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Abstract 
 
Global Navigation Satellite System (GNSS) precise point positioning (PPP) technique is capable 
of monitoring Precipitable Water Vapor (PWV) in high accuracy with low cost. As PWV is related 
to the initiation and development of a severe weather convective system, this study analyzed the 
characteristics of PWV variations over time and space to monitor and predict the path and the 
intensity of a severe rainfall during a hurricane. The PWV measurements are obtained by 
processing ground based GNSS data. The spatial and temporal variation of PWV and other 
meteorological variables are characterized for the time frames of before, during, and after the 
severe precipitation. The correlation effect between meteorological variables were mitigated by 
adapting a principle component analysis (PCA) and multivariate regression analysis. The method 
allows determining the expected movement of the rainfall up to 24 hours in advance. The 
proposed method was validated by analyzing the distribution pattern of the predicted PWV 
residual, its magnitude, and the actual observed PWV in the region. As a case study, we adopted 
one of the destructive and long-lived hurricane along the Florida, Georgia, North Carolina and 
South Carolina coast, namely, Hurricane Matthew, occurred in October 2016. From the 
experiment, we identified the areas closely fitting the prediction model by computing the residuals 
between the GNSS derived PWV measurements at each station in the test site. The residual of 
the predicted model is used for determining the track of extreme hurricane precipitation and 
potentially applied to evaluate its intensity. This study proved the effectiveness of the statistical 
model for forecasting the hurricane rainfall path that is potentially applied to a hazard early 
warning system. 
 
Keywords: GNSS Meteorology, Precipitable Water Vapor (PWV), Principle Component 
Regression (PCR), Hurricane. 

 
 
1. INTRODUCTION 
Precipitable Water vapor (PWV) is defined as the total amount of water vapor in a column of air 
above the surface [1]. PWV varies quickly with short temporal- and spatial-scale during severe 
meteorological phenomena such as tropical storms and hurricanes. These weather events 
accompany intensive precipitations that cause significant variation of the water vapor content and 
other meteorological parameters in the lower atmosphere [2],[3],[4]. Conventionally the PWV is 
detected by direct measurement sensors such as radio sounding sensors and microwave 
radiometers. However, these direct measurements have the limitations to distinguish the rapid 
variations of PWV due to the low spatial and temporal resolution. Also, these sensors require 
high-cost calibration, operation, and maintenance [4]. Satellite imageries monitor PWV over a 
wide area. Although a few multispectral images can measure even the vertical distribution of high 
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resolution PWV, the reliability of imagery based PWV decreases with the presence of clouds. 
Space-born microwave radiometers can acquire measurements for cloudy regions, but they are 
reliable only over the ocean in general [5]. One of the widely used space-based observation 
methods is the Moderate Resolution Imaging Spectroradiometers (MODIS). The MODIS provides 
water vapor images using near infrared channels twice a day in the world [6]. The infrared MODIS 
observes water vapor with 1 km spatial resolution over cloud-free areas, oceanic areas with Sun 
glint, and/or above clouds over both land and ocean [7],[8]. Envisat satellites, including the 
Medium-Resolution Imaging Spectrometer (MERIS), measure the solar radiation reflected from 
the Earth’s surface and clouds in the visible and near-IR spectral range during the daytime. 
MERIS provides near-IR water vapor products above land or ocean surfaces under cloud-free 
conditions at two nominal spatial resolutions: 0.3 km for full-resolution mode and 1.2 km for 
reduced-resolution model [9],[10]. However, neither the MODIS nor MERIS instruments provide 
reliable PWV values above land or ocean surfaces in the presence of clouds. Similarly, the 
Atmospheric Infrared Sounder (AIRS) provides global coverage with a vertical resolution of 2 km 
and a spatial resolution at nadir of 45 km, but only operates in clear skies or partly cloudy 
conditions [8], [11].  
 
PWV can also be obtained from forecasting models. Numerical Weather Prediction (NWP) 
models quantitatively forecast the weather based on the prediction models of temperature, wind, 
precipitation, etc. However, the NWP model involves a critical challenge associated with its 
temporal latency. In case of the global scale NWP, the latency is approximately 4 - 6 hours. 
Although the local scale NWP models can be generated with less latency because of the smaller 
data sets, they are hardly applicable due to the limitation of the covered area so that the 
prediction only works when the weather event approaches in close proximity of the area to be 
covered by the NWP model. The global scale models are certainly applicable for monitoring the 
global scale weather events, but they tend to include high levels of uncertainty due to the lack of 
detail which is another limiting factor [12]. Additional limitations of the NWP model come from the 
inconsistent types of terrestrial and space-based observations. Since different types of data have 
different characteristics, the data integration and the analysis cannot be done in a unique way to 
provide precise forecasting results [12].  
 
