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Editorial Preface 
 

This is first issue of volume four of the Signal Processing: An International 
Journal (SPIJ). SPIJ is an International refereed journal for publication of 
current research in signal processing technologies. SPIJ publishes research 
papers dealing primarily with the technological aspects of signal processing 
(analogue and digital) in new and emerging technologies. Publications of SPIJ 
are beneficial for researchers, academics, scholars, advanced students, 
practitioners, and those seeking an update on current experience, state of 
the art research theories and future prospects in relation to computer science 
in general but specific to computer security studies. Some important topics 
covers by SPIJ are Signal Filtering, Signal Processing Systems, Signal 
Processing Technology and Signal Theory etc. 
 
This journal publishes new dissertations and state of the art research to 
target its readership that not only includes researchers, industrialists and 
scientist but also advanced students and practitioners. The aim of SPIJ is to 
publish research which is not only technically proficient, but contains 
innovation or information for our international readers. In order to position 
SPIJ as one of the top International journal in signal processing, a group of 
highly valuable and senior International scholars are serving its Editorial 
Board who ensures that each issue must publish qualitative research articles 
from International research communities relevant to signal processing fields. 
   
SPIJ editors understand that how much it is important for authors and 
researchers to have their work published with a minimum delay after 
submission of their papers. They also strongly believe that the direct 
communication between the editors and authors are important for the 
welfare, quality and wellbeing of the Journal and its readers. Therefore, all 
activities from paper submission to paper publication are controlled through 
electronic systems that include electronic submission, editorial panel and 
review system that ensures rapid decision with least delays in the publication 
processes.  
 
To build its international reputation, we are disseminating the publication 
information through Google Books, Google Scholar, Directory of Open Access 
Journals (DOAJ), Open J Gate, ScientificCommons, Docstoc and many more. 
Our International Editors are working on establishing ISI listing and a good 
impact factor for SPIJ. We would like to remind you that the success of our 
journal depends directly on the number of quality articles submitted for 
review. Accordingly, we would like to request your participation by 
submitting quality manuscripts for review and encouraging your colleagues to 
submit quality manuscripts for review. One of the great benefits we can 
provide to our prospective authors is the mentoring nature of our review 
process. SPIJ provides authors with high quality, helpful reviews that are 
shaped to assist authors in improving their manuscripts.  
 



 
Editorial Board Members 
Signal Processing: An International Journal (SPIJ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
                              
 
 
 
                              



                            Editorial Board 
 

Editor-in-Chief (EiC) 
 

                                                                          Dr. Saif alZahir                             
                                University of N. British Columbia (Canada) 
 
Associate Editors (AEiCs) 
 

Professor. Raj Senani 
Netaji Subhas Institute of Technology (India) 
 
 

Professor. Herb Kunze 
University of Guelph (Canada) 
 
[ 

Professor. Wilmar Hernandez 
Universidad Politecnica de Madrid (Spain ) 

 
Editorial Board Members (EBMs) 
 

Dr. Thomas Yang 
Embry-Riddle Aeronautical University (United States of America) 
 
 

Dr. Jan Jurjens 
University Dortmund (Germany) 
[ 
 

Dr. Teng Li Lynn 
The Chinese University of Hong Kong (Hong Kong) 
[ 

Dr. Jyoti Singhai 
Maulana Azad National institute of Technology (India) 
 
 
 

 
                         
 
 
 
 
 
 
 
 
 
 
                         
 
                        



                                Table of Contents 
 
 
 
 
Volume 4, Issue 1, March 2010. 
 

 
Pages 

 

     1 - 16 

 

      

    17 - 22   
    
      

     23 - 37 

Frequency based criterion for distinguishing tonal and noisy 
spectral components 
Maciej, Andrzej 
 
Improvement of minimum tracking in Minimum Statistics noise 

estimation method 

Hassan Farsi 
 
A Novel Algorithm for Acoustic and Visual Classifiers Decision 
Fusion in Audio-Visual Speech Recognition System 
Rajavel, P.S. Sathidevi 

 
     38 - 53 

 

 

    54 - 61 

 
 

A New Enhanced Method of Non Parametric power spectrum 
Estimation. 
K.Suresh Reddy, S.Venkata Chalam, B.C.Jinaga 

 
A Combined Voice Activity Detector Based On Singular Value 

Decomposition and Fourier Transform 

Jamal Ghasemi, Amard Afzalian, M.R. Karami Mollaei 

     
    62 - 67        Reducting Power Dissipation in Fir Filter: an Analysis 
                                 Rakesh Kumar Bansal, Manoj Garg, Savina Bansal 
 
 
 
 
 
 
 
 
 
Signal Processing: An International Journal (SPIJ Volume (4) : Issue (1) 



M. Kulesza and A. Czyzewski 

International Journal of Computer Science and Security, Volume (4): Issue (1) 1 

Frequency based criterion for distinguishing tonal and noisy 
spectral components 

 
 

Maciej Kulesza              m_kulesza@sound.eti.pg.pl   
Multimedia Systems Department 
Gdansk University of Technology 
Gdansk, 80-233, Poland 
 

Andrzej Czyzewski              ac@sound.eti.pg.gda.pl  
Multimedia Systems Department 
Gdansk University of Technology 
Gdansk, 80-233, Poland 

 
Abstract 

 
A frequency-based criterion for distinguishing tonal and noisy spectral 
components is proposed. For considered spectral local maximum two 
instantaneous frequency estimates are determined and the difference between 
them is used in order to verify whether component is noisy or tonal. Since one of 
the estimators was invented specially for this application its properties are deeply 
examined. The proposed criterion is applied to the stationary and nonstationary 
sinusoids in order to examine its efficiency. 
 
Keywords: tonal components detection, psychoacoustic modeling, sinusoidal modeling, instantaneous 

frequency estimation. 

 
 

1. INTRODUCTION 

The algorithm responsible for distinguishing tonal from noisy spectral components is commonly 
used in many applications such a speech and perceptual audio coding, sound synthesis, 
extraction of audio metadata and others [1-9]. Since the tonal components present in a signal are 
usually of higher power than noise, the basic criterion for distinguishing tonal from noisy 
components is based on the comparison of the magnitudes of spectrum bins. Some heuristic 
rules may be applied to the local spectra maxima in order to determine whether they are noisy or 
tonal [1]. The other method relies on the calculation of terms expressing peakiness of these local 
maxima as it was proposed in [10] or level of similarity of a part of spectrum to the Fourier 
transform of stationary sinusoid, called sinusoidal likeness measure (SLM) [11]. In contrary to the 
magnitude-based criterions applied to the local spectra maxima, the ratio of geometric to 
arithmetic mean (spectral flatness measure – SFM) of magnitudes of spectrum bins may be used 
for tonality estimation of entire signal or for set of predefined bands [4, 5]. Instead of analysis of 
magnitude spectrum, it is also possible to extract the information related to the tonality of spectral 
components through comparison of the phase values coming from neighbouring bins as it was 
proposed in [12]. The method used in MPEG psychoacoustic model 2 employs linear prediction of 
phase and magnitude of spectrum bins. The tonality measure is then expressed as the difference 
between predicted values and the ones detected within particular time frame spectrum [1, 13-15]. 
Also various techniques for separation of periodic components within speech signal and signals 
composed of two pitched sounds were successfully investigated [3, 16-18]. 
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Recently, it was proved that the tonality of spectral components within polyphonic recordings may 
be expressed as an absolute frequency difference between instantaneous frequencies of the 
local spectrum maxima calculated employing two different estimators [19-21]. While the first 
frequency estimator employs well known technique of polynomial fitting to the spectrum maximum 
and its two neighbouring bins, the second estimator is hybrid. It involves estimation results 
yielded by the first mentioned estimator and phase values coming down from three contiguous 
spectra. This algorithm was successfully combined with psychoacoustic model used in audio 
coding applications [13]. It was proved that this method allows detecting tonal spectra 
components even if they instantaneous frequency changes significantly over time. This property 
of the method is its main advantage over the tonality estimation algorithms commonly used in 
various applications. Although the efficiency of the mentioned algorithm has been already 
evaluated using artificial signals and polyphonic recordings, no investigation related to the hybrid 
frequency estimator and the tonality criterion being the basis for this method has been made. In 
this article we will focus on the experiments revealing properties of the hybrid frequency estimator 
and the properties of the tonality criterion employing it. The influence of the analysis parameters 
as well as influence of the analyzed signal characteristics on tonality estimation efficiency is 
investigated and deeply discussed. The properties of the hybrid estimator are compared to the 
properties of the estimator employing polynomial fitting to the spectral bins. 

2. CONCEPT DESCRIPTION 

For clarity of description, it is assumed here that the analyzed signal contains a single tonal 
component of constant or modulated instantaneous frequency and variable signal to noise ratio 
(SNR). A general diagram of the method used in order to examine the proprieties of proposed 
tonality criterion is shown in Fig.1. 

STFT

Phase 

spectrum

Magnitude 

spectrum

Peak picking

Frequency 

estimation
(1)

Frequency distance calculation

Frequency 

estimation
(2)

input signal
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FIGURE 1: General diagram of investigated method for tonality measuring 
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The input signal is segmented into frames of equal length weighted by the von Hann window in 
conformity to the short time Fourier transform (STFT) concept [22]. Both the frame length and hop 
size are the parameters of the method. Moreover, the windowed frame of the signal is zero-

padded before applying the FFT. Further, the magnitude and phase spectra denoted as ( )( )n
kX  

and ( )( )n
kΦ  are calculated, and spectral bin of highest magnitude is considered to be a candidate 

for the tonal component. The instantaneous frequency corresponding to the detected spectral 

component of highest energy (spectrum bin of ( )n
kmax

index) is then estimated using two methods. 

While the first one employs fitting of polynomial (binomial) to the detected component and its two 
adjacent bins within magnitude spectrum, the second one is based on the phase and magnitude–
spectrum processing [23]. The results of frequency estimation obtained using two above-

mentioned methods are denoted in Fig. 1 as ( )( )n
kf maxM

 and ( )( )nkf maxH
. Finally, the absolute 

frequency difference is calculated and the level of tonality for selected component is assigned to it 
as a result of normalization of the yielded frequency distance (absolute frequency difference) by 
the assumed frequency distance threshold. The tonality measure calculated in accordance to the 
proposed scheme is called frequency-derived tonality measure (FTM). 

2.1 Frequency estimator based on magnitude spectrum analysis 

Assuming that the local maximum of magnitude spectrum being analyzed corresponds to the 
tonal component, the straightforward method for its instantaneous frequency estimation employs 
quadratic interpolation (known as QIFFT) which belongs to the approximate maximum likelihood 
(ML) estimators [24, 25]. In this approach the magnitude spectrum values of local maximum and 
two neighboring bins are involved in frequency estimator. The procedure is applied to the log 
spectrum values as it provides higher precision of frequency estimation in most cases [23, 26]. At 
the begining the fractional part of spectrum index is determined according to [27] 

( )
( )( ) ( )( )

( )( ) ( )( ) ( )( )121

11

2

1

maxmaxmax

maxmax

frac
++−−

+−−
=

nnn

nn

n

kXkXkX

kXkX
k  (1) 

where ( )n
kmax

 stands for the index of considered spectrum bin (the notation of spectrum bin indices 

is extended by the time index (number of frame) as superscript), ( )( )nkX max
 represents the 

magnitude spectrum in log scale. The frequency of the spectrum peak detected in the n-th frame 
of signal is then estimated as follows 

( )( )
( ) ( )

s

FFT

fracmax
maxM f

N

kk
kf

nn

n +
=  (2) 

where FFTN  is the length of FFT transform and sf  is the sampling rate in Sa/s (samples per 

second) and M in subscript indicates that the instantaneous frequency is estimated basing on 
magnitude spectrum processing. Since the signal frame is zero-padded before applying the FFT, 
the zero-padding factor is expressed as 

1FFT
p ≥=

N

N
Z  (3) 

where N stands for the length of signal frame. The motivation for zero-padding of the signal frame 
before FFT calculation is the reduction of estimator bias resulting in an improved accuracy of 
frequency estimation. Basing on experimental results presented in [23], the maximum frequency 
bias of the QIFFT assuming the von Hann window is up-bounded in the following way 
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4
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
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



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p

s

ZN

f
f  (4) 

For zero-padding factor equal to 2 and frame length equivalent to 32 ms (for instance: 
fs=32 kSa/s, N=1024) the bias of considered frequency estimator calculated according to (4) is 
less than 0.07 Hz. Using zero-padding factor higher than 2 seems to be impractical as it would 
result in significant increase of the computational complexity, assuring only slight increase of the 
frequency estimation accuracy. Thus, in investigated method for tonality measuring every frame 
of the input signal is zero-padded to its doubled length. 

2.2 Hybrid frequency estimator 

The second estimator suitable for combining with proposed method for tonal components 
detection and tonality estimation is required to: 

• yield inadequate instantaneous frequency values when the spectrum bins involved into 
the estimator procedure do not correspond to the tonal components (the frequency 
distance between values obtained using quadratic interpolation and phase-based method 
should be abnormally high – i.e. higher than half of the frequency resolution of spectral 
analysis) 

• allow of accurate instantaneous frequency estimation of frequency modulated tonal 
components 

Various phase-based instantaneous frequency estimators have been proposed so far [28-32]. 
Assuming the STFT approach to the signal analysis, one of the straightforward methods for 
frequency estimation is based on an approach proposed in [28] where instantaneous frequency is 
computed basing on the phase difference between two successive frame short-term spectra. The 
hop size H equal to one sample is assumed in this method in order to allow for estimation of 
instantaneous frequency in full Nyquist band [32]. However, even if the analyzed spectrum 
maximum corresponds to the component totally noisy, the classic phase-difference estimator 
(assuming H=1) yields adequate instantaneous frequency estimates because the estimation error 
is lower than the frequency resolution of spectral analysis. Consequently, the first above-defined 
requirement for frequency estimator is not met. In order to overcome this problem, the higher hop 
size of STFT analysis should be used. When the higher hop size is chosen, the phase difference 
for particular frequency bin can be higher than 2π. In this case, the adequate phase increment 
cannot be calculated from the phase spectrum, as its values are bounded to ±π  and then the 
phase difference never exceeds 2π. This causes the phase indetermination problem obstructing 
the instantaneous frequency estimation using classical phase-based method [22, 28, 32, 33]. 
Furthermore, when the higher hop size is selected the frequency of tonal component may be not 
longer constant in two successive steps of analysis or even the indices of spectral maxima 
corresponding to the same tonal component may be different ( ) ( )( )1

maxmax

−≠ nn
kk . Since the 

instantaneous frequency cannot be accurately determined in this case, the second requirement 
defined on the beginning of this subsection is not satisfied. Thus, the classical phase-difference 
estimator was not considered for employing it as an element in our method for tonal components 
detection. Although some phase-based methods for frequency estimation of nonstationary tonal 
components were already proposed in [30, 33], the proposed tonality estimation method is based 
on the dedicated estimator fulfilling the above-defined requirements and optimized for application 
considered here. 

