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Abstract 
 
The traditional approach for solving the object recognition problem requires image 
representations to be first extracted and then fed to a learning model such as an SVM. These 
representations are handcrafted and heavily engineered by running the object image through a 
sequence of pipeline steps which requires a good prior knowledge of the problem domain in order 
to engineer these representations. Moreover, since the classification is done in a separate step, 
the resultant handcrafted representations are not tuned by the learning model which prevents it 
from learning complex representations that might would give it more discriminative power. 
However, in end-to-end deep learning models, image representations along with the classification 
decision boundary are all learnt directly from the raw data requiring no prior knowledge of the 
problem domain. These models deeply learn the object image representation hierarchically in 
multiple layers corresponding to multiple levels of abstraction resulting in representations that are 
more discriminative and give better results on challenging benchmarks. In contrast to the 
traditional handcrafted representations, the performance of deep representations improves with 
the introduction of more data, and more learning layers (more depth) and they perform well on 
large-scale machine learning problems. The purpose of this study is six fold: (1) review the 
literature of the pipeline processes used in the previous state-of-the-art codebook model 
approach for tackling the problem of generic object recognition, (2) Introduce several 
enhancements in the local feature extraction and normalization steps of the recognition pipeline, 
(3) compare the enhancements proposed to different encoding methods and contrast them to 
previous results, (4) experiment with current state-of-the-art deep model architectures used for 
object recognition, (5) compare between deep representations extracted from the deep learning 
model and shallow representations handcrafted through the recognition pipeline, and finally, (6) 
improve the results further by combining multiple different deep learning models into an ensemble 
and taking the maximum posterior probability. 
 
Keywords: Shallow Models, Deep Learning Models, Encoding Methods, Object Recognition, 
BoVW. 

 
 
1. INTRODUCTION 
Generic object recognition problem is simply to assign a label for an object image. The image 
may contain multiple objects (such as elephants, leopards, sunflowers, grand pianos, faces, etc.) 
and hence multiple labels should be assigned accordingly. This problem is one of the most 
fundamental problems in computer vision and pattern recognition and has wide range of 
applications like web content analysis and video surveillance. However, it is a challenging 
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problem especially in the presence of intra-class variation, clutter, occlusion, deformation, 
illumination and viewpoint changes. 

The best known shallow framework used for solving this problem is the Bag of Visual Words 
(BoVW) [1, 2] model which makes use of a pretrained codebook as shown in figure 1. BoVW 
passes the query image through a pipeline consisting of several steps to get the final 
representation describing the image. It starts out by extracting local features of the object image. 
The local features are detected and described to get local feature descriptors. Many feature 
detection and description methods were proposed in the literature and are reviewed in section 2. 
In a later step, these features are transferred from their feature space onto the codebook space 
using an encoding method. For a particular feature descriptor, the encoding methods can 
produce a single code or a block of codes for each codeword in the codebook. Many encoding 
algorithms were proposed in the literature and are discussed in section 4. To get a global 
representation of the image, the coding responses for each codeword is then integrated into a 
single code (or a block of codes) using a pooling method like sum or max pooling. Pooling 
process can be improved if performed spatially using a Spatial Pyramid (SP) [3]. At the end of the 
pipeline, the resultant image representation is normalized using a normalization method like    or 
power normalization. At this stage, the image hand-engineered representation is ready and can 
be fed to a machine learning model (e.g., SVM) to give the class of the query image. 
 

 

 

FIGURE 1: Bag of Visual Words (BoVW). 

 
FIGURE 2: Deep model architecture (CNN). 
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To improve the performance of shallow representations, we proposed a new pipeline step in 
which the previously extracted local features are enhanced (see figure 1). In this step, feature 
descriptors are square-rooted as suggested by Arandjelović and Zisserman [4] and are reduced 
in dimensionality and decorrelated using Principal Component Analysis (PCA). Additionally, they 
are augmented by their spatial location [5]. BoVW model will be discussed in section 3. 
 
