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Abstract 

 
This paper describes our use of Learning Automata as a reinforcement learning method in 
coordination among three heterogeneous teams of agents acting in RoboCup Rescue Simulation 
environment. We provide a brief introduction to Learning Automata and Cellular Learning 
Automata, the reinforcement machine learning methods that we have used in lots of parts of our 
agents’ development. Then we will describe the major challenges each team of agents should be 
concerned about in such a complex domain and for each challenge, we propose our approaches 
to develop cooperative teams. Finally, some results of using Learning Automata in coordinating 
these heterogeneous teams of agents that cooperate to mitigate the disastrous damages in a 
simulated city are evaluated. 
 
Keywords: Distributed Artificial Intelligence, Learning Automata, Coordination, Heterogeneous 
Agents, RoboCup Rescue Simulation. 

 
 
1. INTRODUCTION 
The idea of using Learning Automata as a model for cooperation among homogeneous members 
of a team of agents acting in a complex multi-agent domain was first investigated in [1, 2] and 
evaluated in [3]. In those researches we had used RoboCup [4] Soccer Simulation as a test-bed 
for our multi-agent simulations. One might also find many researches in the literature using 
RoboCup Soccer Robot (as the one in [5]) since RoboCup has gained popularity as an excellent 
platform to foster intelligent (physical and simulated) robotics research. In this paper, we have 
used Learning Automata in coordination among (three) heterogeneous (teams of) agents in 
another branch of RoboCup known as Rescue Simulation [4]. 
 
In this domain, agents cooperate to mitigate the disaster in a simulated urban environment after 
an earthquake. Comparing to what we had done in [1-3], we have extended our use of Learning 
Automata (and one of its derivations; Cellular Learning Automata) in implementing much more 
parts of our simulated teams in RoboCup Rescue Simulation domain. 
 
To accomplish the task of minimizing disastrous damages in RoboCup Rescue Simulation, 
agents must have effective cooperative behaviors despite incomplete information. In fact, the 
main goal in this domain is minimizing the damage by helping trapped agents, extinguishing fiery 
collapsed buildings, and rescuing damaged civilians. Figure 1 illustrates a part of a simulated city 
after the disaster, depicted by a standard monitor used in RoboCup competitions [4]. 
 
To reach to this goal, agents must be flexible. It means that they should be able to work in 
different (even center-less) situations efficiently and make rational decisions coordinated with 
each other. Since each agent has some limitations (for example limitation of vision, 
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communication, water quantity and etc.) due to its type, decision-making in such a domain is very 
complex. We have tried to implement flexible agents in spite of these problems. 
 
 

 
FIGURE 1: A part of a simulated city depicted by the RoboCup Rescue Simulation monitor. 

 
In this paper, we have just concentrated on our learning approaches to rescue agents’ major 
challenges. There obviously exist several other challenges for these sorts of agents to act 
effectively in this domain that are not mentioned in the paper (like agents’ world model, their 
architecture, and the way they communicate, to name a few). 
 
In the first parts of the paper, we give a brief introduction to Learning Automata and Cellular 
Learning Automata. These two approaches are the learning methods used in lots of parts of our 
agents’ development. 
 
Next, the challenges each type of rescue agents is concerned about are presented and then our 
solutions which are mostly based on Learning Automata are described. In order to have a 
benchmark for evaluating our approach, we have compared our (more distributed) strategy 
results with the results of a (more fixed) strategy used in [6] which uses pre-computed grid-like 
sectors and assigns agents (like fire brigades and ambulance teams, each accompanied with 
some police forces) to the sectors which have the highest risks (regarding fire spread and the 
like) during the simulation. 

 
2. LEARNING AUTOMATA 
As a model of reinforcement learning, Learning Automata act in a stochastic environment and are 
able to update their action probabilities considering the inputs from their environment, so 
optimizing their functionality as a result [7]. 
 
Among various fixed structure Learning Automata and variable structure Learning Automata 
investigated in [1-3], we have mostly used Lrp in our simulations of this research. Therefore, we 
give a brief description of Lrp as a variable structure Learning Automata. 
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Variable structure automata are represented by a sextuple 〈α, β, Φ, P, G, T〉. In this sextuple, α is a 

set of outputs, β is a set of inputs, Φ    is a set of internal states, P denotes the state probability 
vector governing the action chosen in each state at each stage k, G is the output mapping, and T 

is the learning algorithm. The learning algorithm is a recurrence relation and is used to modify the 
state probability vector P (i.e. the probabilities to choose the actions in each state). 
 
It is evident that the crucial factor affecting the performance of the variable structure Learning 
Automata is the learning algorithm for updating the action probabilities. Various learning 
algorithms have been reported in the literature [7]. An Example of the variable structure type is Lrp 
automata that we summarize its behavior in the following paragraphs. 
 

Let α (with index i) be the action chosen at stage k-1 as a sample realization from distribution P (k 

- 1). So, the automata should update all of its action probabilities (for action i and all other actions 

j) depending on the environment’s response received at stage k. In linear reward penalty 
algorithm (Lrp) scheme, the recurrence formulas for updating P are defined as: 
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In these formulas, r is the number of actions and we have assumed β(k) = 0 when we have 

received a reward from the environment and β(k) = 1 when we have received a penalty from the 
environment. Also, the parameters a, and b represent reward and penalty parameters and 
determine the amount of increase/decrease in action probabilities respectively. For more 
information on Learning Automata, the reader may refer to [7]. 
 
As a general scenario in a complex domain, we should first generalize the vast number of 
environmental states (for each agent) into some finite states. Then we embed one Lrp Learning 
Automata with some possible actions in each state. Each of these Automata in turn, is going to 
learn the best distribution of action probabilities in order to do the best actions in each of the 
mentioned generalized states. They will do this by tuning the probabilities of their actions in each 
state as explained above. 
 

