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EDITORIAL PREFACE 

 
This is third issue of volume five of the Signal Processing: An International Journal (SPIJ). SPIJ is 
an International refereed journal for publication of current research in signal processing 
technologies. SPIJ publishes research papers dealing primarily with the technological aspects of 
signal processing (analogue and digital) in new and emerging technologies. Publications of SPIJ 
are beneficial for researchers, academics, scholars, advanced students, practitioners, and those 
seeking an update on current experience, state of the art research theories and future prospects 
in relation to computer science in general but specific to computer security studies. Some 
important topics covers by SPIJ are Signal Filtering, Signal Processing Systems, Signal 
Processing Technology and Signal Theory etc. 

 
The initial efforts helped to shape the editorial policy and to sharpen the focus of the journal. 
Starting with volume 5, 2011, SPIJ appears in more focused issues. Besides normal publications, 
SPIJ intend to organized special issues on more focused topics. Each special issue will have a 
designated editor (editors) – either member of the editorial board or another recognized specialist 
in the respective field. 
 
This journal publishes new dissertations and state of the art research to target its readership that 
not only includes researchers, industrialists and scientist but also advanced students and 
practitioners. The aim of SPIJ is to publish research which is not only technically proficient, but 
contains innovation or information for our international readers. In order to position SPIJ as one of 
the top International journal in signal processing, a group of highly valuable and senior 
International scholars are serving its Editorial Board who ensures that each issue must publish 
qualitative research articles from International research communities relevant to signal processing 
fields. 
   
SPIJ editors understand that how much it is important for authors and researchers to have their 
work published with a minimum delay after submission of their papers. They also strongly believe 
that the direct communication between the editors and authors are important for the welfare, 
quality and wellbeing of the Journal and its readers. Therefore, all activities from paper 
submission to paper publication are controlled through electronic systems that include electronic 
submission, editorial panel and review system that ensures rapid decision with least delays in the 
publication processes.  
 
To build its international reputation, we are disseminating the publication information through 
Google Books, Google Scholar, Directory of Open Access Journals (DOAJ), Open J Gate, 
ScientificCommons, Docstoc and many more. Our International Editors are working on 
establishing ISI listing and a good impact factor for SPIJ. We would like to remind you that the 
success of our journal depends directly on the number of quality articles submitted for review. 
Accordingly, we would like to request your participation by submitting quality manuscripts for 
review and encouraging your colleagues to submit quality manuscripts for review. One of the 
great benefits we can provide to our prospective authors is the mentoring nature of our review 
process. SPIJ provides authors with high quality, helpful reviews that are shaped to assist authors 
in improving their manuscripts. 
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Abstract 

 
 Automatic speech recognition (ASR) has moved from science-fiction fantasy to daily reality for 
citizens of technological societies. Some people seek it out, preferring dictating to typing, or 
benefiting from voice control of aids such as wheel-chairs. Others find it embedded in their Hitech 
gadgetry – in mobile phones and car navigation systems, or cropping up in what would have until 
recently been human roles such as telephone booking of cinema tickets. Wherever you may meet 
it, computer speech recognition is here, and it’s here to stay. 
 
Most of the automatic speech recognition (ASR) systems are based on Gaussian Mixtures model. 
The output of these models depends on subphone states. We often measure and transform the 
speech signal in another form to enhance our ability to communicate. Speech recognition is the 
conversion from acoustic waveform into written equivalent message information. The nature of 
speech recognition problem is heavily dependent upon the constraints placed on the speaker, 
speaking situation and message context. Various speech recognition systems are available. The 
system which detects the hidden conditions of speech is the best model. LMS is one of the simple 
algorithm used to reconstruct the speech and linear dynamic model is also used to recognize the 
speech in noisy atmosphere..This paper is analysis and comparison between the LDM and a simple 
LMS algorithm which can be used for speech recognition purpose. 

 
Keywords : White Noise, Error Covariance Matrix, kalman Gain, LMS Cross Correlation  

 

 
1. INTRODUCTION 
Speech is a form of communication in everyday life. It existed since human civilizations began and 
even till now, speech is applied to high technological telecommunication systems. A particular field, 
which I personally feel, will excel   be speech signal processing in the world of telecommunications. 
As applications like Cellular and satellite technology are getting popular among mankind, human 
beings tend to demand more advance technology and are in search of improved applications. For 
this reason, researchers are looking closely into the four generic attributes of speech coding. They 
are complexity, quality, bit rate and delay. Other issues like robustness to transmission errors, 
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multistage encoding/decoding, and accommodation of non-voice signals such as in-band signaling 
and voice band modem data play an important role in coding of speech as well.  
  
 Presently Speech processing has been a growing and dynamic field for more than two decades 
and there is every indication that this growth will continue and even accelerate. During this growth 
there has been a close relationship between the developments of new algorithms and theoretical 
results, new filtering techniques are also of consideration to the success of speech processing.  
A least mean square (LMS) adaptive filtering approach has been formulated for removing the 
deleterious effects of additive noise on the speech signal; unlike the classical LMS adaptive filtering 
scheme, the proposed method is designed to cancel out the clean true speech signal. This method 
takes advantage of the quasi-periodic nature of the speech signal to form an estimate of the clean 
speech signal at time t from the value of the signal at time t minus the estimated pitch period. For 
additive white noise distortion, preliminary tests indicate that the method improves the perceived 
speech    
       
One of the common adaptive filtering techniques that are applied to speech is the Wiener filter. This 
filter is capable of estimating errors however at only very slow computations. On the other hand, the 
Kalman filter suppresses this disadvantage. As widely known to the world, Kalman filtering 
techniques are used on GPS (Global Positioning System) and INS (Inertial Navigation System). 
Nonetheless, they are not widely used for speech signal coding applications. According to, the 
reason why Kalman filter is so popular in the field of radar tracking and navigating system is that it 
is an optimal estimator, which provides very accurate estimation of the position of either airborne 
objects or shipping vessels. Due to its accurate estimation characteristic, electrical engineers are 
picturing the Kalman filter as a design tool for speech, whereby it can estimate and resolve errors 
that are contained in speech after passing through a distorted channel. Due to this motivating fact, 
there are many ways a Kalman filter can be tuned to suit engineering applications such as network 
telephony and even satellite phone conferencing. Knowing the fact that preserving information, 
which is contained in speech, is of extreme importance, the availability of signal filters such as the 
Kalman filter is of great importance.  

 
2.  EARLY APPROACHES TO SPEECH RECOGNITION 
Automatic speech recognition might appear to be an almost unattainable goal. However, by 
concentrating on a reduced specification and by tracking the problems in a scientific and staged 
manner, it has been possible to make considerable progress in understanding the precise nature of 
the problems and in development of relevant and practical solutions [12]. However, this has not 
always been the case. Some of the early work, which interesting in the context of a review of 
different approaches to automatic speech recognition, tended to be either overambitious about the 
achievements that could realistically be expected to be realized or somewhat naive with regard to 
the real difficulties that were being tackled. 
 
Early attempts can thus be categorized into one of two main approaches. In the fifties and sixties 
the main approach was based on simple principles of ‘pattern matching’ that in the seventies gave 
way to a ‘knowledge engineering ‘or rule based approach. Only towards the end of the seventies 
there was a growing awareness of the need to integrate these two approaches and move towards a 
clear and scientific recognition- a move that ultimately led to a maturation of ides and algorithms, 
which are now beginning to provide powerful exploitable solutions [10]. 
The following section reviews some of these early approaches to automatic speech recognition.  
 
2.1 Pattern matching 
Such systems employ two modes of operation: a ‘training mode’ in which example speech patterns 
(usually words) are stored as reference ‘templates’ and a recognition mode in which incoming 
speech patterns are compared with each reference pattern that is most similar to the input pattern 
determines the result. In this scheme the acoustic pattern of a speech signal typically consisted of a 
sequence of vectors, which had been derived from the speech waveform using some form of 
‘preprocessing’. For example it was common to perform a frequency analysis by means of an FFT 
or a filter bank in order to produce vectors that correspond to the short-time power spectrum of the 
signal into discrete pattern segments. 
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The key to success of this approach is the comparison process, and a technique called ‘linear time 
normalization’ was commonly used in order to overcome variability in the duration of spoken words. 
In this situation, the lengths of the patterns were ‘time normalized’ to a standard duration by 
lengthening (or shortening) the patterns the appropriate amount by using a fixed expansion (or 
compression) of the time scale uniformly over the entire pattern 
2.2 Knowledge engineering 
The knowledge-based approach popular in the early seventies was based on techniques from the 
field of artificial intelligence, which was the newly emerging. These techniques were applied to 
traditional concepts from the disciplines of phonetic and linguistics about how speech signals was 
organizing. The key principle was to exploit the speech knowledge through its exploit use within a 
rule-based framework aimed at deriving and interpretation that would be suitable for the purpose of 
understanding the semantic content of the signal. 
 
2.3 Integrated approach: 
This new process (popular in the late seventies) became known as ‘dynamic time warping’(DTW) 
and it has been a highly successful technique in terms of raising performance to a level at which 
serious commercialization of automatic speech recognition systems could begin. 
 

3.  LMS ALGORITHM  
A linear mean square (LMS) adaptive filtering approach has been formulated for removing the 
deleterious effects of additive noise on the speech signal; unlike the classical LMS adaptive filtering 
scheme, the proposed method is designed to cancel out the clean true speech signal [11]. . An 
adaptive LMS filter was employed to process speech in signal-to-noise ratios (S/N) varying from -8 
to +12 dB. The filter configuration is commonly called noise cancellation [12][14][15]. 

 
FIGURE 1: LMS model 

                

                   
                  N-1 
          Y(n) =∑  Wi(n)x(n-i) 
                   i=0 
e(n)=d(n)-y(n) 
  We assume that the signals involved are real-valued. 
  The LMS algorithm changes (adapts) the filter tap weights so that e(n) is minimized in the mean-
square sense. When the processes x(n) & d(n) are jointly stationary, this algorithm converges to a 
set of tap-weights which, on average, are equal to the Wiener-Hopf solution. 
  The LMS algorithm is a practical scheme for realizing Wiener filters, without explicitly solving the 
Wiener-Hopf equation. 
  The conventional LMS algorithm is a stochastic implementation of the steepest descent algorithm. 
It simply replaces the cost function 
 
                    ζ =E [e2(n)]          Substituting ζ  =e2(n)                                                                   

                                                     
For in the steepest descent recursion, we obtain 
 

 
…..W N-1 (n) 
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  Note that the i-th element of the gradient vector    is 
 

 

 
                   

 
Then   
 
Where (n) =[   
Finally we obtain- 

+2µe  
Equation is referred to as the LMS recursion. 
Summary of the LMS algorithm, 
Input: 

Tap -weight vector:  
Input vector:  
Desired output: d  
Output: 

Filter output: y  
Tap -weight vector update:  
1. Filtering: y  
2. Error estimation:  
3. Tap-weight vector adaption: +2µe  
 

4. LINEAR DYNAMIC MODEL (KALMAN FILTER) 
In 1960, R.E. Kalman published his famous paper describing a recursive solution to the discrete-
data linear filtering problems [10]. Since that time, the Kalman filter has been the subject of 
extensive research and application, particularly in the area of autonomous or assisted navigation. It 
is only a tool – It aids mankind in solving problems, however, it does not solve any problem all by 
itself. This is however not a physical tool, but a mathematical one, which is made from 
mathematical models. In short, essentially tools for the mind. They help mental work become more 
efficient, just like mechanical tools, which make physical work less tedious. Additionally, it is 
important to understand its use and function before one can apply it effectively .It is a computer 
program - It uses a finite representation of the estimation problem, which is a finite number of 
variables; therefore this is the reason why it 
 
is said to be “ideally suited to digital computer implementation”. However, assuming that these 
variables are real numbers with infinite precision, some problems do happen. This is due from the 
distinction between finite dimension and finite information, and the distinction between “finite” and 
“manageable” problem sizes. On the practical side when using Kalman filtering, the above issues 
must be considered according to references [1; 2; 3; 4]. 
Mathematical analysis of Kalman filter 
 
Following discussions from references [4; 5; 6; 7; 10] 
After going through some of the introduction and advantages of using Kalman filter, we will now 
take a look at the process of this magnificent filter. The process commences with the addresses of 

a general problem of trying to estimate the state of a discrete-time controlled process that is 
governed by a linear stochastic difference equation: 
xk=Axk-1+Buk+wk-1            (1.1) 
With measurement  
zk=Hxk+vk                          (1.2) 
The random variables wk and vk represent the process and measurement noise respectively. We 
assume that they are independent of each other, and with normal probability distributions 
p(w)~N(0,Q)                       (1.3) 
p(v)~N(0,R)                       (1.4)                                   
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.  
Ideally, the process noise covariance Q and measurement noise covariance R matrices are 
assumed to be constant, however in practice, they might change with each time step or 
measurement. 
 
