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 16

5. RESULTS
Out of twenty students who have participated in the experiment, screen recordings of only 16
students are collected. The rest of the four students recordings were not properly recorded and
could not be used for the research purpose.

There are different problems that students faced while they were trying to complete their
programming assignment. The problems faced by these novice programmers are mentioned in
the following paragraphs.

Header Files
Header Files must be declared in all the programming code; hence the total number of students
participated for this barrier are sixteen. And four students have made mistakes while declaring
header files. Figure 3 indicates wrong declaration of header files.

FIGURE 3: Screenshot 1.

Thinking for logic
Logic is required for writing any programming code; therefore, the total number of students
participated in this barrier are sixteen. Four students have taken time to think logically for writing
programming code.

Variables
Every programming code needs to have variables. These variables have to be declared with
specific data types according to their usage in programming code; hence the total number of
students participating in this barrier are sixteen. Three students declared wrong data types to the
variables. One student did not assign data type to the variables. Another student is unable to use
variables correctly in the program. Figure 3 indicates wrong declaration of variables.

printf and scanf
Every programming code that displays any output in the output screen has printf statements and
every programming code that takes data from the user contains scanf statements. The total
numbers of students participating in this barrier are sixteen. Two students were unable to write
correct syntax for both printf and scanf statements. And four students were unable to write correct
syntax for scanf statements. Out of four students, two students could not use scanf correctly. One
student did not know how to take data given by the user and did not know the concept of scanf.
Figure 3 indicates wrong declaration of printf and scanf .

Pranay Kumar Sevella, Young Lee & Jeong Yang

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 17

Zero level
For this barrier, the knowledge of all the students is considered; hence the total number of
students participating in this barrier are sixteen. Four students were unable to write basic
programming code. Out of these four, two students tried to browse the Internet but were unable to
understand the programming code found on the Internet.

Usage of Internet
All of the students were permitted to use the Internet for online resources to get basic syntax or
any other programming related data from the Internet. Three students used online resources to
get basic syntax and basic programming code. Out of these three, two students were able to
complete their assignment successfully.

if and nested if
Three students got program1, which contained the concepts of if and nested-if statements. One
student was unable to write conditional statements and could not use multiple if statements and
put all if conditions in printf statements.

Iteration concept
Three students got program2, which contained the iteration concepts. All the students who got the
programming assignment with iteration concept faced barriers. Two students faced difficulties in
initializing the loop. One student got confused between the syntax of for loop and while loop and
was unable to write looping statements. Another student completed his programming code but did
not get the correct output and tried to manipulate code on variables in the code, but was unable to
trace on which variable the operations were carried out. Figure 4 indicates wrong usage of while
loop.

FIGURE 4: Screenshot 2.

Switch concept
Three students got program3, which contained the switch concepts. All the three students were
unable to define the switch statements and switch syntax and used Internet resources for format
and syntax. Figure 5 indicates wrong declaration of switch statement.

Pranay Kumar Sevella, Young Lee & Jeong Yang

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 18

FIGURE 5: Screenshot 3.

Files concept
Two students got program4, which contained the concepts of files. There was only one student
who faced difficulty in writing programming code and did not know the concept of files. Screen
shot 4 indicates wrong usage of files concept.

Functions concept
Three students got program5, which contained the concepts of functions. Two students faced
difficulties in function’s concept. Out of these two, one student did not know the concept of
functions and completed the program without using functions. The other student made mistakes
while defining a function and was unable to call function with arguments.

FIGURE 6: Screenshot 4.

Arrays concept
Two students got program6, which contained the concepts of arrays and both students were able
to complete their programming assignment successfully . There were no barriers faced by the
students in the arrays concept.
These were the barriers that were observed from the students programming recordings.

Pranay Kumar Sevella, Young Lee & Jeong Yang

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 19

At the end of the experiment, it was observed that seven students out of sixteen students who
participated in the experiment were able to complete their programming assignments
successfully. Five students partially completed their assignment, and four students were in level
zero and were unable to write the basic code.

FIGURE 7: Pie Chart Representing Students to Program Completed.

There are 29 barriers that are observed in this research. Out of these 29, 19 barriers are basic
programming based barriers and 10 are conceptual based barriers.

FIGURE 8: Pie chart of Barriers.

Pranay Kumar Sevella, Young Lee & Jeong Yang

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 20

Table 2 represents the summarized list of all the barriers that are observed, the number of
students who have faced these barriers, and the total number of students who were involved.

Barriers Number of Students
facing Barriers

Total Number of Students
Participating

Header files 4 16
Thinking about logic 4 16
Variables 3 16
Issues with printf & scanf 8 16
Zero level 4 16
Usage of Internet 8 16
if and nested-if 1 3
Iteration concept 3 3
switch concept 3 3
Files concept 1 2
Functions concept 2 3

TABLE 2: Classification of All Barriers.

6. CONCLUSION
In this research, all the glitches that novice programmers face at different phases while
completing a program in their Computer Science Programming course are determined. Also, the
C programming concepts that novice programmers find difficulty in understanding and
implementing in their C programming code are also determined.

After the successful completion of this research, it is found that the hypothesis predicted before
the start of this is research is proved to be wrong. The predicted hypothesis at the start of this
research is that most of the barriers faced by the novice programmers would be conceptual
barriers than basic programming barriers. But after the research, it is proved that most of the
barriers faced by novice programmers are basic programming barriers, rather than conceptual
barriers.

The reason why most of the students drop from programming course can also be found out. This
study even helps the programming instructors to teach C programming concepts in a more
effective manner [16].

For future studies, the activities of the Novice Programmers while trying to complete the given
assignment are also recorded with the help of an external video recorder. By this recording the
facial gestures of the Novice Programmers is collected and, their behavioral states [1,18-21] can
be determined. And with this recording, the other external resources that Novice Programmers
use to overcome the barriers faced by them [17] are determined. These external resources can
be referring to a Text Book or, referring to their classroom notes, or by taking help from their
friend, or by taking help from Teaching Assistants.

7. REFERENCES

[1] Ma.Mercedes T. Rodrigo, Anna Christine M. Amarra, Sheryl Ann L.Lim, Ryan S. Baker,

Thomas Dy, Sheila A. M. S. Pascua, Emily S. Tabanao, Matthew C. Jadud, Maria Beatriz V.
Espejo-Lahoz, Jessica O. Sugay. Affective and Behavioral Predictors of Novice Programmer
Achievement. In ITiCSE’09, July 6-9, 2009, Paris, France.

