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Abstract 
 
Background: Diffuse Intrinsic Pontine Glioma (DIPG) is a highly lethal pediatric brainstem tumor 
with limited treatment options. This work is the first to analyze differential gene expression across 
DIPG treatments to use a Gene Set Enrichment Analysis (GSEA)-based meta-analysis approach 
in identifying expression changes potentially contributing to the development of therapeutic 
resistance. 
 
Methods: This work defines 14 gene signatures representing six individual and panobinostat 
combination treatments of DIPG patient-derived cell cultures. GSEA is used to define positive and 
negative panobinostat gene panels from GSEA-identified leading-edge genes using two 
panobinostat signatures. GSEA then is used to verify enrichment and leading-edge gene 
membership of panobinostat panels in two independent panobinostat signatures. Analysis is then 
extended to five individual and five panobinostat combination signatures. Genes most associated 
with treatment resistance are predicted by intersecting membership of GSEA-identified leading-
edges across signatures. 
 
Results: Significant enrichment is observed between panobinostat treatment identification 
signatures, from which the positive (25 genes) and negative (35 genes) panobinostat panels are 
defined. Non-random significant enrichment is observed between panobinostat panels and 
verification signatures, from which 17 over- and 30 under-expressed genes are shared across 
leading-edges. Considering other DIPG treatments individually and in combination with 
panobinostat, significant non-random enrichment is observed across treatment signatures, except 
5-azacytidine, for the negative panobinostat panel. Six negative panobinostat panel genes, 
PHF19, ASCL1, KCNK2, EBP, ITPRIPL1, and LIN9, are found across treatment signature 
leading-edges regardless of treatment mechanism of action or combination with panobinostat. 
 
Conclusion: This meta-analysis identifies gene expression changes associated with DIPG 
treatment. These changes may contribute to developing therapeutic resistance. 
 
Keywords: Panobinostat, DIPG, GSEA, Meta-analysis, Gene Expression. 

 
 
1. INTRODUCTION 

Diffuse Intrinsic Pontine Glioma (DIPG) is a type of highly aggressive and often lethal pediatric 
brainstem tumor (Srikanthan et al., 2021). DIPG is rare, with ~250 new cases in the United States 
annually (Pellot & De Jesus, 2021), though DIPGs represent 80% of all childhood brain tumors 
(Srikanthan et al., 2021). Children diagnosed with DIPG have a median overall survival of ~11 
months with a 2-year survival rate of only 10% (El-Khouly et al., 2019; Srikanthan et al., 2021), 
which is heartbreaking in a patient population where the median age at diagnosis is ~6.5 years 
(Srikanthan et al., 2021). Traditional oncology therapies, like radiotherapy and surgery, typically 
are unsuccessful or unsafe to attempt altogether due to tumor location (El-Khouly et al., 2019; 
Nagaraja et al., 2017). New therapeutic approaches for DIPG are desperately needed to improve 
prognosis for this patient population. 
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Recent years have brought a surge in research leading to a better understanding of the molecular 
mechanisms behind DIPG and the development of new therapeutic options (Nagaraja et al., 
2017). Genomic studies showed that up to 85% of DIPG tumors exhibit a characteristic mutation 
of lysine 27 to methionine (K27M) in at least one of the genes encoding histone H3 (El-Khouly et 
al., 2019; Nagaraja et al., 2017; Pellot & De Jesus, 2021). The K27M mutation subsequently 
caused aberrant transcription in genes like the Polycomb repressive complex 2 (PRC2), resulting 
in global hypomethylation in all H3 variants and broad epigenetic dysregulation overall (Lin et al., 
2019; Nagaraja et al., 2017). As of 2019, 90 clinical trials examining interventional therapies that 
target DIPG-related molecular mechanisms had been completed or were currently underway 
(Rechberger et al., 2020). Some potential therapies for DIPG that target epigenome changes, 
such as JMJD3 inhibitors like panobinostat and GSK-4 which target multi-histone deacetylase 
(HDAC) and demethylase, respectively, have shown promise in both laboratory and clinical 
studies (Srikanthan et al., 2021). While panobinostat has shown promise in restoring many gene 
expression changes associated with the K27M mutation in DIPG-derived cell lines, resistance to 
HDAC inhibition often develops forcing researchers to examine co-therapeutic options (Lin et al., 
2019; Nagaraja et al., 2017). To compliment therapies directly targeting the epigenome, DIPG-
derived epigenomic changes also have been targeted pharmacologically by leveraging the 
transcriptional dependencies of the tumor (Srikanthan et al., 2021). For example, transcriptional 
regulators targeting key activators of RNA polymerase II (RNAPII) transcription at active 
chromatin marks, like JQ1 (bromodomain BRD4 inhibitor) and THZ1 (cyclin-dependent kinase 
CDK7 inhibitor), showed promise in DIPG-derived cell lines when administered alone or in 
combination with panobinostat (Lin et al., 2019; Nagaraja et al., 2017; Srikanthan et al., 2021). 
Another example was the combination of panobinostat and marizomib (proteasome inhibitor) 
which also showed promise when treating an expanded panel of patient derived DIPG cell 
cultures and in vivo within orthotopic xenograft models (Borsuk et al., 2021; Lin et al., 2019). 
Combining panobinostat treatment with other epigenetic modifiers has shown potential also. For 
example, co-administration of panobinostat and CBL0137, which targets facilitates chromatin 
transcription (FACT), a chromatin remodeling complex involved in transcription, replication, and 
DNA repair, significantly prolongs the survival of DIPG orthografts bearing mice (Ehteda et al., 
2021). Improved survival of mice injected with K27M cell lines were observed in mice treated with 
a combination of panobinostat with 5-azacytidine, a nucleoside analog which acts as a DNA 
demethylation agent, though researchers noted that additive toxicity of these compounds may 
limit their clinical potential as a combination therapy (Krug et al., 2019). Despite researchers 
having integrated insights from genomic, epigenomic and transcriptomic studies to better 
understand and target the tumorigenesis of DIPG, little success has been obtained in developing 
a cure (Chen et al., 2020; Rechberger et al., 2020). 
 