On the contrary, a deep learning model doesn’t need features to be extracted beforehand but the 
object image raw pixels can be fed directly to the deep model for both feature extraction and 
classification in a single step. In this model, features are deeply leant inside the deep model in 
multiple learning layers and no prior knowledge about the problem domain is required. Deep 
models are sometimes called generalized feature extractors since they can be used to extract 
features for different data domains such as text, audio and video. Figure 2 displays a deep model 
architecture used for object recognition and is called a convnet or Convolutional Neural Network 
(CNN). CNNs start learning directly from the input image and succeeding layers consume the 
output of the preceding layer(s). Mainly, they consist of many Learning layers, some pooling 
layers, and one classification layer. A learning layer can be a convolutional layer or a fully 
connected layer (FC). Convolutional layers are many in number and can accept and produce 
multidimensional data whereas FC layers are a few and only accept and produce one-
dimensional data. FC layers can exist only at the end of the network whereas convolutional layers 
are dispersed throughout the network. Inside the learning layers, there exist a nonlinearity to help 
the network learn interesting functions. They also contain many free parameters that are adjusted 
during the supervised training process. The classification layer (final layer) computes the loss that 
the network has incurred in learning non-discriminative representations. The network then 
updates its free parameters so as to produce more discriminative representations to bring the 
network loss down. To reduce the dimensionality of the convolutional layer output, a pooling layer 
is used. In addition to dimensionality reduction, it summarizes local inputs by one statistic that 
gives the network invariance to simple translations. Deep learning and its models will be 
discussed in section 5. 
 
In this study, we have conducted many experiments to compare the performance of shallow and 
deep representations. We evaluated our proposed enhancements to different encoding methods 
used in the BoVW codebook model and obtained better results than before. Also, we 
experimented with deep model architectures and compared between different architectures on 
one hand and between deep and shallow models on another hand. We studied further the 
discriminative power of deep and shallow features extracted from deep and shallow models 
respectively. Finally, we improved the results further by combining several deep models into an 
ensemble and taking the maximum posterior probability. All of experiment details are mentioned 
in section 6. Conclusion, future work and references are given in sections 7, 8 and 9 respectively. 

 
2. LOCAL FEATURES 
For any object image, local features can be interest points or interest regions. They are extracted 
from the appearance of an object and are local in the sense that they describe a local part of the 
object appearance. An image can produce several hundred (or thousands) of local features. The 
next subsections review the detection and description methods used to extract and describe 
image local features. 
 
2.1 Feature Detectors 
Many feature detectors were proposed in the literature such as Scale-Invariant Feature 
Transform (SIFT [6]) and Speeded Up Robust Features (SURF [7]). Feature detection is about 
detecting points (or regions) in an image that are repeatable – i.e., given a different image of the 
same object, the feature is distinctive enough that we can find it again in the correct location. A lot 
of methods were used for the detection process. Harris [8] has used the second moment matrix 
(Harris matrix) which contains image first derivatives in order to detect corner points. He used a 
corner quality measure that is based on eigenvalues of this matrix (Harris measure). To detect a 
feature at multiple spatial scales, a Gaussian scale-space for an image is constructed and 
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features are detected at all scales. To prevent multiple detections for the same feature and select 
the scale that is most significant for the feature, Lindeberg [9] introduced the concept of automatic 
scale selection which allows to detect interest points in an image, each with its own characteristic 
scale. The characteristic scale is the one that gives the maximum of the scale-normalized 
Laplacian of Gaussian function in scale space. Lindeberg [9] also proposed another detection 
method that is based on the scale-normalized Hessian matrix of image second derivatives. In this 
method, an interest point is detected if the trace of this matrix (which is the scale-normalized 
Laplacian of Gaussian or LoG) is locally maximal in scale space. Lowe [6], in his SIFT detector, 
approximated the Laplacian of Gaussian (LoG) detector using the Difference of Gaussians (DoG) 
which is computationally more efficient. Another measure of detection is to use the determinant of 
the Hessian (DoH) as a feature quality measure. Mikolajczyk and Schmid [10] refined the 
previous methods, creating robust and scale-invariant feature detectors with high repeatability, 
which they coined Harris-Laplace and Hessian-Laplace. They used a scale-adapted Harris 
measure or the determinant of the Hessian matrix to select the location, and the Laplacian to 
select the scale. Bay et al. [7] noted that the discrete Gaussian filters used in the computation of 
the scale-normalized Hessian could be approximated by extremely simple box filters involving 
simple sums and differences of pixels and have used this idea, in their SURF detector, to 
approximate the determinant of the Hessian. The box filters can be applied very quickly 
compared to filters with floating-point coefficients. Moreover, if integral images [11] are used for 
the computation, then the speed of applying the box filter is independent of the filter size resulting 
in what they called Fast Hessian. Rosten and Drummond [12] proposed a fast detection algorithm 
for what they called FAST Corners. In their method, a candidate pixel   is compared to a 

discretized circle of pixels around it; if all the pixels on a contiguous arc of   pixels          
around the circle are significantly darker or brighter than the candidate pixel, it is detected as a 
feature. They [13] later extended the FAST idea using a machine learning approach (a decision 
tree) based on the intensities of the sixteen surrounding pixels of the candidate pixel to yield a 
detector that is higher in performance and speed. Matas et al. [14] proposed a new type of 
feature called Maximally Stable Extremal Regions or MSERs. These too are extremely fast to 
compute and are based on the basic thresholding operation. A region (connected component) is 
detected as feature if it satisfies two conditions: (1) all the pixels inside that region are either all 
darker or all brighter than pixels in the boundary, (2) the region should be stable, i.e., it should 
change little to threshold variations. 
 