The instantaneous frequency determined by the hybrid estimator is defined as follows 

( )( ) ( )( ) ( ) ( )( )nnn
kfkfkf max

*2

maxMmaxH Φ

− ∆+=  (5) 
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where: ( )( )2

maxM

−n
kf  is the instantaneous frequency of the spectrum maximum detected within n–2 

analysis frame using estimator defined in Eq. (2), and 
( ) ( )( )n

kf max

*

Φ∆  is the frequency jump between 

spectral maxima detected within n–2 and next n analysis frames estimated using phase-based 
method.  

2.2.1 Phase-based frequency jump estimator 

In the investigated method the frequency jump 
( ) ( )( )n

kf max

*

Φ∆  is calculated basing on the phase 

values detected within three successive spectra. It is assumed that the phase values ( )( )2

max

−
Φ

n
k , 

( )( )1

max

−
Φ

n
k  and ( )( )n

kmaxΦ  correspond to the same sinusoidal component detected within three 

contiguous spectra. The second order phase difference is then calculated according to [19] 

( ) ( )( ) ( )( ) ( )( ) ( )( )nnnnn
kkkkk max

1

max

2

max

2

maxmax

2 2, Φ+Φ−Φ=Φ∆
−−−

 (6) 

The phase offset which is non-zero in case of frequency modulated tonal components is given by 

( ) ( )( ) ( ) ( ) ( ) ( )( )nnnnn
kkk

NZ

N
kk max

1

max

2

max

p

2

maxmax

2 2
1

, +−
−

=∆
−−− π

φ  
(7) 

Finally, the frequency jump can be estimated using following formula 

( )( ) ( )( ( )( )) ( )( ( ) ))( )2

maxmax

22

maxmax

2

max ,,princarg
−−

Φ ∆+Φ∆=∆
nnnnsn

kkkk
H

f
kf φ

π
 (8) 

where ( ) ( ) πππϕϕ +−+= 2mod)(princarg  is the function mapping the input phase φ into the ±π 

range [22]. Further the ( )( )n
kf maxΦ∆  is updated in order to overcome phase ambiguity problem [19] 

( ) ( )( ) ( )( )
H

f
mkfkf

nn s
maxmax

*
+∆=∆ ΦΦ

 (9) 

where m is the integer value ensuring that the 
( ) ( )( )n

kf max

*

Φ∆  falls within the maximal and minimal 

frequency jump range related to the 
( ) ( )2

maxmax

−
−

nn
kk  difference [19]. 

2.3 Tonality measurements 

The proposed criterion for distinguishing tonal from noisy components and their tonality 
measuring is based on the absolute difference between the frequency estimates obtained using 
the QIFFT method and the hybrid method described in previous subsection. Thus, the frequency 
distance for particular spectral maximum is given by 

( )( ) ( )( ) ( )( )nnn
kfkfkf maxHmaxMmax −=∆

 (10) 

When we combine the estimate (5) with the definition (10) the frequency distance may be 
expressed by 

( )( ) ( )( ) ( )( ) ( )( )nnnn
kfkfkfkf max

2

maxMmaxMmax Φ

−

∆ ∆−−=  (11) 
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It is viewable that ( )( )n
kf max∆

 is equal to the difference between frequency jumps derived from the 

magnitude spectrum analysis and from the phase spectrum analysis, respectively [19]. Let us 

define a measure based on the frequency distance ( )( )n
kf max∆

 expressing the level of similarity of 

particular spectrum component to the pure sinusoid 

( )( )
( )( )

thd

max

max 1FTM
∆

∆
−=

f

kf
k

n

n  (12) 

where 
thd∆f  is a frequency distance threshold which is assumed not to be exceeded when the 

( )nkmax
 is a tonal spectral component. Tonality measure ( )( )n

kmaxFTM  is equal to 1 if spectral 

component considered corresponds to the sinusoid of high SNR and tends to gradually decrease 

when SNR falls. If ( )( )
thdmax ∆∆ ≥ fkf n  for a particular spectral component, it is treated as a noisy 

one, and the tonality measure ( )( )n
kmaxFTM  equal to 0 is assigned to it. The experiments related to 

the properties of hybrid frequency estimator proposed here together with the criterion for tonal 
components detection as well as some remarks concerning selection of 

thd∆f  threshold are 

presented in the following section. 

3. EXPERIMENTS 

3.1 The performance evaluation of instantaneous frequency estimators 

In order to examine the properties of the proposed hybrid estimator, a set of real valued sinusoids 

with randomly chosen initial phases 
0ϕ  and SNR ranging from 100 dB to − 20 dB with 2 dB step 

were generated. It was assumed that the amplitude of sinusoid is equal to 1 and the power of 
noise is adjusted in order to achieve a desired SNR in dB according to the formula 

[ ]

∑

∑

=

==
L

s

L

s

sx

sx

1

2

ns

1

2

t

10

][

][

log10dBSNR
 

(13) 

where [ ] ( )0t 2cos ϕπω += sasx , 
s/ ff=ω  is the normalized frequency in cycles per sample, [ ]sxns

 

stands for a additive white Gaussian noise (AWGN) realization, s is sample number and L is the 
signal length. 

For every selected SNR the sinusoids of constant normalized frequencies selected within range 
from 0.05 to 0.45 with 0.005 step (81 sinusoids) were generated and further analyzed resulting in 
vector of instantaneous frequency estimates related to the particular SNR. Then, the mean 
squared error (MSE) of estimates (2) and (5) was calculated basing on frequency estimation 
results and known apriori frequencies of generated sinusoids. Since this procedure was applied 
to sets of sinusoids of various SNR, the characteristic revealing frequency estimation errors 
versus SNR of analyzed sinusoids was obtained. The experiments were carried out for both 
considered estimators – the hybrid method and the QIFFT method, and the results were 
compared with lower Cramer-Rao bound (CRB) defining variance of unbiased frequency 
estimator of real sinusoid in a AWGN [25, 32] 

( )
( ) ( )

10/

222
10

12

12
ˆvar

SNR

NNa

−

−
≥

π
ω  (14) 
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where ω̂  is the normalized estimated frequency in cycles per sample, N is the same as in (3) and 

a=1 in our experiments. 

The sampling rate of analyzed signals was adjusted to 8000 Sa/s, the frame length (von Hann 
window) was equal to 32 ms (N=256) and the hop size was switched between 32 ms (H=256) 
and 8 ms (N=64). The characteristics obtained for two above-defined hop sizes of analysis are 
presented in Fig. 2. 
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FIGURE 2: Performance of estimators for frequencies in (0.05, 0.45) normalized range for hop size 
equal to frame length (left), and quarter of frame length (right); Cramer-Rao bound – bold solid line 

Since the spectrum bin of maximum energy is considered here to represent sinusoidal 
component, for lower SNRs the spurious noise peak may be detected instead of it. Thus, the 
frequency estimation MSEs presented in Fig. 2 are far beyond the CRB when the SNRs of 
sinusoids are lower than approximately − 10 dB [23, 25]. Contrarily, in the SNR range from 
− 10 dB to approximately 30 dB the MSE determined for examined estimators is close to the 
CRB. Although the curve representing results obtained using the QIFFT is approximately 4 dB 
above CRB regardless the hop size of analysis, the error of hybrid estimator tends to be slightly 
higher when the hop size is maximal possible. For SNRs higher than 40 dB the frequency 
estimation error reveals the bias of concerned estimators, which is related to the assumed zero-
padding factor  [23, 26].  

The influence of the hop size on the estimation error in case of stationary sinusoid of SNR equal 
to 20 dB and 100 dB and normalized frequency equal to 0.13 is presented in Fig. 3 (sampling rate 
is the same as in previous experiment). It can be observed from Fig. 3 that the MSE of hybrid 
estimator is practically identical to the MSE obtained using the QIFFT regardless the hop size of 
analysis when the SNR is equal to 100 dB (compare results presented in Fig. 3 for the same 
SNR=100 dB). However, when the SNR is equal to 20 dB, the hybrid estimator performs slightly 
worse, by approximately 3 dB, than the QIFFT for hop sizes higher than a half of the frame 
length. For lower hop sizes the difference in performance of both estimators gradually decreases. 

It can be expected that for shorter hop sizes, the frequency change ( ) ( )( )n
kf max

*

Φ∆  derived from phase 

analysis according to (9) tends to have lower influence on the final estimation results. Thus, the 
shorter the hop size the properties of hybrid estimator are closer to the properties of the QIFFT 
method. This is not the case when the SNR is equal to − 3 dB or lower, because the MSE of 
hybrid method tends to increase for the hop sizes below approximately a quarter of the frame 
length and higher than 220 samples. In this hop size range the hybrid method yields occasionally 
inadequate estimates when the SNR is low resulting in the MSE increase. Therefore, it can be 
deduced that the hybrid estimator operates most efficiently in the range of the hop size between 
approximately ¼ to ¾ of the frame length. 
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FIGURE 3: Impact of the hop size of analysis on the frequency estimation performance 

Further, the MSE of frequency estimation results were determined for sinusoids of constant SNR 
equal to 100 dB and for normalized frequencies selected within 0.0025 and 0.4975 range with 
0.001 step (496 sinusoids, fs=8000 Sa/s, N=256, H=256). The results of our experiments 
presented in Fig. 4 indicate that the estimation errors for both considered methods are below 
10

−10
 (see also Fig. 2) in almost entire bandwidth. However, when the normalized frequency of 

considered sinusoid is below approximately 0.005 or higher than 0.495 then the estimation error 
significantly increases. 
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FIGURE 4: Performance of estimators for stationary sinusoids of SNR=100 dB and normalized 
frequencies selected within 0.0025 and 0.4975 range; Cramer-Rao bound – bold solid line. 

Although the characteristics shown in Fig. 4 were determined assuming hop size equal to half of 
the frame length, they do not alter for other hop sizes. This is expected when considering the 
MSE obtained for stationary sinusoids of SNR equal to 100 dB presented in Fig. 3. 

Since it is assumed that the proposed hybrid estimator should allow estimation of instantaneous 
frequency of non-stationary tonal components (see subsection 2.2), the set of linearly frequency 
modulated (LFM) chirps were analysed next [34]. The parameters of the STFT analysis as well as 
the sampling rate were identical to those used in the previous experiment described in this 
subsection. The initial normalized frequency of every LFM chirp signal was set to 0.05 and the 
frequency rates were altered from 0 to fs/2 per second. The instantaneous frequencies estimated 
using the QIFFT and hybrid methods were compared with mean frequency values of LFM chirp 
calculated within a particular frame resulting in the MSE corresponding to the chirps of various 
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instantaneous frequency slopes. The experiments were carried out for LFM chirps of SNR equal 
to 100 dB and 20 dB. Although the limitations of the hybrid estimator when the hop size is equal 
to the frame length have been already revealed (see Fig. 3), in the experiments the hop size of 
analysis was chosen to be equal to frame length and a quarter of it for comparison purposes. In 
Fig. 5 the characteristics obtained are shown. 
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FIGURE 5: Performance of estimators for LFM chirps of various frequency rates and SNR equal to 
100 dB (left) and 20 dB (right); Cramer-Rao bound – bold solid line. 

When the hop size is equal to the quarter of the frame length the estimation error is higher for 
some chirps slopes (0.3-0.45) than the errors obtained with hop size equal to the frame length 
which is especially noticeable when considering characteristics obtained for signals of SNR equal 
to 100 dB. Furthermore, when SNR is equal to 20 dB (Fig. 5 - right), the errors corresponding to 
both estimation procedures are still close to the Cramer-Rao bound regardless the linear 
frequency modulation of analysed sinusoids. 

Although the above experiments have confirmed that proposed hybrid estimator operates 
properly in case of sinusoids of linearly changing frequencies, its properties were also examined 
in case of non-linearly frequency modulated sinusoids. Thus, the frequency of carrier sinusoid 
equal to 0.13 (1040 Hz assuming fs=8000 Sa/a) was modulated using sinusoid of normalized 

frequency equal to 4105.2 −×  (2 Hz). The modulation depth was altered so that the normalized 

frequency deviation of the carrier was changed between 0 and 0.025 (±200 Hz). Similarly to the 
experiments with LFM chirps the MSE of frequency estimates were determined for all generated 
sinusoids of SNR equal to 100 dB and 20 dB. The frame length was adjusted to 32 ms (N=256) 
and the hop size was switched between 32 ms and 8 ms (H=256, H=64). The results of those 
experiments are depicted by the curves shown in Fig. 6. 

It can be noticed from Fig. 6 that the accuracy of frequency estimation is directly related to the 
depth of non-linear frequency modulation. The modulation depth seems to have less influence on 
the MSE for signals of lower SNRs, which is visible when comparing results obtained for 
sinusoids having the SNR of 100 dB and 20 dB. Additionally, when the framing hop size is short 
enough the performance of the QIFFT and hybrid estimators tends to be similar to each other. 

It was suggested in subsection 2.2 that the desired property of estimator for application 
considered would be yielding inadequate frequency estimates when spectrum bins used in 
estimator do not correspond to sinusoidal component. In order to evaluate this property of 
proposed hybrid estimator, the white noise realization was analysed and in every spectrum the 
local maximum ( )n

kmax
 laying closest to 800 Hz was selected. 
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FIGURE 6: Performance of estimators for sinusoids of sinusoidally modulated frequencies of SNR 
equal to 100 dB (left) and 20 dB (right). 

The QIFFT was applied to those peaks as well as the hybrid estimation method was used. Next, 
the frequencies estimated using these two methods were compared with frequency 
corresponding to detected local maximum 

( )( )
( )

s

FFT

max
maxb f

N

k
kf

n
n =  (15) 

The absolute frequency differences ( )( ) ( )( )nn kfkf maxHmaxb −  and ( )( ) ( )( )1

maxMmaxb

nn kfkf −  calculated for 

estimation results obtained in every frame of white noise realization (fs=8000 Sa/s, frame length 
and hop size equal to 32 ms (N=256, H=256), signal length equal to 2 s) are presented in Fig. 7.  
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FIGURE 7: Absolute frequency differences between frequency of spectrum bin calculated according 
to Eq. (20) and estimates obtained using the QIFFT and hybrid method (noisy spectral peaks) 

The maximum difference between frequency of spectrum local maximum defined by Eq. (15) and 
obtained using the QIFFT estimator is bounded to a half of the apparent frequency resolution of 
spectral analysis. Therefore, the curve depicting results yielded by the QIFFT estimator presented 
in Fig. 7 never exceeds fs/(2NFFT)=8000/512=15.625 Hz. Contrary to the QIFFT, the 
instantaneous frequency estimates yielded by the hybrid method are usually totally inadequate 
and are not bounded to the half of the apparent frequency resolution of spectral analysis. It can 
be concluded than that proposed hybrid estimator satisfies both requirements defined on the 
beginning of subsection 2.2, because it allows for frequency estimation of the modulated tonal 
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components and provides totally inadequate results when the selected spectral maxima do not 
correspond to the tonal components. Although additional experiments may be carried out in order 
to examine the properties of proposed hybrid estimator more deeply (i.e. estimation accuracy in 
case of complex sinusoids, influence of frame length and segmentation window type used, etc.), 
we have focused here only on the verification of those properties which are of primary importance 
for considered application. 