[2] Matthew A. Turk and Alex P. Pentland, Face Recognition Using Eigenfaces. In Computer

Research and Development (ICCRD), 2011 3rd International Conference.

Pranay Kumar Sevella, Young Lee & Jeong Yang

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 21

[3] Joni, S., Soloway, E., Goldman, R, and Ehrlich, K. 1983. Just so stories: how the program got
that bug. SIGCUE Outlook 17,4(Sep. 1983), 13-26.

[4] Baker, R.S., Corbett, A.T., Koedinger, K.R., and Wagner, !A.Z. (2004) Off-task behavior in the

Cognitive Tutor classroom: When students "Game The System". ACM CHI 2004: Computer-
Human Interaction, 383-390.

[5] James Jackson, Michael Cobb, Curtis Carver. 2004. Identifying Top Java errors for Novice

programmers. 35th ASEE/IEEE Frontiers in Education Conference, Indianapolis, IN.

[6] Flowers, Thomas, Curtis Carver, and James Jackson. Empowering Novice Programmers with

Gauntlet. Frontiers in Education, 2004.

[7] Hristova, Maria, Ananya Misra, Megan Rutter, and Rebecca Mercuri, Identifying and

Correcting Java Programming Errors for Introductory Computer Science Students. ACM
SIGCSE 2003. pp 19-23.

[8] Bruckman, Amy and Elizabeth Edwards. Should we leverage natural- language knowledge?

An Analysis of user errors in a natural-language- style programming language. ACM SIGCHI
1999. pp 207-214.

[9] Chabert, Joan and T. F. Higginbotham, An Investigation of Novice Programmer Errors in IBM

370 (OS) Assembly Language. ACM 14th Annual Southeast regional Conference 1976. pp
319-323.

[10] Spohrer, James and Elliot Soloway, Novice Mistakes: Are the folk Wisdoms correct?

Communications of the ACM 1986, pp 624-632.

[11] Dinh Dong Phuong, Yusuke Yokota, Fumiko Harada, Hiromitsu Shimakawa, (2010). Graining

and Filling Understanding Gaps for Novice Programmers. 2010 International Conference on
Education and Management Technology(ICEMT 2010)

[12] Paul Gross and Kris Powers, Evaluating assessments of novice programming environments,

Proceedings of the first international workshop on Computing education research, USA ,
pages: 99 - 110 , October 2005.

[13] Charlie Daly, John Waldron, Assessing the assessment of programming ability, SIGCSE '04:

Proceedings of the 35th SIGCSE technical symposium on Computer science education,
2004, pages 210-213.

[14] Masoud Naghedolfeizi, Singli Garcia, Nabil Yousif, and Ramana M. Gosukonda, Assessing

long-term student performance in programming subjects, December 2008, Journal of
Computing Sciences in Colleges , Volume 24 Issue 2, page 241-247.

[15] Nghi Truong, Paul Roe and Peter Bancroft, Automated Feedback for “Fill in the Gap”

Programming Exercises, January 2005, ACE '05: Proceedings of the 7th Australasian
conference on Computing education - Volume 42 , pages 117-126.

[16] Douglas A. Kranch, Teaching the novice programmer: A study of instructional sequences

and perception, May 2011, Springer Science+Business Media, LLC 2011

[17] Brad Myers and Andrew Ko, Studying Development and Debugging To Help Create a Better

Programming Environment, 2003, CHI 2003 Workshop on Perspectives in End User
Development.

[18] Matthew C. Jadud, An Exploration of Novice Compilation Behaviour in BlueJ, October 2006,

Pranay Kumar Sevella, Young Lee & Jeong Yang

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 22

A thesis submitted to the University of Kent at Canterbury.

[19] Albert Lai and Gail C. Murphy, Behavioural Concern Modelling for Software Change Tasks,

2003, IEEE.

[20] Yuska P. C. Aguiar, Maria F. Q. Vieira, Edith Galy, ean-Marc Mercantini and Charles

Santoni, Refining a User Behaviour Model Based on the Observation of Emotional States,
2011, COGNITIVE 2011 : The Third International Conference on Advanced Cognitive
Technologies and Applications.

[21] Ben Shneiderman, Exploratory Experiments in Programmer Behavior, June 1975, Technical

report No. 17 Submitted to Indiana University Bloomington.

Harsha Bopuri & Raied Salman

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 23

Aspect Oriented Programming Through C#.NET

Harsha Bopuri bopuri@gmail.com
Director Business Applications/ IT Developments
IMATRIX Corp
North Brunswick, NJ 08902 USA

Prof. Dr. Raied Salman rsalman.faculty@unva.edu
University of Northern Virginia
Adjunct faculty, Computer Science Department
7601 Little River Turnpike, Annandale, VA 22003, USA

Abstract

.NET architecture was introduced by Microsoft as a new software development environment
based on components. This architecture permits for effortless integration of classical distributed
programming paradigms with Web computing. .NET describes a type structure and introduces
ideas such as component, objects and interface which form the vital foundation for distributed
component-based software development. Just as other component frameworks, .NET largely
puts more emphasis on functional aspects of components. Non-functional interfaces including
CPU usage, memory usage, fault tolerance and security issues are however not presently
implemented in .NET’s constituent interfaces. These attributes are vital for developing
dependable distributed applications capable of exhibiting consistent behavior and withstanding
faults.

Keywords: Aspect Oriented Programming, Cross Cutting Concerns.

1. INTRODUCTION
Aspect Oriented Programming (AOP) is a new development technology that permits separation of
crosscutting concerns that have in the past proved difficult to implement using object oriented
programming (OOP). According to [4], AOP is an elegant and simple construct with the ability of
really altering the manner in which we develop software. It is a way of performing arbitrary code
orthogonal to the primary purpose of a module, with the purpose bettering the encapsulation and
reuse of the arbitrarily invoked code and the target module. Crosscutting concerns exists in most
large systems; however, in others, the system may be redesigned to convert the crosscutting into
an object. For aspect oriented programming though, the assumption is that crosscutting concerns
exists in systems by default and cannot be transformed out of the system design.

