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Editorial Preface 

This is fifth issue of volume four of the Signal Processing: An International 
Journal (SPIJ). SPIJ is an International refereed journal for publication of 

current research in signal processing technologies. SPIJ publishes research 
papers dealing primarily with the technological aspects of signal processing 

(analogue and digital) in new and emerging technologies. Publications of SPIJ 
are beneficial for researchers, academics, scholars, advanced students, 
practitioners, and those seeking an update on current experience, state of 

the art research theories and future prospects in relation to computer science 
in general but specific to computer security studies. Some important topics 

covers by SPIJ are Signal Filtering, Signal Processing Systems, Signal 
Processing Technology and Signal Theory etc. 
 

This journal publishes new dissertations and state of the art research to 
target its readership that not only includes researchers, industrialists and 
scientist but also advanced students and practitioners. The aim of SPIJ is to 

publish research which is not only technically proficient, but contains 
innovation or information for our international readers. In order to position 

SPIJ as one of the top International journal in signal processing, a group of 
highly valuable and senior International scholars are serving its Editorial 
Board who ensures that each issue must publish qualitative research articles 

from International research communities relevant to signal processing fields. 
   
SPIJ editors understand that how much it is important for authors and 
researchers to have their work published with a minimum delay after 

submission of their papers. They also strongly believe that the direct 
communication between the editors and authors are important for the 

welfare, quality and wellbeing of the Journal and its readers. Therefore, all 
activities from paper submission to paper publication are controlled through 

electronic systems that include electronic submission, editorial panel and 
review system that ensures rapid decision with least delays in the publication 
processes.  
 

To build its international reputation, we are disseminating the publication 
information through Google Books, Google Scholar, Directory of Open Access 

Journals (DOAJ), Open J Gate, ScientificCommons, Docstoc and many more. 
Our International Editors are working on establishing ISI listing and a good 
impact factor for SPIJ. We would like to remind you that the success of our 

journal depends directly on the number of quality articles submitted for 
review. Accordingly, we would like to request your participation by 

submitting quality manuscripts for review and encouraging your colleagues to 
submit quality manuscripts for review. One of the great benefits we can 
provide to our prospective authors is the mentoring nature of our review 

process. SPIJ provides authors with high quality, helpful reviews that are 
shaped to assist authors in improving their manuscripts.  
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Abstract 

 
Despite the considerable amount of research related to immune algorithms and it  
applications in numerical optimization, digital filters design, and data mining, 
there is still little work related to issues as important as sensitivity analysis, [1]-[4]. 
Other aspects, such as convergence speed and parameters adaptation, have 
been practically disregarded in the current specialized literature [7]-[8]. The 
convergence speed of the immune algorithm heavily depends on its main control 
parameters: population size, replication rate, mutation rate, clonal rate and hyper-
mutation rate. In this paper we investigate the effect of control parameters 
variation on the convergence speed for single- and multi-objective optimization 
problems. Three examples are devoted for this purpose; namely the design of 2-
D recursive digital filter, minimization of simple function, and banana function. 
The effect of each parameter on the convergence speed of the IA is studied 
considering the other parameters with fixed values and taking the average of 100 
times independent runs.  Then, the concluded rules are applied on some 
examples introduced in [2] and [3]. Computational results show how to select the 
immune algorithm parameters to speedup the algorithm convergence and to 
obtain the optimal solution. 
 



Mohammed Abo-Zahhad, Sabah M. Ahmed, Nabil Sabor & Ahmad F. Al-Ajlouni  

 

Signal Processing : An International Journal (SPIJ), Volume (4): Issue (5) 248 

 

Keywords: Immune Algorithm, Convergence, Mutation, Hypermutation, Population Size, Clonal Selection.

 

 
1. INTRODUCTION 
The parameters of the immune algorithm have a large effect on the convergence speed. These 
parameters are the population size (ps) which estimates the number of individuals (antibodies) for 
each generation, the mutation rate (pm) which increases the diversity in population, and the 
replication rate (pr) which estimates the number of antibodies chosen from the antibody 
population pool to join the algorithm operations. Other parameters such as the clonal rate (pc) 
which estimates the number of individuals chosen from the antibody population pool to join the 
clonal proliferation (selection), as well as the hypermutation rate (ph) which improves the 
capabilities of exploration and exploitation in population, have also great effect on the speed of 
convergence. In spite of the research carried out up to date, there are no general rules on how 
these parameters can be selected. In literature [1]-[2] and [13], the immune parameters are 
selected by certain values (e.g. ps =200, pr =0.8, pm =0.1, pc =0.06, ph =0.8) without stating the 
reason for this selection. 
 
In this paper we investigate the effect of parameters variation on the convergence speed of the 
immune algorithms developed for three different illustrative examples: 2-D recursive digital filter 
design (multi-objective problem), minimization of simple function (single-objective problem), and 
finding the global minimum of banana function. The obtained results can be used for selecting the 
values of these parameters for other problems to speed up the convergence. The paper is 
organized as follows. Section 2 describes the immune algorithm behavior. In Section 3 three 
illustrative examples are given to investigate the effect of parameters variation on the 
convergence speed of the immune algorithm. Section 4 discusses the selection criteria of these 
parameters to guarantee the convergence speed. In section 5, some examples introduced in [3] 
and [12] are considered to demonstrate the effectiveness of the selection of immune algorithm 
control parameters. And finally, Section 6 offers some conclusions. 

 

2. IMMUNE ALGORITHMS BEHAVIOR 
Immune algorithms are randomized algorithms inspired by immune functions and principles 
observed in nature [10]. Such algorithms begin by generating population pool (chromosome) 
using real coding representation and evaluating the objective values. Then, the population pool 
undergoes the algorithm operations which will be described in this section. The operations are 
repeated at each generation (gen) until the termination condition is satisfied [1]-[2]. Table (1) 
illustrates the main steps of the immune algorithm [16]. 
 
2.1 Generation of Antibody Population 
The antibody population is generated either by using binary coding representation or real coding 
representation. In the binary coding representation, each variable is encoded as a binary string 
and the resulting strings are concatenated to form single chromosome (antibody) [11]. However, 
in the real coding representation, each antibody is encoded as a vector of floating point numbers, 
with the same length as the vector of decision variables. This representation is accurate and 
efficient because it is closest to the real design space, and the string length represents the 
number of design variables. 
 
2.2 Selection for Reproduction 
The roulette wheel selection is employed in immune bases algorithms for chromosomes 
reproduction. Its basic idea is to determine the selection probability for each solution in proportion 

with the fitness value. For solution j with fitness jf , its probability jp is defined as: 
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And the cumulative probability jq  for each solution is calculated as: 
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Where, the fitness jf  is relation to the objective function value of the j
th
 chromosome. 

 
Gen=1;                                                                                 % The first generation 
Chrom=Initial_pop();                                                            % Construct the initial population pool 
While (termination_condition) 

Evaluuate (Chrom);                                                    % Objective function evaluation 
Chrom_sel=RWS_Selection(Chrom);                        % Roulette wheel selection 
Chrom_rep=replication(Chrom_sel);                          % Selection of better antibodies using 

Replication  
Chrom_clon=Cloning(Chrom_rep);                            % Clonal operation 
Chrom_hyper=Hypermutation(Chrom_clon);             % Hypermutation operation 
Chrom_tot=[ Chrom_rep, Chrom_hyper]; 
Chrom_child=Mutation(Chrom_tot);                          % Mutation Operation 
Evaluuate (Chrom_child);                                          % Objective function evaluation 
Chrom=Better_selection(Chrom, Chrom_child);       % Selection of better antibodies for next 

generation 
gen=gen+1;                                                               % Increment the number of generations 

end 

 
TABLE (1): The Immune Algorithm 

 
2.3 Replication Operation 
The replication operation is used to select better antibodies, which have low objective values to 
undergo algorithm operations. This is termed by clonal proliferation within hypermutation and 
mutation operations. 

 
2.4 Clonal Proliferation within Hypermutation 
Based on the biological immune principles, the selection of a certain antibody from the antibody 
population pool to join the clonal proliferation depends on the clonal selection rate (pc). Each 
gene, in a single antibody, depending on the hypermutation rate (ph), executes the hypermutation 
of convex combination. The hypermutation rate (ph) has an extremely high rate than the mutation 

rate to increase the antibody diversity. For a given antibody ( )ρXXXXXXX kji ,...,,,,...,, 21= , 

if the gene iX  is determined to execute the hypermutation and another gene kX  is randomly 

selected to join in, the resulting offspring antibody becomes ( )ρXXXXXXX kji ,...,,,,...,,
'

21

' = , 

where the new gene 
'

iX  is  ( ) kii XXX ββ +−= 1'
 , and β ∈ [0, 1] is a random value. 

 
 

2.5 Mutation Operation 
Similar to the hypermutation mechanism, the mutation operation is also derived from the convex 
set theory [9], where each gene, in a single antibody, depending on the mutation rate (pm), 
executes the mutation of convex combination. Two genes in a single solution are randomly 
chosen to execute the mutation of convex combination [15]. For a given antibody 

( )ρXXXXXXX kji ,...,,,,...,, 21=  , if the genes iX  and kX  are randomly selected for 
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mutation depend on the mutation rate (pm), the resulting offspring is 

( )ρXXXXXXX kji ,...,,,,...,, ''

21

' = . The resulting two genes 
'

iX  and 
'

kX  are calculated as:                                            

  ( ) kii XXX ββ +−= 1'
 and  ( ) kik XXX ββ −+= 1'

       (3) 

where, β is selected randomly in the range [0, 1]. 
 
 
 
2.6 Selection Operation 
The selection operation is generally used to select the better ps antibodies which have low 
objective values as the new antibody population of the next generation. 

 
3. ILLUSTRATIVE EXAMPLES 
In this section three different examples are considered to investigate the effect of parameters 
variation on the convergence speed of the immune algorithm. The first example simulates the 
multi-objective function problem that has an infinite set of possible solutions difficult to find [7]. 
The second example is a single-objective function problem and it is less difficult and the third 
example represents the family of problems with slow convergence to the global minimum [6]. 

 
 

Example 1:  
This example considers the design of a second order 2-D narrow-band recursive LPF with 

magnitude and group delay specifications. The specified magnitude ),( 21 ωωdM  is shown in 

Figure (1) [1], [5]. Namely, it is given by Equation (4) with the additional constant group delay 

5
21
== dd ττ  over the passband πωω 1.0

2

2

2

1 ≤+ and the design space is [-3 3]. To solve this 

problem, the frequency samples are taken at 1,,4.0,2.0,,04.0,02.0,0/ KK=πωi  in the 

ranges πωπ ≤≤− 1 , and πωπ ≤≤− 2 . 
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Example 2:  
This example considers the optimization of the exponential function shown in Figure (2) and 
described by the following equation:  

      ( ) i

i

i xaxy ∑
=

=
9

0

        (5) 

With the following desired specified values )(xYd  at x= [0, 1, 2, 3, ………., 20]. 

]104.5587

    102.8528    101.7397  101.0306   105.9104 103.2667 101.7309             

 108.7358104.16510.85631107.6281   10836821029989

10723751072375100021933758794833010010[

9

999888

777665

443

×

××××××

××××××

×××=

.. 

   .  .   .   .    .    -.   -.   -.(x)Yd

 

Example 3: 
This example considers a Rosenbrock banana function that described by the following equation 
[6]. This function is often used to test the performance of most optimization algorithms [6]. The 
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global minimum is inside a long, narrow, parabolic shaped flat valley as shown in Figure (3). In 
fact find the valley is trivial, however the convergence to the global minimum is difficult. 
 

( ) ( ) ( )222
1001, xyxyxf −+−=

       (6) 

 

FIGURE 1: Desired Amplitude Response ( )21 ,ωωdM  Of The 2-D Narrow-Band LPF (Example 1) 
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FIGURE 2: Desired Specifications of the Function ( )xy  (Example 2)  

  

FIGURE 3: Rosenbrock Banana Function (Example 3) 
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4. SENSITIVITY ANALYSIS 
In this section, we examine the effect of parameters variations on the convergence speed of the 
immune algorithm for the three examples described in section 3. The number of genes (the 
encoding length L) for each example is defined by the number of unknown coefficients. For the 
filter design problem, the filter transfer function is expressed by: 
        

( )
( )( )

1,
11

, 00

21222122112111

2

2

2

1222

2

121

2

120

2

21122111110

2

20220100
021 =

++++++

++++++++
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zzdzczbzzdzczb

zzazzazazzazzazazazaa
HzzH

 
          
         (7) 

So, 15 genes can be adjusted to approximate the specified magnitude and group delay. For the 
simple function and banana function problems, the number of genes considered are 10 and 2 
respectively. 

 
4.1 Effect of the population size (ps)  
The population size (ps) is defined as the number of antibodies used in each generation. The 
variations in ps can have substantial effect on the convergence speed of immune algorithm. If the 
ps is too small, the IA cannot reach to optimal solution. However, if it is too large, the IA wastes 
computational time effort on extra objective values evaluations. Here, the effect of ps on the 
convergence speed of the algorithm is studied by taking the average of 100 times independent 
runs at each ps value. The value of ps was varied from 10 to 400 with the other parameters fixed 
at pr =0.8, ph =0.8, pm =0.1, and pc =0.06. The effect of population size variations on number of 
generations required to get the solution for filter design problem, simple function and banana 
function are shown in Figures (4-6), respectively. 

 
The results illustrated in Figures (4-6) show that, the speed of convergence can be measured by 
the number of generations required to reach to the optimal chromosome (global solution). 
Moreover, it can be noticed that the speed of convergence depends not only on the ps but also on 
the number of genes. Here, the ps after which optimal chromosome is obtained is denoted by ps*. 
Increasing the ps above ps* has insignificant effect on speeding up the convergence. 
 
4.2 Effect of the Replication Rate (pr)  
The replication rate (pr) estimates the number of antibodies chosen from the antibody population 
pool to join the algorithm operations. The effect of pr on the speed of convergence of the IA is 
studied by taking the average of 100 times independent runs at each pr value. The value of pr 
was varied from 0.1 to 1 with the other parameters fixed at ps =100 ph =0.8, pm =0.1, and pc 
=0.06. The effect of pr variation on the number of generations required to produce the solution for 
filter design problem, simple function and banana function are shown in Figures (7-9), 
respectively.  
 
These figures show that, the high values of replication rate have a significant effect on speeding 
up the convergence, but the computational time increases as the pr increases. It is also noticed 
that the values of pr greater than pr* have no further effect on speeding up the convergence. 
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FIGURE 4: The Effect of Population Size on the Speed of Convergence of the Filter Design Problem. 

 

 

FIGURE 5: The Effect of Population Size on the Speed of Convergence for Simple Function Minimization 
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Figure 6: The Effect Of Population Size On The Speed Of Convergence For Finding The Global Minimum 
Of Banana Function. 

 

 

FIGURE 7: The Effect of Replication Rate on the Speed of Convergence for Filter Design Problem. 
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FIGURE 8: The Effect of Pr on the Speed of Convergence for Simple Function Minimization. 

 

FIGURE 9: The Effect of Pr on the Speed of Convergence for Finding the Global Minimum of Banana 
Function. 
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4.3 Effect of the Clonal Selection Rate (pc)  
The clonal selection rate (pc) estimates the number of antibodies that can be chosen from the 
antibody population pool to join the clonal proliferation. The effect of pc on the speed of 
convergence of the IA is studied by taking the average of 100 times independent runs at each pc 
value. The value of pc was varied from 0.01 to 1 with the other parameters fixed at ps =100, pr 
=0.8, ph =0.8, and pm =0.1. The effect of pc variation on the number of generations required to 
produce the optimal solution for filter design problem, simple function and banana function are 
shown in Figures (10-12), respectively. 
 
From these figures, we can conclude that low values of pc (0.05≤ pc <0.1) have significant effect 
on speeding up the convergence. It is also noticed that the use of high values of pc (pc ≥ pc*) have 
an effect of slowing down the convergence. This is mainly due to the infeasible selected 
individuals which joined to the clonal proliferation. 
 
4.4 Effect of the Hypermutation Rate (ph)  
The hypermutation rate (ph) is used to improve the capabilities of exploration and exploitation in 
population. The effect of ph on the convergence speed of the IA is evaluated by taking the 
average of 100 times independent runs at each ph value. The value of ph was varied from 0.01 to 
1 with the other parameters fixed at ps =100, pr =0.8, pc =0.06, and pm =0.1. The effect of 
hypermutation variation on the number of generations required to produce the solution for filter 
design problem, simple function and banana function are shown in Figures (13-15), respectively. 
 
The results given in Figures (13-15) show that, the value of ph depends on the problem domain. 
The values of ph for the three illustrative examples are 0.5, 0.5, and 0.7, respectively. The ph 
should be in the range (0.5≤ ph <1) to speed up the convergence of small number of genes 
problems (example 3) and it is about 0.5 for other ones. 
 

 

FIGURE 10: The Effect of Clonal Rate on the Speed of Convergence for Filter Design Problem. 
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FIGURE 11: The Effect of Clonal Rate on the Speed of Convergence for Simple Function Minimization. 

 

FIGURE 12: The Effect of Clonal Rate on the Speed of Convergence for Finding the Global Minimum of 

Banana Function. 



Mohammed Abo-Zahhad, Sabah M. Ahmed, Nabil Sabor & Ahmad F. Al-Ajlouni  

 

Signal Processing : An International Journal (SPIJ), Volume (4): Issue (5) 259 

 

 

FIGURE 13: The Effect of Hypermutation Rate on the Speed of Convergence for Filter Design Problem. 

 

FIGURE 14: The Effect of Hypermutation Rate on the Speed of Convergence for Simple Function 

Minimization. 
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FIGURE 15: The Effect of Hypermutation Rate on the Speed of Convergence for Finding the Global 

Minimum of Banana Function. 

4.5 Effect of the Mutation Rate (pm)  
The mutation rate (pm) is one of the most sensitive immune algorithm parameters, since it 
increases the diversity in population. The choice of mutation rate is essentially a tradeoff between 
conservatism and exploration [14]. The effect of pm on the convergence speed of IA is studied by 
taking the average of 100 times independent runs at each pm value. The value of pm was varied 
from 0.01 to 1 with the other parameters fixed at ps =100, pr =0.8, pc =0.06, and ph =0.8. The 
effect of mutation rate variation on the number of generations required to produce the solution for 
filter design problem, simple function and banana function are shown in Figures (16-18), 
respectively.  
 
From these figures, we can conclude that the low values of mutation rate (pm ≤ pm*) have 
significant effect on speeding up the convergence. Also, it is noticed that to guarantee the 
convergence speed, the pm should be between 1/ ps and 1/L, where ps is the population size and 
L is the encoding string length. 
 
 
From above studying, we can conclude that the general heuristics on IA parameters to guarantee 
the convergence speed are: 1) the population size should be greater than 100; 2) the replication 
rate should be higher than 0.2; 3) the clonal rate should be small in the range (0.05≤ pc <0.1); 4) 
the hypermutation rate should be high in the range (0.5≤ ph <1); and 5) the mutation rate should 
be between 1/ ps and 1/L.  
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FIGURE 16: The Effect of Mutation Rate on the Speed of Convergence for Filter Design Problem (Ps=100 

and L=15). 
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FIGURE 17: The Effect of Mutation Rate on Speed of Convergence for Simple Function Minimization 

(Ps=100 and L=10). 

 

FIGURE 18: The Effect Of Mutation Rate On Speed Of Convergence For Finding The Global Minimum Of 

Banana Function (Ps=100 And L=2). 
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5 RESULTS AND DISCUSSION 
In this section, some examples introduced in [3] and [12] are considered to illustrate the effect of 
immune algorithm parameters on the convergence speed.  
 
Example 4:   
This example is considered in [3] for solving system identification problem. It is repeated here to 
demonstrate the effectiveness of the selection of immune algorithm control parameters.  In this 
example, it is required to approximate second-order system by first-order IIR filter. The second-
order system and the filter are described respectively by the following transfer functions [3]: 

 ( )
21
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25.01314.11
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In Table (2), the control parameters selected based on the study described in previous section 
and that used in [3] are given. Table (3) illustrates the transfer function, the number of function 
evolution and NMSE of the resulting IIR filter and that is described in [3]. The NMSE is calculated 
using the following equation: 

  ( ) ( )( ) ( )( )∑∑
==

−=
N
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d
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k

d kMkMkMNMSE
1

2

1

2
     (9) 

Where, ( )kM d  and ( )kM  are the magnitude responses of the 2
nd

 order system and that of the 

designed filter respectively calculated at N=2000 sampling points. 
 

IA Parameters 
The selected parameters 
based on the above study 

The selected parameters in [3] 

Population size 100 50 

Replication rate 0.85 0.80 

Mutation rate 0.2 0.015 

Clone rate 0.05 Not used in this method 

Hypermutation rate 0.8 Not used in this method 

 
TABLE 2: The IA Control Parameters Of Examples 1 And 2 

 

 
IIR filter obtained using 

proposed parameters values  
IIR filter obtained using 

parameters values stated in [3] 

Transfer Function ( )
1

1

8645.01

4153.0
−

−

−
−

=
z

zH f

 

( )
1

1

906.01

311.0
−

−

−
−

=
z

zH f

 

NMSE 0.0796 0.2277 

Number of function 
evaluations to find the 
global optimal solution 

1056 1230 

 
TABLE 3: The Transfer Function, Number Of Function Evolutions And NMSE Of Both Resulting IIR Filter 

And IIR Filter Described In [3]. 
 

Figure (19) shows the magnitude responses of the second-order system, the resulting IIR filter 
and IIR filter described in [3]. From Figure (19) and Table (3), noticed that the resulting IIR filter 
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converge to the second-order system after smaller number of objective function evaluations with 
smaller NMSE compared to that given in [3]. So, the good selection of the IA control parameters 
speeds up the algorithm convergence. 