A complete understanding of the molecular changes driving DIPG can assist in the development 
of new therapies. Several studies have been done to elucidate molecular changes associated 
with DIPG by examining gene expression changes in DIPG-patient derived cell cultures (Ehteda 
et al., 2021; Krug et al., 2019; Lin et al., 2019; Nagaraja et al., 2017). Some studies performed 
differential gene expression analysis, which was done on genes individually to identify genes of 
interest using pre-established statistical cut-off from methods like fold change (e.g., fold 
change>2) and/or T-test p−value (e.g., p-value<0.05). These studies found both JQ1 and 
panobinostat disrupted key regulators of nervous system development, including NTRK3, 
LINGO1, and ASCL1 (Nagaraja et al., 2017). Similarly, CBL0137 and panobinostat combination 
therapy also has been shown to downregulate key regulators of nervous system development, 
including LINGO1 and ASCL1, among other genes related to oligodendrocyte differentiation and 
lineage (Ehteda et al., 2021). In contrast, THZ1-treated cells showed preferential disruption of 
genes related to transcription and gene regulation such as SOX10 and HES5 (Nagaraja et al., 
2017). Treatments involving 5-azacytidine has been shown to induce interferon type I signaling 
and expression of interferon stimulated genes (Krug et al., 2019). Treatments including 
marizomib have downregulated metabolism-related genes (Lin et al., 2019). Some studies 
expanded their gene expression analysis with subsequent pathway enrichment of resulting 
differential expression gene lists. For example, Nagaraja, et al., used hypergeometric test-based 
approaches (e.g., Fisher’s Exact Test) that utilized established gene sets from public 
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knowledgebases like Gene Ontology (GO) to interpret their resulting differential gene expression 
lists from JQ1, THZ1, and panobinostat treatments, and found enrichment of regulators of central 
nervous system differentiation, neurogenesis, and signal transduction (Nagaraja et al., 2017). 
However, hypergeometric test-based approaches are known to be limited because only genes 
that meet an established cut-off are considered (Subramanian et al., 2005). To overcome this 
limitation by considering all genes in an expression dataset, other studies utilized Gene Set 
Enrichment Analysis (GSEA) to calculate the enrichment of an established gene set from a public 
knowledgebase (e.g., MSigDB) in a gene signature. Studies that performed GSEA using 
established cancer specific gene query sets and/or Cytoscape Enrichment Map visualizations 
found enrichment of Hallmark E2F targets genes in CBL0137 and panobinostat combination 
therapy (Ehteda et al., 2021). Further, oxidative-phosphorylation genes were consistently 
downregulated by combination panobinostat and marizomib treatment, and analysis of oxidative-
phosphorylation leading edge genes demonstrated effects on the Complex I gene family 
(NADH:ubiquinone oxidoreductase subunits) and electron transport chain modulators like 
ATP5J2 (Lin et al., 2019). While these analysis extensions provide insight into molecular changes 
associated with DIPG treatments, these studies use GSEA for pathway enrichment, not gene 
identification. Application of GSEA to identify genes associated with DIPG itself or its treatments 
has yet to be performed, and such an analysis holds potential in uncovering molecular changes 
that adds depth to the current understanding of DIPG. 
 
Previous work using a GSEA-based meta-analysis approach successfully identified known and 
novel genes associated with severe acute respiratory syndrome (SARS) infection through 
differential gene expression comparison between mRNA expression datasets (Park & Harris, 
2021). Therefore, this paper differed from related work as it was the first to apply the same 
GSEA-based approach to analyze mRNA expression data of drug and mock treated DIPG-patient 
derived cell cultures by defining and comparing gene expression signatures (i.e., gene lists 
ranked by differential expression). This paper started by using gene signatures to identify and 
verify gene expression changes associated with panobinostat treatment to elucidate molecular 
changes associated with the selective pressures driving resistance development. This paper 
further differed from related work as it was the first to apply a meta-analysis approach over 
publicly available independent datasets to examine similarities and differences in gene 
expression across a variety of DIPG treatments. Such an examination across DIPG treatments 
could provide insight into global therapeutic resistance mechanisms, something not previously 
examined. To do this, gene expression changes associated with panobinostat treatment were 
compared to changes resulting from other single and combination therapies to examine the 
therapy’s potential to complement panobinostat treatment invoked changes. Gene expression 
changes identified across single and combination therapies may represent contributors to global 
therapeutic resistance and targeting these changes holds potential to increase treatment 
susceptibility. 

