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Abstract 

 
This paper presents an automatic remotely sensed system that is designed to classify dust, 
clouds, water and vegetation features from red sea area. Thus provides the system to make the 
test and classification process without retraining again. This system can rebuild the architecture 
of the neural network (NN) according to a linear combination among the number of epochs, the 
number of neurons, training functions, activation functions, and the number of hidden layers. 
Theproposed system is trained on the features of the provided images using 13 training functions, 
and is designed to find the best networks that has the ability to have the best classification on 
data is not included in the training data.This system shows an excellent classification of test data 
that is collected from the training data. The performances of the best three training 
functionsare%99.82, %99.64 and %99.28for test data that is not included in the training 
data.Although, the proposed system was trained on data selected only from one image, this 
system shows correctly classification of the features in the all images. The designed system can 
be carried out on remotely sensed images for classifying other features.This system was applied 
on several sub-images to classify the specified features. The correct performance of classifying 
the features from the sub-images was calculated by applying the proposed system on some small 
sections that were selected from contiguous areas contained the features. 
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1. INTRODUCTION 
Remote sensing images provide a general reflection of the spatial characteristics for ground 
objects. Extraction of land-cover map information from multispectral or hyperspectral remotely 
sensed images is one of the important tasks of remote sensing technology [1-3]. Precise 
information about the landuse and land cover changes of the Earth’s surface is extremely 
important for any kind of sustainable development program [4, 5].In order to automatically 
generate such landuse map from remotely sensed images, various pattern recognition techniques 
like classification and clustering can be adopted [6, 7]. These images are used in many 
applications e.g. for detecting the change in ground cover [8-10], extraction of forest [11-13], and 
many others [14-16]. 

 
NN algorithms are widely used for classifying features from remotely sensed images [17, 18].NN 
offers a number of advantages over conventional statistical classifiers such as the maximum 
likelihood classifier. Perhaps the most important characteristic of NN is that there is no underlying 
assumption about the distribution of data. Furthermore, it is easy to use data from different 
sources in the NN classification procedure to improve the accuracy of the classification. NN 
algorithms have some handicaps related in particular to the long training time requirement and 
finding the most efficient network structure. Large networks take a long time to learn the data 
whilst small networks may become trapped into a local minimum and may not learn from the 
training data. The structure of the network has a direct effect on training time and classification 
accuracy. The NN architecture which gives the best result for a particular problem can only be 
determined experimentally. Unfortunately, there is currently no available direct method developed 
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for this purpose [19, 20]. The NN algorithms are always iterative, designed to step by step 
minimise the difference between the actual output vector of the network and the desired output 
vector. The Backpropagation (BP) algorithm is effective method for classifying features from 
images [21, 22]. 
 
The following training functions are chosen as classifiers in the proposed system. They are 
Resilient Propagation (trainrp) [23, 26, 34-37], Gradient descent (traingd) [38], Gradient descent 
with momentum (traingdm) [38], Scaled conjugate gradient (trainscg) [39], Levenberg-Marquardt 
(trainlm) [40], Random order incremental training with learning functions (trainr) [41], Bayesian 
regularization (trainbr) [41], One step secant (trainoss) [42], Gradient descent with momentumand 
adaptive learning rule (traingdx) [43-44], Gradient descent with adaptive learning rule (traingda) 
[45], Fletcher-Powell conjugate gradient (traincgf) [38, 46], Polak-Ribiére conjugate gradient 
(traincgp)[46], and Batch training with weight and bias learning rules (trainb)[47] backpropagation 
algorithms. 
 
This work is usedNN for classifying dust, clouds, water and vegetation features from red sea 
area. BP is the most widely used algorithm for supervised learning with multi-layered feed-
forward networks and it is very well known, while the trainrpfunction is not well known. The 
trainrpfunctionis faster than all the other BP functions[27-30]. The rest of paper is organized as 
follows; Section 2 describes the pattern data that is used for training and testing the system. 
Section 3 presents the proposed system. Section 4 shows the obtained results. Finally, Section5 
concludes the work. 

 