 

FIGURE 19: The magnitude responses of second-order system and IIR filter  

 
Example 5:   
This example is also considered in [3] for solving system identification problem. It is required to 
approximate a second order system by IIR filter with the same order. The system and the filter 
are described respectively by the following transfer functions [3]: 

  ( )
21

1

6.02.11

1
−−

−

+−
=

zz
zH p  and   ( )

2

2

1

1

1

1

1
−−

−

−−
=

zbzb
zH f    (10) 

Using the same control parameters of example 1, the optimal solution (b1= -1.1966, b2= -0.59522) 
is obtained after 1503 objective function evaluations with MSE=0.393x10-3. However, the solution 
in [3] is obtained after 3000 objective function evaluations with MSE=0.5x10-3.  
 

Example 6:  
This example is considered in [12], for finding the global solution of the following test function: 

       1cos
4000

1

1 1

2

4 +







−= ∑ ∏

= =

N

i

N

i

i
i

i

x
xf      (11) 

The proposed IA is used to solve this function with 30 dimensions (i.e. N=30) in solution space [-
600, 600]. In Table (4), the control parameters selected based on the study described in previous 
section and that used in [12] are given. 
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IA Parameters 
The selected parameters 
based on the above study 

The selected parameters in 
[12] 

Population size 200 200 

Replication rate 0.2 0.1 

Mutation rate 0.02 0.02 

Clone rate 0.06 0.01 

Hypermutation rate 0.8 0.01 

 
Table 4: The IA Control Parameters Of Example 3 

 

Using the proposed IA, the solution is obtained after 13120 function evaluations; however in [12] 
is reached after 15743 function evaluations. So, the IA control parameters are having significant 
effect on the convergence speed. 

 
6 CONCLUSIONS 
In this paper, general rules on speeding up the convergence of the IA are discussed. The 
convergence speed of the IA is important issues and heavily depends on its main control 
parameters. In spite of the research carried out up to date, there are no general rules on how the 
control parameters of the IA can be selected. In literature [12]-[13], the choice of these 
parameters is still  left  to  the  user  to  be  determined  statically prior  to  the execution of the IA. 
Here, we investigate the effect of the parameters variation on the convergence speed by adopting 
three different objective optimization examples (2-D recursive filter design, minimization of simple 
function, and banana function). From the studied examples, the following general heuristics on 
immune algorithm parameters that guarantee the convergence speed are concluded: 1) the 
population size should be greater than 100; 2) the replication rate should be higher than 0.2; 3) 
the clonal rate should be small in the range (0.05≤ pc <0.1); 4) the hypermutation rate should be 
high in the range (0.5≤ ph <1); and 5) the mutation rate should be between 1/ ps and 1/L. These 
heuristics are applied to study cases solved in [3] and [12] to show effect of control parameter 
selection on the IA performance. Numerical results show that the good selection of the control 
parameters of the IA have significant effect on the convergence speed of the algorithm. 
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Abstract 

 
Removal of noises from respiratory signal is a classicl problem. In recent years, 
adaptive filtering has become one of the effective and popular approaches for the 
processing and analysis of the respiratory and other biomedical signals. Adaptive 
filters permit to detect time varying potentials and to track the dynamic variations 
of the signals. Besides, they modify their behavior according to the input signal. 
Therefore, they can detect shape variations in the ensemble and thus they can 
obtain a better signal estimation. This paper focuses on (i) Model Respiratory 
signal with second order Auto Regressive process. Then synthetic noises have 
been corrupted with respiratory signal and nullify these noises using various 
adaptive filter algorithms (ii) to remove motion artifacts and 50Hz Power line 
interference from sinusoidal 0.18Hz respiratory signal using various adaptive 
filter algorithms. At the end of this paper, a performance study has been done 
between these algorithms based on various step sizes. It has been found that 
there will be always tradeoff between step sizes and Mean square error. 
 
Keywords: Adaptive filter, Least Mean Square (LMS), Normalized LMS (NLMS), Block LMS (BLMS), Sign 
LMS (SLMS), Sign-Sign LMS (SSLMS), Signed Regressor LMS (SRLMS), Motion artifact, Power line 
interference 

 
 
1.   INTRODUCTION 
Various biomedical signals are present in human body. To check the health condition of a human 
being it is essential to monitor these signals. While monitoring these signals, various noises 
interrupt the process. These noises may occur due to the surrounding factors, devices connected 
and physical factors. In this paper, noises associated with the respiratory signals are taken into 
account. The monitoring of the respiratory signal is essential since various sleep related disorders 
like sleep apnea (breathing is interrupted during sleep), insomnia (inability to fall asleep), 
narcolepsy can be detected earlier and treated. Also breathing disorders like snoring, hypoxia 
(shortage of O2), hypercapnia (excess amount of CO2) hyperventilation (over breathing) can be 
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treated. The respiratory rate for new born is 44 breathes/min for adults it is 10-20 breathes/min. 
Various noises affecting the respiratory signal are motion artifact due to instruments, muscle 
contraction, electrode contact noise, powerline interference, 50HZ interference, noise generated 
by electronic devices, baseline wandering, electrosurgical noise.  
 
One way to remove the noise is to filter the signal with a notch filter at 50 Hz. However, due to 
slight variations in the power supply to the hospital, the exact frequency of the power supply 
might (hypothetically) wander between 47 Hz and 53 Hz. A static filter would need to remove all 
the frequencies between 47 and 53 Hz, which could excessively degrade the quality of the ECG 
since the heart beat would also likely have frequency components in the rejected range. To 
circumvent this potential loss of information, an adaptive filter has been used. The adaptive filter 
would take input both from the patient and from the power supply directly and would thus be able 
to track the actual frequency of the noise as it fluctuates.  
 
Several papers have been presented in the area of biomedical signal processing where an 
adaptive solution based on the various algorithms is suggested. Performance study and 
comparison of LMS and RLS algorithms for noise cancellation in ECG signal is carried out in [1]. 
Block LMS being the solution of the steepest descent strategy for minimizing the mean square 
error is presented in [2]. Removal of 50Hz power line interference from ECG signal and 
comparative study of LMS and NLMS is given in [3]. Classification of respiratory signal and 
representation using second order AR model is discussed in [4]. Application of LMS and its 
member algorithms to remove various artifacts in ECG signal is carried out in [5]-[7]. Mean 
square error behavior, convergence and steady state analysis of different adaptive algorithms are 
analyzed in [8]-[10]. The results of [11] show the performance analysis of adaptive filtering for 
heart rate signals. Basic concepts of adaptive filter algorithms and mathematical support for all 
the algorithms are taken from [12]. 
 
In [13] the authors present a real-time algorithm for estimation and removal of baseline wander 
noise and obtaining the ECG-derived respiration signal for estimation of a patient’s respiratory 
rate. In [14], a simple and efficient normalized signed LMS algorithm is proposed for the removal 
of different kinds of noises from the ECG signal. The proposed implementation is suitable for 
applications requiring large signal to noise ratios with less computational complexity. The design 
of an unbiased linear filter with normalized weight coefficients in an adaptive artifact cancellation 
system is presented in [15]. They developed a new weight coefficient adaptation algorithm that 
normalizes the filter coefficients, and utilize the steepest-descent algorithm to effectively cancel 
the artifacts present in ECG signals. The paper [16] describes the concept of adaptive noise 
cancelling, a method of estimating signals corrupted by additive noise. In [17], an adaptive 
filtering method is proposed to remove the artifacts signals from EEG signals. Proposed method 
uses horizontal EOG, vertical EOG, and EMG signals as three reference digital filter inputs. The 
real-time artifact removal is implemented by multi-channel Least Mean Square algorithm. The 
resulting EEG signals display an accurate and artifact free feature.  
 
The results in [18] show that the performance of the signed regressor LMS algorithm is superior 
than conventional LMS algorithm, the performance of signed LMS and sign-sign LMS based 
realizations are comparable to that of the LMS based filtering techniques in terms of signal to 
noise ratio and computational complexity. An interference-normalized least mean square 
algorithm for robust adaptive filtering is proposed in [19].The INLMS algorithm extends the 
gradient-adaptive learning rate approach to the case where the signals are nonstationary. It is 
shown that the INLMS algorithm can work even for highly nonstationary interference signals, 
where previous gradient-adaptive learning rate algorithms fail. The use of two simple and robust 
variable step-size approaches in the adaptation process of the Normalized Least Mean Square 
algorithm in the adaptive channel equalization is investigated in [20].In the proposed algorithm in 
[21], the input power and error signals are used to design the step size parameter at each 
iteration. Simulation results demonstrate that in the scenario of channel equalization, the 
proposed algorithm accomplishes faster start-up and gives better precision than the conventional 
algorithms. A novel power-line interference (PLI) detection and suppression algorithm is 
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presented in [22] to preprocess the electrocardiogram (ECG) signals. A distinct feature of this 
proposed algorithm is its ability to detect the presence of PLI in the ECG signal before applying 
the PLI suppression algorithm. An efficient recursive least-squares (RLS) adaptive notch filter is 
also developed to serve the purpose of PLI suppression. In [23] two types of adaptive filters are 
considered to reduce the ECG signal noises like PLI and Base Line Interference. Various 
methods of removing noises from ECG signal and its implementation using the Lab view tool was 
referred in [24]. Results in [25] indicate that respiratory signals alone are sufficient and perform 
even better than the combined respiratory and ECG signals. 

 
2.  MATHEMATICAL MODEL OF RESPIRATION SIGNALS 
The respiratory systems’ function is to allow gas exchange to all part of the body. In addition to 
supplying oxygen, the respiratory system aids in removing of carbon dioxide. It prevents the lethal 
buildup of this waste product in body tissues. The respiratory system carries out its life-sustaining 
activities through the process of respiration. Respiration is the process by which the atmospheric 
oxygen is inhaled in to the body and the unwanted carbon dioxide is exhaled out through the 
nostrils and mouth.  
 
Respiratory signals are not a constant signal with common amplitude and regular variations from 
time to time. Hence to estimate the signal it is necessary to frame an algorithm which can analyze 
even the small variations in the input signal. Respiratory signal is modeled in to a second order 
AR equation so that the parameters can be utilized for determining the fundamental features of 
the respiratory signal. The autoregressive (AR) model is one of the linear prediction formulas that 
attempt to predict an output Y(n) of a system based on the previous inputs {x(n), x(n-1), x(n-2)...}. 
It is also known in the filter design industry as an infinite impulse response filter (IIR) or an all pole 
filter, and is sometimes known as a maximum entropy model in physics applications.  
 
The respiration signal can be modeled as a second order autoregressive model [4] as the 
following, 
X(n)=a1X(n-1)+a2X(n-2) + e(n) (1) 
Where e (n) is the prediction error and {a1,a2} are AR model coefficients to be determined through 
burgs method. 

 
3.  NOISES IN RESPIRATORY SIGNALS 
Methods of respiration monitoring fall into two categories. Devices such as spirometers and nasal 
thermocouples measure air flow into and out of the lungs directly. Respiration can also be 
monitored indirectly, by measuring body volume changes; transthoracic inductance and 
impedance plethysmographs, strain gauge measurement of thoracic circumference, pneumatic 
respiration transducers, and whole-body plethysmographs are examples of indirect techniques. 
When the doctors are examining the patient on-line and want to review the respiratory signal 
waveform in real-time, there is a good chance that the signal has been contaminated by baseline 
wander (BW), power line interference (PLI), muscle artifacts (MA) and electrode motion artifacts 
(EM) etc., mainly caused by patient breathing, movement, power line noise, bad electrodes and 
improper electrode site preparation. All these noises mask the tiny features of the signal and 
leads to false diagnosis. To allow doctors to view the best signal that can be obtained, we need to 
develop an adaptive filter to remove the artifacts in order to better obtain and interpret the 
respiratory signal data. 
 
3.1 Motion Artifact 
Motion artifact cause false alarms during patient monitoring, which can reduce clinician 
confidence in monitoring equipment alarms and, consequently, slow response time. When motion 
artifact is introduced to the system, the information is skewed. Motion artifact causes irregularities 
in the data. Motion artifact can be reduced by proper design of the electronic circuitry and set-up. 
The shape of the baseline disturbance caused by motion artifacts can be assumed to be a 
biphasic signal resembling one cycle of a sine wave. The peak amplitude and duration of the 
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artifact are variables since the respiratory unit is a sensitive device, it can pickup unwanted 
electrical signals which may modify the actual respiratory signal. 
 
3.2 Power line interference 
Power line interference consists of 50Hz pickup and harmonics which can be modelled as 
sinusoids and combination of sinusoids. Characteristics which might need to be varied in a model 
of power line noise include the amplitude and frequency content of the signal. These 
characteristics are generally consistent for a given measurement situation and, once set, will not 
change during a detector evaluation. Power line interference is often a nuisance in bio potential 
measurements, mostly because of the long wires between the subject and the amplifier, the 
separation between the measurement points (electrodes), capacitive coupling between the 
subject (a volume conductor) and power lines, and the low amplitude of the desired signals. High-
resolution measurements searching for potentials as small as 1 V further exacerbate the problem. 
It is a common interference source with low frequency and weak amplitude in signal detection 
and transmission.  
 
3.3 Electrode Contact Noise 
Electrode contact noise occurs due to the loss of contact between electrode and skin. The 
measurement of bioelectric events is exposed to various sources of noise. The reactions that take 
place at the electrode make the electrode itself a source of noise. Electrode contact noise can be 
modeled as a randomly occurring rapid baseline transition (step) which decays exponentially to 
the baseline value and has a superimposed 50 Hz component. This transition may occur only 
once or may rapidly occur several times in succession. Characteristics of this noise signal include 
the amplitude of the initial transition, the amplitude of the 50 Hz component and the time constant 
of the decay. 
 
3.4 Baseline Drift 
The wandering of baseline results from the gross movements of the patients or from mechanical 
strain on the electrode wires. If there is no proper application of jelly between the electrode and 
the skin, during that time also baseline wandering occurs. Respiration, muscle contraction, and 
electrode impedance changes due to perspiration or movement of the body are the important 
sources of baseline drift. The drift of the baseline with respiration can be represented as a 
sinusoidal component at the frequency of respiration. The amplitude and frequency of the 
sinusoidal component should be variables. The amplitude of the respiratory signal also varies by 
about 15 percent with the original signal. The variation could be reproduced by amplitude 
modulation of the respiratory by the sinusoidal component which is added to the baseline. 

 
4. ADAPTIVE FILTER ALGORITHMS 
A system is said to be adaptive when it tries to adjust its parameters with the aid of meeting some 
well-defined goal or target that depends upon the state of the system and its surroundings. So the 
system adjusts itself so as to respond to some phenomenon that is taking place in its 
surroundings. An event related signal could be considered as a process, which can be 
decomposed into an invariant deterministic signal time locked to a stimulus and an additive noise 
uncorrelated with the signal. The most common signal processing of this type of bioelectric signal 
separates the deterministic signal from the noise. Several techniques can be considered of which 
we are considering the adaptive signal processing technique. Adaptive filters are self-designing 
filters based on an algorithm which allows the filter to “learn” the initial input statistics and to track 
them if they are time varying. These filters estimate the deterministic signal and remove the noise 
uncorrelated with the deterministic signal. The principle of adaptive filter is as shown in Figure 1. 
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FIGURE 1: Principle of Adaptive Filter 

 
Obtained signal d (n) from sensor contains not only desired signal s (n) but also undesired noise 
signal n (n). Therefore measured signal from sensor is distorted by noise n (n). At that time, if 
undesired noise signal n(n) is known, desired signal s(n) can be obtained by subtracting noise 
signal n(n) from corrupted signal d(n). However entire noise source is difficult to obtain, estimated 
noise signal n’ (n) is used. The estimate noise signal n’ (n) is calculated through some filters and 
measurable noise source X(n) which is linearly related with noise signal n(n). After that, using 
estimated signal n’ (n) and obtained signal d (n), estimated desired signal s’ (n) can be obtained. 
If estimated noise signal n’ (n) is more close to real noise signal n(n), then more desired signal is 
obtained. In the active noise cancellation theory, adaptive filter is used. Adaptive filter is classified 
into two parts, adaptive algorithm and digital filter. Function of adaptive algorithm is making 
proper filter coefficient. General digital filters use fixed coefficients, but adaptive filter change filter 
coefficients in consideration of input signal, environment, and output signal characteristics. Using 
this continuously changed filter coefficient, estimated noise signal n’ (n) is made by filtering X (n). 
The different types of adaptive filter algorithms can be explained as follows. 
 
4.1 LMS Algorithm 
The LMS algorithm is a method to estimate gradient vector with instantaneous value. It changes 
the filter tap weights so that e (n) is minimized in the mean-square sense. The conventional LMS 
algorithm is a stochastic implementation of the steepest descent algorithm. It simply replaces the 
cost function ξ (n) = E [e

2
 (n)] by its instantaneous coarse estimate. 

 
The error estimation e(n) is 
e (n) = d(n) – w(n) X(n)    (2) 
 
Coefficient updating equation is 
w (n+1) = w(n) + µ x(n) e(n),   (3) 
 
Where µ is an appropriate step size to be chosen as 0 < µ < 0.2 for the convergence of the 
algorithm. The larger step sizes make the coefficients to fluctuate wildly and eventually become 
unstable. The most important members of simplified LMS algorithms are: 
 
4.2 Signed-Regressor Algorithm (SRLMS) 
The signed regressor algorithm is obtained from the conventional LMS recursion by replacing the 
tap-input vector x (n) with the vector sgn{x(n)}.Consider a signed regressor LMS based adaptive 
filter that processes an input signal x(n) and generates the output y(n) as per the following: 
 
y (n) = w

t
 (n)x(n)     (4) 

 
where, w(n) = [ w0(n), w1(n), … , wL-1(n) ]

t 
is a L-th order adaptive filter. The adaptive filter 

coefficients are updated by the Signed-regressor LMS algorithm as, 
 
w (n+1) = w(n) + µ sgn{x(n)}e(n)   (5) 
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Because of the replacement of x(n) by its sign, implementation of this recursion may be cheaper 
than the conventional LMS recursion, especially in high speed applications such as biotelemetry 
these types of recursions may be necessary. 
 
4.3 Sign Algorithm (SLMS)  
This algorithm is obtained from conventional LMS recursion by replacing e(n) by its sign. This 
leads to the following recursion: 
 
w(n+1) = w(n) + µ x(n) sgn{e(n)}   (6) 
 
4.4 Sign – Sign Algorithm (SSLMS) 
This can be obtained by combining signed-regressor and sign recursions, resulting in the 
following recursion: 
 
w(n+1) = w(n) + µ sgn{x(n)} sgn{e(n)},  (7) 
 
Where sgn{ . } is well known signum function, e(n) = d(n) – y(n) is the error signal. The sequence 
d (n) is the so-called desired response available during initial training period. However the sign 
and sign – sign algorithms are both slower than the LMS algorithm. Their convergence behavior 
is also rather peculiar. They converge very slowly at the beginning, but speed up as the MSE 
level drops. 
 
4.5 Block LMS (BLMS) Algorithm 
To reduce the computational requirements of LMS algorithm, block LMS is introduced. Here the 
filter coefficients are held constant over each block of L samples, and the filter output y(n) and the 
error e(n) for each value of n within the block are calculated using the filter coefficients for that 
block. Then at the end of each block, the coefficients are updated using an average for the L 
gradients estimates over the block.  
 
4.6 Normalized LMS (NLMS) Algorithm 
In NLMS, the step size takes the form of, 

)(
2

)(

nx

n

β
µ =     (8) 

 
Where β is a normalized step size with 0< β<2. When x(n) is large, the LMS experiences a 
problem with gradient noise amplification. With the normalization of the LMS step size by ||x(n)||

2
 

in the NLMS, noise amplification problem is diminished. 

 
5. SCOPE OF THE PROPOSED WORK 
The work carried out in [1]-[7], [13]-[18], [24] analyzes the removal of noises in ECG and EMG 
signal using adaptive filter algorithm. An ECG recording requires more number of electrodes on 
the skin and people may wear it continuously for effective monitoring. EEG measurements are 
always random in nature. For the complete detection, we need more number of samples for 
analysis. Also, the mathematical modeling of EMG signals is very complex. Removal of motion 
artifacts and power line interference from ECG or EMG is complex since it requires more number 
of electrodes for measurement. From the results in [25], the respiratory signals alone are 
sufficient and perform even better than ECG, EEG and EMG. In our paper, we consider only the 
respiratory signal for noise removal since it is more convenient and do not require more number 
of electrodes on the skin. We studied the performance of various adaptive filter algorithms for the 
removal of noises in respiratory signal. Autoregressive (AR) spectral estimation techniques are 
known to provide better resolution than classical periodogram methods when short segments of 
data are selected for analysis. In our study, we adopted the Burg's method to compute AR 
coefficients. The major advantage of Burg method for estimating the parameters of the AR model 
are high frequency resolution, stable AR model and it is computationally efficient. 
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6. SIMULATION RESULTS 
This section presents the results of simulation using MATLAB to investigate the performance 
behaviors of various adaptive filter algorithms in non stationary environment with two step sizes of 
0.02 and 0.004. The principle means of comparison is the error cancellation capability of the 
algorithms which depends on the parameters such as step size, filter length and number of 
iterations. A synthetically generated motion artifacts and power line interference are added with 
respiratory signals. It is then removed using adaptive filter algorithms such as LMS, Sign LMS, 
Sign-Sign LMS, Signed Regressor, BLMS and NLMS. All Simulations presented are averages 
over 1000 independent runs. 
 