Global Navigation Satellite System (GNSS) has been used to detect water vapor content in the 
atmosphere from a tropospheric delay of a GNSS signal that has been shown in a number of 
researches (e.g., [3],[13],[14],[15]). One of the most valuable attributes of GNSS derived PWV is 
its ability of providing precise and seamless measurements under all weather conditions 
regardless of the presence of clouds, which derive a challenge to aforementioned traditional 
weather monitoring technologies [5]. Another benefit of GNSS is the data availability and 
accessibility. Currently, the densely distributed Continuously Operating Reference Station 
(CORS) network provides seamless observations with high spatial and temporal resolution. In 
addition, GNSS data has a good potential for improving NWP forecasts by investigating initial 
conditions in the NWP based on the GNSS derived tropospheric measurements [16],[17],[18]. 
Various studies demonstrated the capability of GNSS to monitor small-scale water vapor 
structures associated with the initiation and development of convective systems [14],[19],[20],[21]. 
From the study, the PWV rate of change (PWV ROC) over time with other atmospheric 
parameters were considered as a precursor to heavy precipitation. Previous studies verified that 
when PWV reached a certain threshold, the probability of rainfall would quickly increase 
[15],[22],[23],[24],[25],[26],[27]. The PWV threshold empirically derived by real-time GNSS PPP is 
used for forecasting rainfall [28]. Although the close relationship between the PWV and a rainfall 
is revealed in numerous researches, fewer studies have focused on predicting the path of severe 
precipitation events such as storms or hurricanes using the PWV. In this study, a new method for 
forecasting the path and intensity of extreme rainfall during a hurricane is proposed based on the 
prediction model of GNSS-derived PWV.  
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2. SEVERE WEATHER MONITORING USING GNSS 
Several atmospheric factors contribute to the initiation and development of extreme precipitation. 
Among them, the  instability and convergence/divergence conditions of water vapor content are 
key factors to forecast heavy precipitation [29],[30],[31]. The PWV as a moisture related 
parameter is used to forecast the precipitation and assess its severity [3],[8],[16],[21]. Therefore, 
the relationship between the PWV and other atmospheric parameters are crucial for 
characterizing the causes of the severe precipitations. The precipitation is highly associated with 
pressure systems as well as temperature [31],[32],[33]. This study investigates the occurrences of 
precipitation by analyzing the atmospheric pressure, temperature and the PWV. To secure the 
high spatial and temporal resolution of PWV, GNSS data are processed to extract the PWV 
component. The atmospheric constituents in the troposphere cause a delay on GNSS signals 
during transmission from a satellite to a receiver on the ground. The delay is considered as the 
neutral atmospheric delay, or conventionally referred to as the tropospheric delay (TD) as it is 
mostly affected by the troposphere [3], [34]. The total tropospheric delay along the slant ray path 
can be mapped onto the zenith direction, yielding the Total Zenith Delay (TZD), by a mapping 
function that is the function of satellite’s elevation angle. The TZD is defined as the sum of a 
Zenith Hydrostatic Delay (ZHD) and a Zenith Wet Delay (ZWD), which are the delays caused by 
the hydrostatic component and non-hydrostatic (or wet) component of the atmosphere, 
respectively. The ZWD depends mostly on the distribution of water vapor content along the signal 
propagation path [35]. Due to the high variability of the atmospheric water vapor, many studies 
rely on the relatively accurate ZHD model to calculate the ZWD by subtracting the ZHD value 
computed by a ZHD model from the TZD measured at a GNSS station. The PWV can be 
computed using ZWD measurements from GNSS signals. The retrieving process of the PWV 
from the ZWD requires meteorological parameters, such as pressure and temperature. Eq (1) 
represents the relation between the PWV and the ZWD [36],[37]: 
 

                                                                                                                                                                                    

and conversion factor   is expressed in Eq (2).   

                                                               
  

  
                                                                

where ρ is the water vapor density (1000 kg      and    denotes the specific gas constant of                    
water vapor (461.5 J        ).    and    are set to                     and        
                    respectively [38]. It is worth to mention that     can be represented as (17 
± 10)          for a larger uncertainty [39].    is the modeled weighted mean temperature of 

troposphere (K), which is computed based on the regression relation between    (surface 

temperature) and    from a linear function,                 proposed by [36]. Although the 
ZHD and therefore PWV computations involve the meteorological parameters, they are relatively 
stable in time and space and can be obtained by an interpolation method.  
 