2. PATTERN DATA 
This study is carried out on three images that were obtained by the Moderate Resolution Imaging 
Spectroradiometer(MODIS) on NASA’s Aqua satellite.  The first image contains multiple dust 
plumes blew eastward across the Red Sea. Along the eastern edge of the Red Sea, some of the 
dust forms wave patterns. Over the Arabian Peninsula, clouds fringe the eastern edge of a giant 
veil of dust. East of the clouds, skies are clear. Along the African coast, some of the smaller, 
linear plumes in the south may have arisen from sediments near the shore, especially the plumes 
originating in southern Sudan. The wide, opaque plume in the north, however, may have arisen 
farther inland, perhaps from sand seas in the Sahara [31]; see figure(1). The second one has 
dust plumes blew off the coast of Africa and over the Red Sea. The dust blowing off the coast of 
Sudan is thick enough to completely hide the land and water surface below, but the thickest dust 
stops short of reaching Saudi Arabia. Farther south, between Eritrea and Yemen, a thin dusty 
haze hangs over the Red Sea [32]; see figure (2). The third contains dust plumes blew off the 
coast of Sudan and across the Red Sea. Two distinct plumes arise not far from the coast of 
Sudan and blow toward the northeast. The northern plume almost reaches Saudi Arabia. North of 
these plumes, a veil of dust with indistinct margins extends from Sudan most of the way across 
the water [33]; see figure (3). These three images are called image1, image2, and image3 
respectively. They are RGB format and their information is shown in table (1). 
 
In this study, the classification is specified for dust, clouds, water, and vegetation features. Each 
feature has approximately the same colour in the three images. So, the pattern data is selected 
randomly by sampling throughout the image2 only. Where, it contains all features clearly. The 
selection of this data is such that it contains samples of all features. The pattern data for each 
pixel consists of three pixel grey-levels, one for each band. These bands are red, green and blue. 
The grey levels in the original images are coded as eight bits binary numbers in the range from 0 
to 255. In order to train the NNs, all pixels values are normalised to lie between 0.0 and 1.0. The 
pattern data is collected from the proposed image for the features: dust, clouds, water, and 
vegetation. After the collection, each feature is represented as one group. Each group is divided 
into two parts: two-thirds for training and one third for test. Then, the training groups are merged 
in single file, and the test groups in other file. 
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FIGURE 1: The first original image (image1) was taken by NASA Satellite. 
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FIGURE 2: The second original image (image2) was taken by NASA Satellite. 
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FIGURE 3: The third original image (image3) was taken by NASA Satellite. 
 

 

Name taken date  length width size /MB 
image1 July 24, 2010 4000 2800 1.14 

image2 mid-July 2011 5916 6372 3.14 

image3 Aug. 3, 2011 5916 6372 3.25 
 

TABLE 1: Information of the Studied Three Images. 

 
3. PROPOSED SYSTEM 
NNsare very effective methods to classify features fromimages. Figure (4)shows the NN 
architecture. This architectureconsists of input layer with R elements, two hidden layers with S 
neurons, and output layer with one element. The proposed system is designed to work in 
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automatic way without any help from the user. The system is firstly started with building initial NN 
architecture without hidden layer by selecting the first training and activation functions from lists. 
Then, the initial number of neurons and epochs are specified.The weighted values are initialized 
randomly. After that, the system is trained and tested. If the required performance is reached, the 
resulted network is used for classifying the proposed features. Otherwise, this experiment is 
repeated again for ten times using the same system architecture of the NN hoping to get a 
random weighted values lead to improved performance. In the case ifthe required performance is 
not reached, the system rebuildsthe architecture of the NN according to a linear combination 
among the number of epochs, the number of neurons, training functions, activation functions, and 
the number of hidden layers. This system is illustrated in more details in the following algorithm 
and figures (5- 6). 

 
1 - Preprocessing 

- Create a list of training functions names. 
- Create a list of activation functions names. 
- Specify the following components of NNs: 

- number of hidden layers 
- number of neurons for each layer 
- number of epochs 
- training function name. 
- activating function name. 
- experment_counter = 0. 
 

2- Build NN architecture. 
 

3- Initialize weight values randomly. 
 

4- Train the system. 
 

5- If the required performance (Training and test) reached go to step 8 
 

6- If the experment_counter< 10 then  experment_counter++ and go to step 3 
 

7- Create a new system architecture by specifying linear combination of the following: 
- increase the number of neurons per layer 
- increase the number of Epochs 
- select a new training function from the list 
- select a new activation function from the list 
- increase the number of hidden layer 

go to step 3. 
 

8- Saves the workspace. 
 

9- Call the classification process to extract features of partial images; see figure (6) 
 

10- Prints the results system and keep it in the files. 
 

11- Stop. 
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FIGURE 5: Flowchart for the Proposed System. 
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FIGURE 6: Flowchart for the Proposed Classification Process. 

4. RESULTS 
The proposed system wasapplied and simulated on the selected data; this data was3348 
examples for training and 1116 examples for testingas specified in the Section (2). The system is 
carried out on a set of training functions to make a comparison among them. It was found that, 
two hidden layers with 33 and 11 neurons are enough for reaching the optimal solution. After the 
training, the obtained performances for training and test data are listed in table (2) and shown in 
figure (7). It was noticed that the best three training functions are trainbr, trainlm and trainrp and 
their performances are presented in figure (8). Moreover, the obtained best networks of these 
functions are reached at 2965, 645, and 20000 epochs. For each layer, W and b represent the 
weights and the biases respectively. The architectures of these training functions are given in 
figure (9). The linear regression between the network outputs and targets are introduced in figure 
(10).  
 