6.1 Removal of Motion Artifacts 
Respiratory signal is represented by second-order autoregressive process that is generated 
according to the difference equation, 
 
x(n)=1.2728x(n-1) – 0.81x(n-2) + v(n)  (9) 
 
Where v (n) is randomly generated noise. 
 
Figure 2 and Figure 3 shows the convergence of filter coefficients and Mean squared error using 
LMS and NLMS algorithms. An FIR filter order of 32 and adaptive step size parameter (µ) of 0.02 
and 0.004 are used for LMS and modified step sizes (β) of 0.01 and 0.05 for NLMS. It is inferred 
that the MSE performance is better for NLMS when compared to LMS. The merits of LMS 
algorithm is less consumption of memory and amount of calculation. 
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FIGURE 2: Performance of LMS adaptive filter. (a),(b) Plot of trajectories of filter coefficients and Squared 
error for µ=0.02 (c),(d) Plot for µ=0.004 
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                                      (a)                                                                           (b) 

 

(c)                                                                 (d) 
 

FIGURE 3: Performance of NLMS adaptive filter. (a),(b) Plot of trajectories of filter coefficients and Squared 
error for µ=0.02 (c),(d) Plot for µ=0.004 

 
6.2 Removal of Power line Interference 
A synthetic power line interference of 50 Hz with 1mv amplitude is simulated for PLI cancellation. 
Power line interference consists of 50Hz pickup and harmonics which can be modeled as 
sinusoids and combination of sinusoids. Figure 4 shows the generated power line interference. 
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FIGURE 4:  Power line interference 

 

The mean square learning curves for various algorithms are depicted as shown in Figure 5. The 
input x(n) is 0.18Hz sinusoidal respiratory signal. It is observed that minimization of error is better 
with BLMS compared with other algorithms. 
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          (a) LMS       (b) SRLMS 
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(c) Sign-Sign LMS    (d) BLMS 
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 (e) NLMS           (f) Sign LMS 

 
FIGURE 5: Mean Squared Error Curves for various Adaptive filter algorithms 

 
7. COMPARITIVE EVALUATION AND DISCUSSION 
Table 1 provides the comparison of mean squared error (MSE) and Convergence rate (C in terms 
of number of iterations that the filter coefficients converge) of different algorithms. It is observed 
from Figure 2 and Figure 3, the convergence speed for µ =0.02 is faster than µ=0.004. But MSE 
performance is comparatively better for µ=0.004 than µ=0.02. Convergence rate of LMS 
algorithm is better when µ=0.02 and low MSE value when µ=0.004. It is also inferred that the 
MSE performance of Sign Regressor LMS (SRLMS) at the step size of 0.02 is better when 
compared to other algorithms. But there is always tradeoff between convergence rate and mean 
squared error. Hence choosing an algorithm depends on the parameter on which the system has 
more concern. 
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TABLE 1: Comparison of MSE and Convergence Rate 

 
Table 2 shows the comparison of resulting mean square error while eliminating power line 
interference from respiratory signals using various adaptive filter algorithms with different step 
sizes. The observed MSE for LMS as shown in Figure 5 (a) is very low for µ =0.02 compared with 
µ =0.004. The performance of BLMS depends on block length L and NLMS depends on the 
normalized step size β. Observing all cases, we can infer that choosing µ =0.02 for the removal of 
power line interference is better when compared to µ =0.004. The step size µ =0.004 can be used 
unless the convergence speed is a matter of great concern. It is found that the value of MSE also 
depends on the number of samples taken for analysis. The filter order is 32. 

 

 
TABLE 2: Comparison of MSE in removing motion artifacts and power line interference 

 
From the simulation results, the proposed adaptive filter can support the task of eliminating PLI 
and motion artifacts with fast numerical convergence. Compared to the results in [23], the mean 
square value obtained in this work is found to be very low by varying the step sizes and 
increasing the number of iterations. An FIR filter order of 32 and adaptive step size parameter (µ) 
of 0.02 and 0.004 are used for LMS and modified step sizes (β) of 0.01 and 0.05 for NLMS. It is 
inferred that the MSE performance is better for NLMS when compared to LMS. The merits of 
LMS algorithm is less consumption of memory and amount of calculation. It has been found that 
there will be always tradeoff between step sizes and Mean square error. It is also observed that 
the performance depends on the number of samples taken for consideration.  

 

Algorithm µ=0.02 µ=0.004 

MSE C MSE C 

LMS 2.3873e-004 100 5.4907e-005 250 

SRLMS 8.5993e-006 
100 

5.3036e-004 550 

SIGN LMS 1.3406e-004 100 4.9436e-005 550 

SIGN-SIGN LMS 4.9514e-004 200 8.7072e-004 500 

NLMS β=0.05, 6.8306e-004 100 β=0.01, 0.0012 700 

Algorithm 

Motion Artifacts Power line interference 

µ=0.02 µ=0.004 µ=0.02 µ=0.004 

MSE MSE MSE MSE 

LMS 1.5973e-007 2.6776e-005 8.7683e-009 8.8808e-005 

BLMS 3.1966e-004 0.0160 3.2675e-004 0.0160 

SR LMS 5.3616e-007 2.1528e-007 3.8242e-010 4.8876e-005 

SIGN LMS 1.9924e-007 1.2130e-005 2.1145e-007 5.7397e-010 

SIGN-SIGN 

LMS 
3.7528e-006 5.5596e-007 1.9290e-007 4.2355e-008 

NLMS 
β=0.05, 

2.1528e-007 

β=0.01, 

1.0570e-008 

β=0.05, 

4.7339e-012 

β=0.01, 

3.6219e-005 
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7. CONCLUSION & FUTURE WORK 
This study has revealed useful properties of various adaptive filter algorithms. The objective is to 
optimize different adaptive filter algorithms so that we can reduce the MSE so as to improve the 
quality of eliminating interference. It is inferred that the MSE performance is better for NLMS 
when compared to LMS. The merits of LMS algorithm is less consumption of memory and 
amount of calculation. It has been found that there will be always tradeoff between step sizes and 
Mean square error. It is also observed that the performance depends on the number of samples 
taken for consideration. Choosing an algorithm depends on the parameter on which the system 
has much concern. The future work includes the optimization of algorithms for all kinds of noises 
and to use the optimized one in the implementation of DSP Microcontroller that estimates the 
respiratory signal.  
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Abstract 

 
This paper presents the problem of noise reduction from observed speech by 
means of improving quality and/or intelligibility of the speech using single-
channel speech enhancement method. In this study, we propose two approaches 
for speech enhancement. One is based on traditional Fourier transform using the 
strategy of Noise Subtraction (NS) that is equivalent to Spectral Subtraction (SS) 
and the other is based on the Empirical Mode Decomposition (EMD) using the 
strategy of adaptive thresholding. First of all, the two different methods are 
implemented individually and observe that, both the methods are noise 
dependent and capable to enhance speech signal to a certain limit. Moreover, 
traditional NS generates unwanted residual noise as well. We implement 
nonlinear weight to eliminate this effect and propose Nonlinear Weighted Noise 
Subtraction (NWNS) method. In first stage, we estimate the noise and then 
calculate the Degree Of Noise (DON1) from the ratio of the estimated noise 
power to the observed speech power in frame basis for different input Signal-to-
Noise-Ratio (SNR) of the given speech signal. The noise is not accurately 
estimated using Minima Value Sequence (MVS). So the noise estimation 
accuracy is improved by adopting DON1 into MVS. The first stage performs well 
for wideband stationary noises and performed well over wide range of SNRs. 
Most of the real world noise is narrowband non-stationary and EMD is a powerful 
tool for analyzing non-linear and non-stationary signals like speech. EMD 
decomposes any signals into a finite number of band limited signals called 
intrinsic mode function (IMFs). Since the IMFs having different noise and speech 
energy distribution, hence each IMF has a different noise and speech variance. 
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These variances change for different IMFs. Therefore an adaptive threshold 
function is used, which is changed with newly computed variances for each IMF. 
In the adaptive threshold function, adaptation factor is the ratio of the square root 
of added noise variance to the square root of estimated noise variance. It is 
experimentally observed that the better speech enhancement performance is 
achieved for optimum adaptation factor. We tested the speech enhancement 
performance using only EMD based adaptive thresholding method and obtained 
the outcome only up to a certain limit. Therefore, further enhancement from the 
individual one, we propose two-stage processing technique, NWNS+EMD. The 
first stage is used as a pre-process for noise removal to a certain level resulting 
first enhanced speech and placed this into second stage for further removal of 
remaining noise as well as musical noise to obtain final enhancement of the 
speech. But traditional NS in the first stage produces better output SNR up to 10 
dB input SNR. Furthermore, there are musical noise and distortion presented in 
the enhanced speech based on spectrograms and waveforms analysis and also 
from informal listening test. We use white, pink and high frequency channel 
noises in order to show the performance of the proposed NWNS+EMD algorithm. 
 
Keywords: speech enhancement, non linear weighted noise subtraction, degree of noise, empirical mode 
decomposition, adaptive thresholding. 

 
 

1. INTRODUCTION 
In many speech related systems like mobile communication in an adverse environment, the 
desired signal is not available directly; rather it is mostly contaminated with some interference 
sources of noise. These background noise signals degrade the quality and intelligibility of the 
original speech, resulting in a severe drop in the performance of the applications. The 
degradation of the speech signal due to the background noise is a severe problem in speech 
related systems and therefore should be eliminated through speech enhancement algorithms. In 
our previous study, we have proposed a two stage noise reduction algorithm by noise subtraction 
and blind source separation [1]. In that report, we recommended further research to improve the 
algorithm over wide ranges of SNRs as well as noise reduction performance for narrow-band 
noises. 
 
Research on speech enhancement techniques started more than 40 years ago at AT&T Bell 
Laboratories by Schroeder as mentioned in [2]. Schroeder proposed an analog implementation of 
the spectral magnitude subtraction method. Then, the method was modified by Schroeder’s 
colleagues in a published work [3]. However, more than 15 years later, the spectral subtraction 
method as proposed by Boll [4] is a popular speech enhancement techniques through noise 
reduction due to its simple underlying concept and its effectiveness in enhancing speech 
degraded by additive noise. The technique is based on the direct estimation of the short-term 
spectral magnitude. Recent studies have focused on a non-linear approach to the subtraction 
procedure [5-7]. In Martin [5] algorithm modifies the short time spectral magnitude of the 
corrupted speech signal such that the synthesized signal is perceptually as close as possible to 
the clean speech signal. The estimating noise is obtained as the minima values of a smoothed 
power estimate of the noisy signal, multiplied by a factor that compensates the bias. The 
algorithm eliminates the need of speech activity detector by exploiting the short time 
characteristics of speech signal. Martin’s study compared the result with Malah [6], and found an 
improved SNR. However, this noise estimation is sensitive to outliers, and its variance is about 
twice as large as the variance of a conventional noise estimator. These approaches have been 
justified due to the variation of signal-to-noise ratio across the speech spectrum. Unlike white 
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Gaussian noise, which has a flat spectrum, the spectrum of real-world noise is not flat. Thus, the 
noise signal does not affect the speech signal uniformly over the whole spectrum. Some 
frequencies are affected more adversely than others. In high frequency channel noise (HF 
channel), for instance, in the low frequencies, where most of the speech energy resides, are 
affected more than the high frequencies. Hence it becomes imperative to estimate a suitable 
factor that will subtract just the necessary amount of the noise spectrum from each frequency bin 
(ideally), to prevent destructive subtraction of the speech while removing most of the residual 
noise. Then it is usually difficult to design a standard algorithm that is able to perform 
homogeneously across all types of noise. For that, a speech enhancement system is based on 
certain assumptions and constraints that are typically dependent on the application and the 
environment.  
 
There are some crucial restrictions of the Fourier spectral analysis [8]: the system must be linear; 
and the data must be strictly periodic or stationary; otherwise the resulting spectrum will make 
little physical sense. From this point of view, Fourier filter methods will fail when the processes 
are nonlinear. The empirical mode decomposition (EMD), proposed by Huang et.al [9] as a new 
and powerful data analysis method for nonlinear and non-stationary signals, has made a new 
path for speech enhancement research.  EMD is a data-adaptive decomposition method, which 
decompose data into zero mean oscillating components, named as intrinsic mode functions 
(IMFs). It is mentioned in [10] that most of the noise components of a noisy speech signal are 
centered on the first three IMFs due to their frequency characteristics. Therefore EMD can be 
used for effectively identifying and removing these noise components. Xiaojie et. al. [11] 
proposed EMD that effectively identify and remove noise components. Recently there are many 
speech enhancement methods [12-14] have been developed in dual-channel and single-channel 
modes using EMD. In [12] EMD based speech enhancement is achieved by removing those IMFs 
whose energies exceeded a predefined threshold value. The IMFs, which represent empirically, 
observed applying EMD in observed speech contaminated with white Gaussian noise generates 
noise model. In [13] speech enhancement based on EMD-MMSE is performed by filtering the 
IMFs generated from the decomposition of speech contaminated with white Gaussian noise. In 
[14], an optimum gain function is estimated for each IMF to suppress residual noise that may be 
retained after single-channel speech enhancement algorithms. 
 
In our previous study, Hamid [1] proposed noise subtraction (NS) technique where noise is 
estimated using minimum value sequence (MVS) and the noise floor is updated with the help of 
estimated degree of noise (DON). The main drawback of this method is that we estimate DON on 
the basis of pitch period over the frame and the pitch period of unvoiced sections is not accurately 
estimated. To solve this problem, in this paper, we estimate EDON on the basis of estimated 
SNRs of clean and noisy speech spectrums.  Then, the EDON is estimated in two stages from a 
function, which is previously prepared as the function of the parameter of the degree of noise [1]. 
We consider the valleys of the observed smoothed power spectrum of a noisy speech signal to 
estimate noise power. This spectrum is tuned by EDON to adjust the noise level for a particular 
SNR. We also perform suitable steps to minimize the residual noise problem. Now the estimated 
noise spectrum with a controlled non-linear factor is subtracted from the observed spectrum in 
time domain to obtain noise reduced speech. This paper presents a parametric formulation to 
estimate noise weight on the basis of EDON. The weighting factor increases with increasing 
SNRs, and results non-linear weighting factor with speech activity. Although Fourier transform 
and wavelet analysis make great contributions, they suffer from many shortcomings in case of 
nonlinear and nonstationary signals. For this reason, for further enhancement, EMD technique 
has been used for robust noisy speech analysis in this work.  
 
Since the IMFs in EMD having different noise and speech energy distribution, hence each IMF 
has a different noise and speech variance. These variances change for different IMFs. Therefore 
an adaptive threshold function is used, which is changed with newly computed variances for each 
IMF. Moreover, since IMFs are generated from EMD and therefore, we call the proposed method 
as EMD based adaptive thresholding technique. To enhance the speech, EMD based adaptive 
thresholding algorithm applied into each IMFs for removing the noise embedded in the underlying 
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IMFs. In the adaptive threshold function, adaptation factor is the ratio of the square root of added 
noise variance to the square root of estimated noise variance. It is experimentally observed that 
the better speech enhancement performance is achieved for optimum adaptation factor. We 
tested the speech enhancement performance using only EMD based adaptive thresholding 
method and obtained the outcome only up to a certain limit. Moreover, each individual method 
has some performance limitations. 
 
Therefore, further enhancement from the individual one, we propose two-stage processing 
technique, namely, a time domain NS or NWNS followed by an EMD based adaptive 
thresholding. The first stage is used as a pre-process for noise removal to a certain level resulting 
first enhanced speech and placed this into second stage for further removal of remaining noise as 
well as musical noise to obtain final enhancement of the speech. But traditional NS in the first 
stage produces better output SNR up to 10 dB input SNR. Furthermore, there are musical noise 
and distortion presented in the enhanced speech based on spectrograms and waveforms 
analysis and also from informal listening test. EMD based adaptive thresholding does not work 
well on distorted speech and not be able to recover the speech from the distorting speech when it 
cascaded with NS. As a result, the overall performance of enhanced speech obtained from 
NS+EMD based adaptive thresholding is not so good based on the objective and subjective 
measures. In the first stage, the performance of speech enhancement improves by introducing 
nonlinear weight in NS, namely NWNS, to control the noise level and improves its overall 
performance for wide range of input SNRs provide first enhanced speech without distortion and 
with minimum effect of musical noise. Moreover, the overall performance is further improved by 
cascading NWNS in the first stage and EMD based adaptive thresholding in the second stage. In 
this two-stage processing, NWNS is influenced to increase the performance of EMD based 
adaptive thresholding. The advantage of the method is the effective removal of noise and 
produces better output SNR for wide range of input SNR and also improves the speech quality 
with reducing residual noise.  
 

2. NOISE ESTIMATION AND SUBTRACTION 
The main component of speech noise reduction is noise estimation that is a most difficult task for 
a single-channel enhancement system. The noise estimate can have a major impact on the 
quality of the enhanced speech. That is, with a better noise estimation, a more correct SNR is 
obtained, resulting in the enhanced speech with low distortion. We have assumed that speech 
and noise are uncorrelated to each other. We further assume that signal and noise are 
statistically independent.  
 
2.1 Estimating Minimum Value Sequence (MVS) 
The sections of consecutive samples are used as a single frame l(320 samples) and spaced 
l’(100 samples) achieving an almost 62.75% overlap. The short-term representation of a signal 
y(n) is obtained by Hamming windowing and analyzed using N=512 point Discrete-Fourier 
transform (DFT) at sampling frequency 16KHz. Initially, noise spectrum is estimated from the 
valleys of the amplitude spectrum [1]. The algorithm for noise estimation is as follows: 
Compute the RMS value Yrms of the amplitude spectrum Y(k). We detect the minima of Y(k) by 
obtaining the vector kmin such that Y(kmin) are the minima in Y(k). Then the interpolation is 
performed between adjoining minima positions to obtain Ymin(k) representing the minimum value 
sequences (MVS). We smooth the sequences by taking partial average called smoothed 
minimum value sequences (SMVS). An estimation of noise from the SMVS is survived by an 
overestimation and underestimation of the SNR which is controlled by proposed EDON. The 
block diagram of the noise estimation process is shown in Figure 1. 
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FIGURE 1: Block diagram of the 1
st
 estimated DON, Z1m. 

 
 
2.2 Estimation of the Degree Of Noise (EDON) 
In a single-channel method, we only know the power of the observed signal. To obtain EDON, we 
estimate noise of the observed signal in every analysis frame m. First white noise of various SNR 
is added to voiced vowel sounds. Now for each SNR, DON of each phoneme is estimated and 
averaged which corresponds the input SNR. Then each of these estimated 1

st
 averaged DONs of 

each frame m for corresponding input SNR expressed as m
Z1 . The estimated m

Z1  is aligned with 
the true DON (Ztr) using the least-square (LS) method results the 1

st
 estimated DON Z1mof that 

frame. The true DON (Ztr) is given by  
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 averaged DON is  

 

∑
=

=
M

m obs

m
mP

mP

M
Z

1

1
)(

)(1 η

        (2) 
 
where, M are the noise added frames; Pη(m)and Pobs(m) are the powers of noise and observed 
signals, respectively.  Here it obvious that we consider only the voiced phonemes in our 

experiment. So the value of mZ1 should be limited to voiced portion of a speech sentence. We used 
the same experiment with unvoiced speech. Practically the unvoiced portion contaminated with 
higher degree of noise. Hence the estimated noise is higher for unvoiced frame than from voiced 
frame. Consequently higher DON value is obtained from unvoiced frame than from voiced frame 
that is logically resemblance. The degree of noise estimated from a function using least square 
method is given as 
 

bZaZ
mtr

+×= 1
         

 

here a and b are unknown. We estimate a and b via LS method, yielding a  and b and the 

estimated degree of noise is given by 

  bZaZ
mm

+×= 11
        (3) 

 

1st estimated 

DON, Z1m 
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where Z1m is the 1
st
 estimated DON of frame m. The value os Z1m is applied to update the MVS. 

Next, the noise level is re-estimated and updated with the help of Z1m. Finally, from the estimated 

noise, we again estimate 2
nd

 averaged DON ( mZ2 ) and similarly the 2
nd

 estimated DON (Z2m) 
which is used to estimate the noise weight for non linear weighted noise subtraction. 
 
2.3 Noise Spectrum Estimation 

We detect the minima 
))(min()( minmin kYkY ←

 values of amplitude spectrum Y(k) when the 
following condition (Y(k)<Y(k-1) and Y(k)<Y(k+1) and Y(k)<Yrms) is satisfied. The kmin expresses 
the positions of the frequency bin index of minima values. Then interpolate between adjoining 

minima positions 
)( min kk ←

to obtain the minima value sequence (MVS) Ymin(k). Now we 
smooth the sequences by taking partial average called smoothed minima value sequence 
(SMVS). This process continuously updates the estimation of noise among every analysis 
frames. Now the noise spectrum is estimated from the SMVS and 1

st
 estimated DON according to 

the condition 
 

 
( )

rmsmm
YZkYkD ×+=

1min
)()(

       (4) 
 

where Yrms is the rms value of the amplitude spectrum. Then we made some updates of Dm(k), 
the updated spectrum is again smoothed by three point moving average, and lastly the main 
maximum of the spectrum is identified and are suppressed [1]. Figure 2 shows the spectrums. 
        

 
FIGURE 2: Noise spectrums (true and estimated). 