2.1 GNSS-based Hurricane Monitoring  
The variations of PWV provide the transition pattern of the water vapor content. When GNSS 
based estimated PWV are analyzed with the local atmospheric elements, the formation process 
of the sever precipitation can be observed by assessing the correlation between atmospheric 
pressure, temperature and PWV. Because the PWV variation is an indication of the precipitation 
showing the interrelation with other atmospheric parameters, the PWV ROC can be used to 
monitor the atmospheric changes over time. Several studies showed that the PWV greatly 
increases a few hours prior to the most intense rainfall then sharply decreases when precipitation 
begins to weaken and finally ceases [26], [27], [38], [40], [41], [42].  Referring to [15], [27] and [42] 
1) PWV peaks occur at a few hours before the precipitation onset; 2) the PWV ROC sharply 
varies before the start of the rain in the most rainfall events. Thus, the significant spatial-temporal 
variation of PWV and PWV ROC corresponds to the rain event in time and can be identified as 
important features for short-term precipitation forecasting purposes.  
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2.2 Case Study: Hurricane Matthew in October 2016 
Hurricane Matthew is one of the most destructive and long-lived hurricanes in the United States 
occurred in October 2016. To investigate the potential of GNSS data for retrieving the 
perturbation of GNSS derived PWV, seven days (5 – 11 October 2016) observations of 
Continuously Operating Reference Station (CORS) were used to track the path of this hurricane. 
For this study, we formed a network, which consists of thirty-eight CORSs that are regionally 
distributed along the coasts of Florida, Georgia, South Carolina, and North Carolina. For all 
GNSS CORSs, the GNSS-derived TZD and ZWD were estimated in 300 seconds intervals using 
the automatic precise positioning service (APPS) developed by NASA's Jet Propulsion 
Laboratory (JPL). The satellite orbits and clock corrections are conducted by using the JPL final 
products for the orbit and clock corrections. The elevation cutoff angle of 15 degrees were applied 
for processing. From the GNSS derived ZWD, the PWV were computed based on Eq (1) and (2). 
In Eq (2),     is derived based on the question                 proposed by [36] considering 
that our sites are located in the United States with a latitude range of 27° to 65° and a height 
range of 0 to 1.6 km that is valid for the area of the investigation according to the literature.  The 
surface meteorological data is provided by real-time online weather information resources. The 
meteorological data were collected from the weather underground website 
(https://www.wunderground.com). The fourteen weather stations close to the CORS stations were 
utilized for this experiment providing three meteorological parameters: the pressure, temperature 
and relative humidity). The average distance between stations is 120 km. The temporal resolution 
of the GNSS-derived PWV and the meteorological parameters are 5 and 60 minutes respectively. 
To integrate the GNSS data and the meteorological data for the statistical analysis in Section 3, 
the meteorological data are temporally interpolated for every 5 minutes.  Figure 1 shows the 
geographical distribution of the GNSS CORS and meteorological stations over the study area. 
 

 
 

FIGURE 1: Geographical distribution of the GNSS CORS, meteorological stations and the reported 

hurricane path over the study area. (Produced by ESRI ArcGIS). 
  

. 
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3. STATISTICAL ANALYSIS OF METEOROLOGICAL FACTORS FOR 
HURRICANE MATTHEW 

The PWV measurements, which is the primary data in this study, are obtained from GNSS 
observations. From the PWV, the PWV ROC are computed by taking a time difference of PWV 
and it can be utilized to predict the PWV together with other meteorological parameters as shown 
in Eq (3). In Eq.(3), the PWV at epoch t+1 is predicted based on the weighted mean of PWV at 

epoch t (     , and  difference of  PWV, temperature (T), pressure (P), and relative humidity 
(RH) from their corresponding mean values at epoch t. The derivative of PWV at t+1 is expressed 
as         that is referred to as PWV derivatives. In this study, we defined the window size of 1 
hour for computing the weighted mean of PWV. This approach linearizes the non-linear dynamics 
of PWV by using the derivative of PWV instead of PWV itself which is also supported by [45] 
where it claims that the forecasts of rainfall along with linear regression analysis on 
meteorological observations such as pressure and temperature can be used to obtain an 
estimate of the anticipated rainfall. Due to the nature of the meteorological parameters that are 
related each other, we applied a multivariate linear regression model to decorrelate the 
parameters. In the proposed multivariate linear regression model, the PWV derivative as a 
dependent variable is described with respect to the independent explanatory variables of 
pressure, temperature, and relative humidity. Eq (3) can be simplified to Eq (4) where the next 
value of dependent output (         is regressed on the basis of the previous values of the input 

regressor. (         ,   ,    ).  

 

                                                                                

                                                =             ,   ,                                                                        

 

where       is PWV derivative, P is pressure, T is temperature, RH is relative humidity, c 
consists of regression coefficients, t is time and e is the error term. For each prediction time 
window, the model estimates the prediction of PWV using the hourly PWV ROC and the 
derivatives of P, T, and RH. In this paper, a model with 6h, 12h and 24h lead time is presented to 
forecast PWV that is applied to predict the hurricane path for 6h, 12h, and 24h forecast. 
 