 
2. METHODS 
2.1 mRNA Expression Resources 
To identify gene expression changes associated with treatment of DIPG cells, the Gene 
Expression Omnibus (GEO) repository (Clough & Barrett, 2016) was searched to find datasets for 
use in this study (Table 1). Since four independent series (GSE94259, GSE153441, GSE123278, 
and GSE117446) examined gene expression in panobinostat and mock treated in vitro cell 
cultures, our analysis started there. GSE94259 analyzed patient derived SU-DIPG-VI and SU-
DIPG-XIII cell lines treated with DMSO (1%), panobinostat (0.1uM), JQ1 (1uM), THZ1 (0.1uM), or 
combination for 24 hours in growth media (Nagaraja et al., 2017). GSE153441 examined triplicate 
samples of HSJD-DIPG007 cells treated with DMSO, CBL0137 (0.6μM), panobinostat (20nM), 
and the combination of the two agents for 24 hours (Ehteda et al., 2021). GSE153441 samples 
were profiled on the Affymetrix Human Clariom D Assay (GPL28782). GSE123278 treated 
duplicate patient derived DIPG cell cultures (DIPG13, DIPG6, and R059) with DMSO, 50nM 
panobinostat, 20nM marizomib, or 50nM panobinostat and 20nM panobinostat for 16 hours (Lin 
et al., 2019). Further, GSE123278 contained DIPG13 samples treated with 100nM panobinostat 
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and 50nM marizomib (Combo High). GSE94259 and GSE123278 samples were profiled on 
Illumina NextSeq 500 for Homo sapiens (GPL18573). In GSE117446, two tumor derived cell lines 
(DIPGXIII and BT245) were treated with DMSO, panobinostat, 5-azacytidine (5-AZA), and a 
combination of both for each of the cell lines (Harutyunyan et al., 2020; Krug et al., 2019). 
GSE117446 samples used in this study were profiled on Illumina HiSeq 4000 for Homo sapiens 
(GPL20301). 
 
Expression data provided by GEO for all datasets were z-scored normalized across all samples 
within the dataset regardless of treatment prior to use. Expression data was cleaned by removing 
GEO-provided probe identifiers where 1) all samples to be analyzed lacked data (e.g., gene 
expression z-score of 0), or 2) duplicate identifiers were identified so only the identifier with the 
highest coefficient of variation were retained. All GEO-provided probes had an Ensemble gene ID 
and/or official gene symbol. If a dataset’s GEO-provided platform contained both Ensemble gene 
IDs and gene symbols for a probe, the GEO-provided platform files to convert between these two 
prove identifiers were used. When a dataset’s GEO-provided platform contained either Ensemble 
gene IDs or gene symbols for a probe, the Database for Annotation, Visualization, and Integrated 
Discovery (DAVID) v6.8 gene conversion tool was used (Huang da et al., 2009). Values provided 
in the Genes column in Table 1 reflect the number of normalized and cleaned genes used to 
define gene signatures for this study. 
 

Dataset Description Platform Probes Genes 

GSE94259 Cultures of DIPG13 and DIPG6 cells with 

1% DMSO, 0.1µM panobinostat, 1µM JQ1, 

0.1µM THZ1, combination panobinostat and 
JQ1, or combination panobinostat and 

THZ1 treatment for 24hrs 

GPL18573 24606 24604 

GSE153441 Cultures of HSJD-DIPG007 cells with 
DMSO, 20nM panobinostat, 0.6μM 

CBL0137, or combination panobinostat and 
CBL0137 treatment for 24hrs 

GPL28782 46489 46489 

GSE123278 Cultures of DIPG13, DIPG6, and R059 cells 
with DMSO, 50nM panobinostat, 20nM 
marizomib, or combination panobinostat 

and marizomib treatment for 16hrs 

GPL18573 26839 23349 

GSE117446 Cultures of six H3.3K27WT and seven 
H3.3K27M patient-derived cell lines with 

DMSO, 15nM panobinostat, 1.5µM 
5-azacytidine, or combination panobinostat 

and 5-azacytidine treatment 

GPL20301 60234 42281 

 

TABLE 1: Datasets Utilized for this Study. 

 
2.2 Defining Gene Signatures 
To examine gene expression changes associated with DIPG treatment, differential gene 
expression was measured for samples of interest from each dataset using Welch’s two-sample T-
test score of cleaned and normalized values. Samples with the same treatment, regardless of 
strain or dosage, were combined to form one signature. The resulting list of genes and their T-test 
scores were used to define 14 gene signatures, which are gene lists ranked from high to low 
differential gene expression between treated versus control samples (Park & Harris, 2021). 
Signatures derived from the same dataset used the same control samples. The T-score range for 
each signature and the gene location where T-score becomes negative (i.e., T-score=0) are 
found in Table 2. 
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Dataset Group 1 

(Number of Samples) 
Group 2 

(Number of Samples) 
Gene Signature Use High Low Cross 

GSE94259 panobinostat (4) DMSO (4) panovsDMSO Identification 14.1 -11.7 12154 
JQ1 (4) DMSO (4) JQ1vsDMSO Comparison 13.6 -12.2 8454 

THZ1 (4) DMSO (4) THZ1vsDMSO Comparison 14.0 -14.1 1147 
JQ1 and panobinostat (4) DMSO (4) JQ1+panovsDMSO Comparison 14.1 -13.5 8362 

THZ1 and panobinostat (4) DMSO (4) THZ1+panovsDMSO Comparison 14.0 -14.1 1147 
GSE153441 panobinostat (3) DMSO (3) panovsDMSO Identification 12.2 -12.2 22148 

CBL0137 (3) DMSO (3) CBL0137vsDMSO Comparison 12.2 -12.2 21819 
CBL0137 and panobinostat (3) DMSO (3) CBL0137+panovsDMSO Comparison 12.2 -12.2 24334 

GSE123278 panobinostat (6) DMSO (6) panovsDMSO Verification 17.3 -17.2 12635 
marizomib (6) DMSO (6) marvsDMSO Comparison 12.0 -17.0 10172 

marizomib and panobinostat (4) DMSO (6) mar+panovsDMSO Comparison 18.4 -18.4 12258 
GSE117446 panobinostat (5) DMSO (6) panovsDMSO Verification 16.2 -15.7 26824 