3. CELLULAR LEARNING AUTOMATA 
Cellular Learning Automata [8, 9] is a mathematical model for systems that are made of simple 
components. The behavior of each of these components is selected and modified based upon its 
own and/or its neighbors’ behaviors and also its previous experiences. The simple components 
that build this model can show complex behaviors through interacting with each other. 
 
Each Cellular Learning Automata is made of a Cellular Automata [10] in which each cell is 
equipped with one or more Learning Automata that identify the state of the cell. As is the case for 
Cellular Automata, there exists a local rule in the environment which tells whether the selected 
action by automata in a cell should be rewarded or punished. The act of giving reward or penalty 
results in updating the structure of Cellular Learning Automata in order to achieve a particular 
goal. 

 
A Cellular Learning Automata is formally a quintuple {∆, Α, Ω, R, L} where ∆ ={λ1, λ2, ..., λn} is the 

set of cells in the Cellular Learning Automata which are positioned in a grid-like network, A = {a1, 

a2, ..., ak} is the set of legal actions in each cell (with At ( λi ) showing the action done in cell λi at 

time t), R is the rule governing the system, Ω = { Ω1, Ω2,..., Ωm } is the set of neighborhoods of 
each cell, and L is a Learning Automata that each cell is equipped with. 
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Considering above definitions, Ω(λi) is the set of neighborhoods of the cell λi which has the 
following two characteristics:  
1. λi ∉Ω(λi); ∀ λi∈∆  

2. λi ∈Ω(λj) if and only if λj∈Ω( λi ); ∀ λi, λj ∈∆ 

Suppose W(λi) = Ω(λi) ∪ {λi}. The rule that governs the system can be defined as the following 
function: 
A t+1(λi) = R{At (x)x ∈W(λi)} 

Two main neighborhood types in Cellular Automata are Von Neumann and Moore [10]. 
 
The function of Cellular Learning Automata can be described as follows: In the beginning, each 
Learning Automata in Cellular Learning Automata chooses an action out of the set of its legal 
action set. This selection can be based on the previous observations of the cell or can be random 
(especially in the first steps of learning from zero). After that, the chosen action by the cell is 
rewarded or punished. This would be done based on the chosen actions by the cell’s 
neighborhoods and the rule that governs the Cellular Learning Automata. Now, depending on 
whether the selected action is rewarded or punished, the internal structure of the automata 
updates. 
 
This updating for all the automata in Cellular Learning Automata can be synchronous or 
asynchronous; if updating the cells occurs synchronous, we call the Cellular Learning Automata 
synchronous and if it occurs asynchronous, we call it asynchronous. After updating, every 
automata in Cellular Learning Automata, chooses an action (out of its action list) again and 
performs it. The result of this action leads to receiving another reward or penalty by the 
mentioned automata. 
 
This process of selecting an action and giving reward or penalty to it repeats until the system 
reaches to a steady state (or continues to reach some predefined factors). Updating the structure 
of each existing automata in Cellular Learning Automata is done by a learning algorithm. 
Likewise Cellular Automata [10], the rules in Cellular Learning Automata can be of three types: 
general, totalistic, and outer totalistic. In general rules, the value of a cell in the next stage is 
dependent on the values of the neighbors of that cell. In totalistic rules, the value of a cell is only 
dependent on the sum of the values of the neighbors of that cell. And at last, in outer totalistic 
rules, the value of each cell is dependent on the sum of either the neighbors’ values or the value 
of the cell itself. 
 
The main features of the Cellular Learning Automata used in this paper are that updating the 
Learning Automata in cells is done synchronously, Learning Automata in cells are identical (Lrp), 
and the rule used in each cell is outer totalistic. For more information on Cellular Learning 
Automata and their applications, the reader may refer to [8, 9]. 
 

4. FIRE STATION AND FIRE BRIGADES 
Fire brigades have an important role in preventing fire spread and in rescuing civilians’ lives in 
RoboCup Rescue Simulation domain. We might categorize fire brigades’ goals into two major 
categories: 
1. Finding out fires and preventing their spread by extinguishing them. 
2. Searching for the damaged civilians. 
 

As far as there are fire spots in the environment, fire brigades’ duty is to extinguish them. To 
extinguish fires, fire brigades should form groups to act more efficiently. But there are some 
problems in this regard that we first declare and then, propose our solutions to them. 
 
The first problem is to understand how many fire brigades are needed to be assigned to a specific 
task (i.e. a specific fiery zone). Also, since we don’t know how many tasks (again fiery zones) we 
will be facing in a typical simulation, the second problem is how we should form groups of fire 
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brigades to assign to these tasks, so that the resulting formation achieves the best result for the 
team. 
 
In our approach, the fire station tries to assign an efficient group to each task. The fire station 
does so based on a learning method that is discussed in the following paragraphs. After these 
assignments, each group goes on its work and each fire brigade decides itself which fiery 
buildings in its allocated area must be extinguished first to prevent fire spread. This decision is 
based on buildings’ dangers. By danger we mean the potential damage a building might have if it 
catches fire. It is also going to be introduced formally later in the next paragraphs. 
 
Our fire brigades compare buildings’ dangers in their allocated fiery zone and choose the 
buildings that have higher danger values. Obviously, if there isn’t any center (i.e. fire station) in 
the simulation environment (the case in center-less simulations), one of our agents will act as a 
commander to do so. In such conditions, we have used other approaches to read and send 
messages by our agents due to their communication limitations. 

 
Before answering the first problem proposed above, we first present some definitions: 
• Fiery Building: a building with a 1, 2, or 3 fieriness degree. 

• Building Neighbors: the immediate neighbors of a building. 

• Fiery Zone: a set of fiery buildings and their neighbors. 
 

As a solution to the problems proposed (and using the terms we defined above), the station 
needs to have enough information about each fiery zone. This information should contain the 
priority of each fiery zone and the number of the fiery zones we face in the simulation. 
 
In order to define the “priority of each fiery zone” we studied various parameters that exist in 
RoboCup Rescue Simulation environment and selected some of them that seem to be more 
important in this regard. These parameters are: 
• Area of the fire (FA): It is fiery zone’s area. 

