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Abstract 

 
Classical (or passive) elitism mechanisms in the MOEA (Multi-objective Evolutionary Algorithm) 
literature have a holding/sending back structure. In this paper, an active elitism mechanism for 
multi-objective evolutionary algorithms is proposed. In the active elitism mechanism, a set of elite 
(or non-dominated) individuals is excited by genetic operators (crossover/mutation) in the archive 
in the hope of generating better and more diverse individuals than themselves. If a set of excited 
elites are any better than originals, then archive can be viewed as a place of active solution 
provider rather than a static storage place. The main motivation behind this approach is that elite 
individuals are inherently the closest individuals to the solution (of any optimization problem on 
hand) and exciting those individuals can likely generate more significant outcomes than a far 
away one. The proposed active elitism mechanism is embedded into well-known multi-objective 
SPEA and SPEA2 methods (named ACE_SPEA and ACE_SPEA2 respectively) and compared to 
the original methods using four unconstrained test problems. The active elitist versions of SPEA 
and SPEA2 maintain better spread and convergence properties than the original methods on all 
test problems. The proposed active elitism mechanism can easily be integrated into existing 
multi-objective evolutionary algorithms to improve their performance.  
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1. INTRODUCTION 
Multi-objective optimization is with no doubt a very important research topic both for scientists 
and engineers, not only because of the multi-objective nature of most real world problems but 
also because there are still many open questions in this area [1]. MOEAs are playing a dominant 
role in solving problems with multiple conflicting objectives and obtaining a set of non-dominated 
solutions which are close to the Pareto optimal front. They have a number of advantages such as, 
obtaining a set of non-dominated solutions in a single run, easy handling of problems with local 
Pareto fronts and discrete nature due to their population approach and flexible recombination 
operators [2].  
 
In the literature, there have been a lot of research activities on multi-objective optimization using 
evolutionary algorithms and a number of well performing MOEAs have been published. MOEAs 
differ from each other with some mechanisms: fitness assignment, elitism (or archive 
management) and hybridization to other algorithms. Elitism mechanism has critical role on the 
performance of a MOEA. Because, elite (or non-dominated) individuals are the best individuals 
found by an algorithm in a single run. The presence of elitism could improve the performance of 
MOEAs, but care must be taken to apply it efficiently [2].   
 
Classical sense of elitism in single-objective evolutionary algorithms (SOEAs), the best solution is 
always copied into the next population. Although the incorporation of elitism in MOEAs is more 
complex than SOEAs, fundamental practice is similar. There are various ways to incorporate 
elitism into MOEAs. Most algorithms make use of a second population (or archive) of elite 
individuals. Though there are great varieties in the implementation of elitism, it can be 
summarized some important features as follows: First, they require preserving the best solutions 
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in the population, an archive or sub-population. Second, they require consideration of several 
strategies, including the elitism strategy, or how the elitist population is updated; the re-insertion 
strategy, or how elite individuals take part in the production of offspring; and the control flow, or 
when archiving and re-insertion take place. Unfortunately, particular implementations leave the 
determination of many parameters to the decision makers. They also inevitably increase the 
space and time complexity. Nevertheless, the evidence shows that elitism is an important and 
indispensable factor in EMOO (Evolutionary Multi-objective Optimization) [3]. 
 
It has been reported that the elitist versions of two different MOEAs perform equally well [4],[5]. 
Therefore, elitism makes MOEAs more capable than those which do not employ it. Rudolph has 
proved that GAs (Genetic Algorithms) converge to the global optimal solution of some test 
functions in the presence of elitism [6],[7]. Furthermore, the presence of elite individuals 
enhances the probability of creating better offsprings. 

 
Two major phases in classical elitism mechanism are: 
 
i)  Holding phase: Which individuals are going to be kept in archive? In this phase, non-

dominated solutions (or elites) in parent (primary) population are stored in the archive.  
 
ii)  Sending back phase: Which individuals are going back into the primary population? One 

strategy is to copy all elite individuals from current population to next population. Another 
strategy is to copy only a number of elite individuals to next population [4].  