It is important to mention that most of the above feature detectors are not robust to large 
viewpoint changes. If the viewpoint of an object undergoes a large affine transformation, then the 
region of the same pixels around the interest point in both cases would be different. The 
fundamental theory of affine-invariant regions was first proposed by Lindeberg and Gårding [15] 
and applied by other researchers including Baumberg [16], Schaffalitzky and Zisserman [17], and 
Mikolajczyk and Schmid [18]. An elliptical affine invariant region can be computed by an iterative 
procedure called affine adaptation. After applying this procedure, the resulting circular region and 
that region before the transformation are identical but up to a rotation. Mikolajczyk and Schmid 
[18] proposed to simultaneously detect feature point locations and corresponding affine-invariant 
regions using an iterative algorithm, resulting in Harris-Affine or Hessian-Affine features according 
to the type of detector used whether Harris or Hessian. 
 
After determining the feature location and scale, the next problem for the detector is to determine 
the feature support region -  i.e., the set of pixels in the feature neighborhood that should 
contribute to a feature’s descriptor. For scale-invariant features such as Harris-Laplace, Hessian-
Laplace, and DoG where features are detected at a characteristic scale, the support region can 
be a circle drawn with a radius proportional to the feature characteristic scale. For features like 
MSERs and Hessian-Affine which produce affine-covariant regions, we can use the circular 
region produced at the end of the affine adaptation process as a support region. However, many 
description methods assume a square patch is given around the feature location as opposed to a 
circular one which means that we need to assign a reliable orientation to the feature to define the 
top edge of the square.  
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2.2 Feature Descriptors 
Once a feature’s location (and perhaps some additional information such as its scale or support 
region) has been determined, the next step is to describe the feature with a vector of numbers 
called a descriptor. Throughout the literature, large number of feature descriptors were proposed. 
Lowe’s SIFT [6] descriptor used a square patch around the feature point as opposed to a circular 
one which requires a reliable orientation for the square patch to be calculated. He suggested 
estimating this orientation based on a histogram of pixel gradient orientations over the support 
region of a scale-invariant circle and taking the dominant gradient orientation as the patch 
orientation. The square patch is then rotated upwards to normalize its direction, resampled, and 
smoothed by a Gaussian. The gradient at each resampled pixel is estimated and weighted by a 
Gaussian. The square is then subdivided into     smaller sub-squares with one histogram of 
eight direction bins in each sub-square. These sixteen histograms are then concatenated to form 
a          -dimensional vector which is normalized twice to make it robust to illumination 
changes. Mikolajczyk and Schmid [19] proposed a SIFT variant called GLOH (Gradient Location 
and Orientation Histogram). Instead of the square grid, a log polar grid of three rings is created. 
The outer and second outer rings are subdivided into eight bin locations each whereas the center 
ring is undivided to give a total of seventeen bin locations. In each bin location, a histogram of 
sixteen quantized directions is computed. Histograms from different bin locations are 
concatenated to form a raw          -dimensional descriptor. The dimensionality of the 
descriptor is then reduced using PCA to give a 128-dimensional vector. SURF descriptor is very 
efficient to compute because it uses Haar wavelets which are simple box filters. As in SIFT, the 
oriented square at a feature’s detected scale is split into a     square grid. However, instead of 
computing gradient orientation histograms in each subsquare, Haar wavelet responses at twenty-
five points in each subsquare are computed. The sums of the original and absolute responses in 
the   and   directions are computed in each sub-square, yielding a         -dimensional 
descriptor. Ke and Sukthankar [20] addressed the problem of dimensionality reduction of the 
SIFT descriptor using PCA in what they coined PCA-SIFT. They collected a large number of DoG 
keypoints and constructed       patches at the estimated scale and orientation of each 
keypoint. The   and   gradients at the interior pixels of each patch were collected into a       
      -dimensional vector, and PCA was applied to determine a much smaller number of basis 
vectors (e.g., twenty or thirty-six). Thus, the high-dimensional vector of gradients for a candidate 
feature is represented by a low-dimensional descriptor given by its projection onto the learned 
basis vectors. Belongie et al. [21] proposed shape contexts as a method for matching shapes, 
which were modified by Mikolajczyk and Schmid [19] for feature point description. The approach 
is similar to GLOH in that a log-polar location grid is constructed at the feature point location. 
However, instead of using the gradients of all points to construct the histograms in each 
subregion, only edge points detected with the Canny detector [22] are allowed to contribute their 
gradient orientations. Each edge point’s contribution is further weighted by its gradient magnitude. 
Johnson and Hebert [23] originally proposed spin images for describing features in range data. 
Lazebnik et al. [24] proposed modifying them to create feature descriptors for grayscale images. 
We simply compute a histogram of quantized intensities for each of several rings around the 
feature location, after the intensities have been normalized. The dimension of the descriptor is the 
number of intensity bins times the number of rings. Since there are no angular subdivisions of the 
rings, the descriptor is rotation-invariant. 
 