3.2 Tonality measurements 

In order to verify the concept of employing two different instantaneous frequency estimators for 
tonality measuring, a signal having a frequency modulated sinusoidal component of varying SNR 
was considered. As the spectrum bin of highest energy may not represent the tonal component 
when the SNR is very low (see Fig. 2), in our experiments the lowest SNR was adjusted to 
− 3 dB. In the experiment the analysis was applied to the signal sampled at 8000 Sa/s rate, 
consisting of 24000 samples. The SNR of the sinusoidal components was constant in every 
segment of 8000 samples and equal to 30 dB, 3 dB and − 3 dB, respectively. The instantaneous 
frequencies of tonal component were estimated within 32 ms frames of the signal (N=256) and 
the hop size was adjusted to 16 ms (H=128). The spectrogram of analyzed signal together with a 
curve representing the true pitch of sinusoid, the results of instantaneous frequency estimation 
employing two considered estimators and the frequency distance calculated according to (10) are 
presented in Fig. 8. 
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FIGURE 8: Looking from the top: a part of spectrogram together with a curve representing 
instantaneous frequencies of tonal component, estimated frequencies using the QIFFT and hybrid 

method, and absolute frequency difference calculated according to (10). 
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It can be noted that when the SNR is equal to 30 dB the instantaneous frequencies estimated 

using the QIFFT and hybrid estimates are close to each other resulting in negligible ( )( )n
kf max∆

 

values. However, when the SNR decreases, the ( )( )n
kf max∆

 distance tends to have a higher mean 

value. This observation confirms that the absolute difference between frequencies estimated 
using the QIFFT and the hybrid method can be used as a measure of spectral components 
tonality [9]. 

Next, the influence of the hop size on the mean and maximum frequency distance ( )( )n
kf max∆

 was 

examined. The single sinusoidal component of − 3 dB SNR and constant frequency equal to 800 
Hz (sampling rate 8000 Sa/s) was generated and further analysed with the hop size ranging from 
0.125 ms (H=1) to 32 ms (H=256) with 1 ms (8 samples) step. For every selected hop size of the 

STFT analysis the arithmetic mean and maximum value of the vector containing all ( )( )n
kf max∆

 

values corresponding to the considered tonal component was calculated. The results are shown 
in Fig. 9.  
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FIGURE 9: The mean (left) and maximum (right) frequency distances ( )( )n
kf max∆

 obtained for 

sinusoids of constant frequency and SNR= − 3 dB SNR analyzed with various hop sizes 

The maximum value of frequency distance is the highest for hop size equal to one sample and 
decreases while the hop size increases to approximately N/4. This phenomenon is related to the 
properties of hybrid estimator which yields occasionally inadequate frequency estimates when the 
sinusoidal component of low SNR is analysed. Additionally, in the above-mentioned hop size 
range, the mean value of frequency distance is rather low. Thus, taking into account also 
computational complexity of the algorithm, the hop sizes below quarter of the frame length should 
be avoided. 

Considering hop size range from 60 to about 150 samples it can be observed, that the mean 

value of ( )( )n
kf max∆

 rises monotonically and then saturates beyond 2 Hz level. Adequately, the 

maximum value of frequency distance increases up to about 9 Hz, but saturates for hop size 
equal to approximately a half of the frame length. While the maximum values seem to be almost 
constant for higher hop sizes, the mean values tend to even slight decrease for the hop sizes 
longer than 200 samples. Therefore, the proposed criterion for tonal components detection and 
their tonality estimation would operate most efficiently when the hop size would be selected within 
range between ¼ to approximately ¾ of the frame length in the analysis. This observation is 
coherent with conclusions related to the results presented in Fig. 3. Although the curves 
presented in Fig. 9 would slightly vary depending on the frequency of analysed sinusoid, their 
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major character would be retained. Therefore, the presented considerations tend to be valid 
regardless the frequency of tonal component. 

In order to determine the tonality measure of a particular spectral component according to (12) 
the appropriate value of 

thd∆f  threshold must be selected. This threshold must be at least as 

high as the maximum value of frequency distance yielded by the algorithm providing that the tonal 
component is analysed. Since the maximum value of the frequency distance depends on the 

chosen hop size H (see Fig. 9) threshold 
thd∆f  may be selected in accordance to it. However, in 

the proposed approach it is assumed to be constant regardless the selected H value of the STFT 
analysis. Actually it was selected to be a half of the frequency width corresponding to a bin of 
zero-padded spectrum 

FFT
thd 2N

f
f s=∆

 (19) 

Further, a set of stationary and frequency modulated sinusoids of nominal frequency equal to 
120 Hz and SNR values ranging from 100 dB to − 20 dB with 2 dB step were generated and 
analyzed. The frequency deviation of modulated sinusoid was set to 20 Hz and the carrier 
frequency was modulated using sinusoid of 3 Hz frequency. The sampling rate was equal to 8000 
Sa/s, the frame length was selected to be equal to 32 ms (N=256) and hop size was adjusted to 
16 ms (H=128). Since the length of every analysed signal was equal to 3 s, resulting in a vector 
of FTM values corresponding to the sinusoid of a particular SNR, the arithmetic mean values of 
these vectors were determined. The results of experiment are presented in Fig. 10. 
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FIGURE 10: Mean values of FTM determined for pure and frequency modulated sinusoids of 
various SNR 

The mean FTM for tonal component of the SNR higher than approximately 40 dB is equal or 
close to the value of 1, because the instantaneous frequencies estimated using estimators (2) 
and (5) are almost identical to each other. In the SNR range from 40 dB to − 20 dB the mean 
FTM values gradually decrease indicating lower tonality of the considered spectral component. It 
can be observed that when the tonal component is totally masked with noise which is the case 
when SNR is equal to − 20 dB, the FTM is close to the value of 0. This confirms that the 
proposed tonality criterion is efficient in terms of distinguishing tonal from noisy spectral 
components. Additionally, the curves representing the mean FTM for a pure sinusoid and a 
frequency modulated one are practically identical to each other indicating that frequency 
modulation does not affect significantly the tonality measurements provided by the proposed 
method. 
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4. CONCLUSIONS 

A criterion for distinguishing tonal from noisy spectral components based on a comparison of their 
instantaneous frequencies estimated using two different methods was proposed and evaluated. 
Since one of the estimators was specially developed for application considered, the experiments 
revealing its properties were carried out. It was shown that the proposed hybrid estimator 
provides satisfactory accuracy of frequency estimation in case of the analysis of pure and 
modulated sinusoidal components. Regardless the way the tonal components changes its 
frequency (linearly or periodically) the MSE of the frequency estimation remains below 
reasonable threshold for the hybrid method. However, it yields inadequate estimation results 
when the spectral component corresponds to a noise. These two above-mentioned properties of 
the estimator engineered here were found to be essential for application of the developed tonality 
criterion (FTM). The experiments revealed that the absolute difference between frequencies 
estimated using the QIFFT method and the hybrid one is directly related to the SNR of the 
sinusoids analysed. It was shown that the investigated algorithm operates most efficiently when 
the hop size of analysis is chosen between ¼ to ¾ of the frame length. The experimental results 
proved that characteristics of FTM values versus SNR of sinusoidal component are almost 
identical to each other whenever the sinusoid of constant or modulated instantaneous frequency 
is analysed. The presented tonality measure may substitute the tonality estimators employed so 
far in the psychoacoustic models and may be used also in various applications requiring tonal 
components detection. 
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Abstract 
Noise spectrum estimation is a fundamental component of speech enhancement and speech 
recognition systems. In this paper we propose a new method for minimum tracking in Minimum 
Statistics (MS) noise estimation method. This noise estimation algorithm is proposed for highly non-
stationary noise environments. This was confirmed with formal listening tests which indicated that the 
proposed noise estimation algorithm when integrated in speech enhancement was preferred over 
other noise estimation algorithms. 
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1. INTRODUCTION 
Noise spectrum estimation is a fundamental component of speech enhancement and speech 
recognition systems. The robustness of such systems, particularly under low signal-to-noise ratio 
(SNR) conditions and non-stationary noise environments, is greatly affected by the capability to 
reliably track fast variations in the statistics of the noise. Traditional noise estimation methods, which 
are based on voice activity detectors (VAD's), restrict the update of the estimate to periods of speech 
absence. 
Additionally, VAD's are generally difficult to tune and their reliability severely deteriorates for weak 
speech components and low input SNR [1], [2], [3]. Alternative techniques, based on histograms in 
the power spectral domain [4], [5], [6], are computationally expensive, require much memory 
resources, and do not perform well in low SNR conditions. Furthermore, the signal segments used for 
building the histograms are typically of several hundred milliseconds, and thus the update rate of the 
noise estimate is essentially moderate. 
Martin (2001)[7] proposed a method for estimating the noise spectrum based on tracking the 
minimum of the noisy speech over a finite window. As the minimum is typically smaller than the mean, 
unbiased estimates of noise spectrum were computed by introducing a bias factor based on the 
statistics of the minimum estimates. The main drawback of this method is that it takes slightly more 
than the duration of the minimum-search window to update the noise spectrum when the noise floor 
increases abruptly. Moreover, this method may occasionally attenuate low energy phonemes, 
particularly if the minimum search window is too short [8]. These limitations can be overcome, at the 
price of significantly higher complexity, by adapting the smoothing parameter and the bias 
compensation factor in time and frequency [9]. A computationally more efficient minimum tracking 
scheme is presented in [10]. Its main drawbacks are the very slow update rate of the noise estimate in 
case of a sudden rise in the noise energy level, and its tendency to cancel the signal [1].In this paper 
we propose a new approach for minimum tracking , resulted improving the performance of  MS 
method. 
The paper is organized as follows. In Section II, we present the MS noise estimator. In Section III, we 
introduce an method for minimum tracking, and in section IV, evaluate the proposed method, and 
discuss experimental results, which validate its effectiveness. 
 

2. MINIMUM STATISTICS NOISE ESTIMATOR 
Let x(n) and d(n) denote speech and uncorrelated additive noise signals, respectively, where n is a 
discrete-time index. The observed signal y(n), given by y(n)=x(n)+d(n), is divided into overlapping 
frames by the application of a window function and analyzed using the short-time Fourier transform 
(STFT). Specifically, 
 

 

  (1) 
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Where k is the frequency bin index,  is the time frame index, h is an analysis window of size N (e.g., 
Hamming window), and M is the framing step (number of samples separating two successive frames). 
Let  and  denote the STFT of the clean speech and noise, respectively. 
For noise estimation in MS method, first compute the short time subband signal power  using 

recursively smoothed periodograms. The update recursion is given by eq.(2). The smoothing constant 
is typically set to values between . 
 

 
(2) 

The noise power estimate  is obtained as a weighted minimum of the short time power 
estimate  within window of D subband power samples [11], i.e. 

 

 
(3) 

 
 is the estimated minimum power and  is a factor to compensate the bias of the 

minimum estimate. The bias compensation factor depends only on known algorithmic parameters [7]. 
For reasons of computational complexity and delay the data window of length D is decomposed into U 
sub-windows of length V such that For a sampling rate of fs=8 kHz and a framing step M=64 typical 
window parameters are V=25 and U=4,thus D=100 corresponding to a time window of ((D-
1).M+N)/fs=0.824s. Whenever V samples are read, the minimum of the current sub-window is 
determined and stored for later use. The overall minimum is obtained as the minimum of past 
samples within the current sub-window and the U previous sub-window minima. 
In [7] shown that the bias of the minimum subband power estimate is proportional to the noise power 

 and that the bias can be compensated by multiplying the minimum estimate with the inverse of 

the mean computed for  . 
 

 
(4) 

 
Therefore to obtain  We must generate data of variance � , compute the smoothed 
periodogram (eq. (2)), and evaluate the mean and the variance of the minimum estimate. 
As discussed earlier, minimum of the smoothed periodograms, obtained within window of D subband 
power samples. In next section we propose a method to improve this minimum tracking. 

 
3. PROPOSED METHOD FOR MINIMUM TRACKING 
 

The local minimum in MS method was found by tracking the minimum of noisy speech over a search 
window spanning D frames. Therefore, the noise update was dependent on the length of the 
minimum-search window. The update of minimum can take at most 2D frames for increasing noise 
levels. A different non-linear rule is used in our method for tracking the minimum of the noisy speech 
by continuously averaging past spectral values [12] 
 

 

 

 

 

 

 

 

 

 
 

(5) 
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where  is the local minimum of the noisy speech power spectrum and  and  are 

constants which are determined experimentally. The lookahead factor  controls the adaptation time 

of the local minimum. Typically, we use , ,  and . Because Improve 
the minimum tracking in this method, the bias compensation factor decreases, as in MS method it is 
obtained  and in this method it is obtained . 
 