1.1. Crosscutting Concerns
AOP divides crosscutting concerns into single parts referred to as aspects. An aspect represents
a modular part of crosscutting implementation. Under AOP, we initially implement a project using
an object oriented language such as Java or C# then independently handle crosscutting concerns
by implementing aspects. In the end, an aspect weaver is used to integrate the both the code and
the aspect into an executable file.

Component based programming is a simplistic method to compose systems out of units having
contractually precise boundaries and unequivocal context dependencies. Since software
components are developed by third parties, they can be deployed autonomously. Several
distributed component frameworks exits including; Object Request Broker Architecture (CORBA),
Distributed Component Object Model (DCOM), .NET framework among others. Despite the fact

Harsha Bopuri & Raied Salman

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 24

that the implementation of intricate distributed systems is considerably simplified by these
frameworks, there is limited support for techniques such as fault tolerance, reliability and security.
Fault tolerance expansion for components needs to substitute abstraction and encapsulation with
the execution explicit knowledge concerning a component’s internal timing performance, memory
usage, CPU usage, and communication and access models
AOP is best illustrated by example, the best one being event logging [20]. Let us say you have a
class Foo and you want to write to a log file every time a particular system is called for auditing
purposes or rudimentary performance statistics. You may normally write code like the following to
meet this requirement:

public class Foo
 {
 protected EventLog eventLog;
 public Foo()
 {
 eventLog = new EventLog(); // create an event log
 eventLog.Source = "Foo Application"; // Name a Source
 }
 public void bar()
 {
 eventLog.WriteEntry("Bar method begin");

 // do bar()
 eventLog.WriteEntry("Bar method end");
 }
 }

Is there anything incorrect with this code? Historically, nothing is really incorrect. However, this is
just because we are accustomed to writing codes like that. It is considered okay to incorporate
EventLog code in the Foo class because before AOP there was no method of logging events
without clearly calling event logging code from inside the class itself [12]. However, with the
arrival of AOP, the code above would in fact be interpreted as very wrong, virtually prohibitive to
incorporate in a Foo class. This is because everyone appreciates what should be integrated in a
Foo class i.e. bar methods and not logging. Therefore, if the above was to be accomplished using
AOP, it would look as follows:

[EventLoggingAttribute]
 public class Foo : ContextBoundObject
 {
 public void bar()
 {
 // do bar()
 }
 }

The above shows that the code tangential to the bar() method is transferred to another place,
particularly, the logging aspect. An aspect is executed without any more knowledge on the client’s
part and is functionality factored out of a client’s module in an AOP - like approach. In the above
example, the bar() technique does its job, regardless of other aspects. This is beneficial because
it increases maintainability, improves reuse and encapsulation of both aspect and module code
because of the introduction of decoupling.

2. METADATA AND REFLECTION IN .NET
Reflection refers to a programming language tool which permits access to type information during
execution. This mechanism has been affected for various object oriented languages including
java, C#.net and C++. .NET does not confine reflection to a single coding language but rather
allows inspection of any .NET assembly using the reflection technology. Runtime type information

Harsha Bopuri & Raied Salman

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 25

in .NET can be accessed in two different ways namely; language runtime library and the
unmanaged metadata interfaces.

2.1 Reflection Through Runtime Library
Under this, the reflection classes are declared in System. Reflection namespace. The GetType
method, which is a public method, has a return value object of the typeTypecontained in the
namespace System. The following definitions are represented in each type-instance.

• Class definition
• Interface definition
• Value-class
•

Through reflection we are able to query about any type characteristic including the access
modifiers. The structure of metadata is one of hierarchical nature in which the class
System.Reflection.Assembly is at the highest level of the hierarchy. An assembly object relates to
at least one dynamic libraries (DLLs) which forms the building block of the .NET unit in question.
As indicated in the figure below, System.Reflection.Module is located on the second level of the
hierarchy. Drilling down further the metadata tree represents type information for any of the
foundations for the .NET virtual object system member.

FIGURE 1: C#.NET Metadata Hierarchy.

In every circumstance, a class instance System.Reflection.MemberInfo stands for a single data
element describing each of the below basic units constituting an object.

• Method (System.Reflection.MethodInfo)
• Constructor (System.Reflection.ConstructorInfo)
• Property (System.Reflection.PropertyInfo)
• Field (System.Reflection.FieldInfo)
• Event(System.Reflection.EventInfo)

2.2 Unmanaged Metadata Interface
These are an assortment of COM interfaces whose accessibility is external to the .NET
environment. The interface definition is located in the COR.H, found in the Software development
kit. The IMetaDataImport.IMetaDataAssemblyImportinterface aides in metadata accessibility on
the .NET assembly level.

ImetadataDispenserinterface provides access to the metadata COM-interface
IMetaDataImport.IMetaDataAssemblyImportinterface. The ImetadataDispenserinterface as the
name suggests dispenses every types of additional metadata interfaces, permitting read and

Harsha Bopuri & Raied Salman

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 26

write access to the .NET metadata. The dispenser is hence accessed through calls to the COM
interface.
3. FAULT TOLERANCE REQUIREMENTS EXPRESSED BY C#
We shall demonstrate a simple calculator program in C# to explain how functional C# and non-
functional C# (aspect) codes can be integrated together.

3.1 The Calculator Program
As shown by the below code snippet, the C# calculator has been accomplished within a class
Calculator found in the namespace Calculate. Operands are stored as data-members Ope1 and
Ope2. A public member method Add is implemented by the class.

namespace Calculate {

public class Calculator {
public Calculator() { Ope1=0; Ope2=0; }
public double Ope1;
public double Ope2;
public double Add() { return Ope1+Ope2; }

}
}

3.1.1 The Unmanaged Metadata Interfaces
The unmanaged metadata interfaces are a collection of COM interfaces that are accessible from
“outside” of the .NET environment. You can access them from any Windows program. The
interface definition can be found in the COR.H, which is contained in the platform software
development kit (platform SDK).