Another class of descriptors that do not require the patch orientation estimation and explicit 
orientation, are called Invariant-based descriptors. They are based on invariant functions of the 
patch pixels with respect to a class of geometric transformations, typically rotations or affine 
transformations. Schmid and Mohr [25] popularized the idea of differential invariants for 
constructing rotation invariant descriptors. That is, the descriptor is constructed using 
combinations of increasingly higher-order derivatives of the Gaussian smoothed image. Moment-
invariant [26] descriptors are another type of invariant descriptors that are computed using the 
image intensities and spatial locations. 
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3. BAG OF VISUAL WORDS MODEL 
The first decade of this century has seen the rise of Bag of Visual Words (BoVW) (or Bag of 
Features (BoF)) in computer vision and has been applied to many problems such as object 
recognition and image retrieval. BoVW model was developed from the Bag of Words model used 
in document classification and is probably the most popular and effective shallow framework for 
object classification. In this model, an object image is passed through a pipeline consisting of 
typically five steps to give at the end the image final handcrafted representation (see figure 1). 
The five pipeline steps are (1) local feature extraction, (2) local feature enhancement, (3) feature 
descriptor encoding, (4) code pooling and finally, (5) normalization. In the first step, patches from 
an image are extracted and represented using feature descriptors such as SIFT. The extraction 
process employs different sampling strategies which can be dense or sparse. In dense sampling, 
a patch is extracted and represented at every   pixels on a fine fixed grid while in sparse 
sampling, patches are extracted only at interest points or regions detected by a feature detector. 
Multiscale features can also be extracted by using different patch sizes. It is worth noting that the 
sets of local descriptors produced for different images may have different cardinality especially if 
sparse sampling is used or if images have different resolutions. 

The second step of the pipeline is optional, but we have seen much improvement in the final 
results when employed. To enhance the features, we first square-root their descriptors. After that, 
we reduce their dimensionality by learning from the training data a set of basis vectors using PCA 
and then projecting the features onto a subset of these basis vectors that has the highest 
projection variance. Feature descriptors are then decorrelated by whitening their descriptor 
dimensions. Moreover, the feature spatial location information is embedded inside its descriptor 
[5]. Let    be a feature descriptor, then the feature is augmented by its normalized spatial 

location:    
  

 

 
     

 

 
       where       is the descriptor    spatial location, and     are 

the image dimensions. 

In the third step of the pipeline, the set of local features extracted in previous steps are encoded 
using an encoding process which makes use of a previously generated codebook (also called 
dictionary or vocabulary). The codebook is generated in an offline process using an unsupervised 
learning method such as  -means clustering [27, 28] or Gaussian Mixture Model (GMM, [29]). 

Local feature descriptors from all training images are clustered in feature space into   clusters to 
form the codewords of the codebook. Hence, the inputs to the encoding process are the image 
local feature descriptors and the previously learnt codebook. The encoding process in turn 
produces a coding matrix per image, one coding vector for each local descriptor, by using one of 
different encoding methods. Feature coding is a key component of object recognition and has 
been widely studied in the past several years. Various encoding methods were proposed and 
they differ in how they activate the codewords for a given local feature. These algorithms encode 
a feature descriptor by producing a response for each codeword in the dictionary. The coding 
response can have different dimensionality for different encoding methods. Encoding methods 
will be discussed in section 4. 
 
The fourth step of the pipeline (pooling process) converts the image coding matrix into a vector 
(called the pooling vector) which forms the image global representation. For each codeword, 
codes from multiple local features are integrated dimension-wise into a single code (or a block of 
codes) using one of the classic pooling methods. Common examples include sum pooling and 
max pooling. Let    

  be the response of descriptor    for codeword  , and    be the pooling 

response for codeword  . In sum pooling, responses corresponding to the same codeword are 

summed for all descriptors, i.e.,        
 

 , whereas in max pooling, the maximum of the codes 
is taken, i.e.,    max   

 .  
 