4. PERFORMANCE EVALUATION 
 
The performance evaluation of the proposed method (PM), and a comparison to the MS method, 
consists of three parts. First, we test the tracking capability of the noise estimators for non-stationary 
noise. Second, we measure the segmental relative estimation error for various noise types and levels. 
Third, we integrate the noise estimators into a speech enhancement system, and determine the 
improvement in the segmental SNR. The results are conformed by a subjective study of speech 
spectrograms and informal listening tests. 
The noise signals used in our evaluation are taken from the Noisex92 database [13]. They include 
white Gaussian noise (WGN), F16 cockpit noise, and babble noise. The speech signal is sampled at 8 
kHz and degraded by the various noise types with segmental SNR's in the range   [-5, 10] dB. The 
segmental SNR is defined by [14] 
 

 

(6) 

 
where  represents the set of frames that contain speech, 

and  its cardinality. The spectral analysis is implemented with Hamming windows of 256 samples 
length (32ms) and 64 samples frame update step. 
Fig. 1 plots the ideal (True), PM, and MS noise estimates for a babble noise at 0 dB segmental SNR, 
and a single frequency bin k = 5 (the ideal noise estimate is taken as the recursively smoothed 
periodogram of the noise , with a smoothing parameter set to 0.95). Clearly, the PM noise 
estimate follows the noise power more closely than the MS noise estimate. The update rate of the MS 
noise estimate is inherently restricted by the size of the minimum search window (D). By contrast, the 
PM noise estimate is continuously updated even during speech activity. 
Fig. 2 shows another example of the improved tracking capability of the PM estimator. In this case, 
the speech signal is degraded by babble noise at 5 dB segmental SNR. The ideal, PM, and MS noise 
estimates, averaged out over the frequency, are depicted in this figure. 
A quantitative comparison between the PM and MS estimation methods is obtained by evaluating the 
segmental relative estimation error in various environmental conditions. The segmental relative 
estimation error is defined by [15] 
 

 

(7) 

 

where  is the ideal noise estimate,  is the noise estimated by the tested method, and L 
is the number of frames in the analyzed signal. Table 1 presents the results of the segmental relative 
estimation error achieved by the PM and MS estimators for various noise types and levels. It shows 
that the PM method obtains significantly lower estimation error than the MS method. 
The segmental relative estimation error is a measure that weighs all frames in a uniform manner, 
without a distinction between speech presence and absence. In practice, the estimation error is more 
consequential in frames that contain speech, particularly weak speech components, than in frames 
that contain only noise. We therefore examine the performance of our estimation method when 
integrated into a speech enhancement system. Specifically, the PM and MS noise estimators are 
combined with the Optimally-Modified Log-Spectral Amplitude (OM-LSA) estimator, and evaluated 
both objectively using an improvement in segmental SNR measure, and subjectively by informal 
listening tests. The OM-LSA estimator [16], [17] is a modified version of the conventional LSA 
estimator [18-19], based on a binary hypothesis model. The modification includes a lower bound for 
the gain, which is determined by a subjective criterion for the noise naturalness, and exponential 
weights, which are given by the conditional speech presence probability [20, 21]. 
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FIGURE 1. Plot of true noise spectrum and estimated noise spectrum using proposed method and MS method 
for a noisy speech signal degraded by babble  noise at 0 dB segmental SNR, and a single frequency bin k = 5. 
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FIGURE 2. Ideal, proposed and MS average noise estimates for babble noise at 5 dB segmental SNR. 
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Babble Noise 

MS                         PM 

F16 Noise 

MS                     PM 

WGN Noise 

MS                     PM 

Input 
SegSNR 

(dB) 

0.401                0.397 

0.398                0.395 

0.427                0.422 

0.743                0.736 

0.192                  0.189 

0.197                  0.193 

0.231                 0.228 

0.519                  0.512 

0.147                 0.139 

0.170                 0.163 

0.181                 0.173 

0.241                 0.231 

-5 

0 

5 

10 

 
TABLE 1. Segmental Relative Estimation Error for Various Noise Types and Levels, Obtained Using the MS and 

proposed method (PM) Estimators. 
 

 

Babble Noise 

MS                        PM 

F16 Noise 

MS              PM 

WGN Noise 

MS              PM 

Input 
SegSNR 

(dB) 

3.254                3.310 

2.581                2.612 

2.648                2.697 

1.943                1.998 

6.879               6.924 

6.025               6.165 

5.214               5.298 

3.964               4.034 

8.213            8.285 

7.231            7.312 

6.215            6.279 

5.114            5.216 

-5 

0 

5 

10 

 
TABLE 2. Segmental SNR Improvement for Various Noise Types and Levels, Obtained Using the MS and 

proposed method (PM) Estimators. 

 
Table 2 summarizes the results of the segmental SNR improvement for various noise types and 
levels. The PM estimator consistently yields a higher improvement in the segmental SNR, than the 
MS estimator, under all tested environmental conditions. 
 

5. SUMMARY AND CONCLUSION 
 
In this paper we have addressed the issue of noise estimation for enhancement of noisy speech. The 
noise estimate was updated continuously in every frame using minimum of the smoothed noisy 
speech spectrum. Unlike the MS method, the update of local minimum was continuous over time and 
did not depend on some fixed window length. Hence the update of noise estimate was faster for very 
rapidly varying non-stationary noise environments. This was confirmed by formal listening tests that 
indicated significantly higher preference for our proposed algorithm compared to the MS noise 
estimation algorithm. 
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Abstract 

 
Audio-visual speech recognition (AVSR) using acoustic and visual signals of speech 
has received attention recently because of its robustness in noisy environments. 
Perceptual studies also support this approach by emphasizing the importance of visual 
information for speech recognition in humans. An important issue in decision fusion 
based AVSR system is the determination of the appropriate integration weight for the 
speech modalities to integrate and ensure the combined AVSR system’s performances 
better than that of the audio-only and visual-only systems under various noise 
conditions. To solve this issue, we present a genetic algorithm (GA) based optimization 
scheme to obtain the appropriate integration weight from the relative reliability of each 
modality. The performance of the proposed GA optimized reliability-ratio based weight 
estimation scheme is demonstrated via single speaker, mobile functions isolated word 
recognition experiments. The results show that the proposed scheme improves robust 
recognition accuracy over the conventional uni-modal systems and the baseline 
reliability ratio-based AVSR system under various signals to noise ratio conditions. 
 
Key words: Audio-visual speech recognition, side face visual feature extraction, audio visual decision fusion, 
Reliability-ratio based weight optimization, late integration

 
 

1. INTRODUCTION 

Many researchers were trying to design automatic speech recognition (ASR) systems which can 
understand human speech and respond accordingly [16]. However, the performances of the past and 
current ASR systems are still far behind as compared to human’s cognitive ability in perceiving and 
understanding speech [18]. The weaknesses of most modern ASR systems are their inability to cope 
robustly with audio corruption which can arise from various sources, for example environment noises 
such as engine noise or other people speaking, reverberation effects or transmission channel distortion 
etc. Thus one of the main challenges being faced by the ASR research community is how to develop ASR 
systems which are more robust to these kinds of corruptions that are typically encountered in real-world 
situations. One approach to this problem is to introduce another modality to complement the acoustic 
speech information which will be invariant to these sources of corruptions [18]. Visual speech is one such 
source, obviously not perturbed by the acoustic environment and noise. Such systems that combine the 
audio and visual modalities to identify the utterances are known as audio-visual speech recognition 
systems [18]. The first AVSR system was reported in 1984 by Petajan [19]. During the last decade more 
than hundred articles have appeared on AVSR [5, 6, 13, 18]. AVSR systems can enhance the 
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performance of the conventional ASR not only under noisy conditions but also in clean condition when the 
talking face is visible [20]. The major advantage of utilizing the acoustic and the visual modalities for 
speech understanding comes from “Complementarity” of the two modalities: The two pronunciations /b/ 
and /p/ are easily distinguishable with the acoustic signal, but not with the visual signal; on the other 
hand, the pronunciations /b/ and /g/ can be easily distinguished visually, but not acoustically [21] and, 
“synergy” : Performance of audio-visual speech perception can outperform those of acoustic-only and 
visual-only perception for diverse noise conditions [22]. Generally, the AVSR systems work by the 
following procedures. First, the acoustic and the visual signals of speech are recorded by a microphone 
and a camera, respectively. Then, each signal is converted into an appropriate form of compact features. 
Finally, the two modalities are integrated for recognition of the given speech. The integration can take 
place either before the two information sources are processed by a recognizer (early integration/feature 
fusion) or after they are classified independently (late integration/decision fusion). Some studies are in 
favor of early integration [1, 5, 6, 7, 13, 23], and other prefers late integration [2, 3, 4, 5, 7, 23, 24]. 
Despite of all these studies, which underline the fact that speech reading is part of speech recognition in 
humans, still it is not well understood when and how the acoustic and visual information are integrated. 
This paper takes the advantages of late integration on practical implementation issue to construct a 
robust AVSR system. The integration weight which determines the amount of contribution from each 
modality in decision fusion AVSR is calculated from the relative reliability measure of the two modalities 
[32]. In this work, the integration weight calculated from the reliabilities of each modality is optimized 
against the recognition accuracy using genetic algorithm. The performance of the proposed GA optimized 
reliability ratio-based weight estimation scheme is demonstrated via single speaker, mobile functions 
isolated word recognition experiments. An outline of the remainder of the paper is as follows. The 
following section explains the integration schemes in AVSR and the reason for decision fusion in this 
work. Section 3 describes our own recorded experimental database, audio and visual feature extraction 
schemes. How Genetic Algorithm can be used to obtain the appropriate integration weight from the 
relative reliability of two modalities for decision fusion is explained in section 4. Section 5 discusses the 
HMM training and recognition results. The discussion, conclusion and future direction of this work are 
outlined in the last section. 

 

 

2. APPROACHES FOR INFORMATION FUSION IN AVSR 
The primary focus of AVSR is to obtain the recognition performance which is equal to or better than the 
performance of any individual modality for various SNR conditions. Secondly, the use of audio-visual 
information for speech recognition is to improve the recognition performance with as high synergy of the 
modalities as possible [2]. Generally, while combining two modalities, the integrated system should show 
high synergy effect for a wide range of SNR conditions. On the contrary, when the fusion is not performed 
appropriately, we cannot expect complementarity and synergy of the two information sources and 
moreover, the integrated recognition performance may be even inferior to that of any of the uni-modal 
systems, which is called “attenuating fusion” [25]. 
 
 In general, the audio-visual information fusion can be categorized into feature fusion (or early integration) 
and decision fusion (or late integration), which are shown in figure 1. In feature fusion approach the 
features of two modalities are concatenated before given to the classifier for recognition, where as in 
decision fusion approach, the features of each modality are used for recognition separately and, then the 
outputs of the two classifiers are combined for the final recognition result [2]. Each approach has its own 
advantages and disadvantages. Most of the audio-visual speech recognition systems [1, 5, 6, 7, 13] are 
based on feature fusion. The main attraction of this approach is its computational tractability, since only a 
single classifier is used, and that existing procedures for training and testing of HMMs can be applied 
without significant modification [4, 26]. There are many advantages in implementing a noise-robust AVSR 
system using decision fusion. First, in the decision fusion approach it is relatively easy to employ an 
adaptive weighting scheme for controlling the amounts of the contributions of the two modalities to the 
final recognition [2, 5]. Second, the decision fusion allows flexible modeling of the temporal coherence of 
the two information streams, whereas the feature fusion assumes a perfect synchrony between the 
acoustic and the visual feature sequences [2]. It is proved [27] that there exists an asynchronous 
characteristic between the acoustic and the visual speech: The lips and the tongue sometimes start to 
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move up to several hundred milliseconds before the acoustic speech. Finally and most importantly, in the 
feature fusion approach the combination of the acoustic and the visual features results in high 
dimensional data sets, which makes training HMMs difficult. Since we have very limited training samples, 
practical implementation of feature fusion is impossible. Hence this work focuses on the decision fusion 
for AVSR system 
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FIGURE 1: AVSR integration schemes. (a) Feature fusion. (b) Decision fusion 

 
 

3. AUDIO-VISUAL FEATURES EXTRACTION SCHEMES 
 
3.1. Experimental database 

This paper focuses on a slightly different type of AVSR system which is mainly useful for mobile 
applications. Most of the past and current AVSR systems [2, 3, 4, 5, 6, 7] use the mouth information 
extracted from frontal images of the face, but these systems cannot be used directly for mobile 
applications because the user needs to hold a handset with a camera in front of their mouth at some 
distance, which may be unnatural and inconvenient for conversation. As the distance between the mouth 
and the mobile phone increases, SNR decreases which may worsen the recognition accuracy. If the 
mouth information can be taken by using a handset held in the usual way for telephone conversation this 
would greatly improve the usefulness of the system [1]. This paper focuses on this point of view and 
proposes an audio-visual speech recognition system using side-face images, assuming that a small 
camera can be installed near the microphone of the mobile device in the future.  
 
Potamianos et al. has demonstrated that using mouth videos captured from cameras attached to 
wearable headsets produced better results as compared to full face videos [28]. With reference to the 
above, as well as to make the system more practical in real mobile application, around 70 commonly 
used mobile functions isolated words were recorded 25 times each by a microphone and web camera 
located approximately 10-15 cm away from single speaker’s right cheek mouth region. Samples of the 
recorded side-face videos are shown in figure 2. Advantage of this kind of arrangement is that face 
detection, mouth location estimation and identification of the region of interest etc. are no longer required 
and thereby reducing the computational complexity [9]. Most of the audiovisual speech databases 
available are recorded in ideal studio environment with controlled lighting or kept some of the factors like 
background, illumination, distance between camera and speaker’s mouth, view angle of the camera etc. 
as constant. But in this work, the recording was done purposefully in the office environment on different 
days with different values for the above factors and also to include natural environment noises such as 
fan noise, bird’s sounds, sometimes other people speaking and shouting sounds. 
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FIGURE 2: Samples of recorded side-face images 
 

 

 
3.2. Acoustic features extraction 

Most of the speech recognition systems [1, 2, 3, 4, 5] use the so-called Mel Frequency Cepstral 
Coefficients (MFCC) and its derivatives as acoustic features for recognition since it shows good 
recognition performance. This work also adapts, MFCC and its derivatives as acoustic features for 
recognition. This section briefly reviews the MFCC feature extraction process. 
 
Assume that s(k) represents a speech signal that is multiplied by a hamming window w(k) to obtain a 
short segment Vm(k) of speech signal defined as: 
 

( ). ( ) ,.... 1
( )

0
m

s k w k m if k m m N
V k

else

− = + −
= 


                                  ----------                  (1) 

 
Where N is the window length and m is the overlapping segment length. [In this work N=256 samples (or 
32ms) and m=100 samples (or 12.5ms) with the sampling frequency of fs=8000Hz]. The short speech 
segment Vm(k) is transformed from time domain to frequency domain by applying an N-point Fast Fourier 
Transform (FFT). The resulting amplitude spectrum is | V (n) |. For further processing, only power 
spectrum of the signal is interested, which is computed by taking squares of | V (n) |. Since V (n) is 
periodic and symmetry, only the values | V (n) |

2
 . . . | V (N/2) |

2
 are used, giving a total number of N/2 + 1 

value. Next, the coefficients of the power spectrum | V (n) |
2
 are transformed to reflect the frequency 

resolution of the human ear. A common way to do this is to use K triangle-shaped windows in the spectral 
domain to build a weighted sum over those power spectrum coefficients | V (n) |

2
 which lie within the 

window. We denote the windowing coefficients as 
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η

= − =                                                                 ----------               (2) 

 
In this work, the window coefficients are computed with fs=8000Hz, N=256, and K=22. This gives a new 
set of coefficients G(k) ; k = 0, 1, ...K − 1 the so-called mel spectral coefficients 
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After this, a discrete cosine transform (DCT) is applied to log of mel spectral coefficients. Thus, the Mel 
frequency cepstral coefficients for frame m can be expressed as 
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Where 0 ≤ q ≤ Q − 1 and Q=12 is the desired number of cepstral features. 
 
The segmented speech signal’s energy is also considered as one of the features in this work, which is 
computed as 
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In order to better reflect the dynamic changes of the MFCC in time, usually the first and second 
derivatives in time are also computed, i.e. by computing the difference of two coefficients lying τ times 
indices in the past and in the future of the time index. The first derivative is computed as: 
 

( ) ( ) ( ) ; 0,1,.... 1
m m m
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The second derivative is computed from the difference of the first derivatives: 
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The time interval τ is taken as 4. 