Threesections are chosen from the studied three images for classifying features; one sections 
from each image. The information of these sections is introduced in table (3).This system was 
prepared to form pattern data for thesesections to classify dust, cloud, water and vegetation 
features from their pixels. Thesesections were selected from area containing the specified 
features.The best networks of the three training functionswere classified the features data from 
the specified sections precisely.Figures (11-13) show the selected threesections and their NN 
classification results respectively. 
 
In order to calculate the correct performance of these networks for classifying or mis-classifying 
features data,four small sections were selected from contiguous areas containedthe specified 
features.One section for each feature is chosenfrom the three images, except the vegetation 
feature is not found in contiguous area in the image1 and image3. Figure (14) shows a sample of 
these features taken from image2. The coordinates of these sections are given in table (4). The 
best networkswere applied on these sections to classify their pixels as specified features. It was 
found that the performance of the proposed system was working in powerful process; see table 
(4).  
 
In order to evaluate the proposed system, a comparison amongthis system and others is 
presented in table (5). This comparison shows that the proposed system has the best accuracy. 
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TABLE 2: Comparative performance of different training algorithms for proposed system
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a) Trainbr b) Trainlm c) trainrp 
 

FIGURE 9: The Architecture of the Best Network. 

 

 

   
a) Trainbr b) Trainlm c) trainrp 

 
FIGURE 10: Linear Regression Between The Network Outputs and Targets. 

 

 

 

Taken from Sections Coordinates 

image1 2900x300 

image2 3210x530 

image3 1900x2200 
 

TABLE 3: The Classified Sections Information. 
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Image1_section Trainbr on Image1_section 

Trainlm on Image1_section Trainrp on Image1_section 
 

FIGURE 11: The NN lassification results of two sections taken from image1. 
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Image2_section Trainbr on Image2_section 

Trainlm on Image2_section Trainrp on Image2_section 
 

FIGURE 12: The NN classification results of two sections taken from image2. 
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Image3_section Trainbr on Image3_section 

Trainlm on Image3_section Trainrp on Image3_section 
 

Figure 13:The NN classification results of two sections taken from image3. 

 

 

Taken 
from 

Sections coordinates and performance percent 

Coordinates &Fun.Name dust clouds water vegetation 

Image1 

Coordinates 450x1270 1150x3930 260x130 --- 

trainbr %100 %100 %100 --- 

trainlm %100 %100 %100 --- 

trainrp %99.38 %100 %100 --- 

Image2 

Coordinates 1500x1500 400x2750 1350x350 1360x3360 

trainbr %100 %100 %100 %100 

trainlm %100 %100 %100 %99.89 

trainrp %100 %100 %100 %99.94 

Image3 

Coordinates 520x1660 1280x3320 1150x40 --- 

trainbr %100 %100 %100 --- 

trainlm %100 %100 %100 --- 

trainrp %99.69 %100 %100 --- 
 

TABLE 4: The System Performances of Classified Features. 
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Cloud Dust Water Vegetation 

 
Figure 14: Test Images of Classified Features. 

 

systems Proposed system [17, 24] [48] [49] [50] 

accuracy % 99.82 % 99.6 % 94.06 % 92.34 % 90.8 

TABLE 5: Comparison between the proposed systems and others. 

 

5.CONCLUSION 
This paper presents remotely sensed system that has the ability to classify dust, clouds, water 
and vegetation features from red sea area. This system was designed to work in automatic way 
for finding the best network. The proposed systemdid many tries to find the best networksusing 
low number of hidden layers and neurons. It was found that, two hidden layers with 33 and 11 
neurons are enough for reaching the optimal solution.The performances of the best three training 
functions (trainbr, trainlm and trainrp) on the test data were %99.82, %99.64, and %99.28 
respectively. Although, the proposed system was trained on data selected only from the 
image2,thissystem shows an excellent classificationofall features in the other two images. 
Moreover, the proposed system can simulate the other distributions not presented in the training 
set and matched them effectively.The system can store the obtained networks including the 
weighted and biases values. Thus provides the system to make the test and classification 
process without retraining again. 
 
In order to calculate the classification performance of the best network on the features data, the 
proposed system was applied on some small sections that were selected from contiguous areas 
contained the specified features. The best networkswere applied on these sections, it was found 
that the proposed system was classified the clouds and water features from the three images 
correctly. It was noticed that the system was classified the dust feature correctly from the image2 
that was used for collecting the training data. While,the other two images had some pixels that 
were mis-classified. 
 

6. FUTURE WORK 

This system can be improved with decreasing processing time of training by using the weighting 
values for previous experiment as initial weighting values for the next experiment. 
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