• Fiery zone’s fieriness (F): It is simply the average of fieriness for those buildings which form a 
fiery zone. 

• Fiery zone’s danger (D): It is the average of dangers corresponding to those buildings that 
form a fiery zone. 

• Fiery zone's spread area (SA): It is defined as the area that a fiery zone might spread into. 

 

By using the above mentioned parameters we tried to find a relationship between them to 
determine the priority of a typical fiery zone. Let |b| be the number of buildings in the fiery zone, 
and fz be the set of buildings that are members of that fiery zone. We define P as the priority of 
fiery zone with the following formula: 
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To find a building’s danger, we have used [6] to calculate a quantity as the building’s danger. In 
order to do so, we have to find each building’s neighbor vulnerability (V) first. A building’s 
vulnerability depends on its area (A) and the material (M) that forms that building [6]: 
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We should also define and use another term to find a building’s infectivity. Actually, the fire can 
spread from a burning building to other buildings within a certain radius (r). The closer these 
buildings are, the more likely it is they will catch fire. For all these neighbors we can already 
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estimate their vulnerability. Being close to vulnerable buildings affects the risk a building poses. 
We add all the vulnerabilities of the surrounding buildings, weighted by their distance related 
chances to get a new factor called Infectivity [6]: 
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We also define the fire risk of a building as a static value that is computed at the start of the 
simulation for each building. We simply add vulnerability and infectivity to find the fire risk (R) of 
each building [6]: 

SVR     +=         (7) 

This fire risk already contains a hint about how important this building is to its neighbors. The risk 
value shows how dangerous it would be if none of that building's neighbors were burning. As a 
result, we can calculate the actual danger (D) this burning building poses during the simulation 
(assuming phasen is the current state of neighbor n) as [6]: 

 

       (8) 

The last parameter used in our approach is fire spread. We want to know how a fiery zone can 
spread fire. We have used Cellular Learning Automata [8, 9] to gain this knowledge. 
 
In our Cellular Learning Automata method, { }

n
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the environment’s buildings. A = {A1, A2}, where A1 predicts that Bi will be burnt in the next cycle 
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shows one of the neighbors of the cell Bi (it’s obvious that we have a different Ω for each Bi). 
Also, we have defined R as an outer totalistic rule and Lrp Learning Automata is used as our 
learning. 
 
We need to have some distinct states in our Cellular Learning Automata. Therefore, we have 
defined a relation between the mentioned parameters (which seem to be important in order to 
define states): 
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In above formula, dist means the distance between Bi and each Nj. It is obvious that distance 
affects each Nj's fieriness and danger. In above relation, F means Nj’s fieriness (it is considered to 
be important because fieriness increases temperature), and D means Nj’s danger (it is important 
because it specifies how much a building would spread fire). At last, V of Bi (vulnerability of Bi) is 
considered important in the above relation because it specifies how much a building is vulnerable 
due to its physical properties (its area and its material). 
 
We divided the range between the experimental minimum and maximum values of the above 
relation into 10 equal intervals. Each interval represents us a state. We are therefore put in a 
unique state, at any instant of the simulation, by calculating the value of the above relation. 
 
We equipped each state with an Lrp Learning Automata with 2 actions. By running a lot of 
different simulations and after convergence, the Learning Automata learned the probability of a 

neighbors

ning} {not burnphaseR

nning} { not bur phase  

 R . D 
neighborsn nn 

n∑
∈ ∈

∉

=   

 0{



Mohammadreza Khojasteh, Aida Kazimi 

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (3) : Issue (3) : 2012 45 

building’s being burnt depending on the above mentioned parameters in that building and also in 
its neighbors. 
 
As a scenario we used for learning, the fire station identifies the state of each building by 
calculating the above formula. Then, it looks up the corresponding Learning Automata in that 
state and chooses one of the two following actions: 
1. This building will be burnt in the next cycle based on its current state. 

2. This building will not be burnt in the next cycle based on its current state. 

After going to the next cycle, that state’s Learning Automata can give itself reward (if it had 
predicted correctly) or penalty (if it had predicted incorrectly). 
 
Up to this point we have declared the “priority of each fiery zone”. Unfortunately, it does not 
provide us with enough information to solve the problem of how to do the best action to control 
fire spread in such a dynamic environment. It’s because the number and the position of fiery 
zones change in each simulation and also we need several cycles in order to detect all fiery 
zones. 
 
Actually there are a plenty number of states (considering different number of fiery zones that 
might exist in the city, their positions, their corresponding dangers, the way they spread, etc.). 
There are also a plenty number of possible actions regarding the different formations the fire 
brigades might have. This makes it hard to use a traditional machine learning method from the 
convergence point of view. 
 
Therefore, we have defined just 10 actions instead of considering all possible actions agents 
might do. Each of these actions was tested in different cities with various fiery zones in order to 
find the near optimal action in almost every state: 
 
1. Assigning all agents from the highest priority (zones) to the lowest priority (zones) in a 

preemptive manner (priorities are calculated as explained above). By preemptive, we mean 
agents will leave their zone if a fiery zone with a higher priority is detected at any instant.  
 

2. Assigning all agents from the highest priority (zones) to the lowest priority (zones) in a non-
preemptive manner. By non-preemptive, we mean once agents are assigned to one fiery 
zone, they won’t leave there until they have finished the job at that assigned fiery zone 
(extinguishing the fire completely). 

 

3. Assigning all agents from the lowest priority (zones) to the highest priority (zones) in a 
preemptive manner. 

 

4. Assigning all agents from the lowest priority (zones) to the highest priority (zones) in a non-
preemptive manner. 

 

5. Dividing agents to groups proportional to every detected fiery zone’s minimum necessity 
(discussed later) and assign them in a preemptive manner. 

 

6. Dividing agents to groups proportional to every detected fiery zone’s minimum necessity and 
assign them in a non-preemptive manner. 

 

7. Assigning agents to cover fiery zones’ minimum necessities as far as possible, from the 
highest fiery zone’s minimum necessity to lowest fiery zone’s minimum necessity in a 
preemptive manner. 