3.1 Classification of Hurricane Matthew Development Stages 
During a hurricane event, the PWV in the affected region fluctuates with the different intensity and 
duration. The rapid fluctuation of GNSS-derived PWV is highly correlated to the severe rainfall 
and can be modeled in the dynamic statistical multivariate regression model. However, the PWV 
ROC and other atmospheric parameters behave differently at the different stage of hurricane, so 
that the principle regression model introduced in this section should be tailored to each stage in 
the hurricane lifetime. The time series of hurricane observations are divided into multiple classes 
of “before”, “right before”, “during”, “right after”, and “after” the hurricane and for each class a 
unique regression model is developed. To characterize each model, the meteorological 
parameters and the PWVs from CORSs in the test site were analyzed during the whole period of 
hurricane Matthew. The analysis results show the consistent patterns in those meteorological 
parameters in all sites for each model that were shown in the previous research in [27]. From the 
findings, the PWV threshold is set to 0.055 m where most of the severe precipitation events 
occurred when PWV exceeded that threshold. Selection of this threshold is also supported by 
other studies conducted in different regions and different times that claim the highest amount of 
water vapor is observed typically a few hours before the heavy precipitation when the PWV 
exceeded that threshold [15], [42]. From the findings in the test site, the numerical criteria of the 
classes for this event were determined. Each class is defined by applying the threshold to the 
GNSS-derived PWV fluctuations and deviation of pressure. Figure 2 is an example (CCV6 
station) showing the PWV, pressure, and rainfall with respect to the different classes of hurricane 
stage - before, right before, during, right after, and after- based on the hurricane occurrence time.  
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FIGURE 2: Classification of Model based on PWV Threshold. 

 
In the figure, the GNSS-derived PWV stayed below 0.055m during the “before” class, which is a 
normal condition, and no severe rainfall was observed during that time. The estimated PWV 
continuously increases and reaches the threshold in the “right before” class when rainfall starts 
and increase in PWV and decrease in pressure are observed (Green symbol indicated as A in 
Figure2).  Therefore, the first epoch of the “right before” class coincides with the beginning of the 
rainfall. The PWV time series show an active, increasing pattern in the “right before” class. The 
last epoch of “right before” class is the time when PWV exceed the threshold (Green symbol 
indicated as B in Figure 2). The end of the “right before” class is set as the first epoch of “during” 
class. In the “during class” the rainfall amounts reach to its peak. Then PWV time series 
dramatically decrease to reach the threshold where the “right after” class is defined (Green 
symbol indicated as C in Figure2). It then decreased to below the threshold while the “after” class 
is formed where rainfall begins to cease (Green symbol indicated as D in Figure 2). Obviously, 
the rainfall indicator bars in the bottom of Figure 2 are significantly high when the PWV is 
fluctuating above the 0.055 m. The same strategy is applied to the PWV time series of other 
stations to define the classes. After defining the classes, a unique regression model for predicting 
PWV were built in each class. It should be emphasized that this study specially focuses on the 
“right before” model, which is the most useful model to analyze and predict the movement of 
hurricane. 
 
3.2 Training Dataset 

To derive the coefficients,  , of each regression model of PWV in Eq (4), the representative 
stations are selected to generate a training dataset for each class. For deriving the coefficient of 
“right before” model at specific time in the study area six stations including MTNT, OKCB, ZJX1, 
GAAU, SCRS, and NCKN are selected. All of the selected stations in the right before model 
training dataset should reach the threshold in the “right before” class at the start point of the 
forecast period. For the purpose of the models characterization, we observed all six station’s data 
for all the classes, which serve a priori information, and then generalized the models for testing 
the capability of the models for detecting the path of hurricane precipitation. It should be noted 
that these stations were excluded for the rest of experiment. The meteorological and GNSS 
measurements at a few sites near a hurricane landfall in the area (typically near the coast) are 
required for serving as the initial information and setting the prediction model that makes this 
method valid for the real world applications. This approach is validated by applying the model to 
other remaining CORSs in the study area as the independent test dataset.  
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Variables 
 

 PWV 

 

 P 

 

 T 

 

 RH 

 PWV 1 -0.760 0.297 0.754 

 P -0.760 1 -0.046 -0.719 

 T 0.297 -0.046 1 -0.243 

 RH 0.754 -0.719 -0.243 1 

 

3.3 Principle Component Regression 
The PWV regression model requires preliminary analysis identifying the relationships between 
independent variables, PWV, and the dependent variables, P, T, and RH, to avoid the 
multicollinearity problem caused by the correlation between the variables in a model [43]. The 
multicollinearity can be evaluated by examining a correlation matrix and a variance inflation factor 
(VIF). The VIF identifies the correlation between independent variables and provides an index for 
the strength of correlation, i.e., severity of existence of multicollinearity. VIFs equal or less than 5 
indicates the moderate correlation and VIFs greater than 5 imply the critical levels of 
multicollinearity [43], [44]. Table1 shows an example of the correlation coefficient among PWV, P, 
T, and RH over the stations in the training dataset station and for the right before classes. The 
correlation coefficients between PWV, P and RH are larger than the other coefficients. Since the 
correlation coefficient cannot sufficiently provide an estimate of the degree of multicollinearity, 
other statistics are added to detect the probable existence of collinearity and its severity.  
 