In the last pipeline step, the image raw representation is normalized to form the image final 
representation. Different normalization methods exist such as   -normalization,   -normalization, 

power normalization, and intra-normalization [30]. In   -and   -normalization, the representation 
dimensions are divided by the corresponding   -, or   - norm respectively. In power normalization, 
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we apply to each dimension of the representation the following function:                   , where 

     is the  
th
 dimension of the representation, and      . Sign-square-root normalization is a 

special case of power normalization when      . Intra-normalization carries out normalization in 

a block by block manner and can be done using   - or   - normalization. Intra-normalization can 
be applied when the coding process produces a block of codes per codeword. We proposed 
different normalization strategies for different encoding methods which are based on   - and sign-
square-root normalization and are detailed in section 6.1. 
 
3.1 Spatial information 
Generally, the BoVW model is orderless and hence discards all the information about the location 
of the patches and this in turn incurs a loss of information. The dominant approach to include 
spatial information is to use the Spatial Pyramid (SP). Inspired by the pyramid match kernel of 
Grauman  
and Darrell [31], Lazebnik et al. [3] proposed to partition an image into a set of regions in a 
course-to-fine manner. They propose to partition the image into    ,    , and    , for a total 

of    regions. Each region is described independently and the region-level pooling vectors are 
then concatenated into an image-level pooling vector. Marszalek et al. [32] suggested a different 
partitioning strategy in which the image is partitioned into    ,    , and    , for a total of   
regions. 
 
3.2 Classification 
After running the image through the recognition pipeline, the image final representation is ready 
for classification. Many machine learning models were tried throughout the literature but the most 
popular one is the SVM which gives better results when used in conjunction with BoVW model. 
The SVM searches the space of linear decision boundaries to find the one that gives the 
maximum margin between two binary classes. It optimizes a constrained convex quadratic 
problem that uses the dot product between input features (linear kernel) and hence the kernel 
trick can be used. The nonlinear kernel function transfers the input features into a higher 
dimensional space and computes the dot product there in that space. Since the mapping process 
is done implicitly, we benefit from the increase in dimensionality by noting that problems become 
more likely to be linearly separable in high dimensional spaces. Moreover, the dot product is 
computed in the mapped space by computing the kernel function in the original space.  
 
Many non-linear kernels for BoVW model were proposed and used throughout the literature such 
as the histogram intersection kernel, pyramid match kernel, chi-square kernel, and Hellinger’s 
kernel. Despite their better classification results, they are less efficient than the linear kernel. 
There exist a class of kernels (additive homogeneous kernels [33]) that are as efficient as linear 
ones up to the computation of an efficient explicit feature map. Several non-linear kernels can be 
approximated by explicitly computing their feature maps. 
 
 
 

Encoding 

Algorithm 
HA SA LSA FV VLAD SPC LCC LLC 

App. 

LLC 
SC GSC LTC SVC 

  
  

dimensionality 

( ) 

1 1 1      1 1 1 1 1 1   1   1 

No. of 

codewords 

activated 

1       1         1     1 

TABLE 1: Coding response for different encoding methods. Top row: Coding Response dimensionality 

per codeword. Bottom row: number of codewords activated by a single feature descriptor. Star symbol ( ) 
indicates a sparse set of codewords activated per feature descriptor and might be variable. 
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4. ENCODING METHODS 
Let   be a set of  -dimensional local descriptors extracted from an image, i.e.,             
    ,              

    be the codebook of M codewords and        
         

     
     be the coding vector produced by the encoding method corresponding to feature descriptor 

  , where   
  is the coding response of the     codeword and   is the coding response 

dimensionality which can be a scalar or a block of codes. Each local descriptor    may activate 
one or more codewords during the encoding process. The dimensionality of the coding response 
per codeword and the number of activated codewords for a feature descriptor are different for 
different encoding methods and are given in table 1. 
 
4.1 Hard Assignment (HA) 
This coding method [1] forms the baseline encoding upon which other encoding methods 
improve. It is also called by other names like Vector Quantization (VQ) or histogram encoding. HA 
encodes a feature descriptor    by assigning the whole coding weight to the nearest codeword. 
HA is defined as: 

   
   

                   
 

          

                                             
  

(1) 

4.2 Soft Assignment (SA)  
Instead of assigning all the coding weight to the closest codeword, this method [34-36] distributes 
the coding weight among all the codewords in a soft manner proportional to how far each 
codeword is from the feature descriptor.  It achieves this by making use of a distance function like 
the Gaussian kernel. In contrast to HA, SA takes into account the uncertainty of codewords in 
case two or more codewords are strong candidates for a given feature descriptor. SA is defined 
as: 

 
  
  

              
  

               
   

   

 (2) 

where   is a smoothing factor controlling the softness of the assignment. 