5-azacytidine (5) DMSO (6) 5AZAvsDMSO Comparison 12.2 -12.2 29411 
5-azacytidine and panobinostat (5) DMSO (6) 5AZA+panovsDMSO Comparison 12.2 -12.2 28789 

 

TABLE 2: Signatures Defined in this Study.
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2.3 Identification of Genes Associated with Panobinostat Treatment 
To identify gene expression changes associated with panobinostat treatment, two panobinostat 
gene panels were generated (Figure 1). To do this, 500 genes from the positive and negative tails 
from both the GSE94259-derived panovsmock and GSE153441-derived panovsmock gene 
signatures were selected and used to form four individual query gene sets. GSEA compared each 
query gene set to the both the entire GSE94259-derived panovsmock and GSE153441-derived 
panovsmock gene signatures (reference). Leading-edge (LE) genes from each analysis were 
examined and shared leading-edge genes were used to define two panobinostat gene panels, 
one panel per tail. Pathway enrichment analysis was performed on both panobinostat gene 
panels using DAVID. 

 

 
 

FIGURE 1: Schematic Overview of Gene Panel Identification. 

 
2.4 Verification of Panobinostat Treatment Gene Panels 
To verify the panobinostat gene panels, GSEA between panobinostat gene panels and 
GSE123278-derived and GSE117446-derived panovsmock signatures was performed. To assess 
if results generated from GSEA could be achieved randomly, 1000 gene panels consisting of 30-
genes to match the average number of genes in the positive and negative panobinostat panels 
were randomly selected from the GPL28782 platform used to define the GSE153441 gene 
signatures used for gene identification for GSEA against GSE123278-derived and GSE117446-
derived panovsmock signatures (references). These analyses generated a null distribution of 
NES to which were compared the NES achieved by panobinostat gene panels for each reference 
gene signature and count the number of equal or better NES to estimate significance (i.e., null 
distribution p-value). Histogram data and associated graphs (e.g., distribution curves and box and 
whiskers plot) were calculated using Excel. 
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2.5 Comparison of Panobinostat Treatment Gene Panels to Other DIPG Treatments 
GSEA between panobinostat gene panels and gene signatures derived from samples of one of 
five treatments (JQ1, THZ1, CBL0137, Marizomib, or 5-azacytidine), either in single or 
combination therapy with pano, compared to control samples was performed to compare gene 
expression changes across DIPG treatments. Random modelling as previously described was 
used to assess if results generated from GSEA could be achieved randomly. Leading-edge genes 
from each statistically significant (GSEA p-value<0.05), non-random (null distribution 
p-value<0.05) GSEA were examined for common genes. T-scores from all 14 signatures defined 
in Table 2 for common genes identified were collected and converted into p-values for Stouffer’s 
z-score analysis using the stats.combine_pvalues command from the scipy package in Python 
3.8. 

 
3. RESULTS 
3.1 Gene Signature Approach Identified Gene Expression Changes Associated with 

Panobinostat Treatment of DIPG Cells in vitro 
GSE153441-derived and GSE94259-derived panovsmock gene signatures were defined to 
identify genes associated with response to panobinostat treatment of human DIPG cells 
(Table 2). From both these two panovsmock identification signatures, two gene sets were 
generated containing the 500 most differentially expressed genes from the positive and negative 
tails of each signature, capturing maximum coverage of the signature that was allowable by 
GSEA (Subramanian et al., 2005). The T-score of selected query genes from the GSE94259-
derived panovsmock signature were >5.6 and <-4.9 and >16.6 and <-16.8 from the GSE153441-
derived panovsmock signature for positive and negative tails, respectively. To assess similarity 
between these two signatures, enrichment was first calculated using GSEA between GSE94259-
derived panovsmock positive or negative tail gene sets (individual queries) and the GSE153441-
derived panovsmock (reference) and achieved NES=2.86 and NES=-2.19 for positive and 
negative tail query gene sets, respectively, both with a GSEA p-value<0.001. Similar findings 
were observed when GSEA calculated enrichment between GSE153441-derived panovsmock 
positive (NES=1.71) and negative (NES=-2.88) tail gene sets and the GSE94259-derived 
panovsmock (p-value<0.001). Identified leading-edge genes from these GSEA are listed in 
Supplemental Material STables 1 and 2. Separate positive and negative panobinostat gene 
panels from the 25 and 35 shared leading-edge genes identified were defined (Tables 3 and 4, 
respectively), representing over- and under-expressed genes associated with panobinostat 
treatment. 
 
No genes in the positive panobinostat panel were mentioned in the published reports for 
GSE94259 and GSE153441, though some panel genes like amidohydrolase domain containing 2 
(AMDHD2) have reported connections with panobinostat treatment in the literature (Choi et al., 
2019). In the negative DIPG gene panel, two genes, v-myc avian myelocytomatosis viral 
oncogene homolog (MYC) and achaete-scute family bHLH transcription factor 1 (ASCL1), were 
found to have previous associations with panobinostat treatment of DIPG cells (Ehteda et al., 
2021; Nagaraja et al., 2017). Taken together, this demonstrated the detection ability of using a 
GSEA-based approach to gene identification. The rest of the genes in the negative panobinostat 
panel had no prior association with panobinostat treatment of DIPG cells from the published 
reports for GSE94259 and GSE153441. It can be speculated that genes lacking previously 
reported associations with panobinostat treatment that were identified here also are associated 
with panobinostat treatment of DIPG cell cultures. Therefore, this paper is the first to report the 
association of these gene expression changes with panobinostat treatment. 
 