 
 
2.4 Non-linear Weighted Noise Subtraction (NWNS) 
Noise reduction in the front-end is based on implementation of the traditional spectral subtraction 
(SS) require an available estimation of the embedded noise, here, in time domain we named 
noise subtraction (NS). The goal of this section is to modify the noise subtraction process by 
adopting a non linear weight for minimizing the effect of residual noise in the processed speech 
and then to improve the performance by using EMD. 
For subtraction in time domain, the estimated noise in the previous section is recombined with the 

phase of the noisy speech and inverse transformed one. Then we obtain )(ndss

)

 by withdrawing the 
effect of the window. The NWNS is given by: 
 

)()()(1 ndZnyns sstr

)

××−= α
      (5) 
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where
3

2

2

22 8273.9109.144021.63019.0 mmm ZZZ ×+×−×+=α   is nonlinear weighting factor. We use least-
square method for the estimation process. We find that for each input SNR, certain weight is 
required for best noise reduction results over wide ranges of SNR. In this experiment, we used 7 
male and 7 female speakers of 10 different sentences at different SNR levels, randomly selected 
from the TIMIT database. We use 3

rd
 degree polynomials to derive the above formulation. It is 

observed from Eq. (1) that it needs the input SNR. The input SNR can be estimated using 
variance is given by 














=

2

2

10log10
ησ

σ s
inputSNR

      (6)  

where, 
2

sσ and 
2

ησ
are the variances of speech and noise respectively. We assume that due to the 

independency of noise and speech, the variance of the noisy speech is equal to the sum of the 
speech variance and noise variance. It is found that by adopting nonlinear weighted in NS, a 
good noise reduction is obtained. Although with the NWNS, we find the good performance with 
less musical noise by informal listening test but for further enhancement we cascade another 
method EMD and get better results. 
 

3. CASCADE OF NWNS AND EMD 

The general block diagram of the proposed system is shown in Figure 3. In the block diagram, 
first stage is incorporated a Noise Subtraction (NS) method with weight and second stage a 
Empirical Mode Decomposition (EMD) based adaptive thresholding method. 
 

 
 

FIGURE 3: The block diagram of the two-stage NWNS+EMD method. 
 

 
3.1 Empirical Mode Decomposition (EMD) 
The principle of EMD technique is to decompose any signal y(n) into a set of band-limited 
functions, which are the zero mean oscillating components, called simply the intrinsic mode 
functions (IMFs) [9]. Although a mathematical model has not been developed yet, different 
methods for computing EMD have been proposed after its introduction [15]. The very first 
algorithm, called as the sifting process, is adopted here to find the IMF’s include the following 
steps; 

1. Identify the extrema of y(n) 
2. Generate the upper and lower envelopes (u(n) and l(n)) by connecting the maxima and 

minima points by interpolation 

3. Calculate the local mean µ1(n)=[u(n)+l(n)]/2 

4. Since IMF should have zero local mean, subtract out µ1(n) from y(t) to obtain h1(t) 
5. Check whether h1(t) is an IMF or not 
6. If not, use h1(t) as the new data and repeat steps 1 to 6 until ending up with an IMF. 

IFFT 

FFT 
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Once the first IMF is derived, we should continue with finding the remaining IMFs. For this 
purpose, we should subtract the first IMF c1(n) from the original data to get the residue signal r1(t). 
The residue now contains the information about the components of longer periods. We should 
treat this as the new data and repeat the steps 1 to 6 until we find the second IMF. 
 
3.2 Soft-thresholding 
The soft thresholding strategy proposed in [16] for a frame, m of length L in transform-domain as 
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where 
∑

=

=
L

q

qY
L 1

21
φ

denotes the average power of the frame, and 
2

nσ
is the global noise variance of 

the speech, Yq is  qth coefficient of the frame obtained by the required transformation and 

qY
)

denotes to the thresholded samples of the frame. The multiplication factor jγ is the linear 
threshold function while j being the sorted index-number of |Yq|. An estimated value of γ can be 
obtained as:  

   
∑ =

=
Q

q

n

q
Q 1

21

λσ
γ

        (8) 

where λ is an adaptation factor and its value is determined experimentally such that 0<λ<1. It is 
observed that the first part of Eq. (7) is for signal dominant frame when the condition satisfies, 
and second part is for noise dominant frame where soft thresholding will have to apply. So the 
classification of frames either to be signal dominant or noise dominant depends on average 
power of a frame and global noise variance of the given noisy speech. In this paper, we apply this 
soft thresholding strategy adaptively in each IMF, as discuss in the next section.  
 
3.3 Adaptive thresholding 
Soft thresholding strategy performs better on wide range of input SNR due to thresholded noise 
dominant frames only and kept remain the same in case of signal dominant frames but the 
misclassification of frames is a major drawback that causes musical noise [9]. Therefore this 
method is mainly appropriate for white noise. All the drawbacks can be significantly reduced with 
the proposed EMD based adaptive thresholding strategy with some modification of frame 
classification criteria. Since the IMFs will have different noise and speech energy distribution, so it 
suggests that each IMF will have a different noise and speech variance. After applying EMD, the 
soft thresholding technique is applied on each sub-frame of each IMF based on the computed 
variances. It is obvious that the variances will be changed for different sub-frames as well as with 
the individual IMF. The threshold will also be changed with newly computed variances and hence 
this technique is termed as adaptive thresholding. The proposed EMD based adaptive 

thresholding strategy for 
th

r  subframe of 
thi )( ′

 IMF as: 
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Here, 

)(

,
ˆ r

iqY ′  denotes to the thresholded samples of 
th

r subframe of the 
thi )( ′

 IMF, 
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r

iqY
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coefficient of 
th

r  subframe of 
thi )( ′

 IMF and the multiplication 
γ̂j′

 is the adaptive threshold 

function while j ′  being the sorted index-number of 

)(

,

r

iqY ′
. The threshold factor 

γ̂
 is varied 

adaptively for individual IMF according to its variance. An estimated value of 
γ̂

 can be obtained 
as: 
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IMF.  Since global noise variance is estimated from silent frames, therefore, it assumes each 
frame as well as subframe belong that variance. That is why; the boundary for the classification of 
subframes should be set to two times of the globally estimated noise variance when noise 
variance and speech variance of that subframe are same. The enhanced speech signal of the 
EMD based adaptive thresholding is given by 
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              (10) 
where, I=total number of IMFs, 
           R=total number of subframe and 
           Q=length of a subframe. 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

We study the effectiveness of the proposed NWNS+EMD based adaptive thresholding algorithm 
are tested on the speech data corrupted by three different types of additive noise like white, pink 
and HF channel noise are taken from NOISEX database. N=56320 samples of the clean speech 
/she had your dark suit in greasy wash water all year/ from TIMIT database were used for all 
simulations. The noises are added to the clean speeches at different SNRs from –10dB to 30dB 
of step 5 to obtain noisy speech signals. 
  
For evaluating the performance of the method, we are used the overall output and average 
segmental SNRs that are graphically represented as for measuring objective speech quality. The 
results of the average output SNR obtained from for white noise, pink noise and HF channel 
noise at various SNR levels are given in Table 1 for pre-processed speech in the first stage and 
final enhanced speech in the second stage respectively. Since in the real world environments, the 
noise power is sometimes equal to or greater than the signal power or the noise spectral 
characteristics sometimes change rapidly with time, NS or NWNS is not so effective in such 
situations. Because, there have to introduced large errors in the noise estimation process. EMD 
based adaptive thresholding method plays a vital role for the above case as found in Table 1. 
Table 2 presents a comparison the overall average output SNR among our previous method 
WNS and WNS+BSS with proposed method NWNS+EMD.  

 

Input 

SNR 

White noise HF channel noise Pink noise 

NWNS EMD NWNS EMD NWNS EMD 

-10dB -1.57 2.06 -7.47 -0.58 -7.06 -6.69 

-5dB 2.39 5.69 -2.66 3.03 -2.32 -1.92 

0dB 5.26 8.85 1.91 6.29 2.14 2.82 

5dB 8.66 11.94 6.42 9.74 6.33 7.22 

10dB 11.64 15.15 10.77 13.46 10.73 11.71 

15dB 15.77 18.72 15.42 17.42 15.40 16.26 

20dB 20.37 22.62 20.22 21.64 20.22 20.91 

25dB 25.17 26.85 25.11 26.12 25.11 25.64 

30dB 30.05 31.27 30.02 30.77 30.02 30.44 

 
TABLE 1: The average output SNR for various types of noises at different input SNR by NWNS and 
NWNS+EMD (indicated as EMD). 
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Input 
SNR 

White noise HF channel noise Pink noise 

WNS WNS+BSS EMD WNS WNS+BSS EMD WNS WNS+BSS EMD 

0dB 0.66 8.1 8.9 0.4 4.3 6.3 0.4 2.1 2.8 

5dB 6.0 10.2 11.9 5.5 7.8 9.7 5.5 6.8 7.2 

10dB 11.1 11.2 15.2 10.5 10.9 13.5 10.4 10.2 11.7 

15dB 15.7 13.8 18.7 15.1 13.1 17.4 15.0 13.2 16.3 

20dB 19.2 15.2 22.6 18.6 14.9 21.6 18.8 15.1 10.1 

25dB 21.3 15.7 26.9 20.8 15.7 26.1 21.4 15.8 25.6 

30dB 22.3 16.0 31.3 21.8 15.8 30.8 22.7 16.1 30.5 

 
TABLE 2: The average output SNR for various types of noises at different input SNR by WNS, WNS+BSS 
(previous methods) and NWNS+EMD (indicated as EMD). 

 
In terms of speech quality and intelligibility, the proposed two-stage (NWNS+EMD based 
adaptive thresholding method has to given a better tradeoff between noise reduction and speech 
distortion. We investigate this effect from the enhanced speech waveforms obtained from various 
methods as shown in Figure 4. It is observed from the waveforms that the enhanced speech is 
distorted in low voiced parts due to remove the noise in NS method whereas NWNS does not. A 
little amount of noise is removed from the corrupted speech by NWNS method. So in NS method 
there is a loss of speech intelligibility while NWNS maintains it. Although the EMD based adaptive 
thresholding can be able to successfully remove the noise from voiced parts but there is some 
noise remaining in the silent parts because of misclassification of subframes as signal-dominant. 
This remedy can be avoided using the proposed method. We also observed that by NS+EMD 
based adaptive thresholding method, there is loss of information in lower voiced parts and as a 
result speech intelligibility reduced. Moreover, the wavefrom obtained by NWNS+EMD based 
adaptive thresholding, it can be seen that there is no loss of information in lower voiced parts and 
maintains the speech intelligibility. We use two perceptually motivated objective speech quality 
assessments, namely the average segmental SNR (ASEGSNR) and the Perceptual Evaluation of 
Speech Quality (PESQ) to study the effectiveness of the proposed method. In Figures 5 and 6, it 
is observed that our proposed NWNS+EMD based adaptive thresholding approach achieve 
comparable improvements of speech quality. The PESQ scores of the speech at –10dB and –
5dB (pink and HF channel noise) are almost equal to input PESQ scores. This is due to the 
presence of musical noise in first stage 
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FIGURE 4: Speech waveforms of (from top) clean, noisy (HF noise at 10dB), enhanced by NWNS and 
NWNS+EMD. 
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FIGURE 5: Comparisons of the average output segmental SNR (ASEGSNR) by NWNS and NWNS+EMD 
methods for pink noise (left) and HF channel noise (right). 
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FIGURE 6: Comparison of PESQ scores by NWNS and NWNS+EMD methods for pink noise (left) and HF 
channel noise (right). 

5. CONCLUSION & FUTURE WORK  

In this paper, we presented a new algorithm to effectively remove the noise components in all 
frequency levels of a noisy speech signal. Our aimed to improve SNR of noise contaminated 
speech by removing and/or reducing noise using a two-stage processing technique; namely, a 
time domain nonlinear weighted noise subtraction (NWNS) followed by an Empirical Mode 
Decomposition (EMD) based adaptive thresholding. The first enhanced speech became as input 
of the second stage for further enhancement and obtained final enhanced speech after second 
stage processing. We introduced the degree of noise (DON1 and DON2) estimation process. 
DON1 was used to improve noise estimation accuracy and DON2 to calculate nonlinear 
weighting factor for NWNS in order to reduce musical noise. The parameters of DON1 and DON2 
were estimated for white noise and we used the same parameters for all color/real world noises. 
Since the empirical mode decomposition (EMD) was fully data adaptive and highly effective for 
nonlinear and nonstationary data, it overcame inadequacy effect of the first stage for assumption 
as stationary of nonstationary speech segment. We combined NWNS+EMD based adaptive 
thresholding enhancement algorithm which worked most efficiently for wide range of input SNR. It 
was found that the amount of this improvement decreased when the interfering source power was 
minimal. This was because the algorithm was dependent upon the interfering noise signal 
estimation in the first stage and also dependent upon the adaptation factor and adaptive 
threshold factor in the second stage. When the interfering noise power was increased (up to 
0dB), the proposed methods were able to perform better noise estimation. However, as the 
interfering noise power became much larger, as was true for extremely small SNR’s (<0dB), the 
algorithm did not perform well in the case of color noises due to the inability of the method to 
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obtain an adequate estimate of the original signal. The performance of the proposed method over 
speech contaminating with white noise or color noise was good based on objective measures and 
spectrograms and waveforms analysis.  
 
Since in single channel speech enhancement method, there was difficulty removing all the noise 
components from speech without introducing musical noises or distortions, hence in this regard 
further research can be conducted to increase the accuracy of noise estimation (DON1) and also 
the more adjustment needed of the nonlinear weight (DON2) for voiced/unvoiced sections for 
underlying noisy speech to reduce musical noise and to improve speech quality. All EMD based 
algorithm suffers from computational complexity and the empirical process takes long time and is 
not applicable for real time processing. Therefore, it is suggested that more research can be 
conducted on insight the EMD making it less empirical and more mathematical. 
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Abstract 

 
For stationary signals, there are number of power spectral density estimation 
techniques.  The main problem of power spectral density (PSD) estimation 
methods is high variance.  Consistent estimates may be obtained by suitable 
processing of the empirical spectrum estimates (periodogram).  This may be 
done using window functions. These methods all require the choice of a certain 
resolution parameters called bandwidth.  Various techniques produce estimates 
that have a good overall bias Vs variance tradeoff.  In contrast, smooth 
components of this spectral required a wide bandwidth in order to achieve a 
significant noise reduction. In this paper, we explore the concept of cepstrum for 
non parametric spectral estimation. The method developed here is based on 
cepstrum thresholding for smoothed non parametric spectral estimation. The 
algorithm for Consistent Minimum Variance Unbiased Spectral estimator is 
developed and implemented, which produces good results for Broadband and 
Narrowband signals.  
 
Keywords: Cepstrum, Consistency, Cramer Rao Lower Bound, Unbiasedness. 

 
 

1. INTRODUCTION 

The main objective of spectrum estimation is the determination of the Power Spectral density 
(PSD) of a random process. The estimated PSD provides information about the structure of the 
random process, which can be used for modeling, prediction, or filtering of the deserved process. 
Digital Signal Processing (DSP) Techniques have been widely used in estimation of power 
spectrum. Many of the phenomena that occur in nature are best characterized statistically in 
terms of averages [20]. 

Power spectrum estimation methods are classified as parametric and non-parametric. Former 
one a model for the signal generation may be constructed with a number of parameters that can 
be estimated from the observed data. From the model and the estimated parameters, we can 
compute the power density spectrum implied by the model. On the other hand, do not assume 
any specific parametric model of the PSD. They are based on the estimate of autocorrelation 
sequence of random process from the observed data. The PSD estimation is based on the 
assumption that the observed samples are wide sense stationary with zero mean. Traditionally 
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four techniques are used to estimate non parametric spectrum such as Periodogram, Bartlett 
method (Averaging periodogram), Welch method (Averaging modified periodogram) and 
Blackman-Tukey method (smoothing periodogram) [18] and [19]. 
 

2. CEPSTRUM ANALYSIS  

The cepstrum of a signal is defined as the Inverse Fourier Transform of the logarithm of the 

Periodogram. The cepstrum of })({ 1

0

−=
=

Nt

t
ty  can be defined as [7],[8] and [13] 

    1,......0;)ln(
1 1

0

−== ∑
−

=

Nke
N

c
pj

N

p

pk
kωφ                                               (1) 

Consider a stationary, discrete-time, real valued signal })({ 1
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A commonly used cepstrum estimate is obtained by replacing pφ     with the periodogram pφ̂ . 
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to make unbiased estimate the cepstrum coefficients only at origin is modified, remaining are 
unchanged. 
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In this approach, we smooth 
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likely to be equal or close to zero and, there fore, whether  
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c  should be truncated to zero [9]-

[12].  
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The spectral estimate corresponding to { }
k

c~  is given by 
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The proposed non parametric spectral estimate is obtained from  pφ
~

 by a simple scaling  
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Statistics of log periodogram 

The mean and variance of the k th component of the log periodogram of the signal,
2

log kY , 

assuming that the spectral component 
k

Y  is Gaussian, are, respectively, given by [1]-[6], 
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where 05772156649.0=γ is the Euler constant, and 
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Note from (8) that the expected value of the k th component of the log-periodogram equals the 

logarithm of the expected value of the periodogram plus some constant. This surprising linear 
property of the expected value operator is of course a result of the Gaussian model assumed 

here. From (9) the variance of the k th log-periodogram component of the signal is given by the 

constant.  
 
Statistics of Cepstrum 
The mean of the cepstral component of the signal is obtained from (8) and is given by [1], [2] and 
[7] 

                             n

K

k

kYy
K

kn
K

j
K

ncE ξ
π

λ
1

}
2

exp{)log(
1

)}({
1

0

−= ∑
−

=

                                       (10) 

where    



 =

=
oddnif

evennornif
n

,0

0,2log2
ξ          

the variance of the cepstral components is obtained from (9) and given by for 2/..,.........0 Kn =  
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 and   for mnKmn ≠= ,2/....,,.........1,0,  
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The covariance matrix of cepstral components of the signal, assuming the spectral components 
of the signal are statistically independent complex Gaussian random variables. The covariance 
matrix of cepstral components given by (11) and (12) is independent of the underlying power 
spectral density which characterizes the signal under the Gaussian assumption. The covariance 
of cepstral components under the Gaussian assumption is a fixed signal independent matrix that 
approaches, for large K a diagonal matrix given by  
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 Cepstrum algorithm 

1. Let  a stationary, discrete-time, real valued signal })({ 1
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2. Compute the periodogram estimate of pφ using FFT. 
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3. First apply natural logarithm and take IFFT to compute the cepstrum estimate. 
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4. Compute the threshold by choosing the appropriate value of µ depending on the type of 

signal and determine the cepstral coefficients  
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5. Compute the spectral estimate corresponding to { }
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c~  is given by 
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Simulation Results 
In this section, we present experimental results on the proposed algorithm for simulated data to 
estimate the power spectrum. The performance of proposed method is verified for simulated data, 
generated by applying Gaussian random input to a system, which is either broad band or narrow 
band.The MA broad band signal is generated by using the difference equation [18] 

                          

1,....1,0

),4(2401.0)3(1736.0

)2(3508.0)1(3544.0)()4(4096.0

)3(8843.0)2(5632.1)1(3817.1)(

−=

−+−

+−+−+=−

+−−−+−−

Nt

tete

tetetety

tytytyty

                                            (14) 

where )(te is a normal white noise with mean zero and unit variance. The ARMA narrow band 

signal is generated by using the difference equation   
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The number of samples in each realization is assumes as N=256.  
After performing 1000 Monte Carlo Simulations, the comparison of the mean Power Spectrum, 
Variance and Mean Square Error for the broad band signal and narrow band signals, obtained 
using periodogram and cepstrum approach along with the true power spectrum are shown in 
Figure 1 (a) , (b) and (c) and Figure 2 (a), (b) and (c) respectively. 
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FIGURE 1: (a) PSD vs frequency for broadband signal 
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FIGURE 1: (b) Variance vs frequency for broadband signal 
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FIGURE 1: (c) Mean Square Error vs frequency for broadband signal 
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FIGURE 2: (a) PSD vs frequency for narrowband signal 
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FIGURE 2: (b) Variance vs frequency for narrowband signal 
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FIGURE 2: (c) Mean Square Error vs frequency for narrowband signal 

From the above results we can say that  
1. In the case of broad band signal the spectral estimates through cepstrum approach has 

very smooth response compared to the periodogram approach. However it can be 
observed that the mean square error is more in the case of periodogram and least with 
cepstrum thresholding approach. 

2. In the case of broad band signals, variance obtained through cepstrum thresholding 
approach is very small as compared to the periodogram approach. 

3. It is also observed that the mean square error estimated through cepstrum approach for 
narrowband signals is less compared to broadband signals. 

 
Comparison among the traditional methods and the cepstrum method  
In order to evaluate the performance of the cepstrum technique, which is compared with the 
traditional methods such basic Peridogram, Bartlett method, Welch method and Blackman and 
Tukey [21] for simulated ARMA narrow band signal, which is generated by using equation (15).  
 
 
 
 
 
 
 
 
 

TABLE 1: Comparison table for the parameters mean and variance (Record length N=128). 