 
 
3.3. Visual features extraction 

Visual features proposed in the literature of AVSR can be categorized into shape-based, pixel-based and 
motion-based features [29]. Pixel-based and shape based features are extracted from static frames and 
hence viewed as static features. Motion-based features are features that directly utilize the dynamics of 
speech [11, 12]. Dynamic features are better in representing distinct facial movements and static features 
are better in representing oral cavity that cannot be captured either by lip contour or motion-based 
features. This work focuses on the relative benefits of both static and dynamic features for improved 
AVSR recognition. 

 

 
3.3.1. DCT based static feature extraction 

G. Potamianos et al. [13] reported that intensity based features using discrete cosine transform (DCT) 
outperform model-based features. Hence DCT is employed in this work to represent static features. Each 
side-face mouth region video is recorded with a frame rate of 30 frames/sec and [240 x 320] pixel 
resolutions. Prior to the image transform the recorded video frames {Vt(a, b, c); 1≤ t ≤ 60; 1 ≤ a ≤ 240; 1 ≤ 
b ≤ 320; 1 ≤ c ≤ 3 } are converted to equivalent RGB image. This RGB image is converted to the YUV 
color space and only the luminance part (Y) of the image is kept as such since it retains the image data 
least affected by the video compression [14]. The resultant Y- image was sub sampled to [16 x 16] and 
then passed as the input {At(m, n); 1 ≤ t ≤ 60; 1 ≤ m ≤ 16; 1 ≤ n ≤ 16} to the DCT. The images of [16 x 16] 
pixels provided slightly better performance than [32 x 32] pixel images [14], and hence in this work [16 x 
16] pixel images are taken as input to the DCT. 
 
The DCT has the property that, most of the visually significant information about the image is 
concentrated in just a few coefficients of the DCT. The two dimensional DCT of an m-by-n image 
sequence {At(m, n); 1 ≤ t ≤ 60; 1 ≤ m ≤ 16; 1 ≤ n ≤ 16} is defined as: 
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Where, M = N = 16;    0 ≤ p ≤ M – 1;   0 ≤ q ≤ N − 1; and 
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The DCT returns a 2D matrix Bt(p, q) of coefficients and moreover, the triangle region feature selection 
outperforms the square region feature selection, as those include more of the coefficients corresponding 
to low frequencies [14]. Hence in this work, [6 x 6] triangle region DCT coefficients without the DC 
component are considered as 20 static features of a frame. 

 

 
3.3.2. Motion segmentation based dynamic feature extraction 

In this work, dynamic visual speech features which show the side-face mouth region movements of the 
speaker are segmented from the video using an approach called motion history images (MHI) [11]. MHI is 
a gray scale image that shows where and when movements of speech articulators occur in the image 
sequence. 
 
Let {At(m, n); 1 ≤ t ≤ 60; 1 ≤ m ≤ 16; 1 ≤ n ≤ 16} be a luminance part (Y) image sequence, the difference of 
frames is defined as 
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Where At(m, n) is the intensity of each pixel at location (m, n) in the t

th
 frame and DIFt(m, n) is the 

difference of consecutive frames representing region of motion. Binarization of the difference image 
DIFt(m, n) over a threshold τ is 
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The value of the threshold τ is optimized through experimentation. Finally MHI (m, n) is defined as 
 

1

1
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N

t
t
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−

=
= ×U                                                                ------------           (11) 

 
Where N represents the number of frames used to capture the side-face mouth region motion. In 
equation (11), to show the recent movements with brighter value, the binarized version of the DOF is 
multiplied with a ramp of time and integrated temporally [11]. Next, DCT was applied to MHI (m, n) and 
the transformed coefficients are obtained. Similar to static feature extraction, only [6 x 6] triangle region 
DCT coefficients without DC component are considered as the dynamic features. Finally, the static and 
dynamic features are concatenated to represent visual speech. 
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4. DECISION FUSION WITH GA OPTIMIZED RELIABILITY RATIO-BASED 
INTEGRATION 
The main focus of this work is the estimation of optimal integration weight for the modalities in the 
decision fusion. After the acoustic and visual subsystems perform recognition separately, their outputs 
are combined by a weighted sum rule to produce the final decision. For a given audio-visual speech test 
datum of OA and OV the recognized utterance C∗ is given by [5], 
 

{ }*
arg max log ( / ) (1 ) log ( /

i i

A A V V
i

C P O P Oγ λ γ λ= + −                             ----------             (12)                  

 

Where 
i

A
λ  and 

i

V
λ  are the acoustic and the visual HMMs for the i

th
 utterance class, respectively, and 

log ( / )
i

A A
P O λ  & log ( / )

i

V V
P O λ  are their outputs. The weighting factor γ (0 ≤ γ ≤ 1) determines how 

much each modality contributes to the final decision. If it is not estimated appropriately we cannot expect 
complementarity and synergy of the two information sources and moreover, the combined recognition 
performance may be even inferior to that of any uni-modal systems [25]. 
 
One simple solution to this problem is assigning a constant weight value over various SNR conditions or 
manual determination of the weight [30]. In some other work, the weight is determined from SNR by 
assuming that SNR of the acoustic signal is known which is not always a feasible assumption [4]. Indeed, 
some researchers determine the weight by using an additional adaptation data [31]. Finally, the most 
popular approach among such schemes is the reliability ratio (RR)-based method in which the integration 
weight is calculated from the relative reliability measures of the two modalities [32]. This work proposes a 
Genetic Algorithm based optimization scheme to determine appropriate integration weight from the 
relative reliability measures of the two modalities, which ensures complementarity and synergy of AVSR 
without a priori knowledge of the SNR or additional adaptation data. The following subsections briefly 
explain the baseline reliability ratio - based integration method [32] and the proposed GA optimized 
reliability ratio - based integration procedure to determine the appropriate integration weight from the 
reliability measures of acoustic and visual classifiers. 

 

 
4.1. Baseline reliability ratio - based integration 

The reliability of each modality can be measured from the outputs of the corresponding HMMs. When the 
acoustic speech is not corrupted by any noise, there are large differences between the acoustic HMMs 
output or else the differences become small. Considering this observation, the reliability of a modality is 
defined by the most appropriate and best in performance [2] 
 

1

1
(max log ( / ) log ( / ))

1

N
j i

m
ji

c

S P O P O
N

λ λ
=
∑= −

−
                                         -----------             (13) 

 
Which means the average differences between the maximum log-likelihood and the other ones and Nc is 
the number of classes being considered to measure the reliability of each modality m � {A, V}. In this 
case, Nc is 70 i.e. all class recognition hypotheses are considered to measure the reliability. Then, the 
integration weight γ can be calculated by [32] 
 

A

A V

S

S S
γ =

+
                                                                                                        -----------           (14) 

 
Where SA and SV are the reliability measure of the outputs of the acoustic and visual subsystems, 
respectively. 
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4.2. Proposed GA optimized reliability ratio - based integration 

The audio-visual integration method proposed in sections 4.1 can improve the recognition accuracy as 
compared to the audio-only over certain SNR conditions. This may not be the optimal method of 
integration weight estimation since that did not show performance improvement at all SNRs. This was 
experimentally proved in this work for the noisy speech data. To overcome this problem and ensure 
performance improvement at all SNR conditions, this work proposes a method which optimizes the 
integration weight estimated in section 4.1 by using genetic algorithm. 
 
The genetic algorithm is a method for solving both constrained and unconstrained optimization problems. 
It is built on the principles of evaluation via natural selection: an initial population of individual is created 
and by iterative application of the genetic operators (selection, crossover, mutation) an optimal solution is 
reached according to the defined fitness function. The procedure of the proposed algorithm is as follows: 
 
Step 1: Initialization: Generate a random initial population of size 20. 
 
Step 2: Fitness evaluation: Fitness of all the solutions in the populations is evaluated. The steps for 
evaluating the fitness of a solution are given below: 
 
Step 2a: Assume the matrix P of size [Nc × Nc] with all zero values. Where Nc is the Number of utterance 
class. 
 
Step 2b: class = 1 : No of class (Nc = 70). 
 
Step 2c: test datum = 1 : No of test datum (Nts = 5). 
 

Step 2d: Get the acoustic and visual subsystems log likelihood log ( / )
i

A A
P O λ and log ( / )

i

V V
P O λ ;   

respectively, for the class and test datum given in steps 2b & 2c. 
 
Step 2e: Find the maximum value of acoustic log likelihood  
i.e., amax = max (sort (log P (OA /λA

i
)), decend) for the class and test datum given in steps 2b & 2c. 

 
Step 2f: Find the maximum value of visual log likelihood  
i.e., vmax = max (sort (log P (OV /λV

i
)), decend) for the class and test datum given in steps 2b & 2c. 

 
Step 2g: Compute the acoustic reliability SA as: 
 

1

1
( max log ( / ))

1

cN
i

A A A
i

c

S a P O
N

λ
=
∑= −

−
 

 
Where Nc is the number of classes being considered. 
 
Step 2h: Compute the visual reliability SV as: 
 

1

1
( max log ( / ))

1

cN
i

V V V
i

c

S v P O
N

λ
=
∑= −

−
 

 
Step 2i: Estimate the integration weight γ as: 

A

A V

S
x

S S
γ

 
= ×  

+ 
 

According to the solution x. 
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Step 2j: Integrate the log likelihoods as follows 
 

{ }arg max log ( / ) (1 ) log ( /
i i

A A V V
i

C P O P Oγ λ γ λ= + −  

 
Using the estimated integration weight value γ. 
 
Step 2k: Find the maximum value and its corresponding index in C. 
 
Step 2l: Increment the value of matrix P according to the class and index of C as follows 
 

P (class, index) = P (class, index) + 1 
 
Step 2m: Go to step 2c until all the test datum are over. 
 
Step 2n: Go to step 2b until all the classes are over. 
 
Step 2o: The recognition accuracy or fitness value is defined as 
 

( )
R e 100

( )

d ia g P
cogn ition A ccuracy

P

∑

∑ ∑
= ×  

 
Step 3: Updating Population: Two best solutions in the current population are forwarded to the next 
generation parents without any changes, the remaining solutions in the new population are generated 
using crossover and mutation. 
 
Step 4: Termination: Repeat steps 2 to 3 until the algorithm reaches the maximum number of iterations. 
 
The final best fitness value gives the maximum recognition accuracy and its corresponding solution gives 
best integration weight multiplier to obtain the appropriate integration weight for decision fusion. 

 
 

5. HMM TRAINING AND RECOGNITION RESULTS 
The bimodal decision fusion speech recognition system using side-face mouth region image is shown in 
figure 3. Both speech and side-face mouth region images are simultaneously recorded using low cost 
microphone and web camera. Audio signals are sampled at 8 kHz with 16-bit resolution. A single frame 
contains 32 milliseconds speech samples and the frame window proceeds by 12.5 milliseconds. The 
12th-order MFCCs, the normalized energy and their delta terms are used for the acoustic features. 
Further, the cepstral mean subtraction (CMS) technique was applied to remove the channel distortion 
contained in the speech samples. Visual signals focusing side-face mouth region images are recorded 
with a frame rate of 30 frames/sec and [240 x 320] pixel resolutions. This work involves decision fusion 
and hence there is no frame rate synchronization problem between the acoustic and visual speech 
features. The static visual speech features are computed via DCT image transform approach and 
dynamic visual speech features are computed via MHI approach. The dynamic features are computed for 
the whole word not for individual frames. Finally, the static and dynamic features are concatenated to 
represent visual speech. 
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FIGURE 3: Audio-Visual decision fusion speech recognition system using mouth region side-face images 

 

 
5.1. HMM Recognizer 

HMM is a finite state network based on stochastic process. The left-right HMM is a commonly used 
classifier in speech recognition, since it has the desirable property that it can readily model the time-
varying speech signal [16]. This work also adopts left-right continuous HMMs having Gaussian mixture 
models (GMMs) in each state. The whole- word model which is a standard approach for small vocabulary 
speech recognition task was used. The number of states in each HMM and number of Gaussian functions 
in each GMM are set to 10 and 6 respectively, which are determined experimentally. The initial 
parameters of the HMMs are obtained by uniform segmentation of the training data onto the states of the 
HMMs and iterative application of the segmental k-means algorithm and the Viterbi alignment. For 
training the HMMs, the standard Baum-Welch algorithm was used [16]. The training was terminated when 
the relative change of the log-likelihood value is less than 0.001 or maximum number of iteration is 
reached, which is set to 25. 
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SNR 

Audio 
only 
(%) 

Visual 
only 
(%) 

AV 
Baseline-RR 

 (%) 

AV GA 
Optimized-RR 

(%) 

Optimum 
Weight 
γ 

 
20 dB 

10 dB 

5 dB 

0 dB 

-5 dB 

-10 dB 

 
94.86 

50 

13.71 

2.86 

1.43 

1.43 

 
54 

54 

54 

54 

54 

54 

 
98 

68.57 

32 

14.57 

10 

8 

 
98.29 

78 

66.57 

58 

56 

54.86 

 
0.91 

0.25 

0.07 

0.04 

0.02 

0.01 

Average (%) 

(-10dB ~20 dB) 

(-10dB ~ 5 dB) 

 
27.38 

4.86 

 
54 

54 

 
38.52 

16.14 

 
68.82 

58.86 

 

 
TABLE 1: Audio - only, visual-only, audio-visual speech recognition accuracies 

 

 
5.2. Results 

The proposed GA optimized reliability ratio-based integration algorithm has been tested on single 
speaker, seventy mobile functions isolated word. The dataset was recorded in an office environment with 
background noise. Each word was recorded 25 times, 80% of which have been used for training and 20% 
for testing. The recorded noisy acoustic signal is again artificially degraded with additive white Gaussian 
noise at SNRs of 20, 10, 5, 0, -5, and -10dB. As mentioned earlier, the main focus of this work is 
estimating the optimal integration weight for the modalities and in turn maximizing the synergy effect. 
 
Table 1 shows recognition accuracies obtained by the audio-only, visual-only, audio-visual baseline 
reliability ratio, and the proposed bimodal system at various SNR conditions. Similarly figure 4 compares 
the recognition performance of all the systems. From the results, the following observations were made, 
 
1. The audio-only recognition system shows nearly 95% for the recorded real time noisy speech at 20dB 
SNR but, as the speech becomes more noisy, its performance is degraded sharply; the recognition 
accuracy is even less than 2% at -5 and -10dB SNR conditions. 
 
2. The visual-only system shows 54%, recognition accuracy at all SNRs. 
 
3. The baseline reliability ratio-based method shows synergy effect only at 20 and 10dB SNR conditions 
but, in the remaining SNR conditions (i.e., -10dB ∗ 5dB) their performances are inferior to that of visual-
only system i.e. they show attenuation fusion at these SNR conditions. 
 
4. But, the proposed GA optimized reliability ratio-based bimodal system shows synergy effect at all SNR 
conditions. The amount of synergy at all SNRs is plotted in figure 5. The maximum synergy of 24% occurs 
at 10dB SNR. 
 