 

8. Assigning agents to cover fiery zones’ minimum necessities as far as possible, from the 
highest fiery zone’s minimum necessity to lowest fiery zone’s minimum necessity in a non-
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preemptive manner. 
 

9. Assigning agents to cover fiery zones’ minimum necessities as far as possible, from the 
lowest fiery zone’s minimum necessity to highest fiery zone’s minimum necessity in a 
preemptive manner. 

 

10. Assigning agents to cover fiery zones’ minimum necessities as far as possible, from the 
lowest fiery zone’s minimum necessity to highest fiery zone’s minimum necessity in a non-
preemptive manner. 

 

Actions 1 to 4 assign all agents to only one fiery zone at a time. Actions 5 and 6 assign agents in 
groups so that every detected fiery zone would have at least one fire brigade being allocated to it. 
Actions 7 to 10 also assign agents in groups but there might be some detected fiery zones 
without any fire brigades being allocated to them. 
 
To be able to find each fiery zone’s minimum necessity, we have used another Lrp. In this Lrp, we 
generalized the states by calculating our priority formula for each fiery zone again. We divided the 
range between the experimental minimum and the experimental maximum values of the priority 
function into 10 equal intervals. Each interval represents us a state. We have equipped each 
state with an Lrp. But some problems arise with the selection of actions for this Lrp; is it better to 
assign some number of fire brigades or to assign some amount of water as actions? 
 
Each of the two choices does have some problems. Therefore, we let the actions be assigning 
the minimum number of fire brigades with average water (i.e. half of the maximum amount of 
water they might have in their tanks). 
 
As a scenario for learning, we administrated offline simulations with different fiery zones (but just 
one fiery zone in each simulation). The fire station identifies the state of this fiery zone by 
calculating the priority formula. Then, it looks up the corresponding Learning Automata in that 
state and assigns some (in the beginning of the simulation, it could be one or some 
predetermined number of) fire brigades to that fiery zone. If they could extinguish and control the 
fire by the end of simulation time, the station gives itself reward. But if not, it will give itself 
penalty, and so the probability that one more fire brigade will be assigned to the same fiery zone’s 
state (by the station), is increased. 
 
Doing so and after a lot of simulations, our Lrp would be able to assign the minimum number of 
fire brigades (with average water) in each state that a typical fiery zone is in. 
 

5. AMBULANCE CENTER AND AMBULANCE TEAMS 
Ambulance teams play an important role to rescue civilians and agents that are buried under 
collapsed buildings. In order to reach this goal, they should first search the city and then do the 
best possible actions. So they require a lot of information to accomplish their tasks. Some of the 
items forming this information include the position of the collapsed agents and civilians, some 
parameters showing whether they are dead or alive, and the knowledge about fire spreads. Some 
parts of this information are kept in the ambulance center which sends the necessary information 
(for example reported injured civilians) to ambulance teams. To achieve a better team result, we 
have divided the entire simulation time of our ambulance teams into two major phases. 
 
In first phase (the beginning cycles of the simulation), most of the roads are blocked. Because of 
blocked roads and moving limitations in this phase, we decided that all ambulance teams work 
together and rescue the same target. They will detect the end of this phase (i.e. the start of the 
second phase) through a police force message which indicates that roads are mostly open. 
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In second phase, because ambulance teams don’t have a lot of blocked roads ahead or they 
don’t have moving limitation problems (as it was the case in the first phase), we tried to test 
different approaches to improve the task the ambulance teams have (i.e. to rescue injured agents 
and civilians). At last, because of the large number of states and the vast number of possible 
actions in such a complex environment (as it was the case in fire brigades’ section), we found out 
that it is better to select the best approach out of eight specific methods using offline learning. 
After running a lot of simulations with various situations, it seems that the best learned method 
out of the following eight methods promise to give a near optimal result: 
 
1. Rescuing all together, from highest priority to lowest priority: 

• Non-Preemptive: In this method, all ambulance teams work together and aim a certain target 
to rescue. This target is advised by the ambulance center using the maximum priority known 
by the time (i.e. the moment of decision). We will talk about the priorities in the coming 
paragraphs. We call this method non-preemptive because ambulance teams will stay on the 
target until its rescue will be done. 

• Preemptive: This method is the same as the previous one until the time the ambulance center 
hasn’t detected any other target (i.e. civilian) with a higher priority. At that time, all ambulance 
teams will leave the current target and will go to rescue the new target. 

 

2. Rescuing in two groups, from highest priority to lowest priority: 

• Non-Preemptive: In this method, the ambulance center divides the ambulance teams into two 
balanced groups and assigns them to the two targets with highest priorities. We call this 
method non-preemptive because each group of the ambulance teams will stay on the 
allocated target until its rescue will be done. 

• Preemptive: This method is the same as the previous one until the time the ambulance center 
hasn’t detected any other target (i.e. civilian) with a higher priority. At that time, it will assign 
the group with the lowest target’s priority to the new target. The group’s ambulance teams will 
leave the current target (even if they aren’t finished with its rescue) and will go to rescue the 
new target. 

 

3. Rescuing in three groups, from highest priority to lowest priority: 

• Non-Preemptive: In this method ambulance center divides ambulance teams into three 
balanced group and assigns them to the three targets with the highest priorities. We call this 
method non-preemptive because each group of the ambulance teams will stay on the 
allocated target until its rescue will be done. 

• Preemptive: This method is the same as the previous one until the time the ambulance center 
hasn’t detected any other target (i.e. civilian) with a higher priority. At that time, it will assign 
the group with the lowest target’s priority to the new target. That group’s ambulance teams 
will leave the current target (even if they aren’t finished with its rescue) and will go to rescue 
the new target. 