To expand our analysis, the cellular roles of DIPG panel genes were examined using DAVID to 
calculate enrichment between each DIPG panel and pathways in popular knowledgebases. It was 
noticed that, when compared to other databases, the GO BP database returned the most 
significantly enriched pathways (data not shown), hence this discussion was concentrated on 
GO-BP data to prevent confusion caused by overlapping pathway and gene inclusion differences 
across multiple knowledgebases. DAVID identified four significant GO-BP pathways (EASE score 
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p-value<0.05) from the positive DIPG panel and six significant pathways from the negative DIPG 
panel (Supplemental Material STable 3). Some significantly enriched pathways have 
experimentally established associations with panobinostat treatment of DIPG, such as transferrin 
transport pathway (GO:0033572, p-value=0.04) and Notch signaling pathway (GO:0007219, 
p−value=0.018), demonstrating the ability of our gene signature approach to detect pathways 
associated with panobinostat treatment (Taylor et al., 2015; Tu et al., 2020). Other identified 
pathways, such as negative regulation of transcription from RNA polymerase II promoter 
(GO:0000122, p-value=0.009), have no prior associations to panobinostat treatment. Therefore, it 
can be speculated that pathways without prior association to DIPG identified here also were 
involved in DIPG, and that this paper is the first to report the association of these pathway activity 
changes with panobinostat treatment. 

 
Ensembl ID Symbol Description 

ENSG00000154639 CXADR coxsackie virus and adenovirus receptor 
ENSG00000169116 PARM1 prostate androgen-regulated mucin-like protein 1 
ENSG00000148180 GSN gelsolin 
ENSG00000197948 FCHSD1 FCH and double SH3 domains 1 
ENSG00000147416 ATP6V1B2 ATPase H+ transporting V1 subunit B2 
ENSG00000197943 PLCG2 phospholipase C gamma 2 
ENSG00000162066 AMDHD2 amidohydrolase domain containing 2 
ENSG00000135525 MAP7 microtubule associated protein 7 
ENSG00000130517 PGPEP1 pyroglutamyl-peptidase I 
ENSG00000164953 TMEM67 transmembrane protein 67 
ENSG00000136960 ENPP2 ectonucleotide pyrophosphatase/phosphodiesterase 2 
ENSG00000085552 IGSF9 immunoglobulin superfamily member 9 
ENSG00000130158 DOCK6 dedicator of cytokinesis 6 
ENSG00000197892 KIF13B kinesin family member 13B 
ENSG00000134996 OSTF1 osteoclast stimulating factor 1 
ENSG00000008056 SYN1 synapsin I 
ENSG00000075223 SEMA3C semaphorin 3C 
ENSG00000165959 CLMN calmin 

ENSG00000076641 PAG1 
phosphoprotein membrane anchor with glycosphingolipid 

microdomains 1 
ENSG00000139182 clstn3 calsyntenin 3 
ENSG00000155097 ATP6V1C1 ATPase H+ transporting V1 subunit C1 
ENSG00000156869 FRRS1 ferric chelate reductase 1 
ENSG00000122735 DNAI1 dynein axonemal intermediate chain 1 
ENSG00000169432 SCN9A sodium voltage-gated channel alpha subunit 9 
ENSG00000150627 WDR17 WD repeat domain 17 

 

TABLE 3: Positive Panobinostat Gene Panel Defined in this Study. 
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Ensembl ID Symbol Description 

ENSG00000119403 PHF19 PHD finger protein 19 
ENSG00000133393 FOPNL FGFR1OP N-terminal like 
ENSG00000136997 MYC v-myc avian myelocytomatosis viral oncogene homolog 
ENSG00000119865 CNRIP1 cannabinoid receptor interacting protein 1 
ENSG00000165449 SLC16A9 solute carrier family 16 member 9 
ENSG00000162733 DDR2 discoidin domain receptor tyrosine kinase 2 
ENSG00000170365 SMAD1 SMAD family member 1 
ENSG00000139352 ASCL1 achaete-scute family bHLH transcription factor 1 
ENSG00000162623 TYW3 tRNA-yW synthesizing protein 3 homolog 

ENSG00000082482 KCNK2 
potassium two pore domain channel subfamily K 

member 2 
ENSG00000105483 CARD8 caspase recruitment domain family member 8 
ENSG00000165458 INPPL1 inositol polyphosphate phosphatase like 1 
ENSG00000179981 TSHZ1 teashirt zinc finger homeobox 1 

ENSG00000148840 PPRC1 
peroxisome proliferator-activated receptor gamma, 

coactivator-related 1 
ENSG00000135097 MSI1 musashi RNA binding protein 1 
ENSG00000106991 ENG endoglin 
ENSG00000112667 DNPH1 2'-deoxynucleoside 5'-phosphate N-hydrolase 1 
ENSG00000169857 AVEN apoptosis and caspase activation inhibitor 
ENSG00000031081 ARHGAP31 Rho GTPase activating protein 31 
ENSG00000035681 NSMAF neutral sphingomyelinase activation associated factor 
ENSG00000107130 NCS1 neuronal calcium sensor 1 
ENSG00000147155 EBP emopamil binding protein  
ENSG00000120800 UTP20 UTP20, small subunit processome component 
ENSG00000143222 UFC1 ubiquitin-fold modifier conjugating enzyme 1 

ENSG00000198885 ITPRIPL1 
inositol 1,4,5-trisphosphate receptor interacting protein-

like 1 
ENSG00000184489 PTP4A3 protein tyrosine phosphatase type IVA, member 3 
ENSG00000183814 LIN9 lin-9 DREAM MuvB core complex component 
ENSG00000076770 MBNL3 muscleblind like splicing regulator 3 
ENSG00000109320 NFKB1 nuclear factor kappa B subunit 1 
ENSG00000018699 TTC27 tetratricopeptide repeat domain 27 
ENSG00000143436 MRPL9 mitochondrial ribosomal protein L9 
ENSG00000116157 GPX7 glutathione peroxidase 7 
ENSG00000063601 MTMR1 myotubularin related protein 1 
ENSG00000073849 st6gal1 ST6 beta-galactoside alpha-2,6-sialyltransferase 1 

ENSG00000047230 CTPS2 CTP synthase 2 
 

TABLE 4: Negative Panobinostat Gene Panel Defined in this Study. 