IMetaDataImport.IMetaDataAssemblyImport interface is used for accessing metadata on the
.NET assembly level. Access to this interface is obtained via a second interface, called
IMetadataDispenser. As the name indicates, this interface “dispenses” all kinds of additional
metadata interfaces, which allow read and write access to .NET metadata. Access to the
metadata dispenser is obtained via calls to the COM system.

hr = CoCreateInstance(

CLSID_CorMetaDataDispenser, 0,
CLSCTX_INPROC_SERVER,
IID_IMetaDataDispenser,
(LPVOID*)&m_pIMetaDataDispenser);
hr = m_pIMetaDataDispenser->OpenScope(
wszFileName,
ofRead,
IID_IMetaDataImport,

(LPUNKNOWN *)&m_pIMetaDataImport);

3.1.2 Tolerating Crash-Faults in the Calculator
The C# characteristic we are going to implement will entrench fault-tolerance to the calculator
class we earlier wrote. The new modified class permits the independent creation and
management of objects by clients. Due to the fact that we are using a simpler application, we
assume that only crash faults occur at the object level thus we propose a proxy object for
management of copies which makes up a single point of failure. Consequently, we assume that
consistency of replicas can be maintained without the need of interaction with other replicas. We
shall use C#.NET removing so as to spread the object copies across machine interfaces. This
would create a distributed environment that tolerates both object and process faults. To maintain
replica consistency, consensus rules such as voting scheme and master-slave replication
scheme should be implemented. We outline C# attribute to define fault-tolerance requirements
[TolerateCrashFault (n)]

Harsha Bopuri & Raied Salman

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 27

The parameter n denotes the number of objects crash faults that are likely to occur before the
interruption of the component services. N+1 object replicas are needed so as to tolerate n crash-
faults of objects. For our application an attribute has been used to expand the definition of the
Calculator class.

[TolerateCrashFault (4)]
public class Calculator {
/* ... */
}

For our calculator application, five replicas would be created and the services continue running as
long as one or more object persists.

FIGURE 2: Replication in Space.

4. THE ASPECT WEAVER
This tool combines functional and aspect codes. For our case, we design a WrapperAssistant,
which operates as our aspect weaver and generates snippets for replica administration. The
Wrapper Assistant utilizes introspection and reflection techniques centered across the C#.NET
CLR (Common Language Runtime) metadata to identify task signatures sent by a component
and to create proxy classes for the exported classes. The TolerateCrashFault (n) attributecontrols
the behavior of replica management scheme. The WrapperAssistantdialog provides the user with
a list of classes that have been applied in a certain .NET assembly. Code will then be generated
for the particular proxy class by the WrapperAssistantdepending on the class selected by the user
in the list. The client programmer needs to make very few enhancements to the generated code;
the programmer ought to modify just a line of code to utilize the added fault-tolerance
enhancements.

using proxy;
// proxy namespace is imported by client
usingcalc;
//activates replica administration & fault-tolerance functionalities
void Calculate() {

Calculator p = new Calculator (); // this comes from the proxy
//namespace
p.Ope1=4;
p.Ope2=8;
Console.WriteLine (c.Add ()); // writes to the console

}

4.1 Proxy Class Generation
Classes for replica management are generated by the WrapperAssistant inside the proxy
namespace. The classes are instrumental in expanding the public classes employed in a
particular component. For out calculator application, the below code is generated:

Harsha Bopuri & Raied Salman

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 28

namespace proxy {
public sealed class Calculator:Calc.Calculator

{
Every member role of the initial class is then overwritten with a version having an
indistinguishable signature and routes the function calls to object copies instead of implementing
them itself. The public variables of the initial class are declared as attributes in the tool-created
proxy class. This would be as below for the
new public double Ope1 {

get { /* ... */ }
set { /* ... */ }
}

The suitable count of base class interfaces has to be generated inside the constructor of the
proxy class. The number is provided by the TolerateCrashFault attribute as shown below.

public sealed class
TolerateCrashFaults:System.Attribute {

private int f_i;
public TolerateCrashFaults(int i) {f_i=i; }
public int Count
{ get { return f_i+1; } }

}

The count of intolerable errors is internally recorded by the constructor. The count variable stores
the number of copies that have to be created. Every overwritten member function in the class
proxy routes its function-call to every occurrencereferenced in the collection. This would be
represented as follows for the Add function.

public new double Add()

{ int i;
double _RetVal=new double();
for(i=0;i<_bc.Length;i++) {
if(_bc[i]==null) continue;
try { _RetVal=_bc[i].Add(); }
catch(System.Exception) { _bc[i]=null; }
}

return _RetVal;}

4.2 Programmatic Tipping
Programmatic tipping is a technique used by high-level code weavers to assemble aspects from
low-level devices. This technique allows addition of methods, types and fields programmatically. It
is usually done using a compiled language. Below is an example of programmatic tipping.

public override void ProvideAspects(object targetElement,
 LaosReflectionAspectCollection collection)
{
 // Get the target type. Type targetType = (Type) targetElement;
 // On the type, add a Composition aspect to implement
 // the IBindable interface.

 collection.AddAspect(targetType, new
AddBindableInterfaceSubAspect());

 // Add a OnMethodBoundaryAspect on each writable non-static property.

Harsha Bopuri & Raied Salman

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 29

 foreach (PropertyInfo property in targetType.GetProperties())
 {
 if (property.DeclaringType == targetType &&
 property.CanWrite)
 {
 MethodInfo method = property.GetSetMethod();
 if (!method.IsStatic)
 collection.AddAspect(method,
 new OnPropertySetSubAspect(property.Name, this));
 }
 }

}

4.2.1 Custom Attributes
Custom attributes is an approach in which aspects are programmed as custom attributes and
normally applied to fields, classes and methods. This example below implements transaction
boundaries in .NET.

Imports PostSharp.Laos
Imports System.Transactions
 <Serializable>
Public NotInheritable Class TransactionScopeAttribute
 Inherits OnMethodBoundaryAspect
 Public Overrides Sub OnEntry(
 ByVal eventArgs As PostSharp.Laos.MethodExecutionEventArgs)
 eventArgs.State = New TransactionScope()
 End Sub
 Public Overrides Sub OnExit(
 ByVal eventArgs As PostSharp.Laos.MethodExecutionEventArgs)
 Dim transactionScope As TransactionScope = eventArgs.State
 If eventArgs.Exception Is Nothing Then
transactionScope.Complete()
 End If
 transactionScope.Dispose()
 End Sub
End Class

Transactional methods can be created using a new custom attribute as shown below.