 

4. Rescuing in some groups based on the number of required ambulance teams for each 
civilian, from highest priority to lowest priority: 

• Non-Preemptive: In this method, the ambulance center computes the number of required 
ambulance teams for the 4 highest priorities, and then divides ambulance teams into some 
non-predetermined (but less than 5, of course) unbalanced groups and assigns them to the 
targets that have the highest priorities. We call this method non-preemptive because each 
group of the ambulance teams will stay on the allocated target until its rescue will be done. In 
order to calculate number of required ambulance teams for rescuing a target, the ambulance 
center uses this formula: 










+− ATC)(TCRDeadtime

buriedness
=  teamsambulance required ofNumber       (10) 
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In this formula, TCR is ambulance teams’ traveling costs (defined in next paragraphs) to reach 
the refuge from that target, and ATC is the average of idle ambulance teams’ traveling costs to 
that target. 

• Preemptive: This method is the same as the non-preemptive one until the time the 
ambulance center hasn’t detected any other target (i.e. civilian) with a higher priority. At that 
time, it will assign the number of ambulance teams this new target requires to it by 
preempting the members of the group that its target priority is the lowest. They will leave the 
current target (even if they aren’t finished with its rescue yet) and will go to rescue the new 
target. 

 

It shall be noted that in all cases above, the ambulance teams inform the ambulance center when 
they have arrived to the target. Also, the ambulance center estimates the time they will finish their 
job based either on the information it has received by now or on the information it receives from 
the ambulance teams during doing their jobs. This estimation is useful for the ambulance center 
to predict the time it should recalculate its priority list to assign the ambulance teams to their next 
jobs. 
 
We again used an Lrp Learning Automata (with eight actions corresponding to above mentioned 
eight methods) and administered several simulations to test each of these methods in various 
situations. We exploited the results gained in these simulations to help us choose the method that 
gives the best average result. The chosen method was used in our simulations, especially in our 
fire brigades’ learning from zero’s method. 
 
To define and calculate the priorities, ambulance teams should consider some parameters to help 
them choose the most important civilians to rescue. These parameters include their dead time, 
their buried-nesses (a parameter given by the server), the fire spread, and the traveling cost it 
takes for ambulance teams to reach the civilians. We have given a brief explanation of these 
factors below: 
1. Dead Time: It is the remaining time before the death of an injured civilian. We again tried to 

estimate this by use of a simple learning method. 

2. Fire Spread Time: It is the way the fire spreads (related to a civilian being exposed to the 
danger of catching fire). We find the value of this parameter using the Cellular Learning 
Automata which was explained in the fire brigades’ section. 

3. Traveling Cost: It is the number of cycles that will be spent by our ambulance teams to reach 
the civilian. 

 

To assign priorities to civilians, we sort them first by their dead times (ascending), then by their 
fire spread times (ascending), and at last by their distances (descending). 
 
In center-less situations our ambulance teams use the same methods as fire brigades. A 
commander substitutes the ambulance center and does the above task assignments. The 
commander goes to the police office or fire station and tries to get the injured civilians’ 
information. 
 

6. POLICE OFFICE AND POLICE FORCES 
Police forces’ main job is to clear the blocked roads in the city. Although their work doesn’t affect 
the score of a team directly, it can have a great effect on other agents’ duties. That’s because the 
performance of other agents does heavily depend on the number of open roads in the city. Our 
police forces try to learn how to do their job better from zero and in doing so, they are counting on 
what our fire brigades and ambulance teams have learned by now. It means that, through offline 
simulations mentioned in previous sections, fire brigades and ambulance teams must have 
already learned how to do their best actions. In this phase, we have let the whole rescue team 
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(fire brigades, ambulance teams, and police forces) cooperate together. Doing so, we let police 
forces learn their best actions by giving appropriate services to other agents. 
 
We have again used Learning Automata to reach this goal. Our police forces use two various 
methods; one in normal (center-based) situations and the other in center-less situations. We will 
describe the method which is used in normal situations first and then our center-less method will 
be described. 
 
In normal situations our police forces work autonomously without receiving any commands from 
the police office. Our police forces do their jobs using a technique based on attraction and 
repulsion vectors similar to what we had done in [11]. 
 
In this approach we assume some virtual attraction vectors pull each police force towards each of 
the following items (to attract it to important positions in the city) at any instant: 

• Position of each fiery building known by now which there is (are) still blocked road(s) reported 
on the way to it. 

• Position of each refuge which there is (are) still blocked road(s) reported on the way to it. 

• Position of each trapped agent toward which there is (are) still blocked road(s) reported on 
the way to it. 

• Position of each reported blocked roads. 

• Positions mentioned in each fire brigade’s and ambulance team’s important (and still 
unanswered) request messages. 

 
The beginning point of an attraction vector is the police force’s position and its end point is an 
item’s position. Therefore, the direction of each attraction vector is towards the above items’ 
positions and the magnitude of that is conversely proportional to the distance between the police 
force’s position and the item’s position. This makes closer items more important to police forces. 
 
We also assume some virtual repulsion vectors push each police force away from other police 
forces (to distribute them in the city) at any instant. The beginning point of any repulsion vector for 
a police force is another police force’s position and its end point is its own position. Therefore, the 
direction of each repulsion vector is towards the police forces’ positions and the magnitude of that 
is conversely proportional to the distance between the two police forces’ positions. We try to 
prevent traffic jams by distributing our police forces in the city using this repulsion vectors. 
 
As an implemented scenario, each idle police force calculates the resultant vector by the vector 
addition of these attraction and repulsion vectors for itself. Then the police force finds the nearest 
target to the end point of this resultant vector and finds a path towards it. The police force tells its 
intention to the police office and starts to move on its path. If the police office finds out more than 
one police force moving to the same target (it might happen because each police force does the 
above procedure autonomously), it will prevent all except the nearest one from moving to the 
target by sending messages. 
 
Whenever a police force finishes its job by clearing its target (i.e. clearing the blocks in the roads 
leading to the target) it will again calculate its resultant vector for its next target. Police forces 
send new information to the police office at any instant and they count on information they receive 
from the police office in this approach. 
 