In the absence of either a driving function or process noise, the matrix nxn A in the difference 
equation (1.1) relates the state at the previous time step to the state at k-1 to the current step k. In 
practice, A might change with each time step, however here it is assumed constant. The nxl matrix 
B relates the optional control input to the state x., which is a matrix in the measurement equation 
(1.2), which relates the state to the measurement. In practice x might change with each time step or 
measurement, however we assume it is constant. 

 
4.1 Discrete Kalman Filter 
This section will begin with a broad overview, covering the "high-level" operation of one form of the 
discrete Kalman filter. After presenting this high-level view, I will narrow the focus to the specific 
equations and their use in this discrete version of the filter. How does the Kalman filter works? 
Firstly, it estimates a process by using a form of feedback control loop whereby the filter estimates 
the process state at some time and then obtains feedback in the form of (noisy) measurements. As 
such, these equations for the Kalman filter fall into two groups: “Time Update equations” and 
“Measurement Update equations”. The responsibilities of the time update equations are for 
projecting forward (in time) the current state and error covariance estimates to obtain the priori 
estimates for the next time step. The measurement update equations are responsible for the 
feedback i.e. for incorporating a new measurement into the priori estimate to obtain an improved 
posteriori estimate. The time update equations can also be thought of as “predictor” equations, 
while the measurement update equations can be thought of as “corrector” equations. By and large, 
this loop process of the final estimation algorithm resembles that of a predictor-corrector algorithm 
for solving numerical problems just like the one shown in fig below 
 

 
FIGURE 2: Discrete Kalman Filter Cycle 

 
As the time update projects the current state estimate ahead in time, the measurement update 
adjusts the projected estimate from the time update by an actual measurement at that particular 
time. The specific equations for the “time” and “measurement” updates are presented below in 
Table1 

Xk=Axk-1+Buk                           
1.5 

Pk=Apk-1AT+Q                          
1.6 

Table 1: Time update equations 
Kk=PkHT(HPkHT+R)-1               
1.7 

Xk=xk+Kk(zk-Hxk)                      
1.8 

Pk=(I-KkH)Pk                             
1.9 

 
TABLE 2: Measurement equations 
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Once again, notice how the time update equations in Table.1 project its state, x the filter are 
discussed in the earlier section. By referring to Table 1, it is obvious that the first task during the 
measurement update is to compute the Kalman gain, By (1.7) in the table above is to actually 
measure the process in order to obtain, and then to generate a posteriori state estimate, by 
incorporating the measurement as in (1.8). Once again, notice the repeated equation of (1.7) here 
and (1.8) for completeness. Finally, the last step is to obtain a posteriori error covariance estimate 
via (1.9). Thus, after each time and measurement update pair, this loop process is repeated to 
project or predict the new time step priori estimates using the previous time step posteriori 
estimates. This recursive nature is one of the very appealing features of the Kalman filter it makes 
practical implementations much more feasible than (for example) an implementation of a Wiener 
filter which is designed to operate on all of the data directly for each estimate. Instead, the Kalman 
filter recursively conditions the current estimate on all of the past measurements. The high-level 
diagram of Fig 2 is combined with the equations from Table .1 and Table 2, in Fig.2 as shown 
below, which offers a much more complete and clear picture of the operation of the Kalman Filter. 

 

FIGURE 1: Complete picture of Kalman filter 
 

The measurement noise covariance is usually measured before the operation of the filter when it 
comes to the actual implementation of Kalman filter. Generally, measuring the measurement noise 
covariance is practically possible due to the fact that the necessary requirement to measure the 
process noise covariance (while operating the filter), therefore it should be possible to take some 
off-line sample measurements in order to determine the variance of the measurement noise. As for 
determining of the process noise covariance, it will be generally more difficult. This is due to the 
reason that the process to be estimated is unable to be directly observed. Sometimes a relatively 
simple (poor) process model can produce acceptable results if one "injects" enough uncertainty into 
the process via the selection of. (Certainly, one would hope that the process measurements are 
reliable). In either case, whether or not a rational basis is chosen for the parameters, superior filter 
performance (statistically speaking) can be obtained by tuning the filter parameters R and Q. 
closing under conditions where R and Q are in fact constant, both the estimation error covariance 
and the Kalman gain will stabilize quickly and then remain constant (see the filter update equations 
in Fig 2). If this is the case, these parameters can be pre-computed by either running the filter off-
line, or for example by determining the steady-state value. 

 

5. COMPARISON OF LDM AND LMS 
 Optimal adjustment parameters of the adaptive filter with LMS algorithm in the practical application 
of suppression of additive noise in a speech signal for voice communication with the control system. 
By the proposed method, the optimal values of parameters of adaptive filter are calculated with 
guarantees the stability and convergence of the LMS algorithm [9] same as that of the LDM[16]. 
The proposed methods of recognition of speech give the following results on three different 
speeches  
S1 is a noiseless speech sample and S1white is the S1 speech captured by white noise. The 
original speech sample, S1white and reconstructed speech samples with LDM and LMS are shown 
below. The cross covariance between the reconstructed and noiseless speech samples is also 
shown below. 
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FIGURE 1a. S1 original speech sample 

 

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
signal captured by white noise

Number of Iterations

s
1
8
0
1

 

                            Fig 1b. S1 white speech sample captured by white noise 
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                        Fig 1c. Reconstructed speech by LDM 
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                       Fig 1d.  Reconstructed speech by LMS 
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                       Fig 1e.  Cross correlation between original and reconstructed signal by LDM 
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                    Fig 1f.  Cross correlation between original and reconstructed signal by LMS 
 

S2 is a noiseless speech sample and S2street is the S2 speech captured by street noise. The 
original speech sample S2, S2street and reconstructed speech samples with LDM and LMS are 
shown below. The cross covariance between the reconstructed and noiseless speech samples is 
also shown below. 
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Fig 2a.  S2 original speech sample 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
signal captured by street noise

Number of Iterations

s
1
8
1
1

 
Fig 2b.  S2street speech sample captured by street noise 
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Fig 2c.  Reconstructed speech by LDM 

 



 
 

Signal Processing: An International Journal (SPIJ), Volume (5) : Issue (4) : 2011 138 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

 
Fig 2d.  Reconstructed speech by LMS 
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Fig 2e.  Cross correlation between original and reconstructed signal by LDM 
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Fig 2f.  Cross correlation between original and reconstructed signal by LMS 

 
S3 is a noiseless speech sample and S3 and is the S3 speech captured by random noise 
(artificially generated). The original speech sample S3 and reconstructed speech samples with LDM 
and LMS are shown below. The cross covariance between the reconstructed and noiseless speech 
samples is also shown below. 
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Fig 3a.  S3 original speech sample 
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Fig 3b. S3street speech sample captured by random noise 
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                                            Fig 3c.  Reconstructed speech by LDM 
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                     Fig 3 Cross correlation between original and reconstructed signal by LDM 
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TABLE 3: comparison of LDM and LMS in terms of cross correlation 

 

6. CONCLUSION 
After the working over the two models it is concluded that we can use the LDM for speech but LMS 
algorithm is also one of the methods which is simple and efficient algorithm. After comparing the 
results we found that for Speech sample S1 captured by White noise LMS algorithm is having 
better results than LDM. For Speech sample S2 captured by Street noise both algorithms are 

Speech LDM LMS 

S1 0.65 0.736 
S2 0.595 0.5996 
S3 0.870 0.8836 



 
 

Signal Processing: An International Journal (SPIJ), Volume (5) : Issue (4) : 2011 140 

having approximately same results.  For Speech sample S3 captured by Random noise again LMS 
algorithm is having better results than LDM. Overall we found LMS Algorithm is giving promising 
results for the above speech samples considered for experimentation. 
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Abstract 

 
This paper analyzes and designs a second order digital phase-locked loop (DPLL), and presents 
low power architecture for DPLL. The proposed architecture reduces the high power consumption 
of conventional DPLL, which results from using a read only memory (ROM) in implementation of 
the numerically controlled oscillator (NCO). The proposed DPLL utilizes a new design for NCO, in 
which no ROM is used. DPLL is designed and implemented using FPGA, consumes 237 mw, 
which means more than 25% saving in power consumption, and works at faster clock frequency 
compared to traditional architecture.  
 
Keywords: Digital Phase locked loop (DPLL), Field Programmable Gate Array (FPGA), Software 
Defined Radio (SFDR), Read Only Memory (ROM), Spurious Free Dynamic Range (SFDR). 

 

 
1. INTRODUCTION 

Software Defined Radios (SDRs) are leading the integration of digital signal processing (DSP) 
and radio frequency (RF) capabilities. This integration allows software to control communications 
parameters such as the frequency range, filtering, modulation type, data rates, and frequency 
hopping schemes. SDR technology can be seen in wireless devices used for different 
applications in military, civil applications, and commercial network. Compared to conventional RF 
transceiver technologies, the advantage of SDR is its flexibility. SDR provides the ability to 
reconfigure system performance and functions on the fly [1].      
 
In order to take advantage of such digital processing, analog signals must be converted to and 
from the digital domain. This is done using analog-to-digital (ADC) and digital-to-analog (DAC) 
converters. To take full advantage of digital processing, SDRs keep the signal in digital domain as 
much as possible, digitizing and reconstructing as close as possible to the antenna. Despite an 
ADC or DAC connected directly to an antenna is a required end goal, there are issues with 
selectivity and sensitivity that need an analog front [2].  
 
Phase-locked loop (PLL) is one of the most important building blocks necessary for modern 
digital communications, which is used as a frequency synthesizer in RF circuits, or to recover 
time and carrier in the baseband digital signal processing. A complete understanding of the 
concept of PLL includes many study areas such as RF circuits, digital signal processing, discrete 
time control systems, and communication theory [3]. Traditional PLL consists of three parts; 
phase frequency detector (PFD), loop filter, and voltage controlled oscillator (VCO). 
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The traditional analog PLL faces many design problems such as voltage supply noise, 
temperature noise, and large area consumed by loop filter components like resistors and 
capacitors. On the other hand DPLL, formed of all digital components, provides a high immunity 
to supply voltage noise and temperature variation. Moreover, DPLL can be designed by using 
hardware description language (HDL) with any standard cell library. Thus, the time for redesign 
and check for errors is reduced. Therefore, DPLL provides a good solution to analog PLL design 
problems. Unfortunately, DPLL has a critical disadvantage, i.e., high power consumption resulting 
from the numerically-controlled oscillator (NCO) [4]. 
 
The high power consumption of NCO is the result of using ROM, which contains the sampled 
amplitudes of a sinusoidal waveform. As accuracy of the generated signal increases, the size of 
ROM increases, which causes high power consumption and reduces the speed of the circuit. We 
propose a DPLL architecture in which the traditional NCO is replaced by a circuit which generates 
a cosine waveform using a piecewise-linear approximation.  
 