 
3.2 Enrichment of Panobinostat Gene Panels and Specific Panobinostat Panel Genes 

Verified in Independent Datasets 
To verify our panobinostat gene panels, GSEA was used to calculate enrichment between our 
panobinostat panels (individual queries) and two verification gene signatures (individual 
references): GSE117446-derived panovsmock and GSE123278-derived panovsmock (Table 2). 
Significant similarity between positive and negative panobinostat panels and GSE117446-derived 
panovsmock (NES=2.55 for the positive panobinostat panel, Figure 2A, and NES=-3.04 for the 
negative panobinostat panel, Figure 2B, both GSEA p-value<0.001) was found. To determine 
how likely the NES achieved for panobinostat panels would be achieved by random chance, 1000 
randomly selected 30-gene panels were generated from the GSE153441-derived panovsmock 
gene signature to match the average size and potential composition of our panobinostat panels. 
GSEA was then repeated using these randomly generated gene panels (individual queries) and 
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the GSE117446-derived panovsmock (reference) to generate a null distribution of NES achieved 
via random chance. From this, random NES ranged from 1.80 to -1.66 was found (Figure 2C), 
illustrating that NES achieved by our panobinostat panels are non-random (null distribution 
p-value<0.001). For GSE123278-derived panovsmock, similarity was again observed with 
positive and negative panobinostat panels (NES=2.32 for the positive panel, Figure 2D, and 
NES=-2.72 for the negative panel, Figure 2E, both GSEA p-value<0.001). Random NES ranged 
from 1.99 to -1.82 (Figure 2F), showing achieved results were non-random (both panel null 
p-value<0.001). Taken together, these results demonstrate that the enrichment achieved from our 
panobinostat panels was true. 
 
To determine which of our panobinostat panel genes were verified across all signatures, leading-
edge genes identified by GSEA for each verification signature were examined. Leading-edge 
genes for GSE123278-derived and GSE117446-derived panovsmock signatures are listed in 
Supplemental Material STables 4 and 5, respectively. Seventeen genes from the positive 
panobinostat panel and 30 genes from the negative panobinostat panel were shared between 
verification signatures. ASCL1 was among verified genes with prior reported associations to 
panobinostat treatment (Ehteda et al., 2021; Nagaraja et al., 2017), though it was not mentioned 
in the published reports from GSE123278 and GSE117446 (Krug et al., 2019; Lin et al., 2019). 
These data together verified our shared leading-edge genes were associated with panobinostat 
treatment in human DIPG cultures and support the hypothesis that identified genes without 
previously reported associations also were associated with panobinostat treatment in human 
DIPG cultures. Verified gene expression changes associated with panobinostat treatment may 
have more potential as future DIPG therapeutic targets compared to genes identified earlier that 
could not be verified, despite lack of previously reported associations. 
 

 
 

FIGURE 2: Schematic Overview of Gene Panel Identification. 

 
3.3 Non-random Enrichment of Panobinostat Gene Panels Found in Other DIPG 

Treatments 
To expand this study, gene expression changes associated with panobinostat were compared to 
changes observed in other DIPG treatments included in GEO Series previously used to examine 
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panobinostat treatment. The following 10 signatures were examined: JQ1vsDMSO, 
THZ1vsDMSO, JQ1+panovsDMSO, THZ1+panovsDMSO, CBL0137vsDMSO, 
CBL0137+panovsDMSO, marvsDMSO, mar+panovsDMSO, 5AZAvsDMSO, and 
5AZA+panovsDMSO (Table 2). Since JQ1 and THZ1 impact transcription factors, BRD4 and 
CDK7, respectively, that work together as part of the RNA polymerase II (RNAPII) complex to 
transcribe DIPG oncogenes and panobinostat inhibits histone deacetylation which alters RNAPII 
access to DIPG oncogenes for transcription, similarities in differential gene expression between 
the verified panobinostat panels and the four GSE94259-derived signatures was expected 
(Nagaraja et al., 2017). Significant (GSEA p-values<0.013), non-random (null distribution 
p-values<0.004) enrichment between both positive and negative panobinostat panels in 
JQ1vsDMSO and JQ1+panovsDMSO signatures were found (Figure 3), indicating that JQ1 may 
share mechanisms with panobinostat. For both THZ1vsDMSO and THZ1+panovsDMSO 
signatures, only the negative panobinostat panel achieved significant, non-random enrichment 
(Figure 3). Interestingly, the positive panobinostat panel for both THZ1vsDMSO and 
THZ1+panovsDMSO signatures had a negative NES (Figure 3) and these signatures were 
skewed to have substantially more genes with a negative T-score (Table 2), leading to the 
conclusion that THZ1 may function to reduce cell proliferation by inhibiting general gene 
expression. Similarities between differential expression based on CBL0137 and panobinostat 
treatment were expected also since both therapies synergistically inhibit the Rb/E2F1 pathway 
(Ehteda et al., 2021). Significant (GSEA p-values<0.001), non-random (null distribution 
p-values<0.001) enrichment between both positive and negative panobinostat panels in 
CBL0137vsDMSO and CBL0137+panovsDMSO signatures were found (Figure 3), supporting 
previous findings that CBL0137 and panobinostat share some mechanisms. Though panobinostat 
and marizomib (a proteasome inhibitor) have substantially different mechanisms of action, reports 
of their synergistic action to combat DIPG lead to the hypothesis that these therapies may share 
some mechanisms. Significant (GSEA p-values<0.008), non-random (null distribution 
p-values<0.001) enrichment between both positive and negative panobinostat panels in 
marvsDMSO and mar+panovsDMSO signatures were found (Figure 3), indicating that marizomib 
may share mechanisms with panobinostat. Since 5-azacytidine is a gene demethylating agent 
that also works to regulate gene expression through global epigenetic changes, similarities in 
gene expression changes between 5-azacytidine and panobinostat were expected (Jubierre et 
al., 2018). However, for 5-azacytidine, both panobinostat gene panels were non-randomly (null 
distribution p-values<0.001), enriched in the 5AZA+panovsDMSO signature, but neither 
panobinostat panel achieved significant enrichment (GSEA p-values>0.078) in the 5AZAvsDMSO 
signature (Figure 3). This finding suggests that 5-azacytidine does not share mechanisms to 
combat DIPG with panobinostat, but that effects of panobinostat treatment is detectable in 
combination therapy using a gene signature approach. 
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FIGURE 3: Enrichment of Panobinostat Gene Panels and Random Models Across DIPG Treatments. 