This approach seems to have two great advantages. The first one is that police forces don’t go to 
clear a barricade simultaneously because they try to be far from each other using repulsion 
vectors. The second one (considering the fact that police forces learn how to do their job after fire 
brigades and our ambulance teams have learned how to do their best actions) is that the most 
important barricades seem to be cleared in appropriate time using attraction vectors. 
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To complete the procedure, we should consider some scalar coefficients for the magnitudes of 
each vector type to make some items more significant. That’s because it seems some items like 
(clearing the roads toward) trapped agents might be more important than others. In our 
experience, these coefficients are composed of two parts; an experimentally known part (the 
priorities that each vector type should essentially have and can be set manually), and an 
unknown part that should be learned by police forces. 
 
For the known part, we use our domain experiments like the importance of trapped agents 
comparing to others, the amount of danger parameter for each fiery building discussed in the fire 
brigades section, and etc. By doing so, we give priorities to each vector type. For the unknown 
part, we can’t have any predetermined assumption and this is again the place Learning Automata 
come into the scene. In fact police forces should learn these coefficients (based on how fire 
brigades and ambulance teams work together) in order to improve the whole rescue simulation’s 
score. 
 
Let’s call these coefficients p1, p2, p3, p4, and p5, respectively for each of the vector types 
mentioned above. At the beginning of our learning method, we initialized all these coefficients to 
the value 0.5. Our police forces tried to tune these values using a learning method we are going 
to describe. After running many simulations in different cities and with many situations in the 
learning phase offline, we were able to fix the values of coefficients learned and use them during 
the test phase online. It should be mentioned that our agents are also slightly allowed to explore 
these values online. 
 
In the learning phase we define an Lrp Learning Automata with ten actions. The first five actions 
add 0.05 to each of the above 5 coefficients and the second five actions subtract 0.05 from each 
of the above 5 coefficients, respectively. 
 
Lrp’s action probabilities for these actions are each set 0.1 initially. At the beginning of each 
simulation during the learning phase, police forces choose one of these actions based on their 
corresponding probabilities, using a uniform random number generation and they perform the 
specified action (changing the value of a coefficient with a factor of +/- 0.05). At the end of each 
simulation, police forces give themselves reward if the simulation’s final score has improved 
comparing to the previous simulation’ final score. In this case the changes to the coefficients are 
preserved. Police forces give themselves penalty if the simulation’s final score has decreased 
comparing to the previous simulation’ final score. In this case the changes to the coefficients are 
undone. 
 

In center-less situations, we should provide a different approach. In the previous (center-based) 
approach each police force needs to be aware of other police forces’ positions in order to do an 
action. In that approach, the police office transfers information of the police force positions 
amongst them and each police force can receive the information it needs in a short time. 
 

In the center-less situations police forces can’t send their positions to each other in each cycle 
because of the communication limitations they have. Therefore, it seems that the previous 
approach does not work efficiently in center-less situations. Because of this problem we have 
designed and implemented another approach for center-less situations. In this approach a police 
force will act as a commander and assigns jobs to other police forces. 
 
The entire city is divided into four major parts and each of these major parts is subdivided into 
20m*20m cells as shown in figure 2. We have chosen 20m*20m cells because agents are able to 
see everything in the radius of 10 meters from themselves, according to server rules. Therefore, 
almost the whole square should be visible for an agent located in it. 
 
For each police force, we assume a virtual attraction vector pulls it towards the position of each of 
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the following items:  

• Fiery buildings 

• Refuges 
• Trapped agents 
• Positions mentioned in fire brigades’ and ambulance teams’ important requests 
 
The magnitude of each vector is conversely proportional to the distance between the above 
mentioned items and the police force, multiplied by a constant coefficient. Coefficients are 
different based on the type of each item. In this center-less approach, these coefficients were 
chosen just by using our previous simulation experiments. 

FIGURE 2: A map of Kobe city virtually divided into 20m*20m cells 

Because of process time restrictions (2 seconds as the rule says), we have considered no 
attraction vectors towards blocked roads. Instead, we have considered attraction vectors 
originated from the police forces towards the centers of each cell which contains blocked roads in 
addition to the above mentioned vectors. The magnitude of this vector is conversely proportional 
to the distance between the police force’s position and the cell. Also the coefficient for this 
magnitude is directly proportional to the number of roads inside the cell. It’s obvious that after 
assigning a police force to a cell, we will ignore this cell in forming vectors. Also, if a path toward 
a refuge (or a fiery building) was opened, its corresponding vector will be ignored thereafter. 
 
The commander calculates the resultant vector for each police force. Naturally the resultant 
vector points to one of the four major parts of the city. We call this part as the active part of that 
police force. Then the commander assigns a police force to one of the cells of this active part via 
an Lrp Learning Automata (explained briefly in the next paragraph). Then, the police force begins 
to clear the roads in the allocated cell. 
 
The commander should learn which cell is more important to clear and it uses Learning Automata 
to do so. The rewards and penalties for the commander’s selected actions are given regarding 
the decision of this allocation. As an example, if there is a trapped agent in one of the cells of the 
active part but the police force was assigned to a cell which doesn’t bear any special items (like 
trapped agents or fiery buildings), this commander’s decision will get a penalty. 
 
Since the commander knows the police forces’ work areas, it is able to calculate the resultant 
vector of each police force easily. The commander considers the center of the cell in which the 
police force works as the police force’s position. Then it calculates the resultant vector using 
above procedure and assigns the police force to another cell. This way, the commander 
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determines each police force’s next target. 
 
After the process of determining police force’s next target is done by the commander, the new job 
is sent for the police force. The commander also gives such information to every police force in 
each cycle. On the other hand, police forces save the commands which were sent by the 
commander in each cycle. Each police force extracts the latest commands after finishing the job 
in its allocated cell and begins to accomplish it. Each police force informs its position (the cell it is 
located in) to the commander during clearing the blockades. 