In section 2, PLL operation is explained. The traditional NCO is described in section 3. Section 4 
illustrates a modified NCO which can solve the problems of traditional NCO. In section 5 
mathematical model of DPLL in both Z-domain and S-domain is illustrated. In section 6 simulation 
results. In section 7 hardware implementation of modified NCO and modified DPLL is presented 
and in the end some conclusions are given. 

 
2. PHASE LOCKED LOOP 

PLL is an important component in many types of communication systems. It works in two different 
manners; to synchronize a carrier in frequency and phase or to operate as a synthesizer. The 
block diagram of DPLL is shown in Fig. 1. It consists of three main blocks, phase/frequency 
detector (PD), loop filter and NCO.  
 
 

FIGURE 1: Digital phase locked loop in discrete time domain. 

 
 

The operation of DPLL is as follows: without input signal applied to the system, NCO generates a 

signal with a center frequency ( cf ), which is called the free running frequency. The input signal 

applied to the system is 
  

i i i iv (n) A sin(  n ),= +ω θ                                                                                                                                              (1)  

where iA is the amplitude, ωi  is the angular frequency, and θi  is the phase of the input signal. 

Feedback loop mechanism of PLL will force NCO to generate a sinusoidal signal ncov (n)   

onco nco ncov (n) A sin(  n ),+ω θ=                                                                                                          (2) 

 

Phase/ Frequency 
Detector 

Loop Filter 

NCO 

Input signal 

ω θi i iv (n), (n), (n)

Generated 
synchronized signal 

±ω θ±ω θd i nco i ncov (n), ,  

−ω θ−ω θf i nco i ncov (n), ,  
ω θncnco o ncov (n), ,  
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where oA is the amplitude, 
nco

ω  is the angular frequency and 
nco

θ  is the phase of the signal 

generated by NCO. 
nco

θ is given by 
 

nco v f

N

i

(n) k v (i),
=−∞

θ = ∑                                                                                                                         (3) 

 

where vk is the NCO gain constant and fv (n) is the filter output. If mk   denotes the phase detector 

(multiplier) gain, then output of the phase detector is  
 

i o

d i i nco nco

i o
i nco i nco i nco i

m

n
m

co

k A A
v (n) sin(  n )cos(  n )

2

k A A
[sin(( ) n ) sin(( ) n ],

2

= + +

= + + + + − + −

ω θ ω θ

ω ω θ θ ω ω θ θ

 

 
 
             
(4)  

 

The first term in (4) corresponds to high frequency component, and the second term corresponds 

to the phase difference between iv (n)  and ncov (n) . Loop filter will remove the first term in (4).                    

If i ncoω = ω , then phase difference can be obtained as  

 

f d i ncov (n) k [sin( )],−θ θ=                                                                                                                (5) 

 

where m i o
d

k A A
k

2
= . If  i nco( ) 1−θ θ � ,  then fV (n)  is approximated by 

 

d i o
f i nco

k A A
v (n) ( ).

2
−θ θ≈                                                                                                                (6) 

 

This difference voltage is applied to the NCO. Thus, the control voltage fv (n)  forces the NCO 

output frequency to change up or down to reduce the frequency difference between ωnco  and ωi . 

The equation of the generated frequency of NCO is  
 

nco c f(n) v (n),ω ω= +                                                                                                                        (7) 

 

where cω is the center frequency of NCO. If the input frequency ωi  is close to ωnco , the feedback 

manner of PLL causes NCO to synchronize or lock with the incoming signal. Once it is locked, the 
generated signal of NCO will synchronize the input signal in phase and frequency. 
 

3. TRADITIONAL NCO 
Voltage Controlled Oscillator (VCO), which is used in analog PLL generates a sinusoidal 
waveform whose frequency depends on the input voltage. NCO, which is used in DPLL, 
generates a digital (sampled) sinusoidal waveform with a fundamental frequency determined by 
the digital input value (n-bits). As shown in Fig. 2, NCO consists of ROM, and accumulator. The 
output signal of the accumulator is used as address to the ROM. The input signal to the 

accumulator consists of the sum of an offset ( cω ) corresponding to the free running frequency, 

and fv which is the output of the loop filter [5]. The general equation of generated frequency from 

NCO is 
 

f
nco c clkj

v
f ( ) .

2
f= + ω ×                                                                                                                        (8) 

 

where ncof is the generated frequency, cω  is the center frequency, fv is an integer value and lies in 

the range j 1 j 1

f( 2 v 2 )− −
− ≤ ≤ , j  is number of bits or width of the accumulator, which is 16 bits, and 

clkf  is the clock frequency. 
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The operation of NCO is as follows: first assuming that the system clock frequency is 50MHz, 

j=16 and c 1310ω = , the free running frequency is 1 MHz. Then, as shown in Fig. 3 there are 50 

sampling points in one cycle of 1 MHz sinusoidal waveform. NCO generates exactly one cycle of 

sinusoidal waveform when the input value ( fv ) is equal to zero. Since the offset value is 1310, 

every clock cycle the accumulator accumulates the offset value. Then in 50 cycles the 
accumulated value will increase by one. The accumulator output will address this value to the 
ROM and extract the cosine amplitudes values stored in it. 
 
When the input value is greater than zero, the accumulation speed becomes higher. Thus in less 
than 50 cycles of clock frequency the accumulator increases by 1, this will generate a higher 
frequency than 1MHz. When the input value is less than 0, a frequency lower than 1 MHz is 
generated. The problem with using a ROM is that, its size increases to achieve a high spectral 
purity of the generated waveform. This leads to high power consumption and slow operation of 
the system. 
 
 
 
 

FIGURE 2: Numerically controlled oscillator structure. 
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FIGURE 3: Output waveform of NCO. 
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3.1 Previous Work 
NCO which generates sine or cosine output as shown in Fig. 2 differs mostly in the 
implementation of ROM block. This block is the slowest and consumes high power. The problem 
of ROM is that, its size grows exponentially with the width of the phase accumulator. Since one 
normally desires a large number of bits to achieve fine frequency tuning and high spectral purity, 
several techniques have been invented to limit the ROM size while maintaining suitable 
performance. 
 
One technique uses the quarter wave symmetry of sine function to reduce the number of saved 
samples by 4, in which ROM saves only the amplitudes of first quarter and through additional 
hardware the other quarters are generated [6]. Truncating accumulator output (remove number of 
most significant bits (MSBs)) is a common method to reduce the size of ROM but this method 
introduces spurious harmonics [7].  
 

Different angular decomposition techniques proposed to reduce the ROM size consist of splitting 
the ROM into a number of smaller ROMs, each ROM is addressed by a portion of truncated 
accumulator output. Generated samples of each ROM are added to form a complete sinusoidal 
waveform. In order to introduce more reduction in the ROM size, many techniques have been 
proposed to make an initial approximation of the sine amplitude from the value of the phase 
angle, and to use the ROM or a combination of ROMs to store correction values [8:11]. Although 
these methods reduce the power consumption but they still use ROM which causes a residual of 
high power consumption. 
 

Many other techniques have been proposed using piecewise continuous polynomials to 
approximate the first quadrant of the sine function. One of them is based on a Taylor-series 
expansion [12], a simplified 4th degree polynomial [13] and 4th degree Chebyshev polynomials 
[14]. The drawbacks of the above techniques are that they require additional hardware to make 
extra computations which increase the complexity of the circuit. The additional hardware 
consumes power consumption which supposed to reduce.   
 

4. MODIFIED NCO 
 

4.1 Proposed Architecture 
In proposed architecture no ROM is used, to provide fast switching, and less power consumption. 
Instead of using a ROM a piecewise linear approximation is used, that is representing the first 
quarter of the cosine waveform as linear lines, each line fits a linear equation with slope and bias.  
Depending on the symmetry of the cosine waveform (have 4 quarters), it can easily deduce the 
other 3 quarters of the cosine waveform from only the first quarter. The first quarter of the cosine 
function is divided into eight piecewise linear segments of equal length of the form: 
 

+
π ≤ <+ π≈ i i

i
cos(t)

i 1
t ,   i=0a t b ,   

16
,1,.....7,

16
                                                                             (9) 

 

where ia is the segment slope and is limited to 4 bits, and ib  is the constant or bias limited to 8 

bits. Slopes and biases are chosen using the minimum mean square error (MMSE) criterion, that 

minimizes the integrated mean square error between the ideal cos(t)  and the approximated 

cosine functionp (t) . 

 
/2

0

2

t

mmse [cos(t) p(t)] dt.
π

=

= −∫                                                                                                         (10) 

 
Fig. 4 shows a comparison between ideal and approximated cosine waveforms. It seems to be the 
same except the top and bottom of the waveform, that is because of the linear segments. 
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FIGURE 4: Approximated and Ideal cosine waveforms. 

 
The modified NCO consists of two main components and two negation units. Fig. 5 shows the 
block diagram of each component and the corresponding waveform. Accumulator receives the 
input signal fv (n) which represents the phase difference between θi and θnco . The accumulator 

works as a circular counter. A complete rotation of the accumulator represents one cycle of the 
output waveform. The accumulator receives a signal with eight bits-length, and the width of the 
accumulator is j=16 bits, so truncation is done to the output signal of the accumulator to be X 
signal with L=10 bits’ length. The first two most significant (MSBs) bits of the accumulator are used 
to control the operation of NCO. 2nd MSB controls the sign of signal X before performing the 
piecewise linear calculation. This negative sign is needed to substitute in the linear function to 
generate all quarters of the cosine waveform. Second negation is done at the output stage to 
correct position of second and third quarters. This negation is controlled using XOR function 
between 1st, and 2nd MSB.  
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FIGURE 5: Structure of modified NCO. 
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4.2 Spurious Free Dynamic Range (SFDR) 
SFDR is defined as the ratio between the RMS value of the fundamental frequency (maximum 
signal component) and the RMS value of the next largest noise or harmonic distortion 
component, (which is referred to as a “spurious” or a “spur”) at its output. SFDR is usually 
measured in dBc (i.e. with respect to the carrier frequency amplitude) or in dBFS (i.e. with respect 
to the ADC's full-scale range). Depending on the test condition, SFDR is observed within a pre-
defined frequency window or from DC up to Nyquist’s frequency of the converter (ADC or DAC). 
Fig. 6 shows how SFDR is measured [15]. Since the modified NCO depends on linear 
approximation to generate digital samples of cosine waveform, the spectrum of the generated 
waveform contains spurs at all the spectrum frequencies, and SFDR is used to measure the 
spectral purity of the generated frequencies.  
 
 

 

 

 

 

 

 

 

FIGURE 6: SFDR measure. 
 

5. DPLL MATHEMATICAL MODEL 
A mathematical model for DPLL is built in z-domain, and s-domain to study the ability of the 
system to maintain phase tracking when exited by phase steps, frequency steps, or other 
excitation signals. Fig. 7 and Fig. 8 shows mathematical model of the system in both Z-domain 
and S-domain respectively.  

 

FIGURE 7: DPLL in Z-domain. 
 

 

FIGURE 8: DPLL in S-domain. 
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 The phase transfer function of the system in Z-domain is 

 

1 2
nco d

1 2

i d

(z) k  F(z) G(z) 1 z z
.