<TransactionScope>
Sub Transfer(ByVal fromAccount As Account,
 ByVal toAccount As Account, ByVal amount As Decimal)
 fromAccount.Balance -= amount
 toAccount.Balance += amount
End Sub

It is required that custom attributes should be applied to each target explicitly but this is usually a
challenge. This is because .NET languages do not offer the possibility to apply custom attributes
to a set of code elements. A ‘multicast’ mechanism can be used to solve this problem. This is
illustrated in the following code.

<assembly: TransactionScope(TargetTypes="MyNamespace.*")>

5. CROSS CUTTING CONCERN AND TANGLED CODE
Aspect Oriented programming is a technique used in programming to separate cross cut code
across different modules in an application. Software applications are mostly developed to meet

Harsha Bopuri & Raied Salman

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 30

business concerns. For example, a customer sales management software can have the
requirements such as add, update, delete customer information, track sales and customers,
ability to generate and print reports and a facility to send email. We will now use this requirement
to elaborate cross cutting concern and tangled code.

The above business requirements are illustrated in the class diagram below.

FIGURE 3: Business Concerns Class Diagram.

The diagram shows how the four concerns for application are met. According to object oriented
programming (OOP), every object should only be concerned about its functionality. For example,
“ClsSales” should only be concerned with maintaining sales information. From the above
example, the core concerns are maintaining customer and sales records. The cross cut concerns
are printing, sending email, logging and these spans across all the modules. This causes tangling
of codes since there are several objects used across the modules. The codes are also called
tangled in AOP methodology.

The cross cut code can be separated from the core modules by creating modules for cross cut
and those for core functions separated. An AOP compiler can then generate a single executable
even if the modules are separate. This process is called weaving and it is illustrated in the figure
below.

FIGURE 4: Weaving Modules.

AOP compilers are helpful in addressing the cross cut challenges. Types of AOP compliers are
compile time weaving, link time weaving and run time weaving.

6. CONCLUSIONS AND FUTURE WORK
There is no good method of encapsulating without violating the integrity of the code. Aspect-
Oriented Programming provides a solution to this challenge and enables better isolation of

Harsha Bopuri & Raied Salman

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 31

responsibility, a more succinct code and encapsulation, all of which add to faster development
times, increased comprehensibility and eased maintenance.

In this paper, it is pointed out, the pros and cons of the crosscutting concerns and the necessity of
bringing the aspect oriented programming in to the limelight. This concept had a short term life in
previous decade, but could not be extended, due to various reasons.

Though major software providers have chosen different approaches to achieve the above
concept, this is the time to educate the IT world about efficiency of AOP using major .NET
framework, and this paper does it to the best of my research.

As the support and implementation of AOP increases, the security concerns will also grow, which
will increase the scale of fault tolerance. This will lead to further research to bring down the FT.
Looking on the other side, there are few vendors who made attempts to integrate AOP with .NET
framework and had also been successful to an extent. I believe this is the right time to make a
smart move i.e. incorporate AOP in to corporate major programming concepts.

7. REFERENCES

[1] D. Box, “Essential COM”, 1998 Addison-Wesley, ISBN 0-201-63446-5

[2] K.Lieberherr, D. Orleans and J. Ovlinger. (2001). “Aspect-Oriented Programming with

Adaptive Methods”, Communications of the ACM, Vol. 44, Issue 10.

[3] Groves, M. (2013). Aspect-Oriented Programming in .NET. Available:
http://www.manning.com/groves/AOP.NETSampleCh01.pdf

[4] Clarke, S. & Jackson, A. (2004). SourceWeave.NET: Cross-Language Aspect-Oriented
Programming. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.158.8736&rep=rep1&type=pdf

[5] G. Kiczaleset al. “Aspect Oriented Programming”, 1997. In proceedings of the European
Conference on Object –Oriented Programming (ECOOP), Finland: Springer Verlag LNCS
1241.

[6] Kim, H. (2002). AspectC#: An AOSD Implementation for C#. Available: https://www.cs.tcd.ie/
publications/tech-reports/reports.02/TCD-CS-2002-55.pdf

[7] Schult, W. & Polze, A. (2008). Design by Contract in .NET Using Aspect Oriented
Programming. Available: http://www.tuplespaces.net/research/loom/Slides/DBC.pdf

[8] SUN Microsystems, “JavaBeans: The Only Component Architecture for Java Technology”,
http://java.sun.com/products/javabeans/.

[9] Ferguson, D. (2004). Aspect. Net. Source Code… Available: http://www2.sys-
con.com/itsg/virtualcd/dotnet/archives/0104/safonov/index.html

[10] Gnanasekaran, V. (2008). Rating of Open Source AOP Frameworks in .NET.
Available: http://www.codeproject.com/Articles/28387/Rating-of-Open-Source-AOP-
Frameworks-in-NET

[11] Miller, J. (2011). AOP with StructureMap Container. Available:
http://weblogs.asp.net/thangchung/archive/2011/01/25/aop-with-structuremap-container.aspx

[12] Safonov, D. (2011). Aspect-oriented programming (AOP). Available:
http://www.cs.helsinki.fi/en/event/58498

Harsha Bopuri & Raied Salman

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 32

[13] Safonov, D. (2004). Aspect.NET: Concepts and Architecture. Available:

http://www.aspectdotnet.org/articles/AspectDotNet2004_Article.pdf
[14] S. Hanenberg, R. Unland, “Concerning AOP and Inheritance”, Dept. of Mathematics and

Computer Science University of Essen.

[15] Lee Breslau et al. (1999). Web caching and zipf-like distributions: Evidence and
implications. In INFOCOM 1.

[16] Pei Cao and Sandy Irani.(1997). Cost-aware WWW proxy caching algorithms. In Proceedings
of the 1997 Usenix Symposium on Internet Technologies and Systems (USITS-97),
Monterey,CA.

[17] Constantinos A. Constantinides and Tzilla Elrad.(2000). On the requirements for
 concurrent soft-ware architectures to support advanced separation of concerns. The
Workshop on AdvancedSeparation of Concerns in Object-Oriented Systems, OOPSLA.

[18] Li Fan, Pei Cao, Wei Lin, and Quinn Jacobson.(1999). Web prefetching between low-
bandwidth clients and proxies: Potential and performance. In Measurement and
 Modeling of ComputerSystems.