 

7. EVALUATION 
To evaluate the learning method we used for our teams in such a complex domain, we would first 
like to discuss the convergence of our agents’ action probabilities briefly. To do so, we take our 
ambulance teams as an example. As mentioned in section 5, we have used an Lrp Learning 
Automata with eight actions (each corresponding to a method through which ambulance teams 
should act). We administered several offline simulations to test each of these methods in various 
situations and to let our Learning Automata converge to their best decisions of actions. 
 
Since our selected domain is very changeable and dynamic, there is always the possibility of 
convergence to a different action from the one selected in a previous run in consecutive 
simulation runs. If we administrate sufficient simulation runs to let our Learning Automata have 
enough time to test each of their actions in various situations, we can expect it to give us a near 
optimal action (to be done) in each and every state. Our experiments revealed that this need of 
running enough simulations might take considerable time for the Learning Automata to converge. 
 
In our experiments, we noticed that in most cases, the Learning Automata used were able to 
report us the best selected action and so, were able to converge to one of their actions at the 
end. But it seems inevitable that in some cases, although they have had enough opportunities to 
act during offline training simulations, our Learning Automata give us probability distributions as 
the final outcome of their learning. 
 
In RoboCup Rescue Simulation, the lapse of time is defined in terms of simulation cycles. 
Although the number of cycles is configurable, an ordinary simulation run consists of 300 
simulation cycles. The actual time lapse per cycle can be altered too, but generally equals one 
second, bringing the total simulation run to 5 minutes [6]. 
 
Our results show that in one of our simulation series (results of which depicted in figure 3), the 
probability values (first each initialized to 0.125 for each of the eight actions) have converged 
almost fast. After something about 140 minutes (28 consecutive simulation runs), the probability 
of doing action 2 has reached to 0.995 that seems to be enough to claim for convergence. 
 
In another series of simulation (results of which depicted in figure 4), after something about 550 
minutes from the beginning of the simulation (110 consecutive simulation runs), none of the 
probability values reached to a value good enough to claim for convergence. The actions 3, 4, 
and 8 had been selected as the near optimal action, each in a time slice during these 550 
minutes. Although action numbered 8 had the most probability value at the time we stopped the 
simulation, it didn’t seem to lead to any convergence. 
 
As illustrated, in some time slices of the time passed, the probability of each of the above-
mentioned actions had increased, but declined very soon. In such cases, we have gained 
probability distributions (for doing actions) as the outcome of learning in our simulations. 
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FIGURE 3: First simulation series’ changes in probability values of each of the eight actions of Lrp Learning 

Automata for ambulance teams over time elapse 

FIGURE 4: Second simulation series’ changes in probability values of each of the eight actions of Lrp 

Learning Automata for ambulance teams over time elapse 
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And at last, in the third series of simulation (results of which depicted in figure 5), the probability 
value of action 2 has reached to 0.98 after something about 230 minutes (46 consecutive 
simulation runs) that seems to be enough to claim for convergence. 

FIGURE 5: Third simulation series’ changes in probability values of each of the eight actions of Lrp Learning 

Automata for ambulance teams over time elapse 
 
As the above results show, because the environment is very changeable and dynamic, we can’t 
always expect the probability values to converge to a unique (or predefined) behavior to be 
selected as the optimal behavior of the Learning Automata and we can’t even expect for 
convergence. The results show the need for and the necessity of having enough simulation runs 
in order to have the best average decision of action in each and every state of the environment. 
 
As we experimented in this research’s simulations, our previous simulations in RoboCup 
Soccer2D Simulation domain had also revealed that Learning Automata converge slowly 
comparing to many typical machine learning methods (like Q-Learning) [1-3]. Although we have 
investigated some modification methods that slightly increase their speed of convergence in [1], 
the fact is that Learning Automata is very time demanding to converge. That would be because of 
their natural need to have enough (and occasionally plenty of) time in order to make them able to 
test each of their actions in various situations. 
 
On the other hand, we would like to compare the results of our research’s simulations with those 
of other known researches using this test-bed which have used other learning strategies. A lot of 
teams taking part in international RoboCup Rescue Simulation [4] competitions have published 
their strategies. 
 
In order to have a benchmark for evaluation, we have compared some results of our strategy with 
those of the strategy used in UvA team [6] which utilizes pre-computed grid-like sectors in the 
simulated city. UvA has been one of the teams taking part in RoboCup Rescue Simulation 
competitions which in its essential part, assigns agents (like fire brigades and ambulance teams) 
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to the sectors which have the highest risks (due to fire spread and the like) during the simulation. 
 
In our approach each of the three heterogeneous teams uses its own learned behavior to be 
assigned to any point in the map, while in [6], police forces accompany fire brigades and 
ambulance teams after their assignment to a sector. In fact, we have used a more distributed 
approach to make our agents more flexible and efficient in this dynamic and non-deterministic 
environment. 
 
We also believe that our approach would be more robust comparing to the method used in [6]. 
That’s because it seems there would be no jobs to do for the police forces who accompany those 
fire brigades and ambulance teams which encounter sudden malfunction (like disconnecting from 
the server which happens occasionally). While in the approach we have used, police forces are 
assigned to their jobs based on the information they receive and independent of the other two 
teams of agents acting in the environment. 
 
As mentioned in section 6, police forces can have a great effect on the betterment of other 
agents’ duties by clearing the blockades and the performance of other agents does heavily 
depend on the number of open roads in the city. It would be obvious that the more nodes 
(especially those on the blocked roads) the police forces visit during a simulation run, the higher 
chances exist for fire brigades and ambulance teams to act more efficiently in that run. The 
reader might have a second look at the situation depicted in figure 1 to have a better feeling of 
the objects (such as nodes and roads) in a simulated city.  
 