(z) 1 K  F(z) G(z) 1025 1982 z 961 z

− −

− −

+ +
= =

+ −

θ

+θ
                                                          (11) 

 

To get the step response of the system a relation between fv (z)  and iv (z)  is needed. Assuming 

the input signal is a unit step of frequency at constant phase  

 

2
f

1 2

i

v (z) F(z) 64 (1 z )
.

v (z) 1 F(z) G(z) 1025 1982 z 961 z

−

− −

−
= =

+ − +
                                                                 (12) 

 
Using bilinear transformation, the previous equations are obtained in S-domain 

 

nco d

2

i d

(s) k  F(s) G(s) 1

(s) 1 k  F(s) G(s) 992 s 32 s 1
=

+

θ

θ
=

+ +
                                                                         (13) 

 

f

2

i

v (s) F(s) 64 s

v (s) 1 G(s) F(s) 992 s 32 s 1
= =

+ + +
                                                                               (14) 

 

In the test for stability, DPLL is subjected to a test signal representing a unit step of frequency at 

constant phase using (14) with sf 50 MHz=  [16-17]. As shown in Fig. 9, the system is stable with 

overshoots at the transient state. 
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FIGURE 9: DPLL in S-domain. 

 

6. SIMULATION RESULTS 
 

6.1 SFDR of Modified NCO  
To measure the SFDR a discrete Fourier transform (DFT) is done for a long repetition period of 
the generated signal from modified NCO. Difference between the amplitude of the fundamental 
output frequency and the amplitude of the largest spurs in the dynamic range is noted. Fig. 10 

shows the output spectrum for input word of value 1317 representing fv (n) , at a clock frequency 
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of 50 MHz and an accumulator width j=16. The fundamental frequency is approximately 2 MHz 
with -30.057 dB, and the spurious appears at 14.46 MHz with -89.925 dB, so SFDR=59.868 dBc. 
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FIGURE 10: SFDR for fundamental frequency of 2 MHz. 

 

6.2 DPLL Synchronization 
In this section, we investigate the performances of proposed DPLL’s using computer simulations. 
The proposed DPLL has the following parameters: 
 

sf 10 MHz,= mk 1,= vk 1024,= i oA A 1,= = nco 1 MHz,=ω  and nco 0.θ =  

 
Two types of simulations are done. In the first one, DPLL receives a signal with phase difference 

( i i1 MHz, 4 /ω θ= = π ), DPLL response is shown in Fig. 11. In the second case input signal has 

both phase difference and frequency difference ( i i1.01 MH /z, 4=ω θ = π ), DPLL response is 

shown in Fig.12. 
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FIGURE 11: DPLL response in case of phase difference. 
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FIGURE 12: DPLL response in case of phase and frequency difference. 

 

6.3 Proposed DPLL vs. Traditional DPLL 
The main objective of this simulation is to compare the performance of the proposed DPLL with 
traditional DPLL; to be sure that replacing ROM with linear approximation did not affect the 
operation of DPLL. In this simulation both architectures have the same parameters. 
 

sf 10 MHz,= mk 1,= vk 1024,= i oA A 1,= = nco 1 MHz,=ω  and nco 0.θ =  

An input signal with i 1.02 MHz=ω  and i / 2.θ = π  is applied to both architectures. Both 

responses are shown in Fig.13 which indicates that the performance of the proposed DPLL is not 
affected by the modified NCO. i.e. the ability of locking phase or frequency of the input signal is 
not affected. This means the proposed DPLL saves power consumption compared to traditional 
DPLL without affecting the performance of DPLL.    
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FIGURE 13: DPLL response in case of phase and frequency difference                                                          
a) Response of traditional DPLL.     b) Response of proposed DPLL. 

 

7. HARDWARE IMPLEMENTATION 
Hardware implementation of modified NCO, and modified DPLL is done using VHDL code using 
Xilinx system generator Simulink tool [18:20]. The architecture of modified NCO is shown in Fig. 
14. 
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FIGURE 14: Modified NCO model  
 
Implementation of linear segments requires slopes and constants. The slopes are chosen using 
MMSE as mentioned before and the slopes’ accuracy is limited to a fraction four bits. m1 
represents the full truncated output from the accumulator, m2 is half m1, m4 is half m2 (quarter 
m1) and m8 is half m4 (eighth m1). The first three MSBs generated from the accumulator are 
used to control three multiplexers. The first two multiplexers are forming the slope value, and the 
third multiplexer form the constant value. According to the selected signal, the linear equations 
are chosen through the multiplexers to form the complete linear equation.  
 
The architecture of modified DPLL is shown in Fig. 15; the architecture uses the modified NCO 
instead of traditional NCO. The simulation is done at clock frequency 50 MHz. All signals are 
binary signals with different widths. The input signal is a binary signal of 8 bits width representing 
a sinusoidal signal at frequency 1 MHz. Fig.16 shows the simulation waveforms as an analog 
signal, the input signal (input1) of frequency 1 MHz is multiplied by the modified NCO signal 
(input2), and the output signal is passed through the digital filter. The final output shows that 
digital implementation agrees with the simulation waveform. 

 
 

FIGURE 15: Modified DPLL model.  
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FIGURE 16: VHDL simulations of DPLL. 

 
To recognize how much the modified NCO reduces the power consumption, logic elements and 
operation with faster frequency. A comparison between traditional NCO, which uses ROM block 
and modified NCO, is done by implementing both architectures on the same FPGA device (Xilinx-
Spartan-3A DSP Xc3d3400a-5fg676). This comparison gives an idea of how much could be the 
improvements in power consumption, reduction in the occupied number of logic elements and 
faster frequency. As illustrated in Table1, the modified NCO reduces about 40% of total logic 
elements used in traditional NCO, and did not use memory bits, which leads to save the power 
consumption by about 25% and operation at a faster frequency about 1.8 times the speed of 
traditional NCO. Comparison is also done with the traditional DPLL (which uses a traditional 
NCO) and modified DPLL (which uses modified NCO). Table 2 shows the result of comparison; it 
is clear that the modified DPLL consumed less power, occupied less area and worked faster than 
the traditional DPLL, with no degradation in system operation such as locking range. 
 
 
 
 
 

 
 
 
 

 
TABLE 1: Implementation results comparison of NCO. 

 

 
 
 
 
 
 
 
 
 

TABLE 2: Implementation results comparison of DPLL. 

 Traditional NCO Modified NCO 
Slices 108 64 
Flip Flops 21 17 

Block RAMs 60 0 
Look up table (LUT) 210 116 
IOBs 24 24 
Maximum Frequency 151.461 MHz 284.738 MHZ 
Power consumption 0.264 Watt 0.197 Watt 

 

 Traditional DPLL Modified DPLL 
Slices 162 64 
Flip Flops 37 17 
Block RAMs 60 0 
Look up table (LUT) 299 116 

IOBs 24 24 
Maximum Frequency 101.241 MHz 205.279 MHZ 
Power consumption 0.314 Watt 0.237 Watt 
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8. CONCLUSION 
Second order DPLL architecture has been described, analyzed and implemented to be suitable 
for any application. The problem of high power consumption of DPLL has been solved by 
replacing the traditional NCO (the main component in DPLL) with a modified ROM. The traditional 
NCO uses ROM, which results in high power consumption as well as slower operation. The 
proposed architecture reduces power consumption, area consumption and works at a higher 
frequency than the traditional one. 
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Abstract 

 
Underwater noise sources constitute a prominent class of input signal in most underwater signal 
processing systems. The problem of identification of noise sources in the ocean is of great 
importance because of its numerous practical applications. In this paper, a methodology is 
presented for the detection and identification of underwater targets and noise sources based on 
non parametric indicators. The proposed system utilizes Cepstral coefficient analysis and the 
Kruskal-Wallis H statistic along with other statistical indicators like F-test statistic for the effective 
detection and classification of noise sources in the ocean. Simulation results for typical 
underwater noise data and the set of identified underwater targets are also presented in this 
paper. 
 
Keywords: Cepstral Coefficients, Linear Prediction Coefficients, Forward Backward Algorithm, Kruskal-
Wallis H Statistic, F-test Statistic, Median, Sum of Ranks. 

 
 
1. INTRODUCTION 

Underwater acoustic propagation depends on a variety of factors associated with the channel in 
addition to the characteristic properties of the generating source. Studies on noise data 
waveforms generated by man made underwater targets and marine species are significant as 
they will unveil the general characteristics of the noise generating mechanisms. The composite 
ambient noise containing the noise waveforms from the targets, received by the hydrophone 
array systems are processed for extracting the target specific features.  Though quite a large 
number of techniques have been evolved for the extraction of source specific features for the task 
of identification and classification, none of them are capable of providing the complete set of 
functional clues.  Of these, many of the techniques are complex and some of them lead to 
ambiguities in the decision making process.  Since classification of noise sources using certain 
traditional techniques yields low accuracy rates, many improved approaches based on non-
parametric and parametric modeling have been mentioned in open literature [1]. Some of the 
modern approaches for the extraction of spectral profiles give more emphasis to spectral 
resolutions and increased signal detection capabilities while others rely on the extraction and 
utilization of acceptable features of underwater signal sources .The proper identification and 
classification of underwater man-made and biological noise sources can utilize the  cepstral 
feature extraction and  non parametric statistical approaches which do not rely on any 
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assumption that the data are drawn from a given probability distribution and includes non 
parametric statistical models, inference and statistical tests. The Kruskal-Wallis H test is a non 
parametric test and the H statistic can be efficiently employed in different statistical situations[2]. 
The underwater noise signal is sampled, processed and cepstral features are extracted and 
hence the sample set of transition probability values of the system model is estimated. The H 
statistic, F-test statistic, Median value and Sum of Ranks are estimated for the sample sets of 
various underwater signals, the transition probability values and a reference signal, which were 
found to be occupying non overlapping value ranges and can be utilized in the system design for 
the identification of underwater signal sources. 
 

2. PRINCIPLES 

Cepstral coefficients are widely used as features for a variety of recognition and classification 
applications. In a cepstral transformation, the convolution of two signals x1[n] and x2[n] becomes 
equivalent to Xc, which is the sum of the cepstra of the two signals.  
 

][ˆ][ˆ
21

nxnxX
c

+=          (1) 
 
Defined otherwise, P discrete cepstrum coefficients[3], cp where p = 0,…..P-1 define an amplitude 
envelope │H(ω)│equals exp(c0 +2∑p  cpcos(pω)) with p varying from 1 to P-1. 
The Inverse Fourier Transform of the log amplitude gives the cepstral coefficients. The discrete 
cepstrum coefficients can be described by a set , at frequencies ωk with amplitudes Xk with k= 
1,….P. This can be expressed mathematically: 
 

))(()(
1

k

P

k

kXX ωωω −∂=∑
=

        (2) 

 
where �(ω) denotes the Dirac delta distribution. The calculation of cp can be done by minimizing 
the square difference of │H(ω)│ and │X(ω)│. 
 
Non parametrical analysis provides effective methods for target detection and classification of 
underwater targets.  Such a strategy may also be incorporated into a hierarchical classification 
framework, where a target is first assigned to a class and later with additional information, it may 
be identified as a particular target within that class. In order to train a statistical model for each 
class, many methods can be used, which may consist of several training states. The system can 
be trained on the target data associated with their respective classes. Statistical non parametric 
tests can be considered as an alternative for comparisons of data of which the distribution is not 
Gaussian[4]. The exact distribution of H-statistic in the Kruskal-Wallis test is conventionally fitted 
to a Chi-squared approximation. In state based models, the sequence of tokens generated by it 
may give some information about the sequence of states. Even though the states possess 
different attributes, for many practical applications there will be often some physical significance 
associated to the set of states and their transition probabilities. The proposed procedure can 
utilize a codebook to estimate the required parameters. In a codebook, a large number of 
observational vectors of the training data is clustered into a certain number of observational 
vector clusters using K- means iterative procedure. Based on this clustered observational vectors, 
estimates of the parameters are generated during system modulation.  
 