 
From the comparison table 1, for short record length, with respect to mean and variance, the 
cepstrum technique produces better results in comparison with the traditional methods. For 
longer record length, with reduced computational complexity, the cepstrum method produces the 

The various  PSD 
techniques 

Mean Variance 

Cepstrum 0.0090 2.4023e-004 
Periodogram 0.0092 4.8587e-004 

Black-man and Tukey 0.0521 0.0047 
Welch 0.0138 8.9491e-004 
Bartlett  0.2474 0.0637 
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values of mean and variance as same as that of the Welch method, but these methods are better 
than the remaining techniques. For 1000 Monte carlo simulations, the ensemble power spectrum 
for various techniques is shown in figure 3.    
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FIGURE 3: an ensemble power spectrum of an ARMA narrowband signal by using the traditional methods 
and the cepstrum method 

 
Results for MST Radar data 
The concept of cepstrum is applied to atmospheric data collected from the MST Radar on 10

th
 

August 2008 at Gadhanki, Tirupati, India. 150 sample functions, each having 256 samples are 
used to know the performance of cepstrum in comparison with the standard periodogram. The 
better results are obtained through the cepstrum than the periodogram. The comparison of the 
mean Power Spectrum, Variance for Radar data, obtained using periodogram and cepstrum 
approach are shown in Figure 4 (a) and (b) respectively. It is observed that the smooth power 
spectra and less variance in cepstrum than that of the periodogram. 
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FIGURE 4: (a) Mean Power Spectra Vs Frequency for MST Radar data 
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FIGURE 4: (b) Variance Vs Frequency for MST Radar data 
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3. CONSLUSION & FUTURE WORK 

The problem in traditional methods is that the variance becomes proportional to square of power 
spectrum instead of converging into zero, thus the estimated spectrum is an inconsistent.  In this 
paper the new technique has been proposed, called cepstrum, which gives reduce variance while 
evaluating the smoothed nonparametric power spectrum estimation. The expression for mean 
and variance of the cepstrum has been presented. The total variance reduction is more through 
broadband signals when compared to narrowband signals. All results are verified by using MAT 
lab 7.0.1. The concept of Cepstrum can be also extended for higher order spectral estimations. 
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Abstract 

 
Despite the considerable amount of research related to immune algorithms and it  
applications in numerical optimization, digital filters design, and data mining, 
there is still little work related to issues as important as sensitivity analysis, [1]-[4]. 
Other aspects, such as convergence speed and parameters adaptation, have 
been practically disregarded in the current specialized literature [7]-[8]. The 
convergence speed of the immune algorithm heavily depends on its main control 
parameters: population size, replication rate, mutation rate, clonal rate and hyper-
mutation rate. In this paper we investigate the effect of control parameters 
variation on the convergence speed for single- and multi-objective optimization 
problems. Three examples are devoted for this purpose; namely the design of 2-
D recursive digital filter, minimization of simple function, and banana function. 
The effect of each parameter on the convergence speed of the IA is studied 
considering the other parameters with fixed values and taking the average of 100 
times independent runs.  Then, the concluded rules are applied on some 
examples introduced in [2] and [3]. Computational results show how to select the 
immune algorithm parameters to speedup the algorithm convergence and to 
obtain the optimal solution. 
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1. INTRODUCTION 
The parameters of the immune algorithm have a large effect on the convergence speed. These 
parameters are the population size (ps) which estimates the number of individuals (antibodies) for 
each generation, the mutation rate (pm) which increases the diversity in population, and the 
replication rate (pr) which estimates the number of antibodies chosen from the antibody 
population pool to join the algorithm operations. Other parameters such as the clonal rate (pc) 
which estimates the number of individuals chosen from the antibody population pool to join the 
clonal proliferation (selection), as well as the hypermutation rate (ph) which improves the 
capabilities of exploration and exploitation in population, have also great effect on the speed of 
convergence. In spite of the research carried out up to date, there are no general rules on how 
these parameters can be selected. In literature [1]-[2] and [13], the immune parameters are 
selected by certain values (e.g. ps =200, pr =0.8, pm =0.1, pc =0.06, ph =0.8) without stating the 
reason for this selection. 
 
In this paper we investigate the effect of parameters variation on the convergence speed of the 
immune algorithms developed for three different illustrative examples: 2-D recursive digital filter 
design (multi-objective problem), minimization of simple function (single-objective problem), and 
finding the global minimum of banana function. The obtained results can be used for selecting the 
values of these parameters for other problems to speed up the convergence. The paper is 
organized as follows. Section 2 describes the immune algorithm behavior. In Section 3 three 
illustrative examples are given to investigate the effect of parameters variation on the 
convergence speed of the immune algorithm. Section 4 discusses the selection criteria of these 
parameters to guarantee the convergence speed. In section 5, some examples introduced in [3] 
and [12] are considered to demonstrate the effectiveness of the selection of immune algorithm 
control parameters. And finally, Section 6 offers some conclusions. 

 

2. IMMUNE ALGORITHMS BEHAVIOR 
Immune algorithms are randomized algorithms inspired by immune functions and principles 
observed in nature [10]. Such algorithms begin by generating population pool (chromosome) 
using real coding representation and evaluating the objective values. Then, the population pool 
undergoes the algorithm operations which will be described in this section. The operations are 
repeated at each generation (gen) until the termination condition is satisfied [1]-[2]. Table (1) 
illustrates the main steps of the immune algorithm [16]. 
 
2.1 Generation of Antibody Population 
The antibody population is generated either by using binary coding representation or real coding 
representation. In the binary coding representation, each variable is encoded as a binary string 
and the resulting strings are concatenated to form single chromosome (antibody) [11]. However, 
in the real coding representation, each antibody is encoded as a vector of floating point numbers, 
with the same length as the vector of decision variables. This representation is accurate and 
efficient because it is closest to the real design space, and the string length represents the 
number of design variables. 
 
2.2 Selection for Reproduction 
The roulette wheel selection is employed in immune bases algorithms for chromosomes 
reproduction. Its basic idea is to determine the selection probability for each solution in proportion 

with the fitness value. For solution j with fitness jf , its probability jp is defined as: 
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And the cumulative probability jq  for each solution is calculated as: 
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        (2) 

Where, the fitness jf  is relation to the objective function value of the j
th
 chromosome. 

 
Gen=1;                                                                                 % The first generation 
Chrom=Initial_pop();                                                            % Construct the initial population pool 
While (termination_condition) 

Evaluuate (Chrom);                                                    % Objective function evaluation 
Chrom_sel=RWS_Selection(Chrom);                        % Roulette wheel selection 
Chrom_rep=replication(Chrom_sel);                          % Selection of better antibodies using 

Replication  
Chrom_clon=Cloning(Chrom_rep);                            % Clonal operation 
Chrom_hyper=Hypermutation(Chrom_clon);             % Hypermutation operation 
Chrom_tot=[ Chrom_rep, Chrom_hyper]; 
Chrom_child=Mutation(Chrom_tot);                          % Mutation Operation 
Evaluuate (Chrom_child);                                          % Objective function evaluation 
Chrom=Better_selection(Chrom, Chrom_child);       % Selection of better antibodies for next 

generation 
gen=gen+1;                                                               % Increment the number of generations 

end 

 
TABLE (1): The Immune Algorithm 

 
2.3 Replication Operation 
The replication operation is used to select better antibodies, which have low objective values to 
undergo algorithm operations. This is termed by clonal proliferation within hypermutation and 
mutation operations. 

 
2.4 Clonal Proliferation within Hypermutation 
Based on the biological immune principles, the selection of a certain antibody from the antibody 
population pool to join the clonal proliferation depends on the clonal selection rate (pc). Each 
gene, in a single antibody, depending on the hypermutation rate (ph), executes the hypermutation 
of convex combination. The hypermutation rate (ph) has an extremely high rate than the mutation 

rate to increase the antibody diversity. For a given antibody ( )ρXXXXXXX kji ,...,,,,...,, 21= , 

if the gene iX  is determined to execute the hypermutation and another gene kX  is randomly 

selected to join in, the resulting offspring antibody becomes ( )ρXXXXXXX kji ,...,,,,...,,
'

21

' = , 

where the new gene 
'

iX  is  ( ) kii XXX ββ +−= 1'
 , and β ∈ [0, 1] is a random value. 

 
 

2.5 Mutation Operation 
Similar to the hypermutation mechanism, the mutation operation is also derived from the convex 
set theory [9], where each gene, in a single antibody, depending on the mutation rate (pm), 
executes the mutation of convex combination. Two genes in a single solution are randomly 
chosen to execute the mutation of convex combination [15]. For a given antibody 

( )ρXXXXXXX kji ,...,,,,...,, 21=  , if the genes iX  and kX  are randomly selected for 
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mutation depend on the mutation rate (pm), the resulting offspring is 

( )ρXXXXXXX kji ,...,,,,...,, ''

21

' = . The resulting two genes 
'

iX  and 
'

kX  are calculated as:                                            

  ( ) kii XXX ββ +−= 1'
 and  ( ) kik XXX ββ −+= 1'

       (3) 

where, β is selected randomly in the range [0, 1]. 
 
 
 
2.6 Selection Operation 
The selection operation is generally used to select the better ps antibodies which have low 
objective values as the new antibody population of the next generation. 

 
3. ILLUSTRATIVE EXAMPLES 
In this section three different examples are considered to investigate the effect of parameters 
variation on the convergence speed of the immune algorithm. The first example simulates the 
multi-objective function problem that has an infinite set of possible solutions difficult to find [7]. 
The second example is a single-objective function problem and it is less difficult and the third 
example represents the family of problems with slow convergence to the global minimum [6]. 

 
 

Example 1:  
This example considers the design of a second order 2-D narrow-band recursive LPF with 

magnitude and group delay specifications. The specified magnitude ),( 21 ωωdM  is shown in 

Figure (1) [1], [5]. Namely, it is given by Equation (4) with the additional constant group delay 

5
21
== dd ττ  over the passband πωω 1.0

2

2

2

1 ≤+ and the design space is [-3 3]. To solve this 

problem, the frequency samples are taken at 1,,4.0,2.0,,04.0,02.0,0/ KK=πωi  in the 

ranges πωπ ≤≤− 1 , and πωπ ≤≤− 2 . 
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Example 2:  
This example considers the optimization of the exponential function shown in Figure (2) and 
described by the following equation:  

      ( ) i

i

i xaxy ∑
=

=
9

0

        (5) 

With the following desired specified values )(xYd  at x= [0, 1, 2, 3, ………., 20]. 

]104.5587

    102.8528    101.7397  101.0306   105.9104 103.2667 101.7309             

 108.7358104.16510.85631107.6281   10836821029989

10723751072375100021933758794833010010[

9

999888

777665

443

×

××××××

××××××

×××=

.. 

   .  .   .   .    .    -.   -.   -.(x)Yd

 

Example 3: 
This example considers a Rosenbrock banana function that described by the following equation 
[6]. This function is often used to test the performance of most optimization algorithms [6]. The 
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global minimum is inside a long, narrow, parabolic shaped flat valley as shown in Figure (3). In 
fact find the valley is trivial, however the convergence to the global minimum is difficult. 
 

( ) ( ) ( )222
1001, xyxyxf −+−=

       (6) 

 

FIGURE 1: Desired Amplitude Response ( )21 ,ωωdM  Of The 2-D Narrow-Band LPF (Example 1) 
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FIGURE 2: Desired Specifications of the Function ( )xy  (Example 2)  

  

FIGURE 3: Rosenbrock Banana Function (Example 3) 
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4. SENSITIVITY ANALYSIS 
In this section, we examine the effect of parameters variations on the convergence speed of the 
immune algorithm for the three examples described in section 3. The number of genes (the 
encoding length L) for each example is defined by the number of unknown coefficients. For the 
filter design problem, the filter transfer function is expressed by: 
        

( )
( )( )

1,
11

, 00

21222122112111

2

2
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21122111110
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++++++
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zzazzazazzazzazazazaa
HzzH

 
          
         (7) 

So, 15 genes can be adjusted to approximate the specified magnitude and group delay. For the 
simple function and banana function problems, the number of genes considered are 10 and 2 
respectively. 

 
4.1 Effect of the population size (ps)  
The population size (ps) is defined as the number of antibodies used in each generation. The 
variations in ps can have substantial effect on the convergence speed of immune algorithm. If the 
ps is too small, the IA cannot reach to optimal solution. However, if it is too large, the IA wastes 
computational time effort on extra objective values evaluations. Here, the effect of ps on the 
convergence speed of the algorithm is studied by taking the average of 100 times independent 
runs at each ps value. The value of ps was varied from 10 to 400 with the other parameters fixed 
at pr =0.8, ph =0.8, pm =0.1, and pc =0.06. The effect of population size variations on number of 
generations required to get the solution for filter design problem, simple function and banana 
function are shown in Figures (4-6), respectively. 

 
The results illustrated in Figures (4-6) show that, the speed of convergence can be measured by 
the number of generations required to reach to the optimal chromosome (global solution). 
Moreover, it can be noticed that the speed of convergence depends not only on the ps but also on 
the number of genes. Here, the ps after which optimal chromosome is obtained is denoted by ps*. 
Increasing the ps above ps* has insignificant effect on speeding up the convergence. 
 
4.2 Effect of the Replication Rate (pr)  
The replication rate (pr) estimates the number of antibodies chosen from the antibody population 
pool to join the algorithm operations. The effect of pr on the speed of convergence of the IA is 
studied by taking the average of 100 times independent runs at each pr value. The value of pr 
was varied from 0.1 to 1 with the other parameters fixed at ps =100 ph =0.8, pm =0.1, and pc 
=0.06. The effect of pr variation on the number of generations required to produce the solution for 
filter design problem, simple function and banana function are shown in Figures (7-9), 
respectively.  
 
These figures show that, the high values of replication rate have a significant effect on speeding 
up the convergence, but the computational time increases as the pr increases. It is also noticed 
that the values of pr greater than pr* have no further effect on speeding up the convergence. 
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FIGURE 4: The Effect of Population Size on the Speed of Convergence of the Filter Design Problem. 

 

 

FIGURE 5: The Effect of Population Size on the Speed of Convergence for Simple Function Minimization 
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Figure 6: The Effect Of Population Size On The Speed Of Convergence For Finding The Global Minimum 
Of Banana Function. 

 

 

FIGURE 7: The Effect of Replication Rate on the Speed of Convergence for Filter Design Problem. 
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FIGURE 8: The Effect of Pr on the Speed of Convergence for Simple Function Minimization. 

 

FIGURE 9: The Effect of Pr on the Speed of Convergence for Finding the Global Minimum of Banana 
Function. 
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4.3 Effect of the Clonal Selection Rate (pc)  
The clonal selection rate (pc) estimates the number of antibodies that can be chosen from the 
antibody population pool to join the clonal proliferation. The effect of pc on the speed of 
convergence of the IA is studied by taking the average of 100 times independent runs at each pc 
value. The value of pc was varied from 0.01 to 1 with the other parameters fixed at ps =100, pr 
=0.8, ph =0.8, and pm =0.1. The effect of pc variation on the number of generations required to 
produce the optimal solution for filter design problem, simple function and banana function are 
shown in Figures (10-12), respectively. 
 
From these figures, we can conclude that low values of pc (0.05≤ pc <0.1) have significant effect 
on speeding up the convergence. It is also noticed that the use of high values of pc (pc ≥ pc*) have 
an effect of slowing down the convergence. This is mainly due to the infeasible selected 
individuals which joined to the clonal proliferation. 
 
4.4 Effect of the Hypermutation Rate (ph)  
The hypermutation rate (ph) is used to improve the capabilities of exploration and exploitation in 
population. The effect of ph on the convergence speed of the IA is evaluated by taking the 
average of 100 times independent runs at each ph value. The value of ph was varied from 0.01 to 
1 with the other parameters fixed at ps =100, pr =0.8, pc =0.06, and pm =0.1. The effect of 
hypermutation variation on the number of generations required to produce the solution for filter 
design problem, simple function and banana function are shown in Figures (13-15), respectively. 
 
The results given in Figures (13-15) show that, the value of ph depends on the problem domain. 
The values of ph for the three illustrative examples are 0.5, 0.5, and 0.7, respectively. The ph 
should be in the range (0.5≤ ph <1) to speed up the convergence of small number of genes 
problems (example 3) and it is about 0.5 for other ones. 
 

 

FIGURE 10: The Effect of Clonal Rate on the Speed of Convergence for Filter Design Problem. 
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FIGURE 11: The Effect of Clonal Rate on the Speed of Convergence for Simple Function Minimization. 

 

FIGURE 12: The Effect of Clonal Rate on the Speed of Convergence for Finding the Global Minimum of 

Banana Function. 
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FIGURE 13: The Effect of Hypermutation Rate on the Speed of Convergence for Filter Design Problem. 

 

FIGURE 14: The Effect of Hypermutation Rate on the Speed of Convergence for Simple Function 

Minimization. 
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FIGURE 15: The Effect of Hypermutation Rate on the Speed of Convergence for Finding the Global 

Minimum of Banana Function. 

4.5 Effect of the Mutation Rate (pm)  
The mutation rate (pm) is one of the most sensitive immune algorithm parameters, since it 
increases the diversity in population. The choice of mutation rate is essentially a tradeoff between 
conservatism and exploration [14]. The effect of pm on the convergence speed of IA is studied by 
taking the average of 100 times independent runs at each pm value. The value of pm was varied 
from 0.01 to 1 with the other parameters fixed at ps =100, pr =0.8, pc =0.06, and ph =0.8. The 
effect of mutation rate variation on the number of generations required to produce the solution for 
filter design problem, simple function and banana function are shown in Figures (16-18), 
respectively.  
 
From these figures, we can conclude that the low values of mutation rate (pm ≤ pm*) have 
significant effect on speeding up the convergence. Also, it is noticed that to guarantee the 
convergence speed, the pm should be between 1/ ps and 1/L, where ps is the population size and 
L is the encoding string length. 
 
 
From above studying, we can conclude that the general heuristics on IA parameters to guarantee 
the convergence speed are: 1) the population size should be greater than 100; 2) the replication 
rate should be higher than 0.2; 3) the clonal rate should be small in the range (0.05≤ pc <0.1); 4) 
the hypermutation rate should be high in the range (0.5≤ ph <1); and 5) the mutation rate should 
be between 1/ ps and 1/L.  
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FIGURE 16: The Effect of Mutation Rate on the Speed of Convergence for Filter Design Problem (Ps=100 

and L=15). 
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FIGURE 17: The Effect of Mutation Rate on Speed of Convergence for Simple Function Minimization 

(Ps=100 and L=10). 

 

FIGURE 18: The Effect Of Mutation Rate On Speed Of Convergence For Finding The Global Minimum Of 

Banana Function (Ps=100 And L=2). 
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5 RESULTS AND DISCUSSION 
In this section, some examples introduced in [3] and [12] are considered to illustrate the effect of 
immune algorithm parameters on the convergence speed.  
 
Example 4:   
This example is considered in [3] for solving system identification problem. It is repeated here to 
demonstrate the effectiveness of the selection of immune algorithm control parameters.  In this 
example, it is required to approximate second-order system by first-order IIR filter. The second-
order system and the filter are described respectively by the following transfer functions [3]: 

 ( )
21

1
1

25.01314.11

4.005.0
−−

−
−

+−

−
=

zz

z
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In Table (2), the control parameters selected based on the study described in previous section 
and that used in [3] are given. Table (3) illustrates the transfer function, the number of function 
evolution and NMSE of the resulting IIR filter and that is described in [3]. The NMSE is calculated 
using the following equation: 

  ( ) ( )( ) ( )( )∑∑
==

−=
N

k

d

N
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d kMkMkMNMSE
1

2

1

2
     (9) 

Where, ( )kM d  and ( )kM  are the magnitude responses of the 2
nd

 order system and that of the 

designed filter respectively calculated at N=2000 sampling points. 
 

IA Parameters 
The selected parameters 
based on the above study 

The selected parameters in [3] 

Population size 100 50 

Replication rate 0.85 0.80 

Mutation rate 0.2 0.015 

Clone rate 0.05 Not used in this method 

Hypermutation rate 0.8 Not used in this method 

 
TABLE 2: The IA Control Parameters Of Examples 1 And 2 

 

 
IIR filter obtained using 

proposed parameters values  
IIR filter obtained using 

parameters values stated in [3] 

Transfer Function ( )
1

1

8645.01

4153.0
−

−

−
−

=
z

zH f

 

( )
1

1

906.01

311.0
−

−

−
−

=
z

zH f

 

NMSE 0.0796 0.2277 

Number of function 
evaluations to find the 
global optimal solution 

1056 1230 

 
TABLE 3: The Transfer Function, Number Of Function Evolutions And NMSE Of Both Resulting IIR Filter 

And IIR Filter Described In [3]. 
 

Figure (19) shows the magnitude responses of the second-order system, the resulting IIR filter 
and IIR filter described in [3]. From Figure (19) and Table (3), noticed that the resulting IIR filter 
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converge to the second-order system after smaller number of objective function evaluations with 
smaller NMSE compared to that given in [3]. So, the good selection of the IA control parameters 
speeds up the algorithm convergence. 

 

FIGURE 19: The magnitude responses of second-order system and IIR filter  

 
Example 5:   
This example is also considered in [3] for solving system identification problem. It is required to 
approximate a second order system by IIR filter with the same order. The system and the filter 
are described respectively by the following transfer functions [3]: 
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Using the same control parameters of example 1, the optimal solution (b1= -1.1966, b2= -0.59522) 
is obtained after 1503 objective function evaluations with MSE=0.393x10-3. However, the solution 
in [3] is obtained after 3000 objective function evaluations with MSE=0.5x10-3.  
 

Example 6:  
This example is considered in [12], for finding the global solution of the following test function: 

       1cos
4000

1

1 1
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xf      (11) 

The proposed IA is used to solve this function with 30 dimensions (i.e. N=30) in solution space [-
600, 600]. In Table (4), the control parameters selected based on the study described in previous 
section and that used in [12] are given. 
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IA Parameters 
The selected parameters 
based on the above study 

The selected parameters in 
[12] 

Population size 200 200 

Replication rate 0.2 0.1 

Mutation rate 0.02 0.02 

Clone rate 0.06 0.01 

Hypermutation rate 0.8 0.01 

 
Table 4: The IA Control Parameters Of Example 3 

 

Using the proposed IA, the solution is obtained after 13120 function evaluations; however in [12] 
is reached after 15743 function evaluations. So, the IA control parameters are having significant 
effect on the convergence speed. 