  
Elitism procedures in the literature are generally similar. Generally, elite individuals are stored in 
an extra population (or archive). And then, archive is updated by some criterions. Adding new 
elite individuals to archive and removing dominated elites from archive are named as archive 
truncation. There are many archive truncation methods used in MOEAs [4],[8],[9],[10],[11]. As a 
result, common point of all classical (or passive) elitism mechanisms is storing elites in an archive 
without any excitation and passing them into the main population. 

 
In this paper, an active elitism mechanism is proposed. In the active elitism mechanism, a set of 
elite individuals is excited by genetic operators (crossover/mutation) in archive in the hope of 
generating better or more diverse individuals than themselves. If a set of excited elites is better 
than originals, then the archive can be viewed as a place of active solution provider rather than a 
static storage place.  

 
In this paper, well-known multi-objective SPEA (Strength Pareto Evolutionary Algorithm) and 
SPEA2 (Strength Pareto Evolutionary Algorithm 2) methods [2],[4],[12] with passive elitism and 
modified version of them (ACE_SPEA, ACE_SPEA2 respectively) with active elitism mechanism 
are simulated and compared.  
 
The remainder of this paper is organized in five sections. Section 2 describes the basic concepts 
of MOPs (Multi-objective Problems). Section 3 explains SPEA and SPEA2 algorithms, 
respectively. Section 4 gives detailed descriptions of the proposed active elitism mechanism. 
Experimental problem sets and simulation results are given in Section 5. Finally, Section 6 
contains the discussion, concluding remarks and future directions. 
 

2. MULTI-OBJECTIVE OPTIMIZATION  
A multi-objective optimization problem can be stated as follows: 
 

 ( ) ( ) ( ){ } Ω∈xxfxfxf m   ,   ,,,min 21 L                                     (1)  

 

where ( )nxxxx ,,, 21 L=  is the decision variable vector and )(xfi
 are the objective functions. Ω is 

the decision space. A solution x is said to dominate solution y if and only if )()( yfxf ii ≤  for every 
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{ }mi ,,2,1 L∈  and )()( yfxf ii <  for at least one index { }mj ,,2,1 L∈ . A point Ω∈
*

x  is Pareto 

optimal to (1) if there is no point Ω∈x  such that )(xf  dominates )( *
xf . )( *

xf  is Pareto-optimal 

objective vector. The set of all the Pareto-optimal points is called the Pareto Set (PS). The set of 
all the Pareto-optimal objective vectors is called the Pareto Front (PF).  
 

3. SPEA and SPEA2 
 
3.1. SPEA (Strength Pareto Evolutionary Algorithm) 
SPEA is an elitist evolutionary algorithm method based on Pareto definition [4],[5]. This method 
was introduced by Zitzler and Thiele. Evolutionary processes of SPEA are managed by two 
different populations. One of these populations, called regular population is utilized to generate 
offspring. Other population, called an archive with pre-defined size individuals is employed to 
preserve the evolutionary information of Pareto front [13]. At each generation, non-dominated 
individuals are copied to the archive. For each individual in the archive, a strength value is 
computed. 
 
In SPEA, the fitness of each member of the current population is computed according to the 
strengths of all external non-dominated solutions that dominate it. Additionally, a clustering 
technique called “average linkage method” is used to keep diversity. 
 
3.1.1. Fitness Assignment Strategy of SPEA 
Let n be the number of individuals dominated by a non-dominated solution and let N be the total 
number of dominated individuals (all the individuals except the first Pareto front). Then the fitness 
(or strength) of the non-dominated solution is defined as: 
 

1+
==

N

n
sf ii                          (2) 

 
The fitness of a dominated solution is calculated by adding the fitness of all the non-dominated 
individuals that dominate it, plus one: 

 

∑+= ij sf 1                           (3) 

 
For the sake of clarity, the fitness of a non-dominated solution (C) and a dominated solution (E) 
are numerically given in Figure 1. There are four dominated individuals (E,F,G and H) in the 
population, so 4=N . Solution C dominates two individuals (E and H), so the fitness/strength of C 

is 2/5. Solution E is only dominated by non-dominated C. For this reason the fitness of E is 
(1+(2/5)=7/5, so E(7/5) is assigned. 
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FIGURE 1: Fitness assignment example of SPEA (Non-dominated individuals are shown by black 
circles, dominated individuals are shown by grey circles). 