[19] C. Fraleigh et al.(2001). Design and deployment of a passive monitoring infrastructure.
Lecture Notes in Computer Science.

[20] Gustavo, A. & Grawehr, P. (2010). A Dynamic AOP-Engine for .NET. Available:
ftp://ftp.inf.ethz.ch/doc/tech-reports/4xx/445.pdf

[21] Jangid, D. & Dave. R. (2012). Investigating the Web Application of AOP Using Aspect. Net
Framework. Available:
http://www.ijarcsse.com/docs/papers/8_August2012/Volume_2_issue_8/V2I800142.pdf

[22] Pérez, J. et.al (2010). Executing Aspect-Oriented Component-Based Software Architectures
on .NET Technology. Available:
http://www.sparxsystems.com/downloads/whitepapers/Aspect-Oriented_PRISMANET.pdf

Hyung Jun Yoo & Young Lee

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 33

Use of Cell Block As An Indent Space In Python

Hyung Jun Yoo hjyoo760408@hotmail.com
Department of Electrical Engineering and Computer Science
Texas A&M University-Kingsville
Kingsville, TX 78363, U.S.A

Young Lee young.lee@tamuk.edu
Department of Electrical Engineering and Computer Science
Texas A&M University-Kingsville
Kingsville, TX 78363, U.S.A

Abstract

Unlike most object oriented programming languages, Python does not use braces such as “{” and
“}”. Therefore, mixed tabs and spaces are used for indentation. However, they are causing
problems in Python. Several approaches are applied to eliminate the problem that is not only for
machine-readable form but also for proof reading for human. Often, characteristics of some
programming behaviors are sometimes ambiguous. In such case, it is better for human to review
what machines may not handle well, but the majority of python source code editors do not provide
visually attracting environment. To provide the solution to both problems, concept of using
cellblock in spreadsheet as an indent space for python source code is introduced.

Keywords: Source Code, Visualization, Spreadsheet, Python, Stereopsis Algorithm.

1. INTRODUCTION
Spreadsheet contains a table of values arranged in rows and columns where each value may
have predefined relationship with values in other cells [1]. Python is an interpreted, object-
oriented, high-level programming language that runs in major operating systems such as,
Linux/Unix, Windows, OS/2, Mac, and Amiga [2]. It can be integrated with COM, .NET, COBRA
objects, or implement Python for Java Virtual Machine (JVM) using Jython [3].

There are numbers of studies concerning software visualization, where pictures, graphs or
animations can acquire information about specific program. Although significant numbers of
software visualization products are released, most of those products are not compatible among
each other when it comes to sharing their data. One approach to solve this problem is to use a
widely used application with powerful feature that is already built in it [5]. This study suggests how
to use such application to write and fix errors as a first step to use its source code as a data to
visualize software. Calculating numbers with visualizing it result in graphs are magnificent, but if
source codes can be analyzed and counted by given conditions, it can be a commonly used
program which is easy to get access and since it is widely used, sharing data between users are
not difficult. Python programming language was chosen in here since it had a problem that most
languages did not have and thought it could benefit more from using this method. Indent style is
unnecessary for most programming languages. Rather, it is used for more clear understanding of
how the source code is constructed in human readable form. For indentation, using multiple
spaces and tabs were common to programmers in most programming languages. However,
spaces used for indentation may vary from time to time, different programming language may use
different number of spaces, or they may diverge among source code editors which programmers
use preferably.

Hyung Jun Yoo & Young Lee

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 34

Unlike other programming languages that use braces such as “{” and “}” for block of codes,
Python relies on indentation. An issue arises when several programmers get involved with editing
the same source code while they use different editors that has different spaces step up for
indentation. This study analyzes the Python source code and displays its indentation level on
spreadsheet to resolve the confusion in mixed indent style as well as, to examine potential
problem.

UNIX users or old python programmers used adding 8 spaces for each indentation, but current
recommendation for one indentation is using 4 spaces [4]. This can cause problematic python
source code if a programmer decides to reuse old source code when they have different size of
indent block. Moreover, numbers of Microsoft Windows based Microsoft Visual Studio
programmers use tab as indentation, which is default indent block, which is used by Visual Studio
2005/2007.

2. USING CELL BLOCK IN SPREADSHEET AS INDENT SPACE FOR

PYTHON
2.1 Motivation
This People from different background have different way of writing source code. However, when
it comes to indent style, they should all follow the same rule. Changing a way of doing things,
which have been done for a while, may not be easy to fix. Eventually, there are going to be errors
made. When using the cell as an indented block, this problem can be solved. A program can be
written in a way to count numbers of spaces for indentation in python source code. It should count
the spaces for the indentation wherever it first occurs and save its one block of indentation
information on a file, so that it can be imported from spreadsheet later. If indented spaces are 8
spaces, 16 spaces, 24 spaces which is multiple of 8, then 8 spaces should be marked as one
block of indentation, 16 spaces as 2 blocks and so on.

2.2 Proposal
If mismatch spaces of indent style is found, a program should correct it assuming a small
mistake, but also inform the programmer that such error was found. When 8 spaces were used in
an indentation and 7 spaces of indentation were found, it is easy to tell that one space is missing.
However, some programmers use 4 spaces for indentation, which makes it when 6 spaces of
indentation was found, it can be confusing to tell right away whether the indentation was meant
for 4 or 8 spaces. One of the techniques to solve this problem is what we decided to call it a
“Stereopsis” algorithm.

Stereopsis algorithm is similar to visualization spreadsheet where users lay out two data sets next
to each other to compare to data groups [6].

One of the outputs, a “right eye view”, of this program will mark indentation that if in 8 spacing
indent style, a line with less than 8 spaces will be marked as no indentation, less than 16 spaces
will be marked as 1 indented block, and less than 24 spaces will be marked as 2 indented blocks.
The other output, a “left eye view”, will show a line with spaces greater than 0 will get 1 indented
block, greater than 8 spaces will get 2 indented blocks, and greater than 16 spaces will get 3
indented blocks. If source code has no error in indent style, both output will produce same result,
but if there is an indent spacing that is different from others, error flag is raised which it can be
check by the programmer later.

Hyung Jun Yoo & Young Lee

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 35

3. CASE STUDY

FIGURE 3.1: Python Source Code.