 
6 CONCLUSIONS 
In this paper, general rules on speeding up the convergence of the IA are discussed. The 
convergence speed of the IA is important issues and heavily depends on its main control 
parameters. In spite of the research carried out up to date, there are no general rules on how the 
control parameters of the IA can be selected. In literature [12]-[13], the choice of these 
parameters is still  left  to  the  user  to  be  determined  statically prior  to  the execution of the IA. 
Here, we investigate the effect of the parameters variation on the convergence speed by adopting 
three different objective optimization examples (2-D recursive filter design, minimization of simple 
function, and banana function). From the studied examples, the following general heuristics on 
immune algorithm parameters that guarantee the convergence speed are concluded: 1) the 
population size should be greater than 100; 2) the replication rate should be higher than 0.2; 3) 
the clonal rate should be small in the range (0.05≤ pc <0.1); 4) the hypermutation rate should be 
high in the range (0.5≤ ph <1); and 5) the mutation rate should be between 1/ ps and 1/L. These 
heuristics are applied to study cases solved in [3] and [12] to show effect of control parameter 
selection on the IA performance. Numerical results show that the good selection of the control 
parameters of the IA have significant effect on the convergence speed of the algorithm. 
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Abstract 

 
Removal of noises from respiratory signal is a classicl problem. In recent years, 
adaptive filtering has become one of the effective and popular approaches for the 
processing and analysis of the respiratory and other biomedical signals. Adaptive 
filters permit to detect time varying potentials and to track the dynamic variations 
of the signals. Besides, they modify their behavior according to the input signal. 
Therefore, they can detect shape variations in the ensemble and thus they can 
obtain a better signal estimation. This paper focuses on (i) Model Respiratory 
signal with second order Auto Regressive process. Then synthetic noises have 
been corrupted with respiratory signal and nullify these noises using various 
adaptive filter algorithms (ii) to remove motion artifacts and 50Hz Power line 
interference from sinusoidal 0.18Hz respiratory signal using various adaptive 
filter algorithms. At the end of this paper, a performance study has been done 
between these algorithms based on various step sizes. It has been found that 
there will be always tradeoff between step sizes and Mean square error. 
 
Keywords: Adaptive filter, Least Mean Square (LMS), Normalized LMS (NLMS), Block LMS (BLMS), Sign 
LMS (SLMS), Sign-Sign LMS (SSLMS), Signed Regressor LMS (SRLMS), Motion artifact, Power line 
interference 

 
 
1.   INTRODUCTION 
Various biomedical signals are present in human body. To check the health condition of a human 
being it is essential to monitor these signals. While monitoring these signals, various noises 
interrupt the process. These noises may occur due to the surrounding factors, devices connected 
and physical factors. In this paper, noises associated with the respiratory signals are taken into 
account. The monitoring of the respiratory signal is essential since various sleep related disorders 
like sleep apnea (breathing is interrupted during sleep), insomnia (inability to fall asleep), 
narcolepsy can be detected earlier and treated. Also breathing disorders like snoring, hypoxia 
(shortage of O2), hypercapnia (excess amount of CO2) hyperventilation (over breathing) can be 
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treated. The respiratory rate for new born is 44 breathes/min for adults it is 10-20 breathes/min. 
Various noises affecting the respiratory signal are motion artifact due to instruments, muscle 
contraction, electrode contact noise, powerline interference, 50HZ interference, noise generated 
by electronic devices, baseline wandering, electrosurgical noise.  
 
One way to remove the noise is to filter the signal with a notch filter at 50 Hz. However, due to 
slight variations in the power supply to the hospital, the exact frequency of the power supply 
might (hypothetically) wander between 47 Hz and 53 Hz. A static filter would need to remove all 
the frequencies between 47 and 53 Hz, which could excessively degrade the quality of the ECG 
since the heart beat would also likely have frequency components in the rejected range. To 
circumvent this potential loss of information, an adaptive filter has been used. The adaptive filter 
would take input both from the patient and from the power supply directly and would thus be able 
to track the actual frequency of the noise as it fluctuates.  
 
Several papers have been presented in the area of biomedical signal processing where an 
adaptive solution based on the various algorithms is suggested. Performance study and 
comparison of LMS and RLS algorithms for noise cancellation in ECG signal is carried out in [1]. 
Block LMS being the solution of the steepest descent strategy for minimizing the mean square 
error is presented in [2]. Removal of 50Hz power line interference from ECG signal and 
comparative study of LMS and NLMS is given in [3]. Classification of respiratory signal and 
representation using second order AR model is discussed in [4]. Application of LMS and its 
member algorithms to remove various artifacts in ECG signal is carried out in [5]-[7]. Mean 
square error behavior, convergence and steady state analysis of different adaptive algorithms are 
analyzed in [8]-[10]. The results of [11] show the performance analysis of adaptive filtering for 
heart rate signals. Basic concepts of adaptive filter algorithms and mathematical support for all 
the algorithms are taken from [12]. 
 
In [13] the authors present a real-time algorithm for estimation and removal of baseline wander 
noise and obtaining the ECG-derived respiration signal for estimation of a patient’s respiratory 
rate. In [14], a simple and efficient normalized signed LMS algorithm is proposed for the removal 
of different kinds of noises from the ECG signal. The proposed implementation is suitable for 
applications requiring large signal to noise ratios with less computational complexity. The design 
of an unbiased linear filter with normalized weight coefficients in an adaptive artifact cancellation 
system is presented in [15]. They developed a new weight coefficient adaptation algorithm that 
normalizes the filter coefficients, and utilize the steepest-descent algorithm to effectively cancel 
the artifacts present in ECG signals. The paper [16] describes the concept of adaptive noise 
cancelling, a method of estimating signals corrupted by additive noise. In [17], an adaptive 
filtering method is proposed to remove the artifacts signals from EEG signals. Proposed method 
uses horizontal EOG, vertical EOG, and EMG signals as three reference digital filter inputs. The 
real-time artifact removal is implemented by multi-channel Least Mean Square algorithm. The 
resulting EEG signals display an accurate and artifact free feature.  
 
The results in [18] show that the performance of the signed regressor LMS algorithm is superior 
than conventional LMS algorithm, the performance of signed LMS and sign-sign LMS based 
realizations are comparable to that of the LMS based filtering techniques in terms of signal to 
noise ratio and computational complexity. An interference-normalized least mean square 
algorithm for robust adaptive filtering is proposed in [19].The INLMS algorithm extends the 
gradient-adaptive learning rate approach to the case where the signals are nonstationary. It is 
shown that the INLMS algorithm can work even for highly nonstationary interference signals, 
where previous gradient-adaptive learning rate algorithms fail. The use of two simple and robust 
variable step-size approaches in the adaptation process of the Normalized Least Mean Square 
algorithm in the adaptive channel equalization is investigated in [20].In the proposed algorithm in 
[21], the input power and error signals are used to design the step size parameter at each 
iteration. Simulation results demonstrate that in the scenario of channel equalization, the 
proposed algorithm accomplishes faster start-up and gives better precision than the conventional 
algorithms. A novel power-line interference (PLI) detection and suppression algorithm is 
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presented in [22] to preprocess the electrocardiogram (ECG) signals. A distinct feature of this 
proposed algorithm is its ability to detect the presence of PLI in the ECG signal before applying 
the PLI suppression algorithm. An efficient recursive least-squares (RLS) adaptive notch filter is 
also developed to serve the purpose of PLI suppression. In [23] two types of adaptive filters are 
considered to reduce the ECG signal noises like PLI and Base Line Interference. Various 
methods of removing noises from ECG signal and its implementation using the Lab view tool was 
referred in [24]. Results in [25] indicate that respiratory signals alone are sufficient and perform 
even better than the combined respiratory and ECG signals. 

 
2.  MATHEMATICAL MODEL OF RESPIRATION SIGNALS 
The respiratory systems’ function is to allow gas exchange to all part of the body. In addition to 
supplying oxygen, the respiratory system aids in removing of carbon dioxide. It prevents the lethal 
buildup of this waste product in body tissues. The respiratory system carries out its life-sustaining 
activities through the process of respiration. Respiration is the process by which the atmospheric 
oxygen is inhaled in to the body and the unwanted carbon dioxide is exhaled out through the 
nostrils and mouth.  
 
Respiratory signals are not a constant signal with common amplitude and regular variations from 
time to time. Hence to estimate the signal it is necessary to frame an algorithm which can analyze 
even the small variations in the input signal. Respiratory signal is modeled in to a second order 
AR equation so that the parameters can be utilized for determining the fundamental features of 
the respiratory signal. The autoregressive (AR) model is one of the linear prediction formulas that 
attempt to predict an output Y(n) of a system based on the previous inputs {x(n), x(n-1), x(n-2)...}. 
It is also known in the filter design industry as an infinite impulse response filter (IIR) or an all pole 
filter, and is sometimes known as a maximum entropy model in physics applications.  
 
The respiration signal can be modeled as a second order autoregressive model [4] as the 
following, 
X(n)=a1X(n-1)+a2X(n-2) + e(n) (1) 
Where e (n) is the prediction error and {a1,a2} are AR model coefficients to be determined through 
burgs method. 

 
3.  NOISES IN RESPIRATORY SIGNALS 
Methods of respiration monitoring fall into two categories. Devices such as spirometers and nasal 
thermocouples measure air flow into and out of the lungs directly. Respiration can also be 
monitored indirectly, by measuring body volume changes; transthoracic inductance and 
impedance plethysmographs, strain gauge measurement of thoracic circumference, pneumatic 
respiration transducers, and whole-body plethysmographs are examples of indirect techniques. 
When the doctors are examining the patient on-line and want to review the respiratory signal 
waveform in real-time, there is a good chance that the signal has been contaminated by baseline 
wander (BW), power line interference (PLI), muscle artifacts (MA) and electrode motion artifacts 
(EM) etc., mainly caused by patient breathing, movement, power line noise, bad electrodes and 
improper electrode site preparation. All these noises mask the tiny features of the signal and 
leads to false diagnosis. To allow doctors to view the best signal that can be obtained, we need to 
develop an adaptive filter to remove the artifacts in order to better obtain and interpret the 
respiratory signal data. 
 
3.1 Motion Artifact 
Motion artifact cause false alarms during patient monitoring, which can reduce clinician 
confidence in monitoring equipment alarms and, consequently, slow response time. When motion 
artifact is introduced to the system, the information is skewed. Motion artifact causes irregularities 
in the data. Motion artifact can be reduced by proper design of the electronic circuitry and set-up. 
The shape of the baseline disturbance caused by motion artifacts can be assumed to be a 
biphasic signal resembling one cycle of a sine wave. The peak amplitude and duration of the 
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artifact are variables since the respiratory unit is a sensitive device, it can pickup unwanted 
electrical signals which may modify the actual respiratory signal. 
 
3.2 Power line interference 
Power line interference consists of 50Hz pickup and harmonics which can be modelled as 
sinusoids and combination of sinusoids. Characteristics which might need to be varied in a model 
of power line noise include the amplitude and frequency content of the signal. These 
characteristics are generally consistent for a given measurement situation and, once set, will not 
change during a detector evaluation. Power line interference is often a nuisance in bio potential 
measurements, mostly because of the long wires between the subject and the amplifier, the 
separation between the measurement points (electrodes), capacitive coupling between the 
subject (a volume conductor) and power lines, and the low amplitude of the desired signals. High-
resolution measurements searching for potentials as small as 1 V further exacerbate the problem. 
It is a common interference source with low frequency and weak amplitude in signal detection 
and transmission.  
 
3.3 Electrode Contact Noise 
Electrode contact noise occurs due to the loss of contact between electrode and skin. The 
measurement of bioelectric events is exposed to various sources of noise. The reactions that take 
place at the electrode make the electrode itself a source of noise. Electrode contact noise can be 
modeled as a randomly occurring rapid baseline transition (step) which decays exponentially to 
the baseline value and has a superimposed 50 Hz component. This transition may occur only 
once or may rapidly occur several times in succession. Characteristics of this noise signal include 
the amplitude of the initial transition, the amplitude of the 50 Hz component and the time constant 
of the decay. 
 
3.4 Baseline Drift 
The wandering of baseline results from the gross movements of the patients or from mechanical 
strain on the electrode wires. If there is no proper application of jelly between the electrode and 
the skin, during that time also baseline wandering occurs. Respiration, muscle contraction, and 
electrode impedance changes due to perspiration or movement of the body are the important 
sources of baseline drift. The drift of the baseline with respiration can be represented as a 
sinusoidal component at the frequency of respiration. The amplitude and frequency of the 
sinusoidal component should be variables. The amplitude of the respiratory signal also varies by 
about 15 percent with the original signal. The variation could be reproduced by amplitude 
modulation of the respiratory by the sinusoidal component which is added to the baseline. 

 
4. ADAPTIVE FILTER ALGORITHMS 
A system is said to be adaptive when it tries to adjust its parameters with the aid of meeting some 
well-defined goal or target that depends upon the state of the system and its surroundings. So the 
system adjusts itself so as to respond to some phenomenon that is taking place in its 
surroundings. An event related signal could be considered as a process, which can be 
decomposed into an invariant deterministic signal time locked to a stimulus and an additive noise 
uncorrelated with the signal. The most common signal processing of this type of bioelectric signal 
separates the deterministic signal from the noise. Several techniques can be considered of which 
we are considering the adaptive signal processing technique. Adaptive filters are self-designing 
filters based on an algorithm which allows the filter to “learn” the initial input statistics and to track 
them if they are time varying. These filters estimate the deterministic signal and remove the noise 
uncorrelated with the deterministic signal. The principle of adaptive filter is as shown in Figure 1. 
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FIGURE 1: Principle of Adaptive Filter 

 
Obtained signal d (n) from sensor contains not only desired signal s (n) but also undesired noise 
signal n (n). Therefore measured signal from sensor is distorted by noise n (n). At that time, if 
undesired noise signal n(n) is known, desired signal s(n) can be obtained by subtracting noise 
signal n(n) from corrupted signal d(n). However entire noise source is difficult to obtain, estimated 
noise signal n’ (n) is used. The estimate noise signal n’ (n) is calculated through some filters and 
measurable noise source X(n) which is linearly related with noise signal n(n). After that, using 
estimated signal n’ (n) and obtained signal d (n), estimated desired signal s’ (n) can be obtained. 
If estimated noise signal n’ (n) is more close to real noise signal n(n), then more desired signal is 
obtained. In the active noise cancellation theory, adaptive filter is used. Adaptive filter is classified 
into two parts, adaptive algorithm and digital filter. Function of adaptive algorithm is making 
proper filter coefficient. General digital filters use fixed coefficients, but adaptive filter change filter 
coefficients in consideration of input signal, environment, and output signal characteristics. Using 
this continuously changed filter coefficient, estimated noise signal n’ (n) is made by filtering X (n). 
The different types of adaptive filter algorithms can be explained as follows. 
 
4.1 LMS Algorithm 
The LMS algorithm is a method to estimate gradient vector with instantaneous value. It changes 
the filter tap weights so that e (n) is minimized in the mean-square sense. The conventional LMS 
algorithm is a stochastic implementation of the steepest descent algorithm. It simply replaces the 
cost function ξ (n) = E [e

2
 (n)] by its instantaneous coarse estimate. 

 
The error estimation e(n) is 
e (n) = d(n) – w(n) X(n)    (2) 
 
Coefficient updating equation is 
w (n+1) = w(n) + µ x(n) e(n),   (3) 
 
Where µ is an appropriate step size to be chosen as 0 < µ < 0.2 for the convergence of the 
algorithm. The larger step sizes make the coefficients to fluctuate wildly and eventually become 
unstable. The most important members of simplified LMS algorithms are: 
 
4.2 Signed-Regressor Algorithm (SRLMS) 
The signed regressor algorithm is obtained from the conventional LMS recursion by replacing the 
tap-input vector x (n) with the vector sgn{x(n)}.Consider a signed regressor LMS based adaptive 
filter that processes an input signal x(n) and generates the output y(n) as per the following: 
 
y (n) = w

t
 (n)x(n)     (4) 

 
where, w(n) = [ w0(n), w1(n), … , wL-1(n) ]

t 
is a L-th order adaptive filter. The adaptive filter 

coefficients are updated by the Signed-regressor LMS algorithm as, 
 
w (n+1) = w(n) + µ sgn{x(n)}e(n)   (5) 
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Because of the replacement of x(n) by its sign, implementation of this recursion may be cheaper 
than the conventional LMS recursion, especially in high speed applications such as biotelemetry 
these types of recursions may be necessary. 
 
4.3 Sign Algorithm (SLMS)  
This algorithm is obtained from conventional LMS recursion by replacing e(n) by its sign. This 
leads to the following recursion: 
 
w(n+1) = w(n) + µ x(n) sgn{e(n)}   (6) 
 
4.4 Sign – Sign Algorithm (SSLMS) 
This can be obtained by combining signed-regressor and sign recursions, resulting in the 
following recursion: 
 
w(n+1) = w(n) + µ sgn{x(n)} sgn{e(n)},  (7) 
 
Where sgn{ . } is well known signum function, e(n) = d(n) – y(n) is the error signal. The sequence 
d (n) is the so-called desired response available during initial training period. However the sign 
and sign – sign algorithms are both slower than the LMS algorithm. Their convergence behavior 
is also rather peculiar. They converge very slowly at the beginning, but speed up as the MSE 
level drops. 
 
4.5 Block LMS (BLMS) Algorithm 
To reduce the computational requirements of LMS algorithm, block LMS is introduced. Here the 
filter coefficients are held constant over each block of L samples, and the filter output y(n) and the 
error e(n) for each value of n within the block are calculated using the filter coefficients for that 
block. Then at the end of each block, the coefficients are updated using an average for the L 
gradients estimates over the block.  
 
4.6 Normalized LMS (NLMS) Algorithm 
In NLMS, the step size takes the form of, 

)(
2

)(

nx

n

β
µ =     (8) 

 
Where β is a normalized step size with 0< β<2. When x(n) is large, the LMS experiences a 
problem with gradient noise amplification. With the normalization of the LMS step size by ||x(n)||

2
 

in the NLMS, noise amplification problem is diminished. 

 
5. SCOPE OF THE PROPOSED WORK 
The work carried out in [1]-[7], [13]-[18], [24] analyzes the removal of noises in ECG and EMG 
signal using adaptive filter algorithm. An ECG recording requires more number of electrodes on 
the skin and people may wear it continuously for effective monitoring. EEG measurements are 
always random in nature. For the complete detection, we need more number of samples for 
analysis. Also, the mathematical modeling of EMG signals is very complex. Removal of motion 
artifacts and power line interference from ECG or EMG is complex since it requires more number 
of electrodes for measurement. From the results in [25], the respiratory signals alone are 
sufficient and perform even better than ECG, EEG and EMG. In our paper, we consider only the 
respiratory signal for noise removal since it is more convenient and do not require more number 
of electrodes on the skin. We studied the performance of various adaptive filter algorithms for the 
removal of noises in respiratory signal. Autoregressive (AR) spectral estimation techniques are 
known to provide better resolution than classical periodogram methods when short segments of 
data are selected for analysis. In our study, we adopted the Burg's method to compute AR 
coefficients. The major advantage of Burg method for estimating the parameters of the AR model 
are high frequency resolution, stable AR model and it is computationally efficient. 
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6. SIMULATION RESULTS 
This section presents the results of simulation using MATLAB to investigate the performance 
behaviors of various adaptive filter algorithms in non stationary environment with two step sizes of 
0.02 and 0.004. The principle means of comparison is the error cancellation capability of the 
algorithms which depends on the parameters such as step size, filter length and number of 
iterations. A synthetically generated motion artifacts and power line interference are added with 
respiratory signals. It is then removed using adaptive filter algorithms such as LMS, Sign LMS, 
Sign-Sign LMS, Signed Regressor, BLMS and NLMS. All Simulations presented are averages 
over 1000 independent runs. 
 
6.1 Removal of Motion Artifacts 
Respiratory signal is represented by second-order autoregressive process that is generated 
according to the difference equation, 
 
x(n)=1.2728x(n-1) – 0.81x(n-2) + v(n)  (9) 
 
Where v (n) is randomly generated noise. 
 