To have an estimation of the number of buildings, roads, and nodes in typical simulated cities, 
three of the most used classic maps in RoboCup Rescue Simulation [4] competitions are shown 
in table 1 along with their key features [6]. In general, the number of civilians in the simulation lies 
between 70 and 90, whereas the number of agents is 15 to 30 and agents can only see (sense) 
objects at sufficiently close range [6]. 

 
map name total area (m2) #buildings #roads #nodes 

Kobe 417.4*316.5 739 820 765 

Foligno 2038.1*1517.4 1084 1480 1369 

Virtual City 413.1*417.8 1266 621 532 

 

TABLE 1: Three maps used in RoboCup Rescue Simulation competitions and some of their key features [6] 

 
In order to be able to compare our method with the method used in [6], many different evaluation 
tests might be run to illustrate the difference of performance between the two. As its significance 
was briefly mentioned above, one such test might be evaluating the function of police forces in 
visiting the nodes. Visiting more nodes has a direct effect on discovering and so, clearing more 
blockades which might exist in corresponding roads and/or corresponding building entrances. 
More blockage clearing during the simulation cycles by police forces might be very critical for both 
fire brigades and ambulance teams in doing a better job in the environment. That would be 
because of their having access to more roads which facilitate their routings to their targets 
(civilians to rescue and fiery buildings to extinguish). 
 
We have called our agents’ strategy “Distributed strategy using LA”, and the strategy in [6] 
(implemented on our base code) “Fixed strategy”. While we have implemented similar teams 
regarding base codes and agents’ behavioral capabilities, table 2 shows the results gained during 
a simulation on Kobe map. The test has been administrated after all the three heterogeneous 
teams of agents’ learning values of both teams have been converged and agents of both teams 
are able to exploit their learned values. 
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As the table shows, although using a fixed strategy does better in the first cycles of the simulation 
(and that might be because of using pre-computed grid-like sectors in the simulated city), the 
overall function of the Distributed strategy using Learning Automata is better (visiting 331 nodes 
vs. 303 nodes during a complete simulation run). It can be observed that the number of nodes 
visited in our approach surpasses that of those visited by the other approach as the cycles pass 
and as we reach closer to the end of the run. 

 
             Cycles                   

    Strategy 

0-50 51-100 101-150 151-200 201-250 251-300 

Distributed strategy using LA 49 55 67 54 63 43 

Fixed strategy 68 74 64 34 37 26 

 

TABLE 2: Comparison of the number of nodes visited by police forces between “distributed strategy using 
LA” and “fixed strategy” in consecutive cycles of the simulation 

 
Finally, the main objective of a RoboCup Rescue Simulation is to save as many civilians’ lives as 
possible and to minimize the damages from the fires. The degree of success of the clients (i.e. 
the teams of agents acting in the domain) to reach this objective is calculated by the server as an 
overall final score. 
 
Therefore, another typical evaluation is to compare the strategies from the final score point of 
view. Doing this, we would be able to have an overall comparison between the two strategies 
evaluating the coordination among heterogeneous teams of agents to mitigate the disaster in the 
city. Figure 6 shows a diagram that compares the final scores of both teams averaged over 10 
complete simulation runs. 
 
It shall again be noted that these results are gathered after agents of our teams have passed their 
offline training simulations and are able to exploit their learned values. Also, due to the inherent 
complexity which dynamically exists in such domains, we should equip the learning methods 
used by our agents with some (though little but not zero) online exploration for their learned 
(action probability) values. As illustrated, our approach has an overall better performance. 
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FIGURE 6: Comparison of the average overall final score between the two strategies of coordinating 

heterogeneous teams of agents, “distributed strategy using LA” vs. “fixed strategy” 

 

8. CONCLUSION 
Our goal has been creating a complete working rescue simulation team that can act well in a 
complex domain using Learning Automata-based machine learning techniques. We had 
previously used Learning Automata for successful production of a series of actions for 
homogeneous agents that were members of a team, such that the resulting team can act well in a 
multi-agent, noisy, real-time, and most important collaborative environment [1-3]. 
 
Before our use of Learning Automata, various machine learning methods have been used in 
developing teams acting in RoboCup simulation domain as a complex multi-agent test-bed. 
CMUnited [12] introduces Layered Learning and uses decision trees, artificial neural networks, 
and Q-learning in different layers. In RoboCup Rescue Simulation domain, some teams like ResQ 
Freiburg [13] and S.O.S. [14] have used A* and Dijkstra’s algorithm [15] to plan paths for their 
agents. Eternity [16] has used artificial neural networks to approximate the relationship between 
fire situations and their priorities. Roboakut [17] uses reinforcement learning in some parts of its 
team development in order to predict the long term effects of agents’ actions. The Black Sheep 
team [18] uses D* in agents’ path planning. 
 
In this paper we have used Learning Automata in coordination among heterogeneous agents in 
RobCup Rescue Simulation test-bed. We used Learning Automata for our agents’ major 
challenges to give solutions to complex strategic high level decisions such as when and how to 
form groups of agents in order to have the best team result. 
 
As a brief scenario in a lot of parts of our team development, the agents determine their current 
states by generalizing some formulas based on various important parameters in the Robocup 
Rescue Simulation domain. Then, they perform the action that is advised by the corresponding 
automata in that state. The agents (the center or commander in center-less situations) then 
percept their actions’ results and give themselves reward or penalty depending on those results. 
 
We have simulated our agents to learn from zero (i.e. without any previous knowledge of the 
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environment before starting our offline simulations). Also, we have used the agents themselves 
for the judgment about their actions’ results and this let us have what we call “distributed 
judgment”, again a multi-agent approach. We should also point that we have used (a = b = 0.1) for 
the Lrp that we used in our training simulations. The parameters a, and b are reward and penalty 
parameters respectively as mentioned before. 
 
Our simulations in RoboCup Soccer2D Simulations [1-3] and in RoboCup Rescue Simulations 
reveal that although Learning Automata converge slowly comparing to many typical machine 
learning methods, they are able to perform well in order to have a coordinative team of agents in 
complex multi-agent domains. 
 
The methods introduced in this paper are general methods that can be implemented, applied, and 
used in other domains or test-beds with minor changes. Our experiments illustrate that Learning 
Automata adapts itself well with noise and changes in the environment and also with hard 
situations such as malfunctioning of some of the agents. 
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