 
 
 
 
 
 
 
 

 
TABLE 1: Correlation Matrix of Variables. 

 
Table2 provides the multicollinearity statistics for each variable in the model. The statistics 

include R-squared value (   , the tolerance factor, which is (1-  ), and VIF, which equals to the 

inverse of the tolerance factor. A high value for    and the VIF value greater than 5 may cause 
non-significant parameter estimates in the regression due to multicollinearity problem.   
 
 
 
 
 
 
 

 
TABLE 2: Multicolinearity Statistic. 

 
As shown in Tables 1 and 2, the moderate to significant correlations exist between the tested 
meteorological parameters. To avoid the multicollinearity from the suggested statistical model, we 
applied Principal Component Regression (PCR), which is based on the Principle Component 
Analysis (PCA). The PCA extracts the maximum variance of a data set as factors in an iterative 
process. The resulting factor represents the vector that maximizes the dispersion of the 
observations. The first principal component accounts for the largest variability in the data, and 
each succeeding component accounts for the next biggest variability of the remaining property in 
the data. Principal components are uncorrelated orthogonal linear functions of the original 
variables obtained by a transformation of the form [44], [45]:  

 
                                                                                                                                                              

 
where   is the set of transformed variables as principal components, Z is the set of original 
variables, and A is the set of eigenvectors associated with significant eigenvalues obtained from 
the correlation matrix of the original variables [44]. In PCR, the independent variables are 
standardized to avoid the problem of non- commensurate units of the variables so that: 
 
                                                                                                                                                                   

 

Statistic 
 

PWV 
 

P 
 

T 
 

RH 

   0.840 0.628  0.595  0.815 

Tolerance 0.160 0.372 0.405 0.185 

VIF  4.235 2.686 2.470 4.416 
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where t = 1,2, …,n and j = 1 ,2 ,…,p and     is described as  

 

                                                                      
              

         
                                                                          

 
where     is        ,    and    . The Kaiser-Meyer-Olkin (KMO) measure of sampling 

adequacy and Bartlett’s test of sphericity are used to evaluate the suitability of data for factor 
analysis [44], [46]. The Chi-square value of 5496.3 is significant at 95% confidence interval and 
KMO statistic of greater than 0.50 for all variables confirms the appropriateness of PCA for further 
analysis of data.  In the next step, the eigenvalues and the eigenvectors are computed from the 
correlation matrix of the standardized independent variables. The eigenvalues are 2.491, 1.157, 
0.266 and 0.085 and the eigenvectors are as follows: 
 
 

 
 
 
 
 
 

TABLE 3: Eigenvectors Resulted from PCA. 

 
Table 3 shows the correlation between the meteorological variables in Table 1 and their principle 
components (F1- F4). Clearly, the first principle component is substantially correlated with PWV, 
pressure and relative humidity. The second and third component is correlated with temperature 
and pressure respectively. However, the fourth principal component is moderately not correlated 
with the explanatory variables. The contribution of each factor to the total variability of the dataset 
is shown in Table 4.  
 
 
 

 
 
 
 

 
TABLE 4: Eigenvalues explain most of the variability in data. 

 
It demonstrates that the first principal component    ) accounts for 62.28 % of the system 

"variance" while the second    ), third    ) and fourth    ) components account for 28.93%, 
6.66% and 2.12% respectively. Based on the contribution of each component in the variability 
explanation in the dataset and factor loadings of principal components, the first three principal 
components were considered in the PCR. The selected principal components explain more than 
97% of the variance. The regression model is then described as: 
 

                                                                                                                                                 
 

where y is a dependent variable, F represents principal components, b is regression coefficients 
to be estimated, and e indicates an error term.  
 