 
3.1.2. Elitism Mechanism of SPEA 
SPEA uses a regular population and an archive. Starting with an initial population and an empty 
archive, the following steps are performed per iteration. First, all non-dominated population 
members are copied to the archive; any dominated individuals or duplicates (regarding the 
objective values) are removed from the archive during this update operation. If the size of the 
updated archive exceeds a predefined limit, further archive members are deleted by a clustering 
technique which preserves the characteristics of the non-dominated front. After the mating 
selection, recombination and mutation phases, the old population is replaced by the resulting 
offspring population. 
 
3.2. Strength Pareto Evolutionary Algorithm 2 (SPEA2) 
SPEA2 has three main differences with respect to its predecessor [12]: (i) it incorporates a fine-
grained fitness assignment strategy which takes into account for each individual the number of 
individuals that dominates it and the number of individuals by which it is dominated; (ii) it uses a 
nearest neighbor density estimation technique which guides the search more efficiently, and (iii) it 
has an enhanced archive truncation method that guarantees the preservation of boundary 
solutions.  
 
3.2.1. Fitness Assignment Strategy of SPEA2 

Each individual i in the archive tP  and the main population tP  is assigned a strength value )(iS , 

representing the number of individuals it dominates: 
 

}|{)( jiPPjjiS tt f∧+∈=                                         (4) 

 
where + stands for multiset union and the symbol f  corresponds to the Pareto dominance 
relation. On the basis of the S values, the raw fitness R(i) of an individual i is calculated: 
 

    ∑=
+∈ ijPPj tt

jSiR
f,

)()(                          (5) 

That is the raw fitness determined by the strengths of its dominators in both archive and 
population, as opposed to SPEA where only archive members are considered in this context. The 
density estimation technique used in SPEA2 is an adaptation of the k-th nearest neighbor 
method, where the density at any point is a (decreasing) function of the distance to the k-th 
nearest data point. To be more precise, for each individual i the distances (in objective space) to 
all individuals j in archive and population are calculated and stored in a list. After sorting the list in 

 A (2/5) 

F (8/5)

B (3/5) 

C (2/5)

D (1/5)

E (7/5)

G (10/5)

H (13/5) 
f2 

f1 
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increasing order, the k-th element gives the distance sought, denoted as k
iσ . As a common 

setting, we use k equal to the square root of the sample size, thus, NNk += . ( N : population 

size, N : archive size). Afterwards, the density )(iD  corresponding to i is defined by: 

 

2

1
)(

+
=

k
i

iD
σ

                                      (6) 

 

Finally, adding )(iD  to the raw fitness value )(iR  of an individual i yields its final fitness: 

 
)()()( iDiRiF +=                          (7) 

 
A fitness assignment example of SPEA2 is shown in Figure 2.  

     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       (a)             (b)  
 

FIGURE 2. (a) Raw fitness values assigned by SPEA2. (b) Final fitness values assigned by 
                        SPEA2 (k=3.1623). 

 
The first step is the determination of strength of an individual.  Strength of an individual is defined 
as the total number of individuals dominated by this individual. For example, A dominates two 

individuals {G,H}, strength of A or 2)( =AS , and H dominates no individual, thus 0)( =HS . The 

strength of an individual indicates relative domination ability of an individual (in terms of number 
of dominated individuals).  

 
The second step is the determination of raw fitness. The summation of strength values of a set of 
individuals that dominates an individual is defined as raw fitness value of the individual. Due to 
this definition, non-dominated individuals {A,B,C and D} get ‘0’ raw fitness values. For example, 

raw fitness of A or 0)( =AR , because A is not dominated by any individual and similarly )(HR  is 

11 because all individuals dominate H.   
 