3.1 Limitation of Python Source Code Editor
Figure 3.1 shows one section of typical python source code, but there is an error, which might be
hard to catch if condition statements or a loop contains several more lines of code. A programmer
has to rely on the compiler to check the location of an error to find it. To be able to check errors in
the source code without compiling save a lot of time, but before suggesting a solution to this, we
will first go over with how an error is found and fixed just by using the source code and a
compiler. After source code is ready, a programmer run compiler to see if there are any errors. If
errors are found, the compiler usually returns line numbers. From compiling source code, we got
an error and the line number where it points to else statement. Figure 3.2 shows where the error
was in Figure 3.1. However, if this code is written or exported to a spreadsheet, it can be found
fairly easy. Since spreadsheet has option to display vertical and horizontal line to clearly show the
individual blocks of cells, we can use this to display the source code to catch an error.

Hyung Jun Yoo & Young Lee

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 36

3.2 Stereopsis Algorithm
3.2.1 Left Eye View
When this source code is passed through Stereopsis algorithm, since there is an error in the
source code, two different results will occur. Following two figures will show how they appear and
what can be done to fix it. These two figures will display mostly where the error occurred.

FIGURE 3.2: Line Drawn for Finding an Error.

FIGURE 3.3: Source Code from the Left Eye Method.

Hyung Jun Yoo & Young Lee

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 37

The left eye method inserts a block of indentation when default number of spaces in indent style
is counted. Any spaces from 0 to 7 will get no block of indentation. Spaces from 8 to 15 will get
one block of indentation. Spaces from 16 to 23 will get two block of indentation. This python code
used 8 spaces for one block of indentation. The left eye method inserted 2 blocks of indentation
when if statement had 16 spaces in front. However, 17 spaces where found before else
statement started, thus it added 3 blocks of indentation. In the Left Eye method, one example of
formula may be written as: Number of blocks of indentation equals spaces in front of current line
of code divided by default indented spaces and add one if the remainder is greater than zero.

3.2.2 Right Eye View
Next figure is an output of the Right Eye method.

FIGURE 3.4: Source Code from the Right Eye Method.

It is possible to find an error from examining from Figure 3.4 only but, when two different source
codes are present, finding an error can be more convenient, because a programmer does not
have to go through whole source code but find the difference in those source codes and make a
correction. In this case, a programmer should select a result from the Right Eye method and
choose it as code to be use. In the Right Eye method, formula can be written as: Number of
blocks of indentation equals spaces in front of current line of code divided by default indented
spaces.

3.2.3 Simple Error Correction
For simple error correction and handling, an error correction algorithm can be implemented while
migrated to spreadsheet to remove problem in Figure 3.1. If the default indentation has 4 spaces,
put no indentation to a code that has 0~1 spaces in front, level one indentation to a code with 3~5
spaces, and level two indentation to a code with 7~9 spaces in front. This will get rid of problems
when a space bar is pressed a little bit more (or less) than intended. In Figure 3.1, default
indentation is 8 spaces, which makes code with 0~2 spaces in front will have no indentation, code
with 6~10 spaces will have level one indentation, code with 14~18 spaces will have level two
indentation, and so on. This case, the result of simple error correction has same output as the
right eye view. Indent spaces that is close to middle of the first indentation and next indentation
should be alerted to a programmer, because it is risky to depend wholly on the computer to
correct it automatically. These errors are sometimes ambiguous even to the programmer hence,
the decision should be made manually by the programmer with clear information by presenting
both result from Stereopsis algorithm.

3.2.4 Stereopsis Result
A python source code passed through Stereopsis algorithm will have 3 output files in Comma
Separated Value (CSV) files and a message displayed on monitor screen. “_l” is added to file
name which contains output through the left eye view whereas, “_r” and “_sec” will be added to
output files passed through the right eye view and simple error correction, respectively. Messages
on the monitor should contain location of indent mismatch from default indent spacing, suggested

Hyung Jun Yoo & Young Lee

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 38

indent space, and which indent style should be used. With this information, a python programmer
should have sufficient enough knowledge to correct the source code. To demonstrate how the
spaces were either indented or not, a sample file name “test.txt” was created. This file contains a
sentence with tabs and whitespaces inserted in front.

FIGURE 3.5: test.txt.

FIGURE 3.6: test_r.csv.

When passed through Stereopsis algorithm, 3 outputs are generated along with result message.
In Figure 3.6, file “test_r.csv” will mark cell block when there are 8 or more spaces. Cell blocks
are added if whitespaces are 8 to 15 spaces. Two cell blocks are added if whitespaces are 16 to
23. Tabs are treated as 8 spaces.

File “test_l.csv” will mark a cell block in front, if there is any space greater than one. Cell blocks
are added if whitespaces are 1 to 8 spaces. Two cell blocks are added if whitespaces are 9 to 16.
Tabs are treated as 8 spaces just like in the right eye view. Figure 3.7 shows the result of
“test.txt” in “test_l.csv” with appropriate cell block inserted.

Hyung Jun Yoo & Young Lee

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 39

File “test_sec.csv” is the one that most programmers may like, since it corrects any little mistakes
in intent spacing. This is not true if mistakes were made outside the correction range. One of the
examples that simple error correction cannot correct is when indentation error exceeds more than
8 spaces. However, Stereopsis algorithm will still catch the mismatching indent style and inform
the programmer where the error was made.

FIGURE 3.7: test_l.csv.

FIGURE 3.8: test_sec.csv.

Any mistakes equal to or smaller than 8 spaces or one tab will be corrected, but if indent error is
greater than 8 spaces, the programmer may use output from the left or right eye view to make an
adjustment.

Since spreadsheet eliminates and mismatch in indent style, this is a good way to write a python
source code. However, direct python compiler is still needed to get the python to work, which is
written, in spreadsheet format. This should be included in the future work, until then, python
source code in spreadsheet can be exported to text file to be run.

Hyung Jun Yoo & Young Lee

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 40

Following figures 3.9, 3.10 and 3.11 shows each python source code in spreadsheet.

FIGURE 3.9: test_l.csv in Spreadsheet.

FIGURE 3.10: test_r.csv in Spreadsheet.

Hyung Jun Yoo & Young Lee

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 41

FIGURE 3.11: test_sec.csv in Spreadsheet.