2.1 LPC Analysis 
Linear Prediction Coefficients(LPC) Analysis is used to calculate the Cepstral coefficients. LPC is 
a powerful modeling technique used for signal analysis. LPC encodes a signal by finding a set of 
weights on earlier signal values that can predict the next signal value. Linear prediction 
coefficients can be transformed to cepstral coefficients which is a more robust set of parameters. 
In matrix form, 
 
Ra = r                                                                                                  (3) 
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Where r is the autocorrelation vector,  a is the LPC vector and R is the Toeplitz matrix of r. 
The solution is: 
 
a = R

-1
r                                                                                                            (4) 

 
2.2 Cepstral Coefficients and Clustering 

The p Cepstral coefficients cm, for m=0,1…p-1 derived from the set of LPC coefficients using the 
LPC to Cepstral coefficient recursion[5]. 
 
K-means is one of the learning algorithms that solve the clustering problem . It is an algorithm to 
cluster n objects based on attributes into K partitions, where K < n. It attempts to find the centers 
of natural clusters in the data. It assumes that the object attributes form a vector space. The main 
idea is to define K centroids, one for each cluster. The result it tries to achieve is to minimize the 
total intra-cluster variance, or, the squared error function [6] 

2

1

)( i

K

i

jxV µ−=∑
=

                  (5) 

where there are K clusters Si , i = 1, 2, ….K, and µi is the centroid or mean point of all the points xj 
which will form the elements of  Si  and considered in the above computation. 
 
2.3 Forward-Backward Algorithm 

The Forward-Backward Algorithm is an algorithm for computing the probability of a particular 
observation sequence. Let the forward probability αj(t) for some model M with N states be defined 
as αj(t)=P(o1,…..,ot),x(t)=j|M ). That is, αj(t) is the joint probability of observing the first t vectors 
and being in state j at time t.  
 
This recursion is based on the fact that the probability of being in state j at time t and having 
observation ot can be found by adding the forward probabilities for all possible previous states i 
weighted by the transition probability aij . Also, 
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and P(O|M) equals αN(T).  
 
The backward probability βj(t) is defined as:  

),)(|,....,()( 1 MjtxooPt Ttj == +β              (7) 

 
The forward probability is a joint probability and the backward probability is a conditional 
probability. Also, αj(t) βj(t)= P(O,x(t)=j|M). Hence the probability of state occupation becomes 
Sj(t)= P(x(t)=j|O,M) which in turn equals P(O, x(t)=j|M) ÷P(O|M). Let P(O|M)be denoted by Po. 
Then 
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2.4 H-Statistic 
Statistical indicators measure the significance of the difference between the performance of 
different systems and can be used to grade the systems if the performance difference is 
significant. Kruskal-wallis H-test is a non parametric test[7] of hypothesis whose test statistic can 
be effectively utilized in underwater signal classification. The H-statistic is given by: 
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where G is the total number of samples, Nj , j= 1,…G, is the size of sample  j , Rj , j = 1,…G, is the 
rank of the sample j . Let (Rj

2
/Nj) of the different sample sets be termed as C which forms an 

intermediate parameter in H estimation and  

∑
=

=
G

j

j
NN

1

             (10) 

 
2.5 F-Statistic 
A F-test is a statistical test which is usually applied when comparing statistical models and is 
used to assess if the expected values of a quantitative variable within several pre-defined groups 
have difference among each other. The test statistic in an F-test is the ratio of two scaled sums of 
squares following Chi-squared distribution, indicating different sources of variability.  The F-test 
statistic is given as the ratio of ‘Between-Group variability’(BG) to ‘Within-Group variability’(WG). 
The two terms can be defined mathematically as follows: 

)1/()( −−=∑ gaviav

i

i NYynBG              (11) 

where yiav denotes the sample mean in the i
th
 sample group, ni is the number of  observations in 

the i
th
 group and Yav denotes the overall mean of the data. Also  
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where Yij is the j
th
 observation in the i

th
 out of  Ng groups and N0 is the overall sample size. 

 
2.6 Median (M) and Sum of Ranks (R) 
The statistical estimate Median (M) is an important characteristic of signals from any underwater 
source. It is a measure of the skewness of the sampled signal distribution and also an indicator of 
the amplitude variations in the sample set of the particular signal. The Median of the signal can 
be estimated as that amplitude value in the sample set from which there occurs equal numbers of 
positive and negative amplitude deviations. The M parameter, along with H and F values helps in 
the classification of a particular signal. The other statistical estimate used along side H, F and M 
parameters in the proposed system is the Sum of Ranks ( R ). It gives a measure of the relative 
gradation of signal amplitude variations of the signal, taking into consideration, the sample 
location indices in the sample set of the underwater signal. The R parameter can be estimated for 
a sample set of by reordering the samples in the increasing order of amplitudes and replacing the 
original samples with their respective ranks, in the distribution. A minimum rank of unity can be 
assigned to a sample. For equal valued samples, average of the corresponding rank can be 
assigned. The sum of all the individual sample ranks will give the parameter R, which forms an 
important property, when utilized along with other parameters of the system. For the underwater 
signals with closely related H and F parameters, the R parameter can be helpful for identification 
in association with the M parameter.     
 

3. METHODOLOGY 

The methodology consists of various stages and the different steps involved in the extraction of 
feature vectors are furnished below. 
 
3.1 Cepstral Coefficient Extraction 
3.1.1 Sampling and Frame Conversion 

The noise data waveforms emanating from the underwater target of interest have been sampled 
and recorded as a wave file data, which is sampled to be converted to frames of Ns samples, with 
adjacent frames being separated by md samples[5]. Denoting the sampled signal by s[n], the l

th
 

frame of data by xl[n], and there are L frames, then  
 

][][ nlmsnx dl +=           (13) 
Where n = 0, 1, …., Ns -1, and l = 0, 1, ….L-1. 
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3.1.2 Windowing 
Each individual frame is windowed to minimize the signal discontinuities at the boundaries of 
each frame. If the window is defined as w[n], then the windowed signal xw is 
 

][][ nwnxx lw =          (14) 

 
where 0 < n < Ns-1. 
 
Hamming window is used as a typical window for the autocorrelation method of LPC. 
 
A frame based analysis of the noise data waveform has been performed to generate the sample 
vector, which can be used to estimate the statistics needed for target classification. The sampled 
signal is partitioned into frames of Ns samples, and consecutive frames are spaced md samples 
apart. Each frame is multiplied by a  Ns-sample Hamming window, and LP analysis is 
performed[8]. The Linear Prediction Coefficients are then converted to the required number of 
Cepstral coefficients, which are weighted by a raised sine window. 
 
3.2 Vector Quantization 

The next step in the system is  a clustering process which can be used to generate a code book 
which in turn is utilized in the estimation of transition probability vector.  The K-means algorithm 
has been used to fix the centroids of a cluster model. The extracted cepstral coefficients of the 
underwater signal source are being utilized as the data in this vector quantization process of 
unique cluster identification. A matrix is defined, which represents the data which is being 
clustered, in a concatenation of K clusters, with each row corresponding to a vector. The cluster 
centroids are generated as a vector with the cluster identity. The sum of square error function is 
used in the algorithm, and a log of the error values after each iteration can be returned in a 
variable. The maximum number of iterations can also be specified. 
 
3.3 Transition Probability Vector Generation 

A Vector of transition probabilities can be generated from the vector quantized output, for the 
estimation of the Decision Statistics. The algorithm for the generation of the transition probability 
vector is as follows: 
 
START: 

Segregate the data into Frames. 
Windowing the Frames using Hamming Window. 
Generation of Linear Prediction Coefficients. 
LPC to Cepstral Coefficient conversion. 
Vector Quantization and code book generation. 
Set Nit = maximum iterations 
 

LABEL 1: 
       While (count <= Nit)  
      { 
          Compute the forward probability αj(t) for all states j at times t. 
          Compute the backward probability βj(t). 
          If (P(O|M)<= value of previous iteration)  
           { 
             go to LABEL 2 
           } 
         Estimate Transition Probability Sj(t).  
         count = count + 1. 
       } 
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 LABEL 2: 
Generate a single column vector by concatenating individual columns of the estimated      
transition probability matrix. 

END 
 
3.4 Decision Statistics Estimation 

The H and F statistics are estimated as illustrated in Fig 1 with the three sample set consisting of 
the previously generated transition probability vector, a down sampled version of the original 
underwater signal and a predefined reference sample vector. A correction for ties can be made 
by dividing the H-statistic value by a Correction Factor(CF) defined as follows: 
 
 
                                                                                                                              (15)  
 
where g is the number of groupings of different tied ranks, and ti is the number of tied values 
within group i that are tied at a particular value. This correction usually makes only negligibly 
small change in the value of test statistic unless there are large numbers of ties. Additional 
statistical parameters like Median and Sum of Ranks can also be estimated along with, for the 
underwater signal being processed. 
 

 
FIGURE 1: Estimation of Decision Statistics 

 

4. IMPLEMENTATION 

The sampled underwater noise source is divided into frames of 400 samples (Ns). Consecutive 
frames are spaced 19 samples apart. Each frame is multiplied by an Ns-sample Hamming 
window. Because of lower side lobe levels, Hamming window is a good choice for comparatively 
accurate signal processing systems. Each windowed set of samples is auto correlated to give a 
set of coefficients. Then linear prediction coefficient analysis is done on the autocorrelation vector 
to estimate the LP coefficients and using recursion method, linear prediction coefficients are 
converted to cepstral coefficients. They are then weighted by a raised sine window function. By 
applying K-means algorithm, K centroids are defined, one for each cluster. Random selection of K 
vectors is done. K=16 is selected in the algorithm. The next step is to take each vector and 
associate it to the nearest centroid. At this    point, readjusting the centroids is done based on the 
new assignment. The algorithm minimizes the squared error   function mentioned earlier. Thus, 
vector quantization is carried out and unique clusters are defined for the particular underwater 
noise waveform.  
   
4.1 Sample Sets Under Consideration 
Using Forward-Backward re-estimation algorithm, the transition probabilities for the twenty states 
of the system model are estimated leading to the generation of the transition probability vector 
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which is considered as the first sample set. A vector of down sampled values of the underwater 
noise source with a down sampling factor of 0.5 forms the second sample set while a reference 
sample set of 1000 samples with sample values of 0.5 for the first 500 samples and 0.25 for the 
next 500 samples as depicted in Fig 2, forms the third sample set.   
 
The Kruskal-Wallis H-statistic is estimated with the correction factor to obtain the Chi-squared 
statistic approximation. The F-statistic approximation is also estimated for the system. The 
Median(M) of the underwater signal and Sum of Ranks(R), taking into consideration,  the three 
vectors, of the same underwater signal are also evaluated. The estimated values for the four 
parameters of different underwater noise sources possess divergent statistical properties which 
can be utilized in the effective identification and classification of the unknown underwater signal 
source under consideration. 
 

5. RESULTS AND DISCUSSIONS 

The system has been validated using simulation studies and the estimated H-statistic as well as 
F-statistic approximations, median values(M) and sum of ranks(R) of different underwater signal 
sources have been tabulated in Table 1. 

 
 
 

                        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

TABLE 1: Underwater signal sources and their estimated values of H-statistic,                                                
F-statistic, Median and Sum of Ranks. 