 
3.4 Leading-edge Genes Found Across DIPG Treatments 
Finally, leading-edge genes from each GSEA across DIPG treatments were examined to identify 
genes of potential interest. Supplemental Material STables 6 through 15 contains leading-edge 
genes from GSEA with each panobinostat gene panel (Tables 3 and 4) across 10 comparison 
gene signatures (Table 2). Leading-edge genes from each GSEA across all signatures, except 
5AZAvsDMSO and the positive panobinostat panel for THZ1vsDMSO and THZ1+panovsDMSO 
because these GSEA failed to achieve statistical significance (GSEA p-value>0.05) and/or non-
randomness (null distribution>0.05), were collected to see which genes were most associated 
with treatment of DIPG cells. Two positive panobinostat panel genes commonly found across 
DIPG treatments, a prostate androgen-regulated mucin-like protein 1 (PARM1) and a semaphorin 
3C (SEMA3C). Neither PARM1 or SEMA3C were associated with DIPG or its treatment, though 
PARM1 was reported as upregulated during Trichostatin A, a HDAC class I and II inhibitor, 
treatment of SK-MEL-3 Melanoma Cells (Mazzio & Soliman, 2018), and SEMA3C has reported 
connections to cervical and other cancer (Liu et al., 2019; Peacock et al., 2018). There were eight 
negative panobinostat panel genes in common across DIPG treatments, a PHD finger protein 19 
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(PHF19), achaete-scute family bHLH transcription factor 1 (ASCL1), potassium two pore domain 
channel subfamily K member 2 (KCNK2), emopamil binding protein (EBP), inositol 1,4,5-
trisphosphate receptor interacting protein-like 1 (ITPRIPL1), lin-9 DREAM MuvB core complex 
component (LIN9), glutathione peroxidase 7 (GPX7), and CTP synthase 2 (CTPS2). All common 
negative panobinostat panel genes except GPX7 and CTPS2 were included in the leading-edge 
for 5AZAvsDMSO (Supplemental Material STable 14). There was no connection between LIN9, 
KCNK2, EBP, or ITPRIPL1 and DIPG or its treatment reported, though there were reports 
connecting DIPG or its treatment to PHF19 and ASCL1. Over-expressed PHF19 was associated 
with poor prognosis in glioblastoma patients and PHF19 knockdown models showed a clear 
increase in doxorubicin-induced apoptosis (Deng et al., 2018). Also, PHF19 inhibition has shown 
promise as a therapeutic target for multiple myeloma (Schinke et al., 2021), though attempts at 
PHF19 inhibition of DIPG have not been reported. Treatment with JQ1 alone, panobinostat alone, 
or CBL0137 and panobinostat in combination have been shown to disrupt ASCL1 activity (Ehteda 
et al., 2021; Nagaraja et al., 2017). 
 
To rank shared leading-edge genes, Stouffer’s z-score was used. Z-scores for negative 
panobinostat panel genes were higher than for positive panobinostat panel genes (Figure 4), 
complementing the strength of negative panobinostat panel enrichment observed previously 
(Figure 3). Of negative panobinostat panel genes, the potassium two pore domain channel 
subfamily K member 2 (KCNK2) and inositol 1,4,5-trisphosphate receptor interacting protein-like 
1 (ITPRIPL1) had the highest z-score (Figure 4). From these results, it could be hypothesized that 
top scoring genes identified here are more likely to play a role in the treatment of DIPG cells 
despite this being the first report of association between these genes and DIPG or its treatment.  
 

 

FIGURE 4: Heat Map of LE Genes Shared Across DIPG Treatments. 
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4. DISCUSSION 
DIPG remains a highly aggressive childhood brainstem tumor with little hope for a favorable 
prognosis. While efforts have gone into developing effective therapies for DIPG patients, 
treatment resistance is a major limitation, due in part to an incomplete understanding of the 
molecular changes behind resistance development. Identification of differentially expressed 
genes associated with treatment itself can contribute to the overall understanding of the 
molecular changes that drive resistance development. This improved understanding can 
potentially contribute to the development of new therapeutic options to improve the prognosis for 
DIPG patients. This work conducted a meta-analysis of gene expression signatures generated 
from mRNA expression data across panobinostat and five other DIPG treatments, both 
individually and in combination with pano, to identify differentially expressed genes associated 
with DIPG treatment. Genes that change in response to treatment may contribute to developing 
treatment resistance long-term. 
 