4.3 Localized Soft Assignment (LSA) 
Unlike SA, this method [37] only considers the   closest codewords in the neighborhood of the 

feature descriptor. Let             
 , be the   closest codewords to the feature descriptor   . 

LSA is defined as: 
 

      
   

                                      
                                       

  
(3) 

 

      
              

  

                
 
  

   

   

 
4.4 Fisher Vector 
Fisher coding [38] is inspired by the Fisher kernel which describes a signal with a gradient vector 
derived from its generative probability density function [39]. In the context of object recognition, 
the signal is the image, the gradient vector is used for feature coding, and the probability density 
function is a Gaussian Mixture Model (GMM). A GMM of   components with parameters 

          
 , is given by:  

                      
 
      (4) 

where            denotes Gaussian  : 
 

           
     

 

 
       

   
          

           
      

(5) 

and            denote the weight, the mean vector, and the covariance matrix of Gaussian   
respectively and can be estimated using Expectation Maximization (EM) algorithm. We require 
         and      

 
    to ensure          is a valid distribution. We assume a diagonal 
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s.t       . 

            

covariance matrix so    is reduced to a variance vector denoted by   
 . Supposing all the 

features are independent from each other, an image can be expressed as the log-likelihood of all 
the features:  

               
            (6) 

We can define Fisher vector as the gradient of   with respect to   normalized by the square root 

of the inverse of Fisher information matrix   , i.e., 

     
      (7) 

where                      
 . The gradient with respect to the weight parameter was omitted since it 

adds a little information [38]. Note that the Fisher information matrix    has an approximated closed-form 

solution, and   
     normalization corresponds to the whitening of the dimensions. FV encoding is defined 

as: 

   
      

       
    (8) 

 
   
  

 

   
      

     

  
    



 
    
  

 

    
      

       
 

  
       



 
      

            

             
 
   

   


4.5 Vector of Locally Aggregated Descriptors (VLAD) 
In FV, each codeword is represented by its first and second order statistics. In contrast, VLAD [30, 
40] can be viewed as a hard version of FV and it only keeps the first order statistics. It encodes a 
feature descriptor    by the vector difference to its closest codeword. VLAD is defined as:  


  
   

                                    
                                                          

 
(9) 

4.6 Sparse Coding (SPC) 

SPC [41] finds a sparse set of codewords with corresponding coefficients    that can reconstruct 
the input feature descriptor   . SPC solves an    regularized least-square optimization problem 
defined as:  

       
  
          

         (10) 

 
 

Sparsity is attained in    due to the    norm which is known to induce sparsity. SPC is defined as:   

   
       , (11) 

where       is the reconstruction coefficient of descriptor    for the codeword   . 
 
4.7 Local Coordinate Coding (LCC) 
In practice, SPC tends to be local, i.e., it reconstructs a feature descriptor    using codewords in 
its neighborhood. But this locality cannot be ensured theoretically. Yu et al. [42] suggested a 
modification that explicitly encourages the coding to be local. They pointed out that under certain 
assumptions locality is more important than sparsity for successful nonlinear function learning 
using the obtained codes. LCC solves the following    regularized least-square optimization 
problem: 
 

      
  
          

           

 

   

        
  (12) 
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 s.t       

and LCC is defined as: 
   

        (13) 

where       is the reconstruction coefficient of feature descriptor    for the codeword   . 
 
4.8 Locality-Constrained Linear Coding (LLC) 
The computational cost of LCC and SPC is high because their solution relies on iterative 
optimization. To address this problem, LLC [43] changed the term         in (12) into a 

differentiable term      
  (as in (14)) to yield an optimization problem that has a closed-form 

solution. LLC optimizes the following    regularized problem: 
 

      
  
          

                          
 

 

   

 (14) 

 s.t         
 

where   is used for adjusting the weighted decay speed for the locality function (exponential 
term). The coding vector    corresponding to the feature descriptor    is given by: 

 
        

     
(15) 

                 

           
        

    

                         

where   denotes element-wise multiplication. LLC is defined as: 

  
        (16) 

To further enhance the encoding speed, approximated LLC was proposed. The second term in 
the above optimization problem (14) was omitted, and a feature is reconstructed just from the 

closest   codewords. Let             
  be the closest codewords to the feature descriptor    and 

    be their corresponding coefficient codes, then the approximated LLC reduces the above 
optimization problem to: 

       
   
            

  (17) 

 s.t        


Approximated LLC is defined as: 

 
  
   

                                                              
                                                               

 
(18) 

where        is the reconstruction coefficient of the feature descriptor    for the codeword    . 
 