3.4 Model Parametrization 
The PCR model in Eq (8) generates the set of coefficients for the principle components. The set 
of regression coefficients shown as b vector in Eq (8) and the ‘t’ statistic for each coefficient are 
provided in Table 5. A t-test and the corresponding p-values are performed to test a null 
hypothesis and evaluate the significance of each component in the regression model. The null 
hypothesis is that the regression equation does not explain a significant variation of the 
dependent variable; i.e., the regression coefficients are equal to zero. The p-values are compared 

 

Variables 
   

 

   

 

   

 

   

 

      0.588 0.236 0.354  0.088 

   -0.575 0.004 0.815 0.071 

    0.342 0.921 0.030 -0.082 

     0.568 -0.309 0.235 -0.013 

 

 

 
   

 

   

 

   

 

   

 

Eigenvalue 2.491 1.157 0.266 0.085 

Variability (%) 62.282 28.935 6.662 2.121 

Cumulative % 62.282 91.217 97.879 100.000 
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to a significance level (0.05 in this study) to make the decisions whether to retain or reject the null 
hypotheses. If the p-value for a variable is less than the significance level, the null hypothesis will 
be rejected. 
 
 
 

 

 
 
 
 

TABLE 5: Principle Component Regression Coefficients. 

 
The t-test values and their corresponding p-values at 95% confidence interval shows that the 

regression coefficients are statistically significant. When the non-zero regression coefficients are 
statistically significant, the alternate hypothesis is accepted, i.e., the calculated coefficients are 
used to form the PCR model. By applying the derived coefficients to each factor in Eq (8), the 
final model is as follows: 

 
                                                                                                                                              

 
While the normal distribution of independent variables is not essential to perform PCR, the 
normality of PCR residuals is a critical requirement for the ability to use the standard critical value 
for statistic tests such as t- and F-test. Moreover, auto-correlated PWV residuals lead regression 
coefficients to be statistically insignificant and make statistic tests unreliable. Therefore, the 
normality test and Autocorrelation Function are used to evaluate the conditions of normal 
distribution and detection of autocorrelation respectively. The proposed statistical model 
quantifies the relationship between the predicted PWV ROC and meteorological variables. The 
model is further extended to predict the path of the hurricane by utilizing the behavior of the PWV 
ROC as a significant indicator of predicting different intensity and duration of the event. 
 

4. HURRICANE PATH PREDICTION MODEL  
In Section 3, a statistical model for predicting PWV was demonstrated. Figure 3 shows the 
flowchart describing all the phases in the modeling of the rainfall path prediction during the 
hurricane in the previous sections. 
 

 
 

FIGURE 3: Flowchart describing the phases in prediction of hurricane rainfall path. 

 

 

 
VALUE 

 
STANDARD 

ERROR 

 
T-TEST 

 
P-value> |T| 

 

    0.928 0.004 207.867 < 0.0001 

    0.254 0.003 56.882 < 0.0001 

   0.183 0.004 40.866 < 0.0001 

 

https://statisticsbyjim.com/glossary/significance-level/
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From the model, the temporal variation of PWV at a particular site can be obtained. By observing 
the temporal variation of PWV at multiple sites simultaneously, the spatial variation of PWV at a 
certain epoch can be monitored and analyzed that can be applied to forecast the spatial 
movement of severe weather event, which is a hurricane in this study.  
 
4.1 Model Parametrization  
For each class in the hurricane development phases represented in Figure 2, the predicted PWV 
calculated form the methodology described in Section 3, was compared with the actual PWV. The 
reliability of the prediction model is validated by calculating the residuals of the PWV 
measurements for each model.  The residuals are computed by applying the derived coefficients 
from the training dataset to all other CORSs in the independent test dataset. As an example, the 
coefficients derived for each class from the training dataset, are applied to CCV6, to predict PWV 
for each class for CCV6. Figure 4 depicts the predicted PWV at CCV6 over the period of 5-12 
October 2016 and the corresponding residuals using one-hour prediction model for all classes of 
event. The bottom panel in Figure 4 depicts the residuals of the predicted PWV from the 
estimated PWV. The amplitude of the residuals is about 5 % - 10% to the amplitudes of 
corresponding PWV almost all period except the “after” class where a significant rise was shown. 
It is possibly due to the fact that the prediction models are derived based upon the PWV 
fluctuation during the rainfall so that it is not sensitive to non-rain scenarios such as the “after 
rain” event. Also, the maximum residuals are within the first or last epochs of the corresponding 
class in each model except “after” class. This is because of the transition from one model to 
another. However, the range of residuals for each model shows how the model matches to the 
actual PWV time series. 
  

 
 

FIGURE 4: Prediction models and the corresponding residuals for CCV6 during 5-12 Oct, 2016; The top 

panel shows the models in different colors that are mapped over the actual PWV time series (Black line) and 
the blue bars represent the recorded actual rainfall on the station for the mentioned period.; the bottom 

panel shows the residuals of observations with respect to each model. 