Figure 2 and Figure 3 shows the convergence of filter coefficients and Mean squared error using 
LMS and NLMS algorithms. An FIR filter order of 32 and adaptive step size parameter (µ) of 0.02 
and 0.004 are used for LMS and modified step sizes (β) of 0.01 and 0.05 for NLMS. It is inferred 
that the MSE performance is better for NLMS when compared to LMS. The merits of LMS 
algorithm is less consumption of memory and amount of calculation. 
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FIGURE 2: Performance of LMS adaptive filter. (a),(b) Plot of trajectories of filter coefficients and Squared 
error for µ=0.02 (c),(d) Plot for µ=0.004 
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                                      (a)                                                                           (b) 

 

(c)                                                                 (d) 
 

FIGURE 3: Performance of NLMS adaptive filter. (a),(b) Plot of trajectories of filter coefficients and Squared 
error for µ=0.02 (c),(d) Plot for µ=0.004 

 
6.2 Removal of Power line Interference 
A synthetic power line interference of 50 Hz with 1mv amplitude is simulated for PLI cancellation. 
Power line interference consists of 50Hz pickup and harmonics which can be modeled as 
sinusoids and combination of sinusoids. Figure 4 shows the generated power line interference. 
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FIGURE 4:  Power line interference 

 

The mean square learning curves for various algorithms are depicted as shown in Figure 5. The 
input x(n) is 0.18Hz sinusoidal respiratory signal. It is observed that minimization of error is better 
with BLMS compared with other algorithms. 
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          (a) LMS       (b) SRLMS 
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(c) Sign-Sign LMS    (d) BLMS 
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 (e) NLMS           (f) Sign LMS 

 
FIGURE 5: Mean Squared Error Curves for various Adaptive filter algorithms 

 
7. COMPARITIVE EVALUATION AND DISCUSSION 
Table 1 provides the comparison of mean squared error (MSE) and Convergence rate (C in terms 
of number of iterations that the filter coefficients converge) of different algorithms. It is observed 
from Figure 2 and Figure 3, the convergence speed for µ =0.02 is faster than µ=0.004. But MSE 
performance is comparatively better for µ=0.004 than µ=0.02. Convergence rate of LMS 
algorithm is better when µ=0.02 and low MSE value when µ=0.004. It is also inferred that the 
MSE performance of Sign Regressor LMS (SRLMS) at the step size of 0.02 is better when 
compared to other algorithms. But there is always tradeoff between convergence rate and mean 
squared error. Hence choosing an algorithm depends on the parameter on which the system has 
more concern. 
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TABLE 1: Comparison of MSE and Convergence Rate 

 
Table 2 shows the comparison of resulting mean square error while eliminating power line 
interference from respiratory signals using various adaptive filter algorithms with different step 
sizes. The observed MSE for LMS as shown in Figure 5 (a) is very low for µ =0.02 compared with 
µ =0.004. The performance of BLMS depends on block length L and NLMS depends on the 
normalized step size β. Observing all cases, we can infer that choosing µ =0.02 for the removal of 
power line interference is better when compared to µ =0.004. The step size µ =0.004 can be used 
unless the convergence speed is a matter of great concern. It is found that the value of MSE also 
depends on the number of samples taken for analysis. The filter order is 32. 

 

 
TABLE 2: Comparison of MSE in removing motion artifacts and power line interference 

 
From the simulation results, the proposed adaptive filter can support the task of eliminating PLI 
and motion artifacts with fast numerical convergence. Compared to the results in [23], the mean 
square value obtained in this work is found to be very low by varying the step sizes and 
increasing the number of iterations. An FIR filter order of 32 and adaptive step size parameter (µ) 
of 0.02 and 0.004 are used for LMS and modified step sizes (β) of 0.01 and 0.05 for NLMS. It is 
inferred that the MSE performance is better for NLMS when compared to LMS. The merits of 
LMS algorithm is less consumption of memory and amount of calculation. It has been found that 
there will be always tradeoff between step sizes and Mean square error. It is also observed that 
the performance depends on the number of samples taken for consideration.  

 

Algorithm µ=0.02 µ=0.004 

MSE C MSE C 

LMS 2.3873e-004 100 5.4907e-005 250 

SRLMS 8.5993e-006 
100 

5.3036e-004 550 

SIGN LMS 1.3406e-004 100 4.9436e-005 550 

SIGN-SIGN LMS 4.9514e-004 200 8.7072e-004 500 

NLMS β=0.05, 6.8306e-004 100 β=0.01, 0.0012 700 

Algorithm 

Motion Artifacts Power line interference 

µ=0.02 µ=0.004 µ=0.02 µ=0.004 

MSE MSE MSE MSE 

LMS 1.5973e-007 2.6776e-005 8.7683e-009 8.8808e-005 

BLMS 3.1966e-004 0.0160 3.2675e-004 0.0160 

SR LMS 5.3616e-007 2.1528e-007 3.8242e-010 4.8876e-005 

SIGN LMS 1.9924e-007 1.2130e-005 2.1145e-007 5.7397e-010 

SIGN-SIGN 

LMS 
3.7528e-006 5.5596e-007 1.9290e-007 4.2355e-008 

NLMS 
β=0.05, 

2.1528e-007 

β=0.01, 

1.0570e-008 

β=0.05, 

4.7339e-012 

β=0.01, 

3.6219e-005 
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7. CONCLUSION & FUTURE WORK 
This study has revealed useful properties of various adaptive filter algorithms. The objective is to 
optimize different adaptive filter algorithms so that we can reduce the MSE so as to improve the 
quality of eliminating interference. It is inferred that the MSE performance is better for NLMS 
when compared to LMS. The merits of LMS algorithm is less consumption of memory and 
amount of calculation. It has been found that there will be always tradeoff between step sizes and 
Mean square error. It is also observed that the performance depends on the number of samples 
taken for consideration. Choosing an algorithm depends on the parameter on which the system 
has much concern. The future work includes the optimization of algorithms for all kinds of noises 
and to use the optimized one in the implementation of DSP Microcontroller that estimates the 
respiratory signal.  
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Abstract 

 
This paper presents the problem of noise reduction from observed speech by 
means of improving quality and/or intelligibility of the speech using single-
channel speech enhancement method. In this study, we propose two approaches 
for speech enhancement. One is based on traditional Fourier transform using the 
strategy of Noise Subtraction (NS) that is equivalent to Spectral Subtraction (SS) 
and the other is based on the Empirical Mode Decomposition (EMD) using the 
strategy of adaptive thresholding. First of all, the two different methods are 
implemented individually and observe that, both the methods are noise 
dependent and capable to enhance speech signal to a certain limit. Moreover, 
traditional NS generates unwanted residual noise as well. We implement 
nonlinear weight to eliminate this effect and propose Nonlinear Weighted Noise 
Subtraction (NWNS) method. In first stage, we estimate the noise and then 
calculate the Degree Of Noise (DON1) from the ratio of the estimated noise 
power to the observed speech power in frame basis for different input Signal-to-
Noise-Ratio (SNR) of the given speech signal. The noise is not accurately 
estimated using Minima Value Sequence (MVS). So the noise estimation 
accuracy is improved by adopting DON1 into MVS. The first stage performs well 
for wideband stationary noises and performed well over wide range of SNRs. 
Most of the real world noise is narrowband non-stationary and EMD is a powerful 
tool for analyzing non-linear and non-stationary signals like speech. EMD 
decomposes any signals into a finite number of band limited signals called 
intrinsic mode function (IMFs). Since the IMFs having different noise and speech 
energy distribution, hence each IMF has a different noise and speech variance. 



Somlal Das, Md. Ekramul Hamid, Keikichi Hirose & Md. Khademul Islam Molla 

Signal Processing: An International Journal (SPIJ), Volume (4): Issue (5)  
 

280 

These variances change for different IMFs. Therefore an adaptive threshold 
function is used, which is changed with newly computed variances for each IMF. 
In the adaptive threshold function, adaptation factor is the ratio of the square root 
of added noise variance to the square root of estimated noise variance. It is 
experimentally observed that the better speech enhancement performance is 
achieved for optimum adaptation factor. We tested the speech enhancement 
performance using only EMD based adaptive thresholding method and obtained 
the outcome only up to a certain limit. Therefore, further enhancement from the 
individual one, we propose two-stage processing technique, NWNS+EMD. The 
first stage is used as a pre-process for noise removal to a certain level resulting 
first enhanced speech and placed this into second stage for further removal of 
remaining noise as well as musical noise to obtain final enhancement of the 
speech. But traditional NS in the first stage produces better output SNR up to 10 
dB input SNR. Furthermore, there are musical noise and distortion presented in 
the enhanced speech based on spectrograms and waveforms analysis and also 
from informal listening test. We use white, pink and high frequency channel 
noises in order to show the performance of the proposed NWNS+EMD algorithm. 
 
Keywords: speech enhancement, non linear weighted noise subtraction, degree of noise, empirical mode 
decomposition, adaptive thresholding. 

 
 

1. INTRODUCTION 
In many speech related systems like mobile communication in an adverse environment, the 
desired signal is not available directly; rather it is mostly contaminated with some interference 
sources of noise. These background noise signals degrade the quality and intelligibility of the 
original speech, resulting in a severe drop in the performance of the applications. The 
degradation of the speech signal due to the background noise is a severe problem in speech 
related systems and therefore should be eliminated through speech enhancement algorithms. In 
our previous study, we have proposed a two stage noise reduction algorithm by noise subtraction 
and blind source separation [1]. In that report, we recommended further research to improve the 
algorithm over wide ranges of SNRs as well as noise reduction performance for narrow-band 
noises. 
 
Research on speech enhancement techniques started more than 40 years ago at AT&T Bell 
Laboratories by Schroeder as mentioned in [2]. Schroeder proposed an analog implementation of 
the spectral magnitude subtraction method. Then, the method was modified by Schroeder’s 
colleagues in a published work [3]. However, more than 15 years later, the spectral subtraction 
method as proposed by Boll [4] is a popular speech enhancement techniques through noise 
reduction due to its simple underlying concept and its effectiveness in enhancing speech 
degraded by additive noise. The technique is based on the direct estimation of the short-term 
spectral magnitude. Recent studies have focused on a non-linear approach to the subtraction 
procedure [5-7]. In Martin [5] algorithm modifies the short time spectral magnitude of the 
corrupted speech signal such that the synthesized signal is perceptually as close as possible to 
the clean speech signal. The estimating noise is obtained as the minima values of a smoothed 
power estimate of the noisy signal, multiplied by a factor that compensates the bias. The 
algorithm eliminates the need of speech activity detector by exploiting the short time 
characteristics of speech signal. Martin’s study compared the result with Malah [6], and found an 
improved SNR. However, this noise estimation is sensitive to outliers, and its variance is about 
twice as large as the variance of a conventional noise estimator. These approaches have been 
justified due to the variation of signal-to-noise ratio across the speech spectrum. Unlike white 
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Gaussian noise, which has a flat spectrum, the spectrum of real-world noise is not flat. Thus, the 
noise signal does not affect the speech signal uniformly over the whole spectrum. Some 
frequencies are affected more adversely than others. In high frequency channel noise (HF 
channel), for instance, in the low frequencies, where most of the speech energy resides, are 
affected more than the high frequencies. Hence it becomes imperative to estimate a suitable 
factor that will subtract just the necessary amount of the noise spectrum from each frequency bin 
(ideally), to prevent destructive subtraction of the speech while removing most of the residual 
noise. Then it is usually difficult to design a standard algorithm that is able to perform 
homogeneously across all types of noise. For that, a speech enhancement system is based on 
certain assumptions and constraints that are typically dependent on the application and the 
environment.  
 
There are some crucial restrictions of the Fourier spectral analysis [8]: the system must be linear; 
and the data must be strictly periodic or stationary; otherwise the resulting spectrum will make 
little physical sense. From this point of view, Fourier filter methods will fail when the processes 
are nonlinear. The empirical mode decomposition (EMD), proposed by Huang et.al [9] as a new 
and powerful data analysis method for nonlinear and non-stationary signals, has made a new 
path for speech enhancement research.  EMD is a data-adaptive decomposition method, which 
decompose data into zero mean oscillating components, named as intrinsic mode functions 
(IMFs). It is mentioned in [10] that most of the noise components of a noisy speech signal are 
centered on the first three IMFs due to their frequency characteristics. Therefore EMD can be 
used for effectively identifying and removing these noise components. Xiaojie et. al. [11] 
proposed EMD that effectively identify and remove noise components. Recently there are many 
speech enhancement methods [12-14] have been developed in dual-channel and single-channel 
modes using EMD. In [12] EMD based speech enhancement is achieved by removing those IMFs 
whose energies exceeded a predefined threshold value. The IMFs, which represent empirically, 
observed applying EMD in observed speech contaminated with white Gaussian noise generates 
noise model. In [13] speech enhancement based on EMD-MMSE is performed by filtering the 
IMFs generated from the decomposition of speech contaminated with white Gaussian noise. In 
[14], an optimum gain function is estimated for each IMF to suppress residual noise that may be 
retained after single-channel speech enhancement algorithms. 
 
In our previous study, Hamid [1] proposed noise subtraction (NS) technique where noise is 
estimated using minimum value sequence (MVS) and the noise floor is updated with the help of 
estimated degree of noise (DON). The main drawback of this method is that we estimate DON on 
the basis of pitch period over the frame and the pitch period of unvoiced sections is not accurately 
estimated. To solve this problem, in this paper, we estimate EDON on the basis of estimated 
SNRs of clean and noisy speech spectrums.  Then, the EDON is estimated in two stages from a 
function, which is previously prepared as the function of the parameter of the degree of noise [1]. 
We consider the valleys of the observed smoothed power spectrum of a noisy speech signal to 
estimate noise power. This spectrum is tuned by EDON to adjust the noise level for a particular 
SNR. We also perform suitable steps to minimize the residual noise problem. Now the estimated 
noise spectrum with a controlled non-linear factor is subtracted from the observed spectrum in 
time domain to obtain noise reduced speech. This paper presents a parametric formulation to 
estimate noise weight on the basis of EDON. The weighting factor increases with increasing 
SNRs, and results non-linear weighting factor with speech activity. Although Fourier transform 
and wavelet analysis make great contributions, they suffer from many shortcomings in case of 
nonlinear and nonstationary signals. For this reason, for further enhancement, EMD technique 
has been used for robust noisy speech analysis in this work.  
 
Since the IMFs in EMD having different noise and speech energy distribution, hence each IMF 
has a different noise and speech variance. These variances change for different IMFs. Therefore 
an adaptive threshold function is used, which is changed with newly computed variances for each 
IMF. Moreover, since IMFs are generated from EMD and therefore, we call the proposed method 
as EMD based adaptive thresholding technique. To enhance the speech, EMD based adaptive 
thresholding algorithm applied into each IMFs for removing the noise embedded in the underlying 
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IMFs. In the adaptive threshold function, adaptation factor is the ratio of the square root of added 
noise variance to the square root of estimated noise variance. It is experimentally observed that 
the better speech enhancement performance is achieved for optimum adaptation factor. We 
tested the speech enhancement performance using only EMD based adaptive thresholding 
method and obtained the outcome only up to a certain limit. Moreover, each individual method 
has some performance limitations. 
 
Therefore, further enhancement from the individual one, we propose two-stage processing 
technique, namely, a time domain NS or NWNS followed by an EMD based adaptive 
thresholding. The first stage is used as a pre-process for noise removal to a certain level resulting 
first enhanced speech and placed this into second stage for further removal of remaining noise as 
well as musical noise to obtain final enhancement of the speech. But traditional NS in the first 
stage produces better output SNR up to 10 dB input SNR. Furthermore, there are musical noise 
and distortion presented in the enhanced speech based on spectrograms and waveforms 
analysis and also from informal listening test. EMD based adaptive thresholding does not work 
well on distorted speech and not be able to recover the speech from the distorting speech when it 
cascaded with NS. As a result, the overall performance of enhanced speech obtained from 
NS+EMD based adaptive thresholding is not so good based on the objective and subjective 
measures. In the first stage, the performance of speech enhancement improves by introducing 
nonlinear weight in NS, namely NWNS, to control the noise level and improves its overall 
performance for wide range of input SNRs provide first enhanced speech without distortion and 
with minimum effect of musical noise. Moreover, the overall performance is further improved by 
cascading NWNS in the first stage and EMD based adaptive thresholding in the second stage. In 
this two-stage processing, NWNS is influenced to increase the performance of EMD based 
adaptive thresholding. The advantage of the method is the effective removal of noise and 
produces better output SNR for wide range of input SNR and also improves the speech quality 
with reducing residual noise.  
 

2. NOISE ESTIMATION AND SUBTRACTION 
The main component of speech noise reduction is noise estimation that is a most difficult task for 
a single-channel enhancement system. The noise estimate can have a major impact on the 
quality of the enhanced speech. That is, with a better noise estimation, a more correct SNR is 
obtained, resulting in the enhanced speech with low distortion. We have assumed that speech 
and noise are uncorrelated to each other. We further assume that signal and noise are 
statistically independent.  
 
2.1 Estimating Minimum Value Sequence (MVS) 
The sections of consecutive samples are used as a single frame l(320 samples) and spaced 
l’(100 samples) achieving an almost 62.75% overlap. The short-term representation of a signal 
y(n) is obtained by Hamming windowing and analyzed using N=512 point Discrete-Fourier 
transform (DFT) at sampling frequency 16KHz. Initially, noise spectrum is estimated from the 
valleys of the amplitude spectrum [1]. The algorithm for noise estimation is as follows: 
Compute the RMS value Yrms of the amplitude spectrum Y(k). We detect the minima of Y(k) by 
obtaining the vector kmin such that Y(kmin) are the minima in Y(k). Then the interpolation is 
performed between adjoining minima positions to obtain Ymin(k) representing the minimum value 
sequences (MVS). We smooth the sequences by taking partial average called smoothed 
minimum value sequences (SMVS). An estimation of noise from the SMVS is survived by an 
overestimation and underestimation of the SNR which is controlled by proposed EDON. The 
block diagram of the noise estimation process is shown in Figure 1. 
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FIGURE 1: Block diagram of the 1
st
 estimated DON, Z1m. 

 
 
2.2 Estimation of the Degree Of Noise (EDON) 
In a single-channel method, we only know the power of the observed signal. To obtain EDON, we 
estimate noise of the observed signal in every analysis frame m. First white noise of various SNR 
is added to voiced vowel sounds. Now for each SNR, DON of each phoneme is estimated and 
averaged which corresponds the input SNR. Then each of these estimated 1

st
 averaged DONs of 

each frame m for corresponding input SNR expressed as m
Z1 . The estimated m

Z1  is aligned with 
the true DON (Ztr) using the least-square (LS) method results the 1
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where, M are the noise added frames; Pη(m)and Pobs(m) are the powers of noise and observed 
signals, respectively.  Here it obvious that we consider only the voiced phonemes in our 

experiment. So the value of mZ1 should be limited to voiced portion of a speech sentence. We used 
the same experiment with unvoiced speech. Practically the unvoiced portion contaminated with 
higher degree of noise. Hence the estimated noise is higher for unvoiced frame than from voiced 
frame. Consequently higher DON value is obtained from unvoiced frame than from voiced frame 
that is logically resemblance. The degree of noise estimated from a function using least square 
method is given as 
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here a and b are unknown. We estimate a and b via LS method, yielding a  and b and the 

estimated degree of noise is given by 

  bZaZ
mm

+×= 11
        (3) 

 

1st estimated 

DON, Z1m 
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where Z1m is the 1
st
 estimated DON of frame m. The value os Z1m is applied to update the MVS. 

Next, the noise level is re-estimated and updated with the help of Z1m. Finally, from the estimated 

noise, we again estimate 2
nd

 averaged DON ( mZ2 ) and similarly the 2
nd

 estimated DON (Z2m) 
which is used to estimate the noise weight for non linear weighted noise subtraction. 
 
2.3 Noise Spectrum Estimation 

We detect the minima 
))(min()( minmin kYkY ←

 values of amplitude spectrum Y(k) when the 
following condition (Y(k)<Y(k-1) and Y(k)<Y(k+1) and Y(k)<Yrms) is satisfied. The kmin expresses 
the positions of the frequency bin index of minima values. Then interpolate between adjoining 

minima positions 
)( min kk ←

to obtain the minima value sequence (MVS) Ymin(k). Now we 
smooth the sequences by taking partial average called smoothed minima value sequence 
(SMVS). This process continuously updates the estimation of noise among every analysis 
frames. Now the noise spectrum is estimated from the SMVS and 1

st
 estimated DON according to 

the condition 
 

 
( )

rmsmm
YZkYkD ×+=

1min
)()(

       (4) 
 

where Yrms is the rms value of the amplitude spectrum. Then we made some updates of Dm(k), 
the updated spectrum is again smoothed by three point moving average, and lastly the main 
maximum of the spectrum is identified and are suppressed [1]. Figure 2 shows the spectrums. 
        

 
FIGURE 2: Noise spectrums (true and estimated). 

 
 
2.4 Non-linear Weighted Noise Subtraction (NWNS) 
Noise reduction in the front-end is based on implementation of the traditional spectral subtraction 
(SS) require an available estimation of the embedded noise, here, in time domain we named 
noise subtraction (NS). The goal of this section is to modify the noise subtraction process by 
adopting a non linear weight for minimizing the effect of residual noise in the processed speech 
and then to improve the performance by using EMD. 
For subtraction in time domain, the estimated noise in the previous section is recombined with the 

phase of the noisy speech and inverse transformed one. Then we obtain )(ndss

)

 by withdrawing the 
effect of the window. The NWNS is given by: 
 

)()()(1 ndZnyns sstr

)

××−= α
      (5) 
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where
3

2

2

22 8273.9109.144021.63019.0 mmm ZZZ ×+×−×+=α   is nonlinear weighting factor. We use least-
square method for the estimation process. We find that for each input SNR, certain weight is 
required for best noise reduction results over wide ranges of SNR. In this experiment, we used 7 
male and 7 female speakers of 10 different sentences at different SNR levels, randomly selected 
from the TIMIT database. We use 3

rd
 degree polynomials to derive the above formulation. It is 

observed from Eq. (1) that it needs the input SNR. The input SNR can be estimated using 
variance is given by 














=

2

2

10log10
ησ

σ s
inputSNR

      (6)  

where, 
2

sσ and 
2

ησ
are the variances of speech and noise respectively. We assume that due to the 

independency of noise and speech, the variance of the noisy speech is equal to the sum of the 
speech variance and noise variance. It is found that by adopting nonlinear weighted in NS, a 
good noise reduction is obtained. Although with the NWNS, we find the good performance with 
less musical noise by informal listening test but for further enhancement we cascade another 
method EMD and get better results. 
 

3. CASCADE OF NWNS AND EMD 

The general block diagram of the proposed system is shown in Figure 3. In the block diagram, 
first stage is incorporated a Noise Subtraction (NS) method with weight and second stage a 
Empirical Mode Decomposition (EMD) based adaptive thresholding method. 
 

 
 

FIGURE 3: The block diagram of the two-stage NWNS+EMD method. 
 