4.9 Salient Coding (SC) 
SC considers a representation for each codeword that is salient when combined with max 
pooling. The idea behind SC [44] is that a codeword should receive a strong response if it is 
much similar with a feature than other codewords. That is, if a codeword is much closer to a 
feature belonging to this codeword than the other   closest codewords, then the response on this 
codeword is strong. This response is likely to be preserved during max pooling. As a result, the 
codeword can independently describe this feature without the help of other codewords. SC is 
defined as: 

 

  
   

                                       

                                                            
    

(19) 
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where       denotes the saliency degree, and         
  are the   closest codewords to the descriptor    . 

 

4.10 Group Salient Coding (GSC) 
In SC, weak responses to a codeword are suppressed by the response of the feature that is 
closest to this codeword compared to others. This results in some features not represented. To 
alleviate the suppression effect, GSC [45] proposed an idea that is based on group coding. 
Different group sizes can be formed with a feature   . In a group of size  , we only consider the 

feature    and the   nearest codewords. A saliency response for    is calculated for each group 
size and the response is shared among all the codewords in the group. Each feature    will have 
multiple coding vectors, one coding vector for each group size. The final coding vector is obtained 
by taking the maximum of the responses for each codeword over all group sizes. GSC is defined 
as: 
 

where         denotes the set of the   nearest codewords to   , and   is the maximum group 
size. 
 
4.11 Local Tangent Coding (LTC) 
LTC [46] assumes that the codewords and feature descriptors are embedded in a smooth 
manifold. The main components of LTC are manifold approximation and intrinsic dimensionality 
estimation. Under the Lipschitz smooth condition, the nonlinear function       can be 
approximated by a local linear function as: 
 

           
      

 
         

       
           (21) 

where   
  is a scalar coefficient associated with codeword    that is used for representing the 

feature   , and is obtained by LCC. The above approximate function (21) can be viewed as a 

linear function of a coding vector    
    

        
     
         . LTC argues that there is a 

lower intrinsic dimensionality in the feature manifold. To get it, PCA is applied to the high 

dimensional term   
         using a projection matrix               

    trained from the 
training data     ). Theses directions correspond to the local tangent directions of the 
manifold. Therefore, the final coding vector for LTC is defined as: 
 
   

      
    

        
     (22) 

where   is a positive scaling factor to balance the two types of codes. 
 
4.12 Super Vector Coding (SVC)  

SVC [47] is a simple version of LTC. Unlike LTC, SVC uses just the closest codeword    to 
represent    and obtains   

  via HA, i.e.,   
   . Moreover, SVC does not apply PCA to the term 

  
         in (21). In SVC, equation (21) simplifies to: 


                      
         

(23) 

consequently, the coding vector simplifies to: 
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5. DEEP LEARNING 
5.1 Review 
Deep Learning is about learning a task in a hierarchy of layers. The first layer learns from the 
input and succeeding layers learn from previous ones. Multilayer Perceptron (MLP), proposed in 
the past, is an architecture that can be built to go deeper but due to many problems it did not do. 
First of all, backpropagation [48] does not work well for deep MLPs. This is mainly due to the type 
of nonlinearities used. The traditional sigmoid and hyperbolic tangent activation functions kill the 
flowing gradients when neurons are saturated and hence layers down in the hierarchy do not 
receive theses gradients in order to update their weights. Moreover, proper initialization of 
weights is critical for backpropagation to work well. Improper initialization might cause most 
neurons down in the hierarchy to output zero as their activation which too kills the gradients from 
flowing. Second, the introduction of the Universal Approximation theorem [49] – which states that 
a single hidden layer can be used to approximate any continuous function to any desired 
precision – diverted people from going deeper with this model. Third, deep models are data 
hungry, and need much labeled data to train which was very difficult to get at that time. Lastly, 
deep models need much computation to train because most of the training is matrix multiplication 
and CPUs were not optimized for this operation. 
 
Recently, the introduction of new activation functions [50-52], better initialization strategies [51, 
53, 54], big data like ImageNet [55], better optimization methods like Adam optimization [56], 
better regularization methods [57-59], and finally the introduction of GPUs, all made deep model 
training possible. 
 
Deep learning has changed the view of how problems are solved. In end-to-end deep learning, 
the input to the model is the signal itself, not features extracted from that signal. This produces a 
unified framework for the two steps that were considered separate for a long time: feature 
extraction and classification. Learning the features along with the classification boundary in one 
step produces more discriminative features far better than hand engineered ones and gives much 
better classification results.  