 

Underwater 
signal source 

Estimated H-
Statistic 

Approximation 
value 

Estimated F-
Statistic 

Approximation 
value 

Estimated 
Median value(M) 

Estimated Sum 
of Ranks 
value(R) 

Shors 2090 3465 -0.0025 833927 

Toadfish 1798 2322 0.001975 1002781 

Beluga 2044 3242 -0.00158 908441 

Bagre 2420 5706 0.03316 1445904 

Outboard 1951 2791 0.00355 971748 

Damsel 2115 3616 0.0012571 827679 

Sculpin 1172 933 0.21805 1414338 

Atlantic croaker 1987 3023 -0.0004 862176 

Spiny 2450 6076 -0.005633 631137 

BlueGrunt 2097 3570 0.0003167 860600 

Dolphin 2146 3455 -0.00108 863228 

01m 1172 940 0.0772 1313128 

Barjack 2021 3050 0.00228 892434 

Bow1 2168 3939 -0.0049167 782094 

Boat 1494 1451 0.0024 1136117 

Chord 2160 3783 0.000625 778549 

3Blade 1837 2372 -0.004733 988073 

Torpedo 2563 9757 -0.007817 540386 

Rockhind 2075 3394 0.0013125 864103 

Snap1 2117 3632 -0.000483 823856 

Scad 1990 2893 0.0006667 869278 

Finwhale 2134 3875 -0.000453 793392 

Seal1 2051 3187 0.0241 1040226 

Garib 1896 2635 -0.049514 969721 

Grunt 1955 3259 0.00235 888618 

Ocean  Wave 2054 3558 -0.006425 844440 

Minke 2130 3476 0.0001 823722 

Hump 2156 3838 -0.010267 786830 

Seatrout 2051 3251 0.01018 934365 

Silverperch 2064 3193 0.0031 855612 

Cavitate 1877 2559 -0.007275 1004192 

Sklaxon 2141 3744 -0.00995 807558 

Submarine 1644 1843 -0.040775 1012841 

Badgear 2060 3453 -0.000217 852301 

Seacat 1731 2580 -0.003825 985634 

Searobin 1844 2394 -0.002425 962476 
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The Reference Sample Set of the type depicted in Fig 2, having a statistical variance of 0.0156 
has been considered in the proposed technique. Also, the Coefficient of Variation (CV) which is 
defined as the ratio of the Standard Deviation to modulus of Mean, for this reference sample set 
is seen to be 0.124.  

 
 
 

FIGURE 2: Plot of Reference Sample Set values used in the system. 
 
The (H, F, M, R) components form the recognition parameter for a given underwater signal 
source. The plots of the loglikelihood in transition probability estimation for the underwater noises 
of Toad Fish and Submarine are depicted in Fig 3 (a) and (b). The unknown underwater signal is 
processed and the extracted H,F,M,R components are assigned to  known underwater signal 
categories by judiciously matching the component parameters. The signals listed out in Table 1 
have been tested with the system, utilizing the (H,F,M,R) components and correct recognition has 
been obtained except for the Searobin and 3Blade underwater signals. The system possesses a 
tolerance specification of ±1% for the parameters used in this technique. 

 
 

 
 

(a)                                                                            (b) 
 

FIGURE 3: Plots of loglikelihood in Transition probability estimation for (a) Toad Fish (b) Submarine. 
 

The proposed system is optimized for the classification of underwater noise sources in the ocean. 
Non-parametric estimators and the featured statistical indicators possess increased robustness 
essential for the efficient classification capability of a system. State Transition Probability 
estimation has been utilized in the design of Hidden Markov Model based speech recognition 
systems [1][9]. In this underwater target classifying system, the transition probabilities form a 
significant sample set in the estimation of recognition parameters of a particular signal. The 
simulated results, using the four components, show high recognition capability of the system for 
underwater signals. The increased computational complexity of the system is offset by the 
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improved classification efficiency, while upholding the inherent advantages of non-parametric 
classifiers. 
 

6. CONCLUSIONS 
The proposed system makes use of statistical indicators along with non-parametric estimations 
like the cepstral coefficients for the identification and classification of underwater targets utilizing 
the target emanations. Using simulation studies, the H-statistic as well as F-statistic 
approximations along with the Median and Sum of Ranks parameters for different underwater 
signal sources have been estimated and are utilized for the identification of the unknown noise 
sources in the ocean. The system can also be augmented with other features and can be 
effectively used for the identification and classification of noise sources in the ocean, with 
improved success rates. 
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Abstract 

 
In this paper we have employed a new method of R-waves detection in electrocardiogram (ECG) 
signals. This method is based on the application of the discretised Continuous Wavelet Transform 
(CWT) used for the Bionic Wavelet Transform (BWT). The mother wavelet associated to this 
transform is the Morlet wavelet. For evaluating the proposed method, we have compared it to 
others methods that are based on Wavelet Transform (WT). In this evaluation, the used ECG 
signals are taken from MIT-BIH database. The obtained results show that the proposed method 
outperforms some conventional techniques used in our evaluation. 
 
Keywords: Continuous Wavelet Transform, Electrocardiogram, Hard Thresholding, R-wave 
Detection. 

 
 
1. INTRODUCTION 

The electric currents in the heart have been measured and recorded for more than a hundred 
years, but the term electrocardiogram (ECG) was introduced by Willem Einthoven in 1893 at a 
meeting of the Dutch Medical Society. The electrocardiogram is considered to be the backbone of 
cardiology, and can be recorded fairly easily with surface electrodes on the surface of the limbs or 
chest. The ECG records the electrical activity, this typical tracing consists of a series of repetitive 
waves namely P, Q, R, S and T. The P wave represents left and right atrial depolarization, 
ventricular contractions (both right and left) show as a series of 3 waves, Q-R-S know as the QRS 
complex, the last common wave in an ECG is the T wave, this reflects the period of ventricular 
repolarization. A cardiologist can look at a patient’s electrocardiogram and determine the 
presence of disturbances in the intervals, amplitudes and areas of these waves. QRS complex is 
the most prominent feature in electrocardiogram because of its specific shape; therefore it is 
taken as a reference in ECG feature extraction. R wave detectors are very useful tools in 
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analyzing ECG features thus form the basis of ECG feature extraction [1]. The development of 
accurate and quick methods for automatic ECG feature extraction is of major importance, 
especially for the analysis of long recordings (Holters and ambulatory systems). In fact, beat 
detection is necessary to determine the heart rate, and several related arrhythmias such as 
Tachycardia, Bradycardia and Heart Rate Variation [2]. All methods used by scientists are to help 
cardiologists to gain time to interpret results and improve the diagnostic. 
 
In this paper, we proposed a technique using discretized continuous wavelet transform (CWT), 
‘Morlet’ mother wavelet has been selected for detection of R-wave. The method described is 
robust, does not require any pre-processing stage, simple to implement and the selection of detail 
signal C4 has been justified. Finally, the ECG signals used in the experiments are obtained from 
MIT-BIH database [3]. 
 

2. MATERIAL 

 
2.1 Continuous Wavelet Transform (CWT) 
Morlet first introduced the idea of wavelets as a family of function constructed from translations 
and wavelets of a single function called the ‘mother wavelet’. The wavelet analysis has been 
introduced as a windowing technique with variable-sized regions. Wavelet decomposition 
introduces the notion of scale as an alternative to frequency and maps a signal into time-scale 
plan. The wavelet analysis is the decomposition of a signal into sine waves of different 
frequencies [4].  Mathematically, the continuous wavelet transform of a function  is defined as 
the integral transform of  with a family of wavelet functions, : 

 

                                                  (1)  

 

The function  is commonly called the mother wavelet and the family of function  is 

called daughter wavelets. The daughter wavelets are derived from scaling and shifting the mother 

wavelet. The scale factor a represents the scaling of the function , and the shift factor b 
represents the temporal translation of the function. It is important to know that determination of 
CWT scale parameter and mother wavelets are very significant in ECG feature extraction [4].  
 
In this work, we have used the discretized CWT employing the Morlet wavelet. This discretized 
CWT is used for the Bionic Wavelet Transform (BWT) introduced by Yao et al [5]. 
 
2.2 Wavelet Selection 
The selection of the analyzing function in wavelet transforms, which is called the mother wavelet, 
has a significant effect on the result of analysis and should be selected carefully based on the 
nature of the signal [6]. But there is no universal method suggested to select a practical wavelet. 
They are several wavelet families like Biorthogonal, Coiflets, Daubechies, Morlet, Symlets etc. In 
this study, ‘Morlet’ mother wavelet has been selected for feature extraction. The analysis shows 
that extracted features from ECG signal by using the Morlet mother wavelet would be simple to 
compute, easy to understand, and the results are very good. Figure 1 shows the real and 
imaginary parts of the complex Morlet mother wavelet. 
 
2.3 Data Base 
The data available from MIT-BIH Arrhythmia Database [3] is the standard used by many 
researchers. The MIT-BIH database contains many data sets of electrocardiogram signals, 
mostly abnormal or unhealthy electrocardiograms, but it also contains normal electrocardiograms 
that can be used as a reference base [7]. This contains two lead ECG signals of 48 patients. The 
selected Arrhythmias are Premature Atrial Beat (PAB), Premature Ventricular Beat (PVB), Right 
Bundle Branch Block (RBBB), and Left Bundle Branch Block (LBBB). 
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FIGURE 1: The Morlet Wavelet (its real part and imaginary part). 

 

3. MATERIAL 

The ECG signals taken from MIT-BIH arrhythmia database are converted in to Matlab format 
(.mat files). The ECG signal is sampled at 360 Hz with a resolution of 11 bits. In this section, we 
have developed and evaluated a robust method R-Wave detection based on Continuous Wavelet 
Transform. This technique is summarized by the following steps:  
 
Step1: we decompose the ECG signal into 8 scales by using the modified discretized continuous 
wavelet transform MMycwt which is used by BWT. 
Step2: we chose the best wavelet coefficient to perform the detection of R-wave: this selection is 
based on the research work of Awadhesh Pachauri et al [1]. 
Step3: we apply hard thresholding to that coefficient by using the appropriate threshold. 
Step4: we detect R-waves by using the step3: the positions of the R-waves are those having 
amplitudes that are greater than the value of the selected threshold. 
 
The Figure 2 gives in details the different steps of the proposed technique and they will be 
detailed in the next paragraph. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

FIGURE 2: The different steps of the proposed technique of the R-waves detection. 

 Decompose the signal to eight 
coefficients (8 scales) by applying the 

modified Mycwt (MMycwt) 

Choose the fourth coefficient ( ) 
Such as in reference [1] 

Hard thresholding 

R-wave detection 

Input ECG signal 
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3.1    MMycwt 
For an ECG signal, the most important feature is the frequency range in which its main 
components occur [8]. Despite the existence of some other components like VLPs, we are 
interested in this paper in P, Q, R, S and T waves such as in the reference [8]. In references [9, 
10], the value of (the initial center frequency of the mother wavelet) is equal to 15165.4Hz. As the 
scale increases, the center frequency goes smaller and smaller in the following way: 
 

                                                                                      (2) 

   
We don’t need such high frequency for ECG signals. Omid et al [8] have optimized the value of 
by running the program for different values of and then minimizing the gradient of error variance 
by comparing the results-numerically and morphologically with each other. It has been found that 
if belongs to the range of 360 to 500Hz there would be no much distortion on the analyzed ECG 
signals [8]. In their work, Omid et al [8] have chosen 400Hz as the value of . Hence, in our work, 
we have chosen  in order to obtain the MMycwt. In this paper, we have chosen the 
value 1.1623 as that of  such as in the reference [9, 10]. 
 
Every ECG signals under test are decomposed up to 8 levels. The maximum number of 
decomposition level depends upon total number of samples present in the signal. 
                         

                                                                                                                               (3) 
 
where  is the total number of levels of decomposition and  is the total number of samples in 
the ECG signal. 
 
3.3.   Selection of Detail Coefficient ( ) 
According to the reference [1], it was shown by simulation that the wavelet coefficient in level 
four, owns the highest coefficient of cross correlation with the original signal therefore we have 
chosen in this work, this coefficient to detect R-peaks.   
 
3.4.   Thresholding  
After applying the CWT to the input ECG signal, the fourth wavelet coefficient we apply the hard 
thresholding to fourth wavelet coefficient,   and the threshold is selected to be:     
 

                                                                                                         (4) 

 

                     If  

                         
 
where  is a positive parameter belonging to the range of 0.3 to 0.9. 
 