In the third step, density information is added to the raw fitness value according to Eq.7 and the 
final fitness value is obtained for each individual.  Figure 2 depicts the raw and final fitness values 
of an example population assigned by SPEA2.  
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3.2.2. Elitism Mechanism of SPEA2 
The archive update operation in SPEA2 differs from the one in SPEA in two respects: (i) the 
number of individuals contained in the archive is constant over time, and (ii) the truncation 
method prevents boundary solutions being removed. The first step is to copy all non-dominated 
individuals, i.e., those which have a fitness value lower than one, from archive and population to 

the archive of the next generation ( P - main population, P - archive, N - population size,             

N - archive size): 
 

               








<∧+∈=+ 1)(|1 iFPPiiP ttt                                                     (8) 

 

If the non-dominated front fits exactly into the archive ( NPt =+1 ) the environmental selection 

step is completed. Otherwise, there can be two situations: either the archive is too small 

( NPt <+1 ) or too large ( NPt >+1 ). In the first case, the best 1+− tPN  dominated individuals in 

the previous archive and population are copied to the new archive. This can be implemented by 

sorting the multiset tt PP +  according to the fitness values and copy the first 1+− tPN  individuals 

i with 1)( ≥iF  from the resulting ordered list to 1+tP . In the second case, when the size of the 

current non-dominated set exceeds N , an archive truncation procedure is invoked which 

iteratively removes individuals from 1+tP  until NPt =+1 . Here, at each iteration, the individual 

which has the minimum distance to another individual is chosen for removal; if there are several 
individuals with minimum distance the tie is broken by considering the second smallest distances 
and so forth.  

 
4. ACTIVE ELITISM MECHANISM 
In the elitism mechanism as stated in [14], a set of elite individuals is excited by genetic operators 
(crossover/mutation) in archive in the hope of generating better or more diverse individuals than 
themselves. If a set of excited elites is any better than originals, then the secondary population 
can be viewed as a place of active solution provider rather than a static storage place. The main 
motivation behind this approach is that elite individuals are inherently the closest individuals to 
the solution (of any optimization problem on hand) and exciting those individuals can likely 
generate more significant outcomes than a far away one. This structure is named as the active 
elitism mechanism.  
 
It is not always possible to select all elite individuals and to place them into reproduction process 
by means of selection mechanism. Unselected elite individuals can’t be excited by genetic 
operators and they can’t generate new solutions. However, the active elitism mechanism gives a 
chance to all elite individuals for generating new solutions. Block diagram of an active elitist 
MOEA is given in Figure 3. 
 
Active elitism mechanism is applied to MOEAs in two forms:  
 

i) Excitation of the elite individuals by mutation operator,  
ii) The elite individuals in the current archive are recombined with the elite individuals in  

                    the past archive (n step before). 
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FIGURE 3. Block Diagram of an Active Elitist MOEA. 
 

       
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 

 
       

   
 
 

FIGURE 4. Excitation of elite (or non-dominated) individuals by mutation operator. 
 
An example of excitation of elite individuals by the mutation operator is shown in Figure 4. Each 
individual in the archive (or secondary population) is mutated once. A set of mutants depicted by 
squares (A1,C1,E1) are closer to the Pareto-optimal front (in terms of two objectives) than the 
original ones depicted by circles (A,C,E). Thus; A, C and E is replaced by A1, C1 and E1 in the 
archive. Other mutants depicted by triangles (B1 and D1) are farther from the Pareto-optimal front 
than the original ones (B and D). Therefore; B and D remain unchanged in the archive. Euclidian 
distance is used to calculation of the distance of the individuals to the Pareto-optimal front.  
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k. iteration 

(k-n). iteration 

 
An example of excitation of elite individuals by the crossover operator is shown in Figure 5. In this 
phase, elite individuals in kth iteration are recombined to elite individuals in (k-n)th iteration. 
Obtained individuals symbolically depicted by triangles in Figure 5 are better (or closer) than 
original elites in kth iteration. So, they are substituted in the archive. Generally speaking, the 
archive remains unchanged if offspring (generated by excitation of crossover or mutation) is not 
any better than the original one. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 5. The current and past elites are recombined with crossover operation. Circles are the 
elite individuals in kth iteration, squares are the elite Individuals in (k-n)th iteration, triangles and 

stars are offsprings. 
     