5. Compared to the acoustic-only system, relative recognition performance by the proposed bimodal 
system is 41.44% on average at all SNR conditions. Under high-noise conditions (i.e., -10dB ∗ 5dB), 
relative recognition performance is 54%. 
 
6. Similarly, compared to the baseline reliability ratio-based system, relative recognition performance by 
the proposed bimodal system is 30.3% on average at all SNR conditions. Under high-noise conditions 
(i.e., -10dB ∗ 5dB), relative recognition performance is 42.72%, which demonstrates that the noise 
robustness of recognition is achieved by the proposed system. 
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FIGURE 4: Recognition performance of the uni-modal and bimodal systems 
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FIGURE 5: Synergy effect of proposed GA optimized RR-based system on various SNR 
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6. DISCUSSION AND CONCLUSION 
In this paper, a GA optimized reliability ratio-based integration weight estimation scheme for decision 
fusion AVSR system is proposed. The proposed system uses an audio-visual speech data base 
developed by us, which extracts visual features from the side-face mouth region images rather than 
frontal face images to focus on mobile applications. Generally, the dynamic visual speech features are 
obtained by derivatives of static features [14], but in this work the dynamic features are obtained via MHI 
approach and concatenated with static features to represent the visual speech. For evaluating the 
proposed method, the recognition accuracy is compared with the related method called baseline reliability 
ratio-based method in section 5.2. Results show that the proposed method significantly improves the 
recognition accuracy at all SNR conditions as compared to the baseline reliability ratio-based method. At 
low SNR, baseline reliability ratio-based method shows very poor recognition accuracy. But the proposed 
method solves this issue and improves the recognition accuracy considerably. Our future work needs to 
address the following issues: 
 

1. The baseline reliability ratio-based system show “attenuating fusion” on high-noise conditions 
(i.e., -10dB 5dB). Therefore an effective denoising algorithm is to be developed to improve the 
performance further. 

 
2. Moreover, this work was done on a single speaker, small vocabulary mobile function isolated 

words recognition task. In practice to cover all the recent mobile applications this work needs to 
be extended to multi speaker, medium size vocabulary, and continuous word recognition task. 
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Abstract 

 
The spectral analysis of non uniform sampled data sequences using Fourier 
Periodogram method is the classical approach.In view of data fitting and 
computational standpoints why the Least squares periodogram (LSP) method is 
preferable than the “classical” Fourier periodogram and as well as to the frequently-
used form of LSP due to Lomb and Scargle is explained. Then a new method of 
spectral analysis of nonuniform data sequences can be interpreted as an iteratively 
weighted LSP that makes use of a data-dependent weighting matrix built from the 
most recent spectral estimate. It is iterative and it makes use of an adaptive (i.e., 
data-dependent) weighting, we  refer to  it  as  the iterative adaptive approach 
(IAA).LSP and IAA are nonparametric methods that can be used for the spectral 
analysis of general data sequences with both continuous and discrete spectra. 
However, they are most suitable for data sequences with discrete spectra (i.e., 
sinusoidal data), which is the case we emphasize in this paper. Of the existing 
methods for nonuniform sinusoidal data, Welch, MUSIC and ESPRIT methods 
appear to be the closest in spirit to the IAA proposed here. Indeed, all these 
methods make use of the estimated covariance matrix that is computed in the first 
iteration of IAA from LSP. Comparative study of LSP with MUSIC and ESPRIT 
methods are discussed. 
  
Keywords: A Nonuniform sampled data, periodogram, least-squares method, iterative adaptive approach, 

Welch, Music and Esprit spectral analysis. 
 
  

 
 

1. INTRODUCTION 

Let the data sequence { }N

nnty
1

)(
=

 consists of N number of samples whose spectral analysis is our 

goal. We assume that the observations { }N

nnt 1=
 are given, ),...1()( NnRty n =ε  and that a possible 
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nonzero mean has been removed from{ }N

nnty
1

)(
=

, so that∑
=

=
N

n

nty
1

0)( . We will also assume 

throughout this paper that the data sequence consists of a finite number of sinusoidal components 
and of noise, which is a case of interest in many applications. Note that, while this assumption is not 
strictly necessary for the nonparametric spectral analysis methods discussed in this paper, these 
methods perform most satisfactorily when it is satisfied. 

2. MOTIVATION FOR THE NEW ESTIMATOR 

There are two different non parametric approaches to find the spectral analysis of nonuniform data 
sequences. First is the classical periodogram approach and the second is Least Squares 
periodogram approach. The proposed enhanced method of Iterative adaptive approach is explained. 
 
2.1 Classical Periodogram Approach: The classical periodogram estimate for the power spectrum 

of non uniformly sampled data sequence { }N

nnty
1

)(
=

of length N can be interpreted by  
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−=ω          (1)  

           Where ω is the frequency variable and where, depending on the application, the 
normalization factor might be different from 1/N (such as 1/N

2
, see, e.g., [1] and [2]). It can be 

readily verified that can be obtained from the solution to the following least-squares (LS) data fitting 
problem: 
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          (3) 
Minimization of the first term in (3) makes sense, given the sinusoidal data assumption made 
previously. However, the same cannot be said about the second term in (3), which has no data 
fitting interpretation and hence only acts as an additive data independent perturbation on the first 
term. 
 
2.2 The LS Periodogram: It follows from the discussion in the previous subsection that in the case 
of real-valued (sinusoidal) data, considered in this paper, the use of Fourier Periodogram is not 
completely suitable, and that a more satisfactory spectral estimate should be obtained by solving the 
following LS fitting problem: 
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    (4) 

The dependence of   α and ω can be eliminated using a = α cos (φ) ; b= -α sin(φ)       (5)  
so that  LS criterion can be written as  
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The solution to the minimization problem in (6) is well known to be   rR
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The power of the sinusoidal frequency component ω  Can be given as  
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             (10) 
Hence the periodogram for Least Squares Criterion can be given as  

   )()()(
1

)( ωωωω rRr
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p
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LSP =     (11) 

The LSP has been discussed, for example, in [3]–[8], under different forms and including various 
generalized versions. In particular, the papers [6] and [8] introduced a special case of LSP that has 
received significant attention in the subsequent literature. 
 
 2.3 Iterative Adaptive Approach: The algorithm for the proposed estimate is discussed as with the 
notations. Let  denote the step size of the grid considered for the frequency variable, and let 

ω

ω

∆
= maxK denote the number of the grid points needed to cover the frequency interval  , 

where  denotes the largest integer less than or equal to x  ; also, let ωω ∆= kk for k=1,…,K. 
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Using this notation we can write the Least squares criterion in (6) as follows in the vector form at, 

kωω =
 

    

2

KKAY θ−
      (13) 

Where   denotes the Euclidean norm. The LS estimate of  in (7) can be rewritten as 
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In addition to the sinusoidal component with frequency kω ,the data of Y also consists of other 

sinusoidal components with frequencies different from .kω  as well as noise. Regarding the latter, 

we do not consider a noise component of explicitly, but rather implicitly via its contributions to the 

data spectrum at ; for typical values of the signal-to-noise ratio, these noise contributions to 
the spectrum are comparatively small. Let us define 
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which can be thought of as the covariance matrix of the other possible components in Y, besides the 

sinusoidal component with frequency kω  considered in (13). 

 In some applications, the covariance matrix of the noise component of Y is known (or, 
rather, can be assumed with a good approximation) to be 
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In such cases, we can simply add∑ to the matrix kQ  in (16).Assuming kQ that is available, and 

that it is invertible, it would make sense to consider the following weighted LS (WLS) criterion, 
instead of (13), 
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It is well known that the estimate of  obtained by minimizing (18) is more accurate, under quite 

general conditions, than the LS estimate obtained from (13).Note that a necessary condition for  
to exist is that (2K-1)>N, which is easily satisfied in general. 
 The vector that minimizes (18) can be given by 
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Similar to that of (11) the IAA estimate which makes us of Weighted Least Squares an be given by 
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The IAA estimate in (20) requires the inversion of NXN matrix kQ
for k=1, 2,…, K and also N≥1 

which is computationally an intensive task. 
 To show how we can simply reduce the computational complexity of (19), let us introduce 
the matrix 
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A simple calculation shows that 
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To verify this equation, premultiply it with 

The ψ  in (21) and observe that kk

T

kkkkkk AQADAAAQ
11 −− +=ψ  

         ( )kk

T

kkkk AQADAIA
1−+=        (23) 

Inserting (22) in (19) yields the another expression for the IAA estimate  
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This is more efficient than in (19) computationally. 
 

2.4 Demerits of Fourier Periodogram and LSP:   
The spectral estimates obtained with either FP or LSP suffer from both local and global (or distant) 
leakage problems. Local leakage is due to the width of the main beam of the spectral window, and it 
is what limits the resolution capability of the periodogram. Global leakage is due to the side lobes of 
the spectral window, and is what causes spurious peaks to occur (which leads to “false alarms”) and 
small peaks to drown in the leakage from large peaks (which leads to “misses”). Additionally, there 
is no satisfactory procedure for testing the significance of the periodogram peaks. In the uniformly 
sampled data case, there is a relatively well-established test for the significance of the most 
dominant peak of the periodogram; see [1], [2], and [13] and the references therein. In the 
nonuniform sampled data case, [8] (see also [14] for a more recent account) has proposed a test 
that mimics the uniform data case test mentioned above. However, it appears that the said test is 
not readily applicable to the nonuniform data case; see [13] and the references therein. As a matter 

of fact, even if the test were applicable, it would only be able to decide whether  are white 
noise samples, and not whether the data sequence contains one or several sinusoidal components 
(we remark in passing on the fact that, even in the uniform data case, testing the existence of 
multiple sinusoidal components, i.e., the significance of the second largest peak of the periodogram, 
and so forth, is rather intricate [1], [2]). The only way of correcting the test, to make it applicable to 
nonuniform data, appears to be via Monte Carlo simulations, which may be a rather computationally 
intensive task (see [13]) The main contribution of the present paper is the introduction of a new 
method for spectral estimation and detection in the nonuniform sampled data case, that does not 
suffer from the above drawbacks of the periodogram (i.e., poor resolution due to local leakage 
through the main lobe of the spectral window, significant global leakage through the side lobes, and 
lack of satisfactory tests for the significance of the dominant peaks). A pre- view of what the paper 
contains is as follows. 
  Both LSP and IAA provide nonparametric spectral estimates in the form of an estimated 

amplitude spectrum (or periodogram ). We use the frequencies and amplitudes corresponding to 

the dominant peaks of  (first the largest one, then the second largest, and so on) in a Bayesian 
information criterion see, e.g., [19] and  the  references therein, to  decide which peaks we should 
retain and which ones we can discard. The combined methods, viz. LSP   BIC and IAA   BIC, 
provide parametric spectral estimates in the form of a number of estimated sinusoidal components 
that are deemed to fit the data well. Therefore, the use of BIC in the outlined manner not only 
bypasses the need for testing the significance of the periodogram peaks in the manner of [8] (which 
would be an intractable problem for RIAA, and almost an intractable one for LSP as well—see [13]), 
but it also provides additional information in the form of an estimated number of sinusoidal 
components, which no periodogram test of the type discussed in the cited references can really 
provide. 
 Finally, we present a method for designing an optimal sampling pattern that minimizes an 
objective function based on the spectral window. In doing so, we assume that a sufficient number of 
observations are already available, from which we can get a reasonably accurate spectral estimate. 
We make use of this spectral estimate to design the sampling times when future measurements 
should be per- formed. The literature is relatively scarce in papers that ap- proach the sampling 
pattern design problem (see, e.g., [8] and [20]). One reason for this may be that, as explained later 
on, spectral window-based criteria are relatively in- sensitive to the sampling pattern, unless prior 
information (such as a spectral estimate) is assumed to be available—as in this paper. Another 
reason may be the fact that measure- ment plans might be difficult to realize in some applications, 
due to factors that are beyond the control of the experimenter. However, this is not a serious 
problem for the sampling pattern design strategy proposed here which is flexible enough to tackle 
cases with missed measurements by revising the measurement plan on the fly.  
 The amplitude and phase estimation (APES) method, proposed in [15] for uniformly 
sampled data, has significantly less leakage (both local and global) than the periodogram. We follow 
here the ideas in [16]–[18] to extend APES to the nonuniformly sampled data case. The so-obtained 
generalized method is referred to as RIAA for reasons explained in the Abstract. 
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2.5 The Iterative Adaptive Algorithm: The proposed algorithm for power spectrum estimation can 
be explained as follows 
 

• Initialization: Using the Least Squares method in (13) obtain the initial estimates of 
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      Until a given number of iterations are performed. 

• Periodogram calculations: 
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3. PROPOSED SYSTEM AND SIMULATED DATA:  

    The system model for the proposed algorithm is shown in Figure 1. 

 

 

 
 

 
    FIGURE 1: Proposed system model for the simulated data. 