4. RESULTS AND VALIDATION 
The algorithm has been tested on MIT-BIH arrhythmia databases in which every recording is of 
30 minutes duration, 10 records were tested for R peaks to evaluate our algorithm. In our 
evaluation of the proposed technique, we have calculated the Sensitivity, the Positive predictivity 
and the Error which: 
 

• Sensitivity:                                                                                                      (5) 

 

• Positive productivity:                                                                                      (6) 
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• Error :                                                                                           (7) 

 
Table1 shows that our method achieves very good detection performance. This algorithm attains 
sensitivity of 99.96% and a positive predictivity of 99.84% without the need to apply any 
pretreatment to the original signal. 
 
 

Tape 

(N°) 

Total 

N° 

beats 

FP 

beats 

FN 

beats 

P
+ 

(%) 
 

Se 

(%) 

100 2273 0 0 100 100 

101 1865 0 2 100 99.89 

102 2187 13 4  99.40 99.81 

103 2084 0 0 100 100 

104 2230 21 0 99.06 100 

105 2572 0 0 100 100 

106 2027 0 0 100 100 

107 2137 0 1 100 99.95 

111 2124 0 0 100 100 

112 2539 0 0 100 100 

 
TABLE 1: Performance of the proposed classification model for test data. 

 

Table2 shows that the proposed method outperforms some conventional techniques used in our 
evaluation such as the techniques of Arzeno et al. [11], Mahmoodabadi et al. [2] and Hubin and 
Jiankiang [12]. The technique of Rym Besrour et al. [13] gives the best result in term of %error 
and the proposed technique comes in the second place. The latter gives the best result in term of 
Se % and the technique of Jasko [14] is the best in term of P+ %. 
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QRS detector Se % P
+ 

% % 

error 

 

Arzeno et 

al.[11] 

99.29 

99.57 

98.07 

99.24 

99.59 

99.18 

1.47 

0.84 

2.75 

 

Huabin and 

Jiankiang [12] 

 

 

99.68 

 

 

99.59 

 

 

0.73 

 

Josko [14] 

 

99.86 

 

99.91 

 

0.23 

Mahmoodabadi 

et al.[2] 

 

99.18 

 

98 

 

2.82 

Rym Besrour 

et al [13] 

99.92 99.88 0.19 

Martinez et al. 

[15] 

99.80  99.86  0.34 

 

This work 

 

99.96 

 

99.84 

 

0.2 

 
TABLE 2: R wave’s detection results on MIT-BIH database. 

 

The positions of the R peaks are detected and marked by the symbol ‘*’ on the original signal. 
Figure 3 illustrates some examples of R-wave detection using the proposed technique. 
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                                                                         (c) 

FIGURE 3: Original ECG signals and positions of R peaks (a) 100 (b) 102 (c) 103. 
 
Those examples show the efficiency of the proposed R-wave detection technique. When we 
especially compare our proposed technique to the technique of Awadhesh Pachauri et al [1], we 
see clearly that the proposed technique outperforms the second technique. The proposed 

technique gives 99.96% as a result of Se computation and about 99.84% for P
+
 whereas the 

achieved overall accuracy of detection using db6 and sym11 are 96.65% and 84.37% 
respectively and this for the second technique of Awadhesh Pachauri et al[1]. Moreover, when we 
use the thechnique of Awadhesh Pachauri et al [1], we can see clearly in figure 4, that there is a 
great difference between some detected R-peak positions and the real positions of those peaks. 
This shifting in R-peaks positions is particularly absent when we use our proposed technique. 
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FIGURE 4: Shifting in R-peak positions marked by the technique of Awadhesh Pachauri et al[1]. 
 

The performance of the proposed technique can be seen as a result of the use of the discretised 
continuous wavelet transform which is modified (MMycwt) according to the characteristics of the 
ECG signal. The latter has less dynamics than a speech signal for example. Therefore it is more 
suitable to use a discrete transform than a continuous transform. Moreover the length of each 
coefficient obtained from the MMycwt application to an ECG signal, is the same length of that 
signal so this fact permits to facilitate the detection of the R-wave positions. 
 

5. CONCLUSION   
In this paper we have presented a new method for R wave detection using discretised continuous 
wavelet transform used by the bionic wavelet transform (BWT). This transform was modified 
according the ECG signal characteristics in order to obtain the MMycwt. The mother wavelet 
associated to this transform is the Morlet wavelet. We have decomposed the ECG signal into 8 
scales and we have chosen the fourth coefficient in order to detect the R-peaks. This detection is 
performed by applying a hard thresholding to the fourth coefficient obtained from the application 
of the MMycwt to the ECG signal. The algorithm has been validated using MIT-BIH standard 

database and is compared to some others techniques. The obtained results from  and  
computation, show that the proposed technique outperforms the others techniques used in our 
evaluation. 
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Abstract 

 
In this article, a meter classification system has been proposed for Persian poems based on 
features that are extracted from uttered poem. In the first stage, the utterance has been 
segmented into syllables using three features, pitch frequency and modified energy of each frame 
of the utterance and its temporal variations. In the second stage, each syllable is classified into 
long syllable and short syllable classes which is a historically convenient categorization in Persian 
literature. In this stage, the classifier is an SVM classifier with radial basis function kernel. The 
employed features are the syllable temporal duration, zero crossing rate and PARCOR 
coefficients of each syllable. The sequence of extracted syllables classes is then softly compared 
with classic Persian meter styles using dynamic time warping, to make the system robust against 
syllables insertion, deletion or classification and poems authorities. The system has been 
evaluated on 136 poetries utterances from 12 Persian meter styles gathered from 8 speakers, 
using k-fold evaluation strategy. The results show 91% accuracy in three top meter style choices 
of the system.  
 
Keywords: Syllable Classification, Utterance Syllabification, Automatic Meter Detection, Support Vector 
Machines, Dynamic Time Warping, Poetries Categorization 

 
 
1. INTRODUCTION 
Poem is the vital part of literature of all cultures and reflects the specifications and maturity of a 
cultural society. Rhyme and meter are considered as inseparable elements of the poetry and 
meter extraction is a historically exquisite subject for literary scholars which have been extracted 
intuitively by now. 
 
There is a rich literature on automatic speech recognition systems for general applications in last 
30 years; however, automatic extraction of rhyme and meter styles from uttered poems is the 
focus of some studies in recent years for various languages including Chinese [1-3], Thai [4] and 
European languages [5,6]. Although there is a very rich treasury of Persian poetries which are 
created during more than are thousand years, however, most of the studies on these poems are 
literary studies and they are not well prepared for machinery manipulations.  In particular, there is 
little research, concentrating on machinery Persian meter detection in uttered speech. 
 
In this article, automatic speech recognition utilities are employed to extract an algorithm for 
automatic meter detection from uttered poetries. The input of this system is a single uttered verse 
of a poem and the output is the meter style. The organization of the paper is as follows. The 
theory of Meter extraction in Persian poetries is introduced in section 2. In section 3, the 
architecture of the proposed system is discussed. The syllabification algorithm is presented in 
section 3. Section 4 and 5 is devoted to syllable classification and sequence classification of 
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syllables respectively. In section 6, the implementation of the system is analyzed and evaluated. 
The paper is concluded in section 7.  
 

2. THEORY OF METER DETECTION IN PERSIAN POETRIES 
There are a few studies on extracting and detecting the poetries meter and rhyme in different 
languages [1-5]. However, the poetry is a specific property of each language and the meter 
extraction problem should be handled separately in each language. 
 
Thank to the theory of Persian meters, named as Arooz, with more than 700 years old, Persian 
meter detection is based on syllabification of speech into long and short syllables [7,8]. There is a 
set of distinguished classes of Persian meter styles in the literature which 12 classes of them 
covers most of the existent poetries. 
 
The categorization of Persian syllables is tabulated in TABLE 1. As demonstrated, the variety of 
Persian syllables is limited. There is a vowel in the kernel of each syllable and there is one 
starting consonant before the vowel. After the vowel, it is possible to have no consonant, one 
consonant or two consonants. This simple structure motivates us to find out the syllabification 
sequence by extracting the location of kernel vowel and locating the boundaries of the syllables 
by moving front and back from the kernel. 
 

# 
Syllable 

Category 
1 CV 

2 CVC 

3 CVCC 

 

TABLE 1: Variety of Persian Syllables 

In Arooz Theory, there are two kinds of syllables, short syllables and long syllables. Long and 
short syllables are distinguished by the kernel vowel used in the syllables. The vowel in short 
syllables are a member of the set (/ae/,/eh/,/oy/) . In contrast, long syllables consist a vowel in the 
set (/aa/,/iy/,/ux/) The Nomination short and long syllables is due to the utterance duration of each 
syllable when it is intended to read the poem in meter style. It is empirically shown that the times 
spent to utter long syllables are almost similar. Short syllables are uttered in similar duration too. 
However, the duration of short and long syllables are not the same.  
 
It is revealed that there are common standard meters that are frequently used by poets and 
seems to be well accepted by Persian speakers. Over 95% of the poetries are covered by 12 
standard meters. Therefore, this study is concentrated on these standard meters which are 
tabulated in TABLE 2.  
 
All of the verses of each poem should employ similar standard meter. However, there is no strict 
rule in the artistic world. Although, most of the verses employ one standard meter, in fact, 
sometimes, poets have used the standard meter by slight modifications in some verses. This 
phenomenon, which is called poetry authorities, will make the approach of the machinery system 
to be a soft likelihood measurement rather than pattern matching.  
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# Standard Meter Example written in Phonetics Example written in 
Persian  

1 SSLS LSLL SSLS LSLL q/ae/l/iy/eh/y/hh/oy/m/aa/y/eh/r/ae/hh/m/ae/t/ 

oy/ch/eh/aa/y/ae/t/iy/kh/oy/d/aa/r/aa 

� ر�
 	� ��� ا� �
 �� ���� ��ا را

2 LSSL SLSL LSSL SLSL s/ae/r/v/eh/ch/ae/m/aa/n/ae/m/ae/n/ch/eh/r/aa/ 
m/eh/y/l/eh/ch/ae/m/ae/n/n/ae/m/iy/k/oy/na/d 

��و �ن �� ��ا ��� 
����  �� 

3 SSLL SLSL SSL d/ae/r/d/eh/q/eh/sh/gh/iy/k/ae/sh/iy/d/eh/q/ae/m/ 
k/eh/m/ae/p/oy/r/s 

درد �#%� $#��" ام 
 $� �)�س

4 SLSL SSLL SLSL SSL t/ae/n/ae/t/b/eh/n/aa/z/eh/t/ae/b/iy/b/aa/n/ 
n/iy/y/aa/z/m/ae/n/d/m/ae/b/aa/d 

ز *(�(ن , �- 
�	
د)� ��ز��, 

5 SLL SLL SLL SL m/ae/g/ae/r/d/aa/n/s/ae/r/ae/z/ 
d/iy/n/oy/q/ae/z/r/aa/s/t/iy 

 �.�دان �� از د�� و
��� از را

6 SLL SLL SLL SLL n/eh/k/ou/h/eh/sh/m/ae/k/oy/n/ 
ch/ae/r/kh/eh/n/iy/l/oy/f/ae/r/iy/r/aa 

,��ه0 ��� ��خ 
 ,�����2 را

7 LLSL LLSL LLSL LLSL b/aa/m/ae/n/b/eh/g/oy/t/aa/k/iy/s/t/iy/ 
m/eh/h/r/iy/b/eh/g/ou/m/aa/h/iy/b/eh/g/ou 

 $�س�� 	 �.- �� -
ه� -.� ���4 -.��  

8 SLLL SLLL SLLL SLLL b/iy/aa/t/aa/g/oy/l/b/ae/r/ae/f/sh/aa/n/ 
iy/m/oy/m/eh/iy/d/ae/r/s/aa/gh/ae/r/ 

ae/n/d/aa/z/iy/m 

 �- 5�, �6 -�ا#2	
 �7�و �� در 

 ا,�از�5

9 LLSL SLL LLSL SLL y/aa/r/ae/b/t/oy/q/aa/sh/ae/n/aa/r/aa/ 
m/oy/h/l/ae/t/d/eh/h/oy/s/ae/l/aa/m/ae/t 

 را �رب 	� �8�

�:��4
 د" و � 

10 LLS LLL LLS SLL q/ae/iy/p/aa/d/ae/sh/ae/h/eh/kh/ou/b/aa/ 
n/d/aa/d/ae/z/gh/ae/m/eh/t/ae/n/h/aa/q/iy 

ا� ;د�8 ��-ن داد 
�<4� از 57 	

11 LSLL LSLL LSL m/ae/r/d/eh/r/aa/d/ae/r/d/iy/ae/g/ae/r/ 
b/aa/sh/ae/d/kh/oy/sh/ae/s/t 

��د را درد� ا�6 

�8 ��8س- 

12 SSLL SSLL SSLL SSLL d/ae/r/d/eh/l/ae/m/b/ou/d/k/eh/b/iy/d/ou/s/t/ 
n/ae/b/aa/sh/ae/m/h/ae/g/ae/z 

در د= -�د $� -� 
58 ه�6<), 
� دو

 

TABLE 2: Categories of frequently used Persian standard meters 
 

3. SYSTEM ARCHITECTURE 
FIGURE.1 presents the overall block diagram of meter extraction for Persian poetries. As it is 
shown, after preprocessing and syllabification, some features are extracted from each syllable. 
The features are zero-crossing rate, PARCOR coefficients and temporal duration for each 
syllable. 