5. SIMULATION RESULTS 
 
5.1. Test Problems 
Four continuous test functions (ZDT1, ZDT2, ZDT3 and ZDT6) which have been used in various 
MOEA studies are experimented. ZDTs are state-of-art test problems for MOEA comparisons 
[4],[5]. All test problems with their properties are presented in Table 1. All these problems in Table 
1 are bi-objective minimization problems. None of these problems have any inequality or equality 
constraints. Table 1 also shows the number of variables, their bounds, the Pareto-optimal 
solutions, and the nature of Pareto-optimal front for each problem.  
 
 
 
 
 
 
 
 
 
 
 
 

f2 

f1 
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Problem n 
Variable 
Bounds 

Objectives Functions Comments 

ZDT1 30 [0,1]
n [ ] ( )1/91)(  ,  )(/1 )()(    ,     )(

2
1211 −








+=−== ∑

=

nxxgxgxxgxfxxf
n

i
i  Convex 

ZDT2 30 [0,1]
n [ ]

  ZDT1of    thoseas  same    theis  

 ))(/(1 )()(  ,    )(
2

1211

g(x)

xgxxgxfxxf −==
 Non-convex 

ZDT3 30 [0,1]
n 

  ZDT1of      thoseas  same    theis  

)10sin(
)(

)(/1)()(        ,      )( 1
1

1211

g(x)

x
xg

x
xgxxgxfxxf 








−−== π

 
Convex, 

disconnected 

ZDT6 30 [0,1]
n 

[ ]

( )

25.0

2

2
121

6
11

1/91)(

))(/)((1 )()(       ,    )6(sin)4exp(1)(









−








+=

−=−−=

∑
=

nxxg

xgxfxgxfxxxf

n

i
i

π

 
Non-convex, 
non-uniformly 

spaced 

 
TABLE 1: Test problems used in this paper, n is the number of decision variables. 

 
5.2. Parameter Settings 
The parameter settings in the experimental studies are given in Table 2. For ZDT1 and ZDT3, 
decision variables are coded with 30 bits.  For ZDT2 and ZDT6, decision variables are coded with 
10 bits. The population size of 100 is selected for making comparisons on the same conditions. 
For SPEA, a population of size 100 and an archive of size 25 are employed (this 4:1 ratio is 
suggested by the developers of SPEA to maintain an adequate selection pressure for the elite 
solutions). 
 

 SPEA / ACE_SPEA SPEA2 / ACE_SPEA2 

The number of decision variables (n) 30  30  

The mutation rate (pm) 
length) string  theis  (where

    /1                  

l

l
        /1 l  

The crossover rate (pc) 0.9 0.9 

The active mutation rate (pm_active) 0.05 0.05 

The population size (N) 100 100 

The archive size (or the secondary 

population size)  ( N ) 
25 100 

Maximal number of generations  100 100 

Number of runs 20 20 

 
TABLE 2: Parameter Settings for all MOEAs. 

5.3. Performance Metrics 
There are some metrics (or indicators) used for MOEA comparison in the literature. Some of them 
are C-measure “[4],[5]”, IGD (Inverted generational distance [11], HV (Hypervolume) indicator (S 
measure in [4], epsilon indicator [15], GD (Generational Distance) and ∆ “[2],[9]”. GD and ∆ 
metrics are used in assessing the performance of the algorithms in the experimental studies. The 
first metric (GD) measures the extent of convergence to a known set of Pareto-optimal solutions. 
First, a set of uniformly spaced solutions (500 is used in this paper) from the true Pareto-optimal 
front in the objective space is found. For each solution obtained with a MOEA, we compute the 
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minimum Euclidean distance between it and the chosen solutions on the Pareto-optimal front. 
The average of these distances is used as the convergence metric (GD) [2],[9]. Figure 6(a) shows 
the calculation procedure of this metric. The smaller the value of this metric, the better the 
convergence toward the Pareto-optimal front is. 
  