Among genes identified by this work, six under-expressed gene candidates, PHF19, ASCL1, 
LIN9, KCNK2, EBP, and ITPRIPL1, stood out consistently across treatments. PHF19 was one of 
the Polycomb Repressive Complex 2 (PRC2) ancillary subunits. Reports existed associating the 
common H3K27M mutation in DIPG to PRC2 inhibition though the exact involvement of PHF19 
remains unclear (Bracken et al., 2019; Jain et al., 2019; Lin et al., 2019). ASCL1 was a member 
of the adrenergic neuroblastoma core regulatory circuitry (Wang et al., 2019). ASCL1 has been 
shown to regulate cell cycle genes in glioma mouse models, and ASCL1 overexpression has 
been associated with DIPG cell fitness and tumorigenicity (Fortin et al., 2020; J. Wang et al., 
2021). LIN9 was a critical mitosis regulator with connections to breast cancer. LIN9 was 
suppressed by JQ1 in breast cancer cells and may have potential as a Bromodomain and 
Extraterminal inhibitor (BETi) response prediction marker clinically (Sahni & Keri, 2018). The 
association between LIN9 and DIPG was not established. Further, the association between DIPG 
and KCNK2, EBP, and ITPRIPL1 were not established either. KCNK2 (also known as TREK-1) is 
a member of the two-pore-domain K+ channel family responsible for maintaining neuronal resting 
membrane potential and the duration of action potentials. Reduced expression of KCNK2 was 
reported in liver cancer with reports of KCNK2 overexpression in prostate, epithelial ovarian 
cancer, and other cancer types (Li et al., 2019). EBP was the 3-β-hydroxysteroid-δ(8), δ(7)-
isomerase in the postsqualene cholesterol biosynthetic pathway with associations to breast, 
prostate, and colorectal cancers (Ershov et al., 2021; Long et al., 2019; Theodoropoulos et al., 
2020). ITPRIPL1 was an inositol 1,4,5-trisphosphate receptor interacting protein shown recently 
to have aberrant methylation in breast cancer patients but not in lung, uterine, ovarian, gastric, 
esophagus, pancreatic, liver, or colorectal cancers via bioinformatic analysis (S. C. Wang et al., 
2021). Taken together, these results suggested that the GSEA-based meta-analysis approach 
used here was successful in identifying cancer-related genes with and without DIPG associations. 
 
This work had observable gene detection limitations that may have biological implications. For 
example, gene expression changes commonly associated with DIPG treatment in genes like 
PRC2, TP53, BRD4, EGFR, and PDGFRA were not found in this study (Ehteda et al., 2021; Krug 
et al., 2019; Lapin et al., 2017; Lin et al., 2019; Nagaraja et al., 2017; Srikanthan et al., 2021). In 
the cases of PRC2 and TP53, these genes were not included in the platform of one or more 
datasets used in this work. Platform variations, both in gene inclusion and primer nucleotide 
sequence, can substantially impact results generated from this, or any, bioinformatics analysis. 
While BRD4, EGFR, and PDGFRA were included in the GSE94259 identification dataset, their 
T-scores were insufficient to make the 500 gene cut-off required of GSEA to maintain statistical 
accuracy. This is an inherent limitation with the use of GSEA, which can only be overcome by 
switching to a non-GSEA based method. However, if the desired outcome is a prioritized list of 
potential gene candidates for further laboratory or clinical examination, the GSEA-based 
approach used here suffices. 
 
A lack of direct experimental or clinical evidence substantially limited the conclusions drawn from 
this purely bioinformatics work. Follow-up experiments using laboratory techniques, such as 
Western blotting or qRT-PCR, to confirm top gene candidate predictions would support these 
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conclusions drawn exclusively from mRNA expression data. Further, due to their public 
availability, datasets selected for this work examined short treatment durations (<24 hours) in 
human DIPG cultures only. Further analysis examining gene expression data from cell cultures 
undergoing longer treatment durations that more closely mimic clinical cases is needed. Further, 
gene expression data directly from DIPG patients would be of particular interest to further explore 
the results generated here. Such an examination of gene expression data from treated and 
untreated human DIPG samples would be limited due to challenges acquiring samples from 
tumor location. 

 
5. CONCLUSION 
This work is the first to examine mRNA expression data to predict genes potentially involved in 
developing resistance to DIPG treatments through examining gene signatures using a GSEA-
based meta-analysis approach. Six under-expressed genes, PHF19, ASCL1, KCNK2, EBP, 
ITPRIPL1, and LIN9, were identified as being most associated with DIPG treatment regardless of 
mechanism of action or combination with panobinostat. This work demonstrated the usefulness of 
a computational meta-analysis approach used previously to detect genes associated with SARS 
infection in identifying genes associated with DIPG treatment through application on mRNA 
expression data from DIPG therapeutic and DMSO treated cell cultures. Experimental biologists 
can confirm these computational predictions immediately through the generation and subsequent 
examination of knock-out (i.e., single selected gene mutation resulting in loss of function) cell 
lines derived from the DIPG cultures used to generate the mRNA expression data used in this 
study. Researchers then can develop compounds to target genes with observed therapeutic 
sensitivity changes experimentally. Such efforts could lead to the successful development of co-
therapies to raise efficacy of current DIPG therapeutics long-term, ultimately improving how 
clinicians treat DIPG patients. 
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