In the next stage, syllables are classified into long and short syllables. Finally the sequence of 
syllable classes is compared to standard Persian poetry meters using dynamic programming. The 
best match of the sequence with the standard meters shows the category of the meter. 
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FIGURE 1: Overall Block Diagram 
 

4. SYLLABIFICATION SUBSYSTEM  
The meters in Persian poetries are categorized based on the sequence of syllables classes. 
Therefore, it is essential to have a syllabification stage [9-11]. Syllables in Persian consist of one 
consonant, one vowel and probably one or two consonants respectively. As a result, syllable 
segmentation is based on detecting the location of vowels in the utterance. The implemented 
syllable segmentation is based on three features, the pitch frequency, the energy and estimation 
of energy derivative during time.  
 
FIGURE 2 demonstrates the detail of mentioned syllable segmentation procedure. After a 32ms, 
50% overlapped framing, the utterance is filtered to have low pass frequency components and 
detect the pitch frequency more accurately. The energy and pitch frequency of the frame are then 
extracted. These two features are used to extract the boundary frames of syllables. 

 

 

FIGURE 2: Syllable Segmentation Block Diagram 

 
The segmentation algorithm requires locating the voiced frames. Hence, the focus of the pitch 
detection algorithm is the extraction of the frames where pitch frequency can be recovered in 
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them. As demonstrated in FIGURE 3, the voiced and unvoiced frames of the utterance are 
segmented based on Dubnowski - Rabiner algorithm [12]. 

To extract the modified energy, the energy of the frame is computed as the sum of squared 
amplitude of frame samples.  

2[ ] ( )
1

L

E n x i

i

∑=
=  

where E[n] is the nth frame energy and L is the length of the nth frame. x represents the frame 
samples amplitude. The frame energies are then normalized to maximum frame energy. 

[ ]

[ ]
( [ ])

norm

E n

E n
Max E n

=

 

 

FIGURE 3: Voiced/ Unvoiced Classification 

 
The energy contour of the utterance is then filtered by a nonlinear median filter to enhance the 
locating procedure of peaks and valleys in energy contour and therefore enhancing the 
performance of syllable segmentation stage. Modified energy is then extracted as the windowed 
version of smoothed energy by voiced framed locations. 
 
FIGURE 4 demonstrates a sample of segmented signals into voiced and unvoiced segments. The 
modified energy is the clipped version of smoothed energy. Pitch and modified energy contours 
are nonzero in voiced frames of the utterance, while the smoothed energy is nonzero for all 
frames. 
Modified Energy is the input of syllabification stage. As it is shown in FIGURE 5, in this stage, the 
first valley in nonzero modified energies is the primary estimation of syllable boundary. To extract 
the subtle boundary, it is better to trace back the signal to find out the first zero in modified energy 
contour. To avoid undesired over-segmentation, the value of modified energy in the valley should 
be less than two thresholds derived by two adjacent peaks. 
 
The thresholds are set to suitable empirical values to avoid unwanted syllabifications, a minimum 
length for syllables was considered. The algorithm continues until the end of the utterance. 
FIGURE 6 is an example of the procedure output. In this example, the utterance is /t ae v aa n aa 
b oy v ae d/ and the segmentation process succeeded to segment the utterance into (/t/ae/, v/aa, 

/n/aa, /b/oy, /v/ae/d)(ا�� ��د��). 
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FIGURE 4: Sample of Intermediate Signals of Block Diagram in FIGURE 3 Top: input Signal Middle: Pitch 
Contour Bottom: Smoothed Energy. 

 

5. SYLLABLE CLASSIFICATION 
To classify the syllables into long and short syllables, 12 partial reflection coefficients are 
extracted from linear prediction analysis of each syllable in addition to zero crossing rate and 
syllable duration. These features are added up with two previous features extracted in the 
syllabification stage (pitch frequency, modified energy), make the whole feature vector. Intuitively, 
it seems that the most effective feature in syllable classification would be the syllable duration. 
Therefore the tests were designed to check the performance of the system on both single 
duration feature and the whole vector as the feature vector. Each feature is normalized with 
respect to mean and variance of the feature in the whole syllables space. Hence, all features 
become zero mean, unity variance after normalization. 
 
The features are classified using a kernel based support vector machine with RBF kernel [13,14]. 
Kernel meta-parameters are optimized empirically using grid search [15] evaluated on K-fold 
evaluation strategy. 
 
The overall block diagram is depicted in FIGURE 5. the modified energy is the input of syllable 
classification. The output of the block is both the start point and ending point of the syllable. The 
local maxima of the modified energy are the candidates of starting and ending point of the 
syllable. The candidates are refined using a minimum energy candidate. A sample of modified 
energy schematic behavior and real world behavior is demonstrated in FIGURES 6 and 7. The 
notations b and p demonstrate the central and boundary points of the syllable. 
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FIGURE 5: Syllabification Block Diagram 

 

 
Modified Energy Variations in a Syllable FIGURE 6: 
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FIGURE 7: A Sample of Syllabification Based on Modified Energy 
 

6. METER MATCHING USING DYNAMIC TIME WARPING 
The meters are commonly described by a sequence of syllable classes. Fortunately, the 
employed meters in Persian poems are selected from a limited number of standard meters. This 
fact lets the meter classifier system to compensate syllable segmentation and classification 
errors. In addition, poets are not rigidly loyal to standard meters, however they use long syllables 
instead of short syllables and vise versa depending on linguistic and semantic constraints. This 
phenomenon, known as "poetry options" in the literature, should be considered to find out the 
best match (not exact match) between the extracted syllable classes sequence and the standard 
meters, including substitution, deletion and insertion errors. This matching was carried out by well 
known dynamic programming approach in speech utterances matching, named as dynamic time 
warping [16]. The output of the system is the number of matches, substitutions, insertions and 
deletions of one verse utterance with respect to each of standard meters. The error is defined as 
the sum of substituted, inserted and deleted syllables. The standard meter with minimum error is 
referred as the recognized meter. 
 

7. EXPERIMENTS AND RESULTS 
The proposed system was evaluated on 17 versus with 12 distinct Persian standard meters. The 
meters were selected to cover more than 95% of the Persian poetries. The verses were uttered 
by 8 native speakers whose are requested to pronounce each verse in correct meter. For 
evaluation purposes, all verses were manually segmented into syllables and all syllables were 
labeled by long and short syllable labels. 
 
The first evaluation was made on the syllabification stage. The automatically extracted syllables 
were compared to manual segmentations and the number of insertions and deletions were 
evaluated. TABLE 3 explains the results in detail. As it can be observed, the average 
syllabification error is 10% which is comparable to the literature for other languages. The 
accuracy is variable with respect to the speaker, due to the pronunciation and accents variations. 
The standard deviation of this error in the set of speakers is about 19% of the mean value. 
The system parameters are optimized to achieve the highest accuracy. In this point, the number 
of deletions is about twice the number of insertions. 
 
In syllable classification stage, the system was evaluated by the classification rate. To optimize 
the classifier, two parameters (i.e. the misclassification weight in the training procedure (denoted 
as C) and the RBF kernel parameter denoted as ) were optimized in the logarithmic grid search 
basis.   
 
The evaluation was performed based on K-Fold strategy with K=10. The average classification 

rates in 10 folds are tabulated in TABLE 4 for different C and γ values. It can be concluded that 

the system is optimized with (C, γ)=(3.16, 0.0316). The best syllable classification rate is about 
75%. This accuracy rate may cause the sequence classification unusable unless the result is 
post-processed by a dynamic comparison with the reference meters.   
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Speaker 
Number 

of 
Segments 

Deletion Insertion 
Error 

Percentage 

Spk1 433 0.1 0.01 11.7 

Spk2 455 0.07 0.037 11.2 

Spk3 434 0.108 0.02 12.9 

Spk4 471 0.036 0.042 7.8 

Spk5 448 0.078 0.024 10.2 

Spk6 454 0.074 0.026 10.1 

Spk7 459 0.074 0.045 11.9 

Spk8 467 0.038 0.027 6.6 

Ave. 452.6 32.8 13.7 10.2 

 
TABLE 3: Syllable Segmentation Rates For Different Speakers 

 

C γγγγ=0.01 γγγγ=0.03 γγγγ=0.1 γγγγ=0.31 

0.0001 62.66 62.66 62.66 62.66 

0.00033 62.66 62.66 62.66 62.66 

0.001 62.66 62.66 62.66 62.66 

0.003 62.66 62.66 62.66 62.66 

0.01 62.66 62.66 62.66 62.66 

0.03 62.66 62.66 62.66 62.66 

0.1 61.90 70.07 70.37 63.90 

0.31 70.96 73.36 73.93 68.69 

1 73.21 74.27 74.80 72.03 

3.16 73.85 75.41 74.20 71.65 

10 74.19 74.49 72.80 70.04 

31.32 74.28 73.69 70.93 69.26 

100 74.63 72.68 68.82 69.36 

316.22 73.04 72.12 67.59 69.36 

 
TABLE 4: SVM Classifier Meta-Parameter Optimization 

 
In The last stage, the mentioned post-processing is carried out. A dynamic time warping algorithm 
was employed to compare the meters and select the best among common reference Persian 
poems meters. TABLE 5 and FIGURE 7 demonstrate the result for this dynamic matching and 
scoring.  
The results in TABLE 5 show that the system achieves 91% in 3 best meter classification rate. 
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TABLE 5: N-Best Classification Rates For Different Speakers 
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FIGURE 8: Comparison of n-best Rates for Different Speakers 
 
The comparison of speakers in FIGURE 8 shows that there is a significant difference in the meter 
detection accuracy for different speakers. Probing the result, it was observed that bad results 
belong to the speakers who did not utter the poems in correct meter. Therefore, in this situation, 
incorrect detection of meter type is expectable. The system may be generalized to reject the 
miss-uttered poems by speakers. 
 

8. CONSLUSION & FUTURE WORK 
In this paper, an automatic meter detection algorithm was implemented and evaluated. This is the 
first attempt to analyze the utterance of Persian poetries automatically which may lead the 
researchers toward a new approach in investigating the literature theoretically and practically. In 
addition, there is a rich source of human culture in poetries, which can be digitized by tracing this 
trajectory.   
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