 
 
 
 
 
 

   
   

 
 
 
 
 
 

     
       (a)                           (b) 
 

FIGURE 6.  (a) Convergence Metric (GD). (b) Diversity Metric (∆). 
 
The second metric (∆) measures the extent of spread achieved among the obtained solutions. 
The Euclidean distance di between consecutive solutions in the obtained non-dominated set of 

solutions is calculated. The average d  of these distances is then calculated. Thereafter, from the 

obtained set of non-dominated solutions, we first calculate the extreme solutions (in the objective 
space) by fitting a curve parallel to that of the true Pareto-optimal front. Then, the following metric 
is used to calculate the non-uniformity in the distribution [2],[9]: 

 

dNdd

dddd

lf

N

i ilf

)1(

1

1

−++

−++
=∆

∑
−

=
                         (9) 

 
Here, the parameters df and dl are the Euclidean distances between the extreme solutions and 
the boundary solutions of the obtained non-dominated set, as depicted in Figure 6(b). The values 
of these two metrics are desired to be small.  
 
5.4. Discussion of the Simulation Results 
In this paper, binary tournament is employed as a selection procedure. The single-point crossover 
and bit-wise mutation are applied. All methods have been run twenty-times on four benchmarks 
from the literature. Afterwards, mean and variance values of convergence (GD) and diversity (∆) 
metrics are calculated. These two metrics are desired to be small. 
 
In ACE_SPEA (ACtive Elitist SPEA) and ACE_SPEA2 (ACtive Elitist SPEA 2), the elite 
individuals are excited by mutation operator up to 31 iterations (it is decided by experimentation), 
after 31 iterations mutation is being ceased. If the mutants of excited elites better than original 
elites (Euclidian distance is used), they are substituted in the archive, otherwise original elites 
remain unchanged. At the same time, the elite individuals in kth iteration are recombined to the 
elite individuals in (k-n)th iteration. For example, the elites in iteration-20 are recombined 
sequentially to the elites in iteration-10 as depicted in Figure 3. If the excited individuals are better 
than the elites in iteration-20, then they are substituted in the archive, otherwise original elites 
remain unchanged.    
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Table 3 presents the mean and variance of the GD - metric values of the 20 final populations. 
Table 4 presents the mean and variance of the ∆ - metric values of the 20 final populations. To 
make an easy reading, the best results in Table 3 and Table 4 are shown in bold. 

 
It is evident from Tables 3 and 4 that ACE_SPEA significantly outperforms SPEA in terms of both 
the convergence (GD) and diversity (∆) metrics on all test problems. Only on ZDT6 test functions, 
SPEA performs better than ACE_SPEA in terms of diversity metric. 

 
ACE_SPEA2 significantly outperforms SPEA2 in terms of both the convergence (GD) and 
diversity (∆) metrics on all test problems. Only on ZDT2 test functions, SPEA2 performs better 
than ACE_SPEA2 in terms of diversity metric. 

 
 

       ZDT1 ZDT2 ZDT3 ZDT6 

SPEA 
0.0627 0.0133 0.0517 1.2824 

2.1822e-4 2.3891e-4 2.5627e-4 0.2391 

ACE_SPEA 
0.0549 0.0086 0.0488 1.1638 

1.3940e-4 3.3388e-5 8.4167e-5 0.1942 

SPEA2 
0.0327 0.0044 0.0441 0.7672 

2.5225e-5 5.1226e-6 2.5372e-4 0.0232 

ACE_SPEA2 
0.0293 0.0031 0.0345 0.7238 

1.7667e-5 2.8834e-6 6.5541e-5 0.0410 

 
TABLE 3: Mean (First Rows) and Variance (Second Rows) of the Convergence Metric (GD). 