 
4.2 Spatial-temporal Analysis of Predicted PWV Residuals and Prediction of Hurricane 

Path 
To investigate the PWV responses to the storm front, the PWV residuals of right before and right 
after models are shows in Fig 5. Fig 5 (a) shows the residuals of “right before” model when the 
rain event approaches near the stations in the south region (near Florida) and Fig 5 (b) shows the 
residuals of the “right after” model when the rain event passed Florida. It shows that the location 
of the minimum residuals along the hurricane days agree with the observed rain pattern, which is 
used for prediction of the hurricane path. For example, the smaller residual takes place a few 
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1h 
 

6h 
 

12h 
 

24h 

Mean 0.004 0.003 0.003 0.003 

Standard 
deviation 

0.000 0.001 0.000 0.002 

 

hours before the hurricane passage demonstrating a higher concentration of the rainfall in the 
area of the right before model. In this model, the larger residuals corresponded to either 1) the 
area not affected by the hurricane yet or 2) the area where rain ceases; i.e., the area with smaller 
residuals can be considered as a probable area to be affected by a hurricane. 
 

 
 

FIGURE 5: Distribution of actual PWV and the residuals for the “right before” and “right after” models over 

the area corresponding to 7 October at 9:00 am  (Figure5 (a) : left panel) and 8 October at 12:00 pm GMT 
(Figure5 (b) : right panel) respectively. The red hurricane mark shows the actual reported time and location 

of the hurricane center provided by National Weather Service (Figures are created by ArcGIS). 

 
Table 6 summarizes the result of a prediction model at CCV6. In this example, the “right before” 
model is examined over different time lags and computed the residual of the observed PWV from 
the prediction model. Table 6 provides the statistics of the residuals, which are mean and 
standard deviation for the “right before” model in different prediction time lags. 

 

TABLE 6: Residuals for the prediction model (right before the hurricane) in prediction time lags at CCV6 

(unit:meter). 

 
The station within with the minimum residuals of the “right before” model can be considered as an 
indicator for the most probable region to be affected by hurricane. The hurricane path can be 
determined by observing the predictions of PWV derived at multiple sites in different directions. 
The residuals of the “right before” model at those sites are compared for the prediction time lags 
of 1 – 24 hours over the study area. In each model, the minimum residuals over the stations show 
where and when the model is the best fit to the actual observations on the specific time window.    
For more robust analysis considering the uncertainty due to the noise and other error sources in 
the input data, we evaluated the residual PWV at multiple sites in a local area by forming grids of 
200×200 km

2
.The grid size was determined with the consideration of the test site and the 

distribution of available GNSS stations. As shown in the map in Figure 5, each cell is wide 
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enough to cover multiple CORSs that it reduces the risk of failure or error of a particular station. 
Also, the cell is small enough to distinguish the directions of potential paths of hurricanes. Unlike 
the conventional method of NWS forecast, which provides the different size of probability circles 
for the location of hurricane centers, our proposed approach indicates the most probable cell for 
the hurricane path with the mean and the standard deviation of the model residuals. Figure 6 
presents the residuals to the right before models at the stations in the study area for 1 hour and 
24 hour forecast in panels (a), (b) respectively. It should be noted that the storm front passed 
over the region around CCV6 from 9:00 am GMT on October 7. The right before model is applied 
to CCV6 station and the residuals for different prediction time are shown in the figures. The 
hurricane path is determined based on the direction of grids containing the sites with smaller 
residuals than another grids. The red line in Fig 6 is the reported path during hurricane time from 
National Weather Service (NWS). The reported time of hurricane centers along this path was 
presented in Fig 1.  
 

 
 

FIGURE 6: Predicted residuals over the study area by applying prediction model to CCV6 on 7 Oct, 2016. 

The hurricane hit the area close to CCV6 on 7 October at 9:00 am GMT. The red hurricane mark shows the 
reported time and location of the hurricane provided by NWS. The red line also shows the reported 

hurricane path.  In each image, red grid shows the stations fall into the hurricane and black girds show the 
grids correspond the stations located outside the hurricane center. The residuals are corresponding to the 
“right before” model in 1h and 24h time prediction lead time in the left panel (Figure6 (a)) and right panel 

(Figure6 (b)) respectively (Figures are created by ArcGIS). 