 
The system model for the proposed algorithm is shown in Figure 1. We consider a data 
sequence consisting of M=3 sinusoidal components with frequencies 0.1, 0.4 and 0.41 Hz, and 
amplitudes 2,4 and 5, respectively. The phases of the three sinusoids are independently and 

uniformly distributed over [ ]π2,0 and the additive noise is white normally distributed with mean 

of 0 and variance of 
2σ =0.01. We define the signal-to-noise ratio (SNR) of each sinusoid as 
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Where mα  is the amplitude of the m
th
 sinusoidal component hence SNR1=23 dB, SNR2=29 dB and 

SNR3= 31 dB in this simulation example. The input data sequence for the system model is as 
follows 

  )()4.02cos(4)4.02cos(3)1.02cos(2)( twttttx +++= πππ            (26) 

Where )(tw zero mean Gaussian is distributed white noise with variance of 0.01 and the sampling 

pattern follows a Poisson process with parameter
1

1.0
−= sλ , that is, the sampling intervals are 

exponentially distributed with mean 10
1

==
λ

µ s. We choose N=64 and show the sampling pattern 

in Fig. 3(a). Note the highly irregular sampling intervals, which range from 0.2 to 51.2 s with mean 
value 9.3 s. Fig. 3(b) shows the spectral window corresponding to Fig. 3(a). The smallest frequency 

at which the spectral 00 〉f  at which the spectral window has a peak close to 
2

N  is approximately 

10 Hz. Hence 2/0max ff = =5Hz. The step f∆  of the frequency grid is chosen as 0.005 Hz.  However, 

they are most suitable for data sequences with discrete spectra (i.e., sinusoidal data), which is the 
case we emphasize in this paper. Of the existing methods for nonuniform sinusoidal data, Welch, 
MUSIC and ESPRIT methods appear to be the closest in spirit to the IAA.  
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4. RESULT ANALYSIS: 
 

The results in Fig. 2 presents the spectral estimates averaged over 100 independent 

realizations of  Monte-Carlo trials of  periodogram and Welch estimates. Fig.  4  presents the 

spectral estimates averaged over 100 independent realizations of LSP and IAA estimates. Fig. 5 

presents the spectral estimates averaged over 100 independent realizations of Monte- Carlo trials 

of Music and Esprit estimates.  LSP nearly misses the smallest sinusoid while IAA successfully 

resolves all three sinusoids. Note that IAA suffers from much less variability than LSP from one 

trial to another. The plots were taken with the help MATLAB programming by the authors. LSP 

and IAA are nonparametric methods that can be used for the spectral analysis of general data 

sequences with both continuous and discrete spectra. However, they are most suitable for data 

sequences with discrete spectra (i.e., sinusoidal data), which is the case we emphasize in this 

paper. Of the existing methods for nonuniform sinusoidal data, Welch, MUSIC and ESPRIT 

methods appear to be the closest in spirit to the IAA proposed here. Indeed, all these methods 

make use of the estimated covariance matrix that is computed in the first iteration of IAA from 

LSP. MUSIC and ESPRIT, on the other hand, are parametric methods that require a guess of the 

number  of  sinusoidal  components  present  in  the  data,  otherwise  they  cannot  be  used 

furthermore. 
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  FIGURE 2: Average spectral estimates from 100 Monte Carlo trials of Fourier periodogram  
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  FIGURE 3: Average spectral estimates from 100 Monte Carlo trials of Welch estimates. 
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FIGURE 4: Average spectral estimates from 100 Monte Carlo trials of MEM estimates. 
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FIGURE6: Sampling pattern and spectral window for the simulated data case. (a) The sampling 

pattern used for all Monte Carlo trials in Figs. 2–4. The distance between two consecutive bars 
represents the sampling interval. (b) The corresponding spectral window 
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FIGURE7: Average spectral estimates from 100 Monte Carlo trials. The solid line is the 
 estimated spectrum and the circles represent the true frequencies and 
 amplitudes of the three sinusoids. (a) LSP  (b) IAA. 
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FIGURE8: Average spectral estimates from 100 Monte Carlo trials. (a) Music estimate 

and  (b) Esprit estimate. 
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          FIGURE9: Average spectral estimates from 100 Monte Carlo trials of Lomb 

                           periodogram. 
 

. 4. CONSLUSIONS: 

Of the existing methods for nonuniform sinusoidal data, the MUSIC and ESPRIT 
methods appear to be the closest in spirit to the IAA proposed here (see the cited paper for 
explanations of the acronyms used to designate these methods). Indeed, all these methods 
make use of the estimated covariance matrix that is computed in the first iteration IAA from 
LSP. In fact Welch (when used with the same covariance matrix dimension as IAA) is 
essentially identical to the first iteration of IAA. MUSIC and ESPRIT.In the case of a single 
sinusoidal signal in white Gaussian noise, the LSP is equivalent to the method of 
maximum likelihood and therefore it is asymptotically statistically efficient. Consequently, in 
this case LSP can be expected to outperform IAA. In numerical computations we have 
observed that LSP tends to be somewhat better than IAA for relatively large values of N or 
SNR; however, we have also observed that, even under these conditions that are ideal for 
LSP, the performance of IAA in terms of MSE (mean squared error) is slightly better (by a 
fraction of a dB) than that of LSP when or SNR becomes smaller than a certain threshold. 
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Abstract 

 
Voice activity detector (VAD) is used to separate the speech data included parts 
from silence parts of the signal. In this paper a new VAD algorithm is represented 
on the basis of singular value decomposition. There are two sections to perform 
the feature vector extraction. In first section voiced frames are separated from 
unvoiced and silence frames. In second section unvoiced frames are silence 
frames. To perform the above sections, first, windowing the noisy signal then 
Hankel’s matrix is formed for each frame. The basis of statistical feature 
extraction of purposed system is slope of singular value curve related to each 
frame by using linear regression. It is shown that the slope of singular values 
curve per different SNRs in voiced frames is more than the other types and this 
property can be to achieve the goal the first part can be used. High similarity 
between feature vector of unvoiced and silence frame caused to approach for 
separation of the two categories above cannot be used. So in the second part, 
the frequency characteristics for identification of unvoiced frames from silent 
frames have been used. Simulation results show that high speed and accuracy 
are the advantages of the proposed system. 
 
Keywords: Speech, Voice Activity Detector, Singular Value. 

 
 

1. INTRODUCTION 

Voice activity detection is an important step in some speech processing systems, such as speech 
recognition, speech enhancement, noise estimation, speech compression ... etc. In speech 
recognition when a word or utterance begins or ends (the end points) must be specified [1]. Also 
VAD is used to disable speech recognition for silence segments. Some speech transition systems 
transmits active segments in high rate of bits and transmits silence in low rate of bits, by this 
method they improve the band-width [2]. In some speech enhancement algorithm for example 
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spectral subtraction method, a VAD method is required to know when to update the noise 
reference [3,20,21]. Conversational speech is a sequence of consecutive segments of silence 
and speech. In noisy signal silence regions are noisy. Voice sound contain more energy than 
unvoiced sound, while unvoiced sounds are more noise-like, so in noisy condition activity 
detection is harder In unvoiced regions. Feature extraction is the most important section in VAD 
system that elicits required parameters from desired frame. To achieve an accurate algorithm, the 
system parameters must be selected until by them can be able to separate from each other 
areas.  After proper feature election, threshold is applied to the extracted parameters and the 
decisions are made. To achieving good detection level threshold can be adapted to the change of 
the noise conditions. Many of the algorithms assume that the first frames are silence [5, 6, and 7], 
so we can initialize noise reference from these frames. Common features used in VAD's are short 
term Fourier transform and zero crossing rate [4, 6, 11, and 12]. Another important and widely 
used parameter in this regard is Cepstral Coefficient [7, 9]. In this method the Cepstral 
coefficients are calculated within frames and then by calculating the difference between this 
vector and the value assigned to the noise signal and then comparing the result with the basic 
threshold value, the frame identity could be determined. LPC method is also another major 
applicable method for VAD implementation [13]. Generally in LPC based algorithms a series of 
mean coefficients are experimentally considered for voice, unvoiced and silent modes. In the next 
step the LPC coefficients of suspicious frame and their relative difference with mean indices are 
calculated and the frame identity is recognized based on these values. The other parameters for 
implementing VAD in combined algorithms are LTSE (long term Spectral Estimation)[5], wavelet 
coefficient [8,10], the ratio of signal to noise in sub-band [14], LSPE(Least Square Periodicity 
Estimator)[11] and AMDF(Average Magnitude Difference Function)[15]. One of most important 
cases in VAD system is speed of system performance beside proper accuracy. In this paper is to 
present a new algorithm  of VAD based on single value decomposition and frequency features, 
specifications accuracy and speed simultaneously be fulfilled. Based on this, paper organization 
as follows that in Section 2 single values decomposition (SVD) will be explained. In Section 3 the 
proposed method with the system block diagram is given. In Section 4 simulation results in terms 
of quantitative and qualitative criteria is evaluated. Finally, the article concludes with Section 5 
ends. 

2. Singular Value Decomposition  

The singular value composition is one of the main tools in digital signal processing and statistical 
data. By doing SVD on a matrix with dimensions of M×N, we have: 

 

(1)  TX U V= Σ  
 
On above relation U and V matrixes are singular vectors matrix with dimensions of M×M and 

N×N, respectively. Also, ∑ with r order of a diagonal matrix M×N is included singular values so 

that components on the main dial gauge are not zero and other components are zero. The 
elements on main dial gauge areas 11 22 ... 0rrσ σ σ> > > >  And are the values of X matrix. For 

exercising SVD to one dimensional matrix, the vector of signal samples must map to subspace 
with more dimensions, on the other hand must be changed to a matrix in certain way. Different 
ways have indicated for one dimensional signal transformation to a matrix that in this article 
(here) have used Hankel’s way [16,19]. 
 

3. Purposed algorithm  

The main question on sound discovery is the classification of listening signal characteristic to 
diagnosis sound parts. Thus, listening signal are classified to sound classes: silence, voiced, and 
unvoiced. For classifying, suitable characteristics must elicit from the speech signal parts (frame). 
Before studying the details of purposed system, general block diagram are showed in figure 1. 
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Figure (1) block diagram of propositional method for indicator system of voice activity. 

 
As shown on figure 1, feature vector extraction done in two parts. In first part, voiced frames are 
separated from unvoiced and silence frame as for statistical characteristics of singular values 
matrix. In second part, unvoiced frames are separated from silence frames that this separation is 
based on its frequency spectrum and Gaussian rate in each frame. At the end, one value accrues 
to voiced and unvoiced frames that including voice information, and zeros one to silence frames. 
 

3.1.   Voiced frames separation from the other parts 
In suggested system to separate the voiced parts from two parts of unvoiced and silence ones, it 
is used on slop of singular value curve in related part. For doing atop stages, first noisy signal 
divide to 16ms frames. According to relation (2), Hankel matrix makes for every frame.  

(2) 
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Where kX  is the vector of exist samples in K frame in input signal and kH  is the isomorphic 

Hankel matrix of L×M dimensions with kX . The percent of sample overlapping in matrix and the 

conditions of kH  dimensions are brought on (3) and (4) relations.  

(3) 1
% 100

L
overlapping

L

−
= ×  

(4) 1,M L N L M+ = + ≥  

 
For gaining full primitive pattern of kX  frame, the number of added zeros must lessen in M 

column of kH  matrix that its results have brought on (5) relation. 

(5) 
- mod( , ) [ ] 1, -[ ]

2 2

N N
ZeroPadding L N L L M N= ⇒ = + =  

Gained values of L, M in (5) relation get kH  semi rectangular matrix with maximum sample 

overlapping. The singular values of each frame are got by Hankel matrix of existed frame and 
using SVD map on related singular values. 

(6) T

k k k k
H U V= ∑  

In (6) relation kU  and kV  the singular vectors of diagonal matrix and also k∑  are isomorphic 

singular values matrix with kH  (part 2). Figure (2), singular values vectors show the every voiced 

frames in 16 millisecond length and SNR=10db with white Gaussian noise. 
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Figure (2) singular values vectors of voiced, unvoiced 
and silence frame in SNR=10db (voice signal from 
housewives_16.wav on TIMIT database) 

 
According as seeing on figure (2) the slop of curve in singular values between voiced frames are 
different from the other parts. In fact, singular values of voiced frames have more slop than 
singular values of unvoiced and silence frames. The base of statistical feature extraction for 
separating voiced frames is the slop of singular values curve related to each frame by using linear 
regression. Table 1 shows the values of this slop in different SNRs on three certain frames that 
have chosen from voiced, unvoiced and silence parts.  

 
Table (1): 

slope of singular values curve in linear regression related to species of frame on different SNRs  
(voice signal from housewives_16.wav on TIMIT database) 

Mean amount of singular values curve slope on 10 times repeat for each SNR 

Silence frame Unvoiced 
frame 

Voiced 
frame 

SNR 

0.0949 0.0987 0.1498 0db 

0.0528 0.0566 0.1232 5db 

0.0305 0.0338 0.1170 10db 

0.0176 0.0232 0.1143 15db 

0.0098 0.0175 0.1139 20db 

 
Results of table (1) are support on this thesis that the slop of singular values curve on different 
SNRs in voiced frames are more than the others and by using this trait we can achieve the goal 
of first section that was the feature vector extraction in voiced frames from related singular values 
matrix. 
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2.3.   Separating the voiced and silence frames 
By studying figure (2) and table (1) are deduced that according to approximation through slop of 
singular values curves related to voiced and silence frames, it can't divide these two type frames 
from each other. Because of this in purposed system have used the other trait to separate these 
two parts. In this part, frequency trait has used for recognition unvoiced frames from silence ones. 
The base of comparison is the curve of Gaussian function, (7) relation. 
 

(7) 
2

2

( )

2( ; , )

x c

f x c e γγ

− −

=  

 
Atop relation C is mean and γ  is variance of curve. By doing study, we see the discrete Fourier 

transform of unvoiced frames in meddle frequency are similar to the curve of Gaussian functions 
to some extent. Figure (3) and (4) show the smooth frequency spectrum related to unvoiced and 
silence frames and their comparison with the curve of Gaussian function. (Voice signal from 
TIMIT database with SNR=15db) 
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Figure (3) frequency spectrum of Unvoice frame in 
SNR=15db and the curve of Gaussian function ( 0.6γ = ) 
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Figure (4) frequency spectrum of Silence frame in 
SNR=15db and the curve of Gaussian function ( 0.6γ = ) 

According as atop figures are seen, frequency spectrum of voiced frame is more similar to 
Gaussian curve than silence frame noise in meddle frequency. Also by different examinations, the 
optimal values of γ  parameter in varying SNRs are as 0.2 with a view of minimizing the 

difference between Gaussian pattern and frequency spectrum of silence frame pattern. 
 

4. SIMULATION RESULTS 

In this section, the operation of purposed system study and compare considered as accuracy and 
speed. Sx114.wav voice signal from TIMIT database including 166 of 16 millisecond frames with 
sampling rate is 16 kHz that each frame has 256 samples. Figure (5) shows the noisy signal with 
SNR=10db and the indicator systems output of voice activity. 
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Figure(5).Simulation Results: (a)TIMIT Signal, (b) Output of ideal VAD, (c) Output of VAD 
based on Wavelet, (d) Output of Purposed VAD 

 
According as seeing, suggested method has more efficiency to keep the parts of signals that the 
activity signal is weak. In figure (5) and dashed line-drawn area, one unvoiced letter has omitted 
in VAD system as wavelet (figure 5-c ) that it has kept on VAD output propositional system (figure 
5-d ). In table (2) the accuracy rate of VAD propositional system is shown as wavelet transform 
[17] about voice signal sx114.wav for different SNRs. 

 

Table (2): percent of VAD system error comparison by using purposed algorithm and wavelet based 
algorithm in different SNRs 

Wavelet based algorithm 
Purposed 
algorithm 

SNR 

36% 25% 0db 

20% 18% 5db 

14% 15% 10db 

12% 13% 15db 

10% 8% 20db 

 
One of the strength points of the purposed algorithm is its speed. In table (3), speed of two 
algorithms has compared with each other in processing the sx114.wav sound file (CPU Intel 
Core2Duo 2.5 GHz, 4 M Cache 733 MB RAM) 

 

Table (3): 
 Speed comparison of VAD system by using purposed algorithm and wavelet based algorithm 

Consumed time in wavelet based algorithm Consumed time in purposed algorithm 

12 second 4 second 

 
In this part by using two VAD systems as preprocessing block has brought the results of hearing 
test for a speech signal rich-making system that accuracy of VAD operation system be proved in 
keeping unvoiced areas. In table 4 the standards has come that is used in evaluation of speech 
with hearing factor. 
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Table (4)  
Five-Point adjectival  scales for quality and impairment, and associated scores 

Impairment Score 

Imperceptible 5 (Excellent) 

(Just) Perceptible but not Annoying 4 (Good) 

(Perceptible and) Slightly Annoying 3 (Fair) 

Annoying (but not Objectionable) 2 (Poor) 

Very Annoying (Objectionable) 1 (Bad) 

 
In table 5, results of using two said VAD algorithms have shown as preprocessing block for 
enhancement method of multi band spectral subtraction. Specifications of this test are in [3]. 