 
3.1 Empirical Mode Decomposition (EMD) 
The principle of EMD technique is to decompose any signal y(n) into a set of band-limited 
functions, which are the zero mean oscillating components, called simply the intrinsic mode 
functions (IMFs) [9]. Although a mathematical model has not been developed yet, different 
methods for computing EMD have been proposed after its introduction [15]. The very first 
algorithm, called as the sifting process, is adopted here to find the IMF’s include the following 
steps; 

1. Identify the extrema of y(n) 
2. Generate the upper and lower envelopes (u(n) and l(n)) by connecting the maxima and 

minima points by interpolation 

3. Calculate the local mean µ1(n)=[u(n)+l(n)]/2 

4. Since IMF should have zero local mean, subtract out µ1(n) from y(t) to obtain h1(t) 
5. Check whether h1(t) is an IMF or not 
6. If not, use h1(t) as the new data and repeat steps 1 to 6 until ending up with an IMF. 

IFFT 

FFT 
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Once the first IMF is derived, we should continue with finding the remaining IMFs. For this 
purpose, we should subtract the first IMF c1(n) from the original data to get the residue signal r1(t). 
The residue now contains the information about the components of longer periods. We should 
treat this as the new data and repeat the steps 1 to 6 until we find the second IMF. 
 
3.2 Soft-thresholding 
The soft thresholding strategy proposed in [16] for a frame, m of length L in transform-domain as 
 

   
[ ]





−

≥
=

otherwwisejYYsign

ifY
Y

qq

nq

q
,)}(,0max{)(

,
2

γ

σφ)

     (7)  
 

where 
∑

=

=
L

q

qY
L 1

21
φ

denotes the average power of the frame, and 
2

nσ
is the global noise variance of 

the speech, Yq is  qth coefficient of the frame obtained by the required transformation and 

qY
)

denotes to the thresholded samples of the frame. The multiplication factor jγ is the linear 
threshold function while j being the sorted index-number of |Yq|. An estimated value of γ can be 
obtained as:  

   
∑ =

=
Q

q

n

q
Q 1

21

λσ
γ

        (8) 

where λ is an adaptation factor and its value is determined experimentally such that 0<λ<1. It is 
observed that the first part of Eq. (7) is for signal dominant frame when the condition satisfies, 
and second part is for noise dominant frame where soft thresholding will have to apply. So the 
classification of frames either to be signal dominant or noise dominant depends on average 
power of a frame and global noise variance of the given noisy speech. In this paper, we apply this 
soft thresholding strategy adaptively in each IMF, as discuss in the next section.  
 
3.3 Adaptive thresholding 
Soft thresholding strategy performs better on wide range of input SNR due to thresholded noise 
dominant frames only and kept remain the same in case of signal dominant frames but the 
misclassification of frames is a major drawback that causes musical noise [9]. Therefore this 
method is mainly appropriate for white noise. All the drawbacks can be significantly reduced with 
the proposed EMD based adaptive thresholding strategy with some modification of frame 
classification criteria. Since the IMFs will have different noise and speech energy distribution, so it 
suggests that each IMF will have a different noise and speech variance. After applying EMD, the 
soft thresholding technique is applied on each sub-frame of each IMF based on the computed 
variances. It is obvious that the variances will be changed for different sub-frames as well as with 
the individual IMF. The threshold will also be changed with newly computed variances and hence 
this technique is termed as adaptive thresholding. The proposed EMD based adaptive 

thresholding strategy for 
th

r  subframe of 
thi )( ′

 IMF as: 
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Here, 

)(

,
ˆ r

iqY ′  denotes to the thresholded samples of 
th

r subframe of the 
thi )( ′

 IMF, 

)(

',

r

iqY
 is 

thq
 

coefficient of 
th

r  subframe of 
thi )( ′

 IMF and the multiplication 
γ̂j′

 is the adaptive threshold 

function while j ′  being the sorted index-number of 

)(

,

r

iqY ′
. The threshold factor 

γ̂
 is varied 

adaptively for individual IMF according to its variance. An estimated value of 
γ̂

 can be obtained 
as: 
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where, 64=Q , inin ′′− = ,, λσσ
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=′
2
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σ

noise variance of the 
thi )( ′

 
IMF.  Since global noise variance is estimated from silent frames, therefore, it assumes each 
frame as well as subframe belong that variance. That is why; the boundary for the classification of 
subframes should be set to two times of the globally estimated noise variance when noise 
variance and speech variance of that subframe are same. The enhanced speech signal of the 
EMD based adaptive thresholding is given by 
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              (10) 
where, I=total number of IMFs, 
           R=total number of subframe and 
           Q=length of a subframe. 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

We study the effectiveness of the proposed NWNS+EMD based adaptive thresholding algorithm 
are tested on the speech data corrupted by three different types of additive noise like white, pink 
and HF channel noise are taken from NOISEX database. N=56320 samples of the clean speech 
/she had your dark suit in greasy wash water all year/ from TIMIT database were used for all 
simulations. The noises are added to the clean speeches at different SNRs from –10dB to 30dB 
of step 5 to obtain noisy speech signals. 
  
For evaluating the performance of the method, we are used the overall output and average 
segmental SNRs that are graphically represented as for measuring objective speech quality. The 
results of the average output SNR obtained from for white noise, pink noise and HF channel 
noise at various SNR levels are given in Table 1 for pre-processed speech in the first stage and 
final enhanced speech in the second stage respectively. Since in the real world environments, the 
noise power is sometimes equal to or greater than the signal power or the noise spectral 
characteristics sometimes change rapidly with time, NS or NWNS is not so effective in such 
situations. Because, there have to introduced large errors in the noise estimation process. EMD 
based adaptive thresholding method plays a vital role for the above case as found in Table 1. 
Table 2 presents a comparison the overall average output SNR among our previous method 
WNS and WNS+BSS with proposed method NWNS+EMD.  

 

Input 

SNR 

White noise HF channel noise Pink noise 

NWNS EMD NWNS EMD NWNS EMD 

-10dB -1.57 2.06 -7.47 -0.58 -7.06 -6.69 

-5dB 2.39 5.69 -2.66 3.03 -2.32 -1.92 

0dB 5.26 8.85 1.91 6.29 2.14 2.82 

5dB 8.66 11.94 6.42 9.74 6.33 7.22 

10dB 11.64 15.15 10.77 13.46 10.73 11.71 

15dB 15.77 18.72 15.42 17.42 15.40 16.26 

20dB 20.37 22.62 20.22 21.64 20.22 20.91 

25dB 25.17 26.85 25.11 26.12 25.11 25.64 

30dB 30.05 31.27 30.02 30.77 30.02 30.44 

 
TABLE 1: The average output SNR for various types of noises at different input SNR by NWNS and 
NWNS+EMD (indicated as EMD). 
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Input 
SNR 

White noise HF channel noise Pink noise 

WNS WNS+BSS EMD WNS WNS+BSS EMD WNS WNS+BSS EMD 

0dB 0.66 8.1 8.9 0.4 4.3 6.3 0.4 2.1 2.8 

5dB 6.0 10.2 11.9 5.5 7.8 9.7 5.5 6.8 7.2 

10dB 11.1 11.2 15.2 10.5 10.9 13.5 10.4 10.2 11.7 

15dB 15.7 13.8 18.7 15.1 13.1 17.4 15.0 13.2 16.3 

20dB 19.2 15.2 22.6 18.6 14.9 21.6 18.8 15.1 10.1 

25dB 21.3 15.7 26.9 20.8 15.7 26.1 21.4 15.8 25.6 

30dB 22.3 16.0 31.3 21.8 15.8 30.8 22.7 16.1 30.5 

 
TABLE 2: The average output SNR for various types of noises at different input SNR by WNS, WNS+BSS 
(previous methods) and NWNS+EMD (indicated as EMD). 

 
In terms of speech quality and intelligibility, the proposed two-stage (NWNS+EMD based 
adaptive thresholding method has to given a better tradeoff between noise reduction and speech 
distortion. We investigate this effect from the enhanced speech waveforms obtained from various 
methods as shown in Figure 4. It is observed from the waveforms that the enhanced speech is 
distorted in low voiced parts due to remove the noise in NS method whereas NWNS does not. A 
little amount of noise is removed from the corrupted speech by NWNS method. So in NS method 
there is a loss of speech intelligibility while NWNS maintains it. Although the EMD based adaptive 
thresholding can be able to successfully remove the noise from voiced parts but there is some 
noise remaining in the silent parts because of misclassification of subframes as signal-dominant. 
This remedy can be avoided using the proposed method. We also observed that by NS+EMD 
based adaptive thresholding method, there is loss of information in lower voiced parts and as a 
result speech intelligibility reduced. Moreover, the wavefrom obtained by NWNS+EMD based 
adaptive thresholding, it can be seen that there is no loss of information in lower voiced parts and 
maintains the speech intelligibility. We use two perceptually motivated objective speech quality 
assessments, namely the average segmental SNR (ASEGSNR) and the Perceptual Evaluation of 
Speech Quality (PESQ) to study the effectiveness of the proposed method. In Figures 5 and 6, it 
is observed that our proposed NWNS+EMD based adaptive thresholding approach achieve 
comparable improvements of speech quality. The PESQ scores of the speech at –10dB and –
5dB (pink and HF channel noise) are almost equal to input PESQ scores. This is due to the 
presence of musical noise in first stage 
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FIGURE 4: Speech waveforms of (from top) clean, noisy (HF noise at 10dB), enhanced by NWNS and 
NWNS+EMD. 
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FIGURE 5: Comparisons of the average output segmental SNR (ASEGSNR) by NWNS and NWNS+EMD 
methods for pink noise (left) and HF channel noise (right). 
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FIGURE 6: Comparison of PESQ scores by NWNS and NWNS+EMD methods for pink noise (left) and HF 
channel noise (right). 

5. CONCLUSION & FUTURE WORK  

In this paper, we presented a new algorithm to effectively remove the noise components in all 
frequency levels of a noisy speech signal. Our aimed to improve SNR of noise contaminated 
speech by removing and/or reducing noise using a two-stage processing technique; namely, a 
time domain nonlinear weighted noise subtraction (NWNS) followed by an Empirical Mode 
Decomposition (EMD) based adaptive thresholding. The first enhanced speech became as input 
of the second stage for further enhancement and obtained final enhanced speech after second 
stage processing. We introduced the degree of noise (DON1 and DON2) estimation process. 
DON1 was used to improve noise estimation accuracy and DON2 to calculate nonlinear 
weighting factor for NWNS in order to reduce musical noise. The parameters of DON1 and DON2 
were estimated for white noise and we used the same parameters for all color/real world noises. 
Since the empirical mode decomposition (EMD) was fully data adaptive and highly effective for 
nonlinear and nonstationary data, it overcame inadequacy effect of the first stage for assumption 
as stationary of nonstationary speech segment. We combined NWNS+EMD based adaptive 
thresholding enhancement algorithm which worked most efficiently for wide range of input SNR. It 
was found that the amount of this improvement decreased when the interfering source power was 
minimal. This was because the algorithm was dependent upon the interfering noise signal 
estimation in the first stage and also dependent upon the adaptation factor and adaptive 
threshold factor in the second stage. When the interfering noise power was increased (up to 
0dB), the proposed methods were able to perform better noise estimation. However, as the 
interfering noise power became much larger, as was true for extremely small SNR’s (<0dB), the 
algorithm did not perform well in the case of color noises due to the inability of the method to 
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obtain an adequate estimate of the original signal. The performance of the proposed method over 
speech contaminating with white noise or color noise was good based on objective measures and 
spectrograms and waveforms analysis.  
 
Since in single channel speech enhancement method, there was difficulty removing all the noise 
components from speech without introducing musical noises or distortions, hence in this regard 
further research can be conducted to increase the accuracy of noise estimation (DON1) and also 
the more adjustment needed of the nonlinear weight (DON2) for voiced/unvoiced sections for 
underlying noisy speech to reduce musical noise and to improve speech quality. All EMD based 
algorithm suffers from computational complexity and the empirical process takes long time and is 
not applicable for real time processing. Therefore, it is suggested that more research can be 
conducted on insight the EMD making it less empirical and more mathematical. 
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Abstract 

 
For stationary signals, there are number of power spectral density estimation 
techniques.  The main problem of power spectral density (PSD) estimation 
methods is high variance.  Consistent estimates may be obtained by suitable 
processing of the empirical spectrum estimates (periodogram).  This may be 
done using window functions. These methods all require the choice of a certain 
resolution parameters called bandwidth.  Various techniques produce estimates 
that have a good overall bias Vs variance tradeoff.  In contrast, smooth 
components of this spectral required a wide bandwidth in order to achieve a 
significant noise reduction. In this paper, we explore the concept of cepstrum for 
non parametric spectral estimation. The method developed here is based on 
cepstrum thresholding for smoothed non parametric spectral estimation. The 
algorithm for Consistent Minimum Variance Unbiased Spectral estimator is 
developed and implemented, which produces good results for Broadband and 
Narrowband signals.  
 
Keywords: Cepstrum, Consistency, Cramer Rao Lower Bound, Unbiasedness. 

 
 

1. INTRODUCTION 

The main objective of spectrum estimation is the determination of the Power Spectral density 
(PSD) of a random process. The estimated PSD provides information about the structure of the 
random process, which can be used for modeling, prediction, or filtering of the deserved process. 
Digital Signal Processing (DSP) Techniques have been widely used in estimation of power 
spectrum. Many of the phenomena that occur in nature are best characterized statistically in 
terms of averages [20]. 

Power spectrum estimation methods are classified as parametric and non-parametric. Former 
one a model for the signal generation may be constructed with a number of parameters that can 
be estimated from the observed data. From the model and the estimated parameters, we can 
compute the power density spectrum implied by the model. On the other hand, do not assume 
any specific parametric model of the PSD. They are based on the estimate of autocorrelation 
sequence of random process from the observed data. The PSD estimation is based on the 
assumption that the observed samples are wide sense stationary with zero mean. Traditionally 
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four techniques are used to estimate non parametric spectrum such as Periodogram, Bartlett 
method (Averaging periodogram), Welch method (Averaging modified periodogram) and 
Blackman-Tukey method (smoothing periodogram) [18] and [19]. 
 

2. CEPSTRUM ANALYSIS  

The cepstrum of a signal is defined as the Inverse Fourier Transform of the logarithm of the 

Periodogram. The cepstrum of })({ 1

0
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ty  can be defined as [7],[8] and [13] 
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A commonly used cepstrum estimate is obtained by replacing pφ     with the periodogram pφ̂ . 
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to make unbiased estimate the cepstrum coefficients only at origin is modified, remaining are 
unchanged. 
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In this approach, we smooth 






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lnφ  by thresholding the estimated cepstrum 
 
 }{

k
c  , not by 

direct averaging of the values of








p

^

lnφ . The following test can be used to infer whether 
k

c  is 

likely to be equal or close to zero and, there fore, whether  
k

c  should be truncated to zero [9]-

[12].  
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The spectral estimate corresponding to { }
k

c~  is given by 
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The proposed non parametric spectral estimate is obtained from  pφ
~

 by a simple scaling  

                                        1,.....0,
~

ˆ
ˆ̂

−== Nppp φαφ                                                        (7) 



M.Venkatanarayana & Dr.T.Jayachandra Prasad 

Signal Processing : An International Journal (SPIJ), Volume (4): Issue (5)                                                   294 

 where torscalingfacais
N

p

p

N

p

pp

α

φ

φφ

α ˆ;
~

~ˆ

ˆ
1

0

2

1

0

∑

∑
−

=

−

=
=  

 

Statistics of log periodogram 

The mean and variance of the k th component of the log periodogram of the signal,
2

log kY , 

assuming that the spectral component 
k

Y  is Gaussian, are, respectively, given by [1]-[6], 
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where 05772156649.0=γ is the Euler constant, and 
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. Furthermore,   
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Note from (8) that the expected value of the k th component of the log-periodogram equals the 

logarithm of the expected value of the periodogram plus some constant. This surprising linear 
property of the expected value operator is of course a result of the Gaussian model assumed 

here. From (9) the variance of the k th log-periodogram component of the signal is given by the 

constant.  
 
Statistics of Cepstrum 
The mean of the cepstral component of the signal is obtained from (8) and is given by [1], [2] and 
[7] 
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the variance of the cepstral components is obtained from (9) and given by for 2/..,.........0 Kn =  
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 and   for mnKmn ≠= ,2/....,,.........1,0,  
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The covariance matrix of cepstral components of the signal, assuming the spectral components 
of the signal are statistically independent complex Gaussian random variables. The covariance 
matrix of cepstral components given by (11) and (12) is independent of the underlying power 
spectral density which characterizes the signal under the Gaussian assumption. The covariance 
of cepstral components under the Gaussian assumption is a fixed signal independent matrix that 
approaches, for large K a diagonal matrix given by  
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 Cepstrum algorithm 

1. Let  a stationary, discrete-time, real valued signal })({ 1

0

−=
=

Nt

t
ty  

2. Compute the periodogram estimate of pφ using FFT. 
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3. First apply natural logarithm and take IFFT to compute the cepstrum estimate. 

                                      

1,.....,0

;)ˆln(
1

ˆ
1

0

−=

= ∑
−

=

Nk

e
N

c
pj

N

p

pk
kωφ

 

4. Compute the threshold by choosing the appropriate value of µ depending on the type of 

signal and determine the cepstral coefficients  
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5. Compute the spectral estimate corresponding to { }
k

c~  is given by 
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6. Obtain the proposed non parametric spectral estimate by a simple scaling  
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Simulation Results 
In this section, we present experimental results on the proposed algorithm for simulated data to 
estimate the power spectrum. The performance of proposed method is verified for simulated data, 
generated by applying Gaussian random input to a system, which is either broad band or narrow 
band.The MA broad band signal is generated by using the difference equation [18] 
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where )(te is a normal white noise with mean zero and unit variance. The ARMA narrow band 

signal is generated by using the difference equation   
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The number of samples in each realization is assumes as N=256.  
After performing 1000 Monte Carlo Simulations, the comparison of the mean Power Spectrum, 
Variance and Mean Square Error for the broad band signal and narrow band signals, obtained 
using periodogram and cepstrum approach along with the true power spectrum are shown in 
Figure 1 (a) , (b) and (c) and Figure 2 (a), (b) and (c) respectively. 
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FIGURE 1: (a) PSD vs frequency for broadband signal 
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FIGURE 1: (b) Variance vs frequency for broadband signal 
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FIGURE 1: (c) Mean Square Error vs frequency for broadband signal 
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FIGURE 2: (a) PSD vs frequency for narrowband signal 
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FIGURE 2: (b) Variance vs frequency for narrowband signal 
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FIGURE 2: (c) Mean Square Error vs frequency for narrowband signal 

From the above results we can say that  
1. In the case of broad band signal the spectral estimates through cepstrum approach has 

very smooth response compared to the periodogram approach. However it can be 
observed that the mean square error is more in the case of periodogram and least with 
cepstrum thresholding approach. 

2. In the case of broad band signals, variance obtained through cepstrum thresholding 
approach is very small as compared to the periodogram approach. 

3. It is also observed that the mean square error estimated through cepstrum approach for 
narrowband signals is less compared to broadband signals. 

 
Comparison among the traditional methods and the cepstrum method  
In order to evaluate the performance of the cepstrum technique, which is compared with the 
traditional methods such basic Peridogram, Bartlett method, Welch method and Blackman and 
Tukey [21] for simulated ARMA narrow band signal, which is generated by using equation (15).  
 
 
 
 
 
 
 
 
 

TABLE 1: Comparison table for the parameters mean and variance (Record length N=128). 

 
From the comparison table 1, for short record length, with respect to mean and variance, the 
cepstrum technique produces better results in comparison with the traditional methods. For 
longer record length, with reduced computational complexity, the cepstrum method produces the 

The various  PSD 
techniques 

Mean Variance 

Cepstrum 0.0090 2.4023e-004 
Periodogram 0.0092 4.8587e-004 

Black-man and Tukey 0.0521 0.0047 
Welch 0.0138 8.9491e-004 
Bartlett  0.2474 0.0637 
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values of mean and variance as same as that of the Welch method, but these methods are better 
than the remaining techniques. For 1000 Monte carlo simulations, the ensemble power spectrum 
for various techniques is shown in figure 3.    
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FIGURE 3: an ensemble power spectrum of an ARMA narrowband signal by using the traditional methods 
and the cepstrum method 

 
Results for MST Radar data 
The concept of cepstrum is applied to atmospheric data collected from the MST Radar on 10

th
 

August 2008 at Gadhanki, Tirupati, India. 150 sample functions, each having 256 samples are 
used to know the performance of cepstrum in comparison with the standard periodogram. The 
better results are obtained through the cepstrum than the periodogram. The comparison of the 
mean Power Spectrum, Variance for Radar data, obtained using periodogram and cepstrum 
approach are shown in Figure 4 (a) and (b) respectively. It is observed that the smooth power 
spectra and less variance in cepstrum than that of the periodogram. 
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FIGURE 4: (a) Mean Power Spectra Vs Frequency for MST Radar data 
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FIGURE 4: (b) Variance Vs Frequency for MST Radar data 
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3. CONSLUSION & FUTURE WORK 

The problem in traditional methods is that the variance becomes proportional to square of power 
spectrum instead of converging into zero, thus the estimated spectrum is an inconsistent.  In this 
paper the new technique has been proposed, called cepstrum, which gives reduce variance while 
evaluating the smoothed nonparametric power spectrum estimation. The expression for mean 
and variance of the cepstrum has been presented. The total variance reduction is more through 
broadband signals when compared to narrowband signals. All results are verified by using MAT 
lab 7.0.1. The concept of Cepstrum can be also extended for higher order spectral estimations. 
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