Figure 3.12: Colored Indented Blocks

Hyung Jun Yoo & Young Lee

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 42

3.3 Coloring Cell Block
In information visualization spreadsheets, cells may have abstract data sets, selection criteria,
viewing specifications and other information required to customize specific views, have been
developed to allow end users access to rich visualizations of data [7]. An idea of containing
information about surrounding cells can boost the visualization if coordinated carefully. With each
blocks of cell represent an indentation, a programmer still need to count the number of blocks to
check when two or more functions or statements are apart from each other but expected to be in
same indentation. Using a built-in feature in Microsoft Excel 2005/2007, cell blocks can be
colored when it meets given conditions. When block of cell is colored with pre-defined color, it will
save time counting blocks of cells in front of the code.

In Figure 3.12, each n-th level of indented blocks is colored to show the location of the indented
block in a source code. In this case, the yellow represents the first indent block, green the
second, orange the third, purple the fourth, red the fifth and blue which represents it is on the
sixth indented block. If empty line was inserted to a source code, none of the blocks were colored
to avoid confusion. Coloring cell by condition statements are used to on Excel feature which
allows user to fill the cell with data additionally, uses its data to give information for visualization
[8].

4. CONCLUSION
Further study of this subject may be to add options work with spreadsheets with different types
that are widely used, such as OpenOffice.org Calc, Apple Numbers, etc. Using spreadsheet
features to analyze the source code, for example, count the number of classes, functions,
variables, and lines of code to compute the complexity of the program. In Microsoft Excel
VBA(Visual Basic Application) is provided when OpenOffice has StarOffice Basic in
CALC(spreadsheets) to allow complex calculation using programming language based on the
data from the spreadsheet [9]. Grouping and Outling in Excel as well as hiding cells features will
provide grouping classes or structure when editing python source code which is in most object
oriented language source code editor. This will allow programmers to look at the source code with
abstract information where it only shows classes, functions and structures name.

When there are many programmers using numbers of different types of editor to work on one
program, it is hard to maintain a single style of way of writing code. Thus, an application is
needed to recognize different styles and synthesize them for ease of collaboration in work among
programmers with different background. Such application should display the problem with more
clear and in meaningful matter.

5. REFERENCES

[1] Byron S. Gottfried, “Spreadsheet Tools for Engineers Using Excel”, McGraw-Hill, 2009

[2] Mark Lutz, “programming Python”, O’Reilly Media, 2011

[3] “BeginnersGuide Overview”, Python Official Site. Python Software Foundation, n.d. Web. 10

[4] Rossum, Warsaw, “Style Guide for Python Code”, www.python.org/psf/, Python Software

Foundation

Hyung Jun Yoo & Young Lee

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 43

[5] Martin Erwig, Robin Abraham, Steve Kollmansberger, Irene Cooperstein. “Gencel: a program
generator for correct spreadsheets”, Journal of Functional Programming, Cambridge
University Press, Vol. 16, Issue 3, (2006): 293-325.

[6] Ed Huai-hsin Chi, John Riedl, Phillip Barry, Joseph Konstan, Principles for Information

Visualization Spreadsheets, Vol. 18, no.4 IEEE. (1998): 30-38.

[7] Robin Abraham, Margaret Burnett, Martin Erwig. “Spreadsheet Programming”, Encyclopedia

of Computer Science and Engineering, (2009): 2804-2810.

[8] “Microsoft Conditional Formatting: Adding Customized Rules to Excel 2007”, Microsoft

Developer Network (MSDN), Microsoft Corporation

[9] Solveig Hauglan, “StarOffice 6.0 Office Suite Companion”, Prentice Hall, 2002

INSTRUCTIONS TO CONTRIBUTORS

The International Journal of Software Engineering (IJSE) provides a forum for software
engineering research that publishes empirical results relevant to both researchers and
practitioners. IJSE encourage researchers, practitioners, and developers to submit research
papers reporting original research results, technology trend surveys reviewing an area of
research in software engineering and knowledge engineering, survey articles surveying a broad
area in software engineering and knowledge engineering, tool reviews and book reviews. The
general topics covered by IJSE usually involve the study on collection and analysis of data and
experience that can be used to characterize, evaluate and reveal relationships between software
development deliverables, practices, and technologies. IJSE is a refereed journal that promotes
the publication of industry-relevant research, to address the significant gap between research and
practice.

The initial efforts helped to shape the editorial policy and to sharpen the focus of the journal.
Started with Volume 4, 2013, IJSE appears with more focused issues. Besides normal
publications, IJSE intend to organized special issues on more focused topics. Each special issue
will have a designated editor (editors) – either member of the editorial board or another
recognized specialist in the respective field.

We are open to contributions, proposals for any topic as well as for editors and reviewers. We
understand that it is through the effort of volunteers that CSC Journals continues to grow and
flourish.

IJSE LIST OF TOPICS
The realm of International Journal of Software Engineering (IJSE) extends, but not limited, to the
following:

• Ambiguity in Software Development • Application of Object-Oriented Technology
to Engin

• Architecting an OO System for Size Clarity
Reuse E

• Composition and Extension

• Computer-Based Engineering Techniques • Data Modeling Techniques

• History of Software Engineering • IDEF

• Impact of CASE on Software Development Life
Cycle

• Intellectual Property

• Iterative Model • Knowledge Engineering Methods and
Practices

• Licensing • Modeling Languages

• Object-Oriented Systems • Project Management

• Quality Management • Rational Unified Processing

• SDLC • Software Components

• Software Deployment

•

•

• Software Design and applications in Various
Domain

• Software Engineering Demographics • Software Engineering Economics

• Software Engineering Methods and Practices • Software Engineering Professionalism

• Software Ergonomics • Software Maintenance and Evaluation

• Structured Analysis • Structuring (Large) OO Systems

• Systems Engineering • Test Driven Development

• UML •

CALL FOR PAPERS

Volume: 4 - Issue: 2

i. Paper Submission: November 30, 2013 ii. Author Notification: December 25, 2013

iii. Issue Publication: December 2013

CONTACT INFORMATION

Computer Science Journals Sdn BhD

B-5-8 Plaza Mont Kiara, Mont Kiara
50480, Kuala Lumpur, MALAYSIA

Phone: 006 03 6207 1607

006 03 2782 6991

Fax: 006 03 6207 1697

Email: cscpress@cscjournals.org