 
Table (5) 

Results of MOS test; 
17 clean speech signal from TIMIT database; Noise Type: White Gaussian Noise. 

 

Input SNR 

10db 5db 0db 
Used Algorithm 

2.8 2.3 1.6 Wavelet Based 

3.3 2.7 1.8 Purposed 

 
Studying the results of table (5) are shown the reform efficiency of speech enhancement by using 
of propositional VAD algorithm to wavelet transform way. 

5.  CONCLUSION 

 

In this paper a new method for Voice activity detector based on Singular Value Decomposition 
and discrete Fourier transform was proposed. The proposed method is evaluated by using 
various criteria. By using the mentioned criteria, it is presented that this method can compete with 
other methods. Also, the aim of indicator systems of voice activity is control of destruction 
unvoiced signal sites in rich-making operation that observantly to results of hearing test, the 
propositional algorithm have proper power in compare with wavelet transform way. The 
propositional system has manifold speed than usual method that is one of the obvious characters 
in practical usage and hardware implementation. 
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Abstract 

 
In this paper, three existing techniques, Signed Power-of-Two (SPT), Steepest decent and 
Coefficient segmentation, for power reduction of FIR filters are analyzed. These 
techniques reduce switching activity which is directly related to the power consumption of 
a circuit. In an FIR filter, the multiplier consumes maximum power. Therefore, power 
consumption can be reduced either by making the filter multiplier-less or by minimizing 
hamming distance between the coefficients of this multiplier as it directly translates into 
reduction in power dissipation [8]. The results obtained on four filters (LP) show that 
hamming distance can be reduced upto 26% and 47% in steepest decent and coefficient 
segmentation algorithm respectively. Multiplierless filter can be realized by realizing 
coefficients in signed power-of-two terms, i.e. by shifting and adding the coefficients, 
though at the cost of shift operation overhead. 
 
Keywords: FIR, SPT, Steepest decent, Coefficient segmentation, low pass filter. 

 
 

1. INTRODUCTION 
The need for higher battery lifetime is ever increasing for portable devices like cellular phones, laptops, 
calculators, hearing aids and numerous other such devices. Due to large scale component integrations in 
such devices, power dissipation has become a major issue demanding special measures (heat sinks, special 
circuitry etc) to protect the chip from thermal runaway making the system complex and costly. So minimizing 
power dissipation of an application chip is a vital issue before researchers that needs to be addressed. In 
FIR filters, multipliers play an important role, and in a well designed CMOS circuit, switching component is a 
dominant term [5].  Input level transitions (0 to 1 or 1 to 0) are always associated with a power loss, which 
can be reduced by reducing toggling in the input of the multiplier. Power dissipation in a CMOS circuit is 
given as [5]  
Ptotal = Pdynamic + Pshort + Pleakage,  
with Pdynamic =  α.Cload.V2

dd.fclk , Pshort = Isc*Vdd,  and Pleakage= Ileakage*Vdd, where Vdd is the supply voltage, fclk is 
the clock frequency, Cload is the load capacitance, α is the node transition factor i.e., the average number of 0 
→ 1 transitions for  the equivalent electric node per clock cycle. Isc and Ileakage are the short circuit and 
leakage current respectively. This paper aims at reducing the switching factor, α, out of these factors while 
maintaining the throughput of the FIR filter. 
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2. RELATED WORK 
Many methods have been reported for the reduction of power dissipation in FIR filter. Power reduction can 
be done at four levels- process, circuit, architectural, and algorithmic level. A multiplier in a FIR filter is most 
power consuming component and its implementation in VLSI is also very expensive. The coefficients of filter 
can be represented as sum of signed power-of-two terms making it multiplierless. Several algorithms are 
available for designing filters with signed power-of-two (SPT) coefficients [1-4, 12, 13]. Thus, multiplier can 
be replaced by adders and shifters, making the filter multiplierless. Also, adders can further be reduced by 
extracting common subexpressions from the coefficients [18].  
 
Transition density of the inputs of multiplier can be reduced by minimizing hamming distance between the 
inputs [8, 11].  Mahesh Mehendale et. al. [9] presented seven transformations to reduce power dissipation 
which together operate at algorithmic, architectural, logic and layout levels of design abstraction. Power can 
be reduced by the way of arithmetic operators which use coding as a method of decreasing the switching 
activity [10]. In [14], the authors presented different architectures for implementation of low power FIR 
filtering cores. This included coefficient segmentation, block processing and combined segmentation and 
block processing algorithms. The work in [15] presents low power FIR filter implementations which are based 
on processing coefficients in a non-conventional order using both direct form and transposed direct form FIR 
filters. 
 

3. FIR FILTER IMPLEMENTATION 
FIR filters are widely used in digital signal processing (DSP) systems that are characterized by the extensive 
sequence of multiplication operations. These are also used in IF processing block of wireless communication 
systems. It can be represented by difference equation as given below: 







1

0
)()()(

M

k
knxkhny

 
where h(k) are the coefficients of the filter, x(n) is the input , y(n) is the output and M is the order of the filter. 
Such a difference equation can be implemented using a transversal filter as shown in Fig 1. The transversal 
filter, which is also referred to as a tapped delay line filter, consists of three basic elements: (1) unit-delay 
element, (2) multiplier, and (3) adder. The number of delay elements used in the filter determines the finite 
duration of its impulse response. The number of delay elements, shown as M in Fig.1 is commonly referred 
as the filter order. The role of each multiplier in the filter is to multiply the tap input by a filter coefficient called 
tap weight. 

 
FIGURE 1:  Transversal FIR Filter 

 

4. SIGNED POWER-OF-TWO 
The coefficients of fixed point FIR filter can be represented in sum of signed power-of-two (SPT) terms. In 
binary, multiply by 2 is implemented by simply shifting and adding the term. So in FIR, multiplier may be 
implemented by shifting the coefficients and then adding to input data. In this way, the power and complexity 
of multiplier can be minimized. As complexity of fixed point FIR filter is directly related to the number of total 
SPT terms[13], this number should be limited if complexity is also one of the constraint. The number of SPT 
terms per coefficient may be same. In the past decades, it has been shown that significant advantage can be 
achieved if the coefficient values are allocated with different number of SPT terms while keeping the total 
number of SPT terms for the filter fixed. Each coefficient value represented as a sum of signed power-of-two 
terms is given by the following equation [4]: 
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where a(r)=(-1, 0 or 1), h(n) is the nth coefficient value, g(r) is a positive integer and R is the number of 
terms. 
The following algorithm [4] finds an approximation of a SPT term for a number x: 
(i)    Initialize m = 1 and S0 = x. 
(ii)   Find y(m)*2g(m) which minimizes | Sm-1 - y(m)2g(m) | 
(iii)  If either y(m) = 0 or m = u, go to Step (vi), else  
        go to Step (iv). 
(iv)  Update Sm = Sm-1 - y(m)*2g(m) 
(v)   Increment m. Go to Step 2. 
                M 
(vi)   [x]u =∑  y(i)*2g(i) . Stop. 
           i=1 
 

5. STEEPEST DECENT TECHNIQUE 
Power dissipation can be reduced by minimizing the hamming distance between the coefficients of the filter 
by using steepest decent technique. It is a local search method in which a minima of the function can be 
found in its neighborhood. Hamming distance gives the measurement of the number of bit changes in the 
successive coefficients. As switching activity is proportional to hamming distance, it can be reduced by 
minimizing hamming distance. Algorithm for hamming distance minimization of FIR filters using steepest 
decent technique is as under [8]: 
Step 1:- For a given FIR filter coefficients H[i] (i =1, N-1) and given pass band ripple and stop- 

 band attenuation, calculate the Hamming Distance between successive  coefficients. 
Step 2:- Now perturb each coefficient (increase the value of each coefficient one by one  by 1)  
 and calculate new hamming distance between the coefficients H[i+], H[i-1] such that  
 HD(H[i], H[i-1]) > HD(H[i+], H[i-1]) 
Step 3:- Replace H[i] with H[i+] to get a new set of coefficients. 
Step 4:- Now again perturb each coefficient (decrease the value of each coefficient one by one by  

1) and calculate new hamming distance between the coefficients H[i-],  H[i-1] such that  
HD(H[i], H[i-1]) > HD(H[i-], H[i-1]) 

Step 5:- Replace H[i] with H[i-] to get a new set of coefficients. 
Step 6:- Compare the two sets and replace original coefficients with new value i.e. which  having  
 smaller hamming distance. 
Step 7:- Again compute hamming distance between new coefficients and also find pass band  
 ripple and stop band attenuation for this new set of coefficients. 
Using this steepest decent strategy, for every coefficient, it’s nearest higher and nearest lower coefficient 
values are identified. A new set of coefficient is formed by replacing one of the coefficients with it’s nearest 
higher or nearest lower value i.e. having minimum hamming distance. Hamming distance is then calculated 
for this new set of coefficients. Also passband ripples and stopband attenuation is calculated. 
 

6. COEFFICIENT SEGMENTATION 
Using this algorithm, a coefficient is divided into two parts. For each coefficient the nearest signed power-of-
two term is find and is subtracted from the original coefficient. This SPT term can be implemented using a 
shift operation and the rest of the coefficient value can be given to the multiplier in filter. In this way, the bits 
required to represent the coefficients becomes less. So the hamming distance between the successive 
coefficients, applied to multiplier, is reduced which in turn reduces switched capacitance. Hence, power 
consumption is reduced by reducing switching power. The main algorithm for segmentation is described as 
follow [11]: 
 
Let H = (h0, h1,...., hN-1), where N is the order of the filter. For a coefficient hk, it is divided in such a way that 
hk = sk + mk, where sk is the component to be implemented using shift operation and the second component 
mk is applied to the multiplier. To reduce the switched capacitance of the hardware multiplier, consecutive 
values of mk, applied to the multiplier input must be of the same polarity, to minimize switching, and have the 
smallest value possible, to minimize the effective wordlength. In this case, mk is chosen to be the smallest 
positive number. For a small positive mk, sk, must be the largest power of two number closest to hk. So by 
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checking the polarity of hk, if it is a positive number then sk is chosen as the largest power of two number 
smaller then hk. If it is negative, sk is chosen as smallest power-of-two number larger than |hk|. In both cases 
mk is hk – sk. 
 

7. RESULTS 
The three algorithms (SPT, coefficient segmentation and steepest decent) were implemented under 
MATLAB environment on four different FIR low pass filters, with varying parameters (table 1) and number of 
coefficients. These filters were designed initially using window method. Coefficient values, obtained using 
these algorithms and quantized to 16-bit 2’s complement representation form the initial set of coefficients for 
optimization. Hamming distance is first calculated for a particular set of coefficients using window method. 
These coefficients are then calculated by using these algorithms and the hamming distance is recalculated. 
It is gathered from these results that upto 26% and 47% reduction in hamming distance is achievable using 
steepest decent and coefficient segmentation algorithm as shown in table 2. The passband ripple and 
stopband attenuation is also compared for all the cases as shown in table 3 and 4. Performance parameters 
degrade somewhat. The frequency response of filter 1 obtained for all the algorithms is shown in Fig. 2.  

 
TABLE 1: Low Pass Fir Filter Specifications 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
TABLE 2: Hamming distance obtained using these algorithms for different low pass filters 

 
 

Filter Performance 
parameters 

Original Coefficient 
Segmentation 

Steepest 
Decent 

SPT 

Filter 1 

 
Max (δp) 

 
Min (δp) 

1.0042 
 

1.0000 

1.0041 
 

1.0000 

1.0044 
 

1.0001 

1.0134 
 

1.0074 

Filter 2 
Max (δp) 

 
Min (δp) 

1.0003 
 

0.9987 

1.0002 
 

0.9987 

1.0004 
 

0.9982 

0.9937 
 

0.9919 

Filter 3 
Max (δp) 

 
Min (δp) 

1.0012 
 

0.9985 

1.0012 
 

0.9985 

1.0056 
 

0.9833 

1.0019 
 

0.9988 

Filter 4 
Max (δp) 

 
Min (δp) 

1.0002 
 

0.9999 

1.0001 
 

0.9998 

1.0076 
 

0.9922 

1.0127 
 

1.0085 
 

TABLE 3: Comparison in terms of passband ripples 

Filter Passband 
(kHz) 

Stopband 
(kHz) 

Passband 
ripple (dB) 

Stopband 
attenuation (dB) 

Window 
function 

Filter 
length 

Filter 
1 0-1.5 2-4 0.1 50 Hamming 53 

Filter 
2 0-1.2 1.7-5 0.01 40 Kaiser 71 

Filter 
3 0-1 1.5-5 0.0135 56 Kaiser 61 

Filter 
4 0-1.5 2-4 0.1 50 Blackman 89 

Coefficient  
Segmentation  

Steepest Decent Filter Initial  
Hamming 
Distance 

(HD) 
HD Reduction  

(%) 
HD Reduction  

(%) 
Filter 1 326 216 33.74 278 14.72 

Filter 2 378 256 32.27 300 20.63 

Filter 3 326 244 25.15 244 25.15 

Filter 4 538 284 47.21 396 26.39 
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Filter Original Coefficient  

Segmentation 
Steepest 
Decent 

SPT 

Filter 1 -52 -52 -54 -43 
Filter 2 -57 -57 -56 -45 
Filter 3 -56 -56 -36 -40 
Filter 4 -75 -75 -41 -46 

 
TABLE 4: Comparison in terms of stopband attenuation(in db) 

 

8. CONCLUSION 
In this work, Signed power-of-two, Steepest decent and coefficient segmentation algorithms have been 
discussed for the low power realization of FIR filters. As, a multiplier is the major component for power 
dissipation, power can be reduced by minimizing the hamming distance between successive filter 
coefficients which are being fed to the multiplier. Steepest Decent optimization algorithm is presented so as 
to minimize the Hamming distance and the analysis shows that the total Hamming distance can be reduced 
upto 26%. But the penalty paid in this case is the degradation of performance parameters like. passband 
ripples and stopband attenuation. The results of coefficient segmentation shows that the hamming distance 
can be reduced upto 47%. Here the performance parameters are not degraded but an additional overhead, 
in terms of extra hardware and the power dissipated for shift and add operation, caused by shift operation is 
to be added. Also as reported in literature [11] power dissipation can be reduced considerably (63%) using 
SPT, as compared to these algorithms. However, the penalty is again in the form of additional overhead of 
adders and shifters. There exist a tradeoff between hamming distance reduction and degradation of 
performance parameters. 
 

 
FIGURE 2: Frequency response of low pass FIR filter for example 1 
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