 

 ZDT1 ZDT2 ZDT3 ZDT6 

SPEA 
0.6170 0.6189 0.6320 0.8425 

0.0047 0.0032 0.0073 0.0079 

ACE_SPEA 
0.5945 0.6062 0.6148 0.8761 

0.0055 0.0056 0.0059 0.0070 

SPEA2 
0.5895 0.6115 0.6080 0.8285 

0.0041 0.0033 0.0112 0.0060 

ACE_SPEA2 
0.5761 0.6322 0.5874 0.8147 

0.0038 0.0031 0.0095 0.0089 
 

TABLE 4:  Mean (First Rows) and Variance (Second Rows) of the Diversity Metric (∆). 
 

To demonstrate some of the cases graphically, SPEA with ACE_SPEA and SPEA2 with 
ACE_SPEA2 are compared on several problems. Figure 7 to 14 shows the non-dominated 
solutions of all algorithms for arbitrarily chosen single runs of test problems ZDT1 and ZDT2.  

 
The plots of the final solutions in the objective space in the Figure 7,8,9 and 10 also clearly show 
that the approximations generated by ACE_SPEA are better than those by SPEA on all test 
problems. Also, ACE_SPEA has a better spread than SPEA. 

 
The plots of the final solutions in the objective space in the Figure 11,12,13 and 14 also clearly 
show that the approximations generated by ACE_SPEA2 are better than those by SPEA2 on all 
test problems. Also, ACE_SPEA2 has a better spread than SPEA2. 
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      FIGURE 7. Non-dominated solutions of SPEA for a single run of ZDT1. 
 

 
 

          FIGURE 8. Non-dominated solutions of ACE_SPEA for a single run of ZDT1. 
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        FIGURE 9. Non-dominated solutions of SPEA for a single run of ZDT2. 
 

 

 

     
          FIGURE 10. Non-dominated solutions of ACE_SPEA for a single run of ZDT2. 
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            FIGURE 11. Non-dominated solutions of SPEA2 for a single run of ZDT1. 
 

 
      

           FIGURE 12. Non-dominated solutions of ACE_SPEA2 for a single run of ZDT1. 
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       FIGURE 13. Non-dominated solutions of SPEA2 for a single run of ZDT2. 
 

 
 

    FIGURE 14. Non-dominated solutions of ACE_SPEA2 for a single run of ZDT2. 
 

6. CONCLUSION  
In this paper, an active elitism mechanism for multi-objective evolutionary algorithms is proposed. 
Passive elitism mechanism has been replaced by the proposed active elitism mechanism. The 
elite individuals are the best individuals and also the nearest individuals to the solution in the 
current population. Therefore, excitement of a set of elites in the archive with crossover/mutation 
operator forces them to generate likely better and more diverse than the original elites. In this 
regards, classical holding/sending back passive elitism structure has been improved and evolved 
into an active elitism structure of holding/exciting and sending back. It means that, primary and 
also secondary populations (or archives) can generate solutions in the active elitism.  
 
Well-known SPEA and SPEA2 methods equipped with passive elitism and proposed ACE_SPEA 
and ACE_SPEA2 methods equipped with active elitism have been simulated and compared on 
four continuous problems taken from the literature (including ZDT1, ZDT2, ZDT3 and ZDT6). It is 
found that ACE_SPEA significantly outperforms SPEA on all test problems. Only exception of this 
is that SPEA generates a slightly better spread on ZDT6 than ACE_SPEA. ACE_SPEA2 is 
superior to SPEA2 in terms of both the convergence (GD) and diversity (∆) metrics on all test 
problems. Only exception of this is that SPEA2 generates a slightly better spread on ZDT2 than 
ACE_SPEA2. 
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Simulation results show that the active elitism is especially beneficial to improve the performance 
of MOEAs and that the use of the active elitism mechanism speeds up convergence to the 
Pareto-optimal front. In addition to that, proposed active elitism mechanism can easily be 
integrated into existing MOEAs in the literature to improve their performance without changing 
their entire computational structures. 
 
In the future work, the active elitism will be embedded to the other MOEAs in the literature. 
Furthermore, it is planned to speed up the active elitism algorithm. 
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