 
By comparing the average residuals of stations within each grid, the hurricane path can be 
predicted to move eastward. Moreover, in order to investigate the predicted rainfall intensity in 
each grid in the hurricane path, the residuals within the corresponding grid are compared to each 
other.  For instance, among the stations in Figure 6 (a) ZJX1 in the red grid represents the lowest 
residual (Figure 7), which  means the area near ZJX1 station is highly likely hit by the hurricane 
around 10:00 am GMT on 7 October. The same strategy is applied for 24 hour prediction time 
window in Fig 6 (b). The numerical comparisons of prediction residuals for the grids located inside 
and outside of the hurricane are provided in the Figure 7 and Figure8 respectively. 
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FIGURE 7: Residuals and its standard deviation in parenthesis (in meter) for the grids inside the hurricane 

(red) and outside the hurricane (black). The results are attributed to the “right before” prediction model (1h) 
at 9:00 am GMT on 7 Oct to predict 1h later. 
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FIGURE 8: Residuals and its standard deviation in parenthesis (in meter) for the grids inside the hurricane 

(red) and outside the hurricane (black). The results are attributed to the “right before” prediction model (1h) 
at 9:00 am GMT on 7 Oct to predict 24h later. 

 
As shown in Figure 7 and 8, the characteristics PWV residual in each grid plays a role as a 
forecast indicator, to predict the path of the hurricane and its relative intensity. The path of a 
hurricane can be forecasted by analyzing the locations of lower residual grids based on the 
prediction models with different prediction time window. Also, the relative intensity can be 
estimated by relative comparison of residuals within each grid in the hurricane path. The 
predicted PWV behavior preceding the rain event varies from a station to another station in terms 
of the magnitude of residuals in each grid, which can be due to the variation of the storm intensity 
in each location. And, the stations with the lower residuals within that grid shows the more severe 
parts of hurricane. The experimental results shown in Figs 6, 7, and 8, indicate a sequence of 
rapid predicted PWV residual decrements for each station, starting from Florida at 9:00 am GMT 
October 7 and reaching in South Carolina and North Carolina after 24 hours at 8:00am GMT on 
October 8, our experimental result is confirmed by the reported hurricane path in Fig 5. 

 
5. SUMMARY AND CONCLUSION  
In this experiment, the relationship between GNSS derived PWV and atmospheric parameters 
have been analyzed for Hurricane Matthew in 2016. The analysis of the GNSS-derived PWV time 
series agree that the occurrence of rain events in the study area is related to atmospheric low 
pressures and water vapor entries. During the event, the patterns of the GNSS-derived PWV 
fluctuations were observed showing sudden and sharp increments in the PWV followed by sharp 
descending trends, a few hours prior to the onset of precipitation. This supports a connection 
between large PWV increments and convective precipitation. Through the case study, the trace of 
the hurricane was characterized based on the relationship between predicted GNSS-derived 
PWV and heavy rainfall by monitoring the troposphere water vapor distribution trend before, 
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during, and after the severe precipitation due to the hurricane. Based on the relationship between 
GNSS-derived PWV rate of change and actual atmospheric parameters, a short-term forecasting 
method is established to track the rainfall during the hurricane. The PCA and multivariate 
regression analysis were performed in order to derive the prediction model. The method can 
forecast the severe hurricane precipitation track 1-24 hours in advance. The result of this study 
provides evidence that the level of predicted PWV fluctuations can be precisely matched to the 
meteorological and geographic conditions. Moreover, this method can be applied to different 
regions, and different durations of rainfall events because the model is defined by using the 
measurements of actual test site to define the initial stage of hurricane right after it lands to the 
ground stations By testing the prediction models of before, during and after hurricane, it has been 
verified that the precipitation frequency increased rapidly when the PWV reached a certain 
threshold. The definition of each class (before, during and after) is associated with the threshold 
defined by the variations of GNSS-derived PWV. Also, our results show that the predicted PWV 
ROC significantly increased prior to the severe precipitation that are more extreme change than 
those predicted for other weather conditions. This is verified by representing the distribution 
pattern of the predicted PWV residual, its magnitude and the actual observed PWV in the region. 
Our results illustrate that tracking the location of the minimum residual during the hurricane agree 
with the observed rain pattern and can be used for rainfall path prediction during the hurricane. 
For the model used for hurricane onset prediction, the smaller residuals occur a few hours before 
the hurricane passage, demonstrating that a bigger concentration of the hurricane rainfalls in the 
area. From this model, the area with the larger residuals is considered either not to be affected by 
rainfall induced by the hurricane or agreed with the rain’s stop observed for the corresponding 
time. Therefore, the magnitude of the predicted model residuals is used for hurricane rainfall 
tracking and potentially applies to evaluate the intensity prediction respectively. 
 
This study shows the feasibility of a short term (up to 24 hours) forecast for hurricane path by 
applying high resolution GNSS-derived PWV. In addition, the availability and widespread spatial 
distribution of GNSS stations provide continuous PWV estimates in near real time. Although the 
other metrological measurements were also the part of the prediction model, the interpolated 
values from relatively sparse meteorological data still generated reliable solution in our case 
study that was considerably thanks to their characteristics that are relative stable over time and 
space. Since various hurricanes have their own characteristics, this study will be applied to other 
hurricane events to validate or refine the method.  
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