5.2 Convolutional Neural Networks (CNNs) 
A Convolutional Neural Network (CNN) is a powerful machine learning technique from the field of 
deep learning. CNNs were inspired by the experiments of Hubel and Weisel [60-62] in which they 
discovered that different neurons in the cat visual cortex fire for different light edge orientations.  
They also showed that locality is preserved in processing, i.e., nearby cells in the cortex 
represent nearby regions in visual field. They hypothesized through their experiments that the 
visual cortex has a kind of hierarchical organization where simple cells feed to other complex 
cells which in turn feed to hypercomplex cells. Fukushima [63] introduced the neurocognitron 
which models the visual cortex in computers. It is composed of a hierarchy of layers where each 
neuron in upstream layers looks at a small region of input in the downstream layer.  Since 
backpropagation was not invented yet, Fukushima trained his model with an unsupervised 
procedure. LeCun et al. [64] built on Fukushima’s work and trained his network (LeNet-5) with 
backpropagation. Many years later, Hinton and Salakhutdinov [65] described an effective way of 
initializing the weights that allows deep autoencoder networks to learn a low-dimensional 
representation of data. Krizhevsky et al. [66] designed a convolutional neural network that they 
called AlexNet. It is very similar to LeNet except that it is bigger, deeper, uses Rectified Linear 
Unit (ReLU) activation function, and is trained on GPUs with more training data (ImageNet). This 
network has won the ILSVRC2012 competition and reduced the error rate by a large margin. 
Since then, these models have drawn people attention and many deeper and wider CNNs were 
proposed. Common CNN examples include VGG [67], GoogleNet [68], ResNet [69, 70], 
DenseNet [71], etc. These networks have millions of parameters and need proper training. 
 
CNNs are a special kind of multi-layer neural networks which have two fundamental differences: 
(1) neurons share weights, where many neurons in a layer share the same weights (2) they have 
sparse connections, i.e., not every neuron in upstream layer is connected to every other neuron 
in downstream layer. CNNs are composed of many layers of different types like convolutional  
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 layers, pooling layers, FC layers, softmax and classification layers. A convolutional layer is where 
downstream neurons are convolved (dot product operation) with a filter bank to give rise to many 
output feature maps, one map for each filter. Convolution filters need not to be flipped and this 
operation is similar to correlation. After filtering, a non-linearity such as ReLU is applied on the 
filtered input. It thresholds negative activations and passes positive activations as they are. A 
pooling layer down-samples each feature map by computing some statistic over it. Common 
statistics include average and the popular max pooling. Other pooling methods were recently 
proposed like fractional max-pooling [72] and spatial pyramid pooling [73]. At the end of the 
network, there exists the FC layers which are like the traditional MLP and it runs for a few layers 
before the softmax layer. The softmax layer uses the softmax function to convert class scores into 
class probabilities. The classification layer takes the class probabilities to compute the cross-
entropy loss function to be optimized. Other types of layers that prevents the network from 
overfitting the training data were proposed like batch normalization [74] layer (which also speeds 
up the training process) and dropout layer [59]. 
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FIGURE 3: Example Images from The Image Dataset. 
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6. EXPERIMENTS 
In this section, we describe four types of experiments carried out to evaluate the performance of 
shallow and deep image representations. The first experiment compares the performance of 
shallow image representations taking into consideration the enhancements proposed in the 
feature enhancements and normalization pipeline steps of the BoVW model for different encoding 
methods. Moreover, we contrast the results obtained to previous results obtained without using 
the proposed enhancements. The second experiment compares the performance of deep image 
representations on different CNN architectures finetuned on the training set. The third experiment 
evaluates the performance of handcrafted representations extracted from the BoVW pipeline and 
representations extracted from the CNN. The last experiment improves the performance by 
combining multiple CNNs into an ensemble. 
 
The dataset used in the experiments consists of 2533 images each belonging to one of    object 
categories. These categories were taken from Caltech-101 dataset and include bonsais, 
butterflies, crabs, elephants, euphoniums, faces, grand pianos, Joshua trees, leopards, lotuses, 
motorbikes, schooners, stop signs, sunflowers, and watches. Each category contains different 
number of images and are of different resolutions. Example images from each category are 
shown in figure 3. 
 
The dataset was split into two sets: training and testing sets. The first    examples of each class 
were used as a training set for a total of     images while the rest was used as a testing set for a 

total of      images. 
 
To demonstrate the results, we used MATLAB and two external libraries: VLFeat [75] and Lib-
linear [76]. The results were reported using top 1 and top 2 accuracy evaluation metrics. 
Precisions for each category were also reported. 
 
6.1 BoVW Pipeline Enhancements Experiments 
In these experiments, we evaluate the performance of shallow representations for the 
enhancements proposed for different encoding methods. Furthermore, we compare these results 
to previous results that do not use the proposed enhancements. 

 
Local Feature extraction and enhancement. All images were converted to grayscale even when 

color is available. Since all images have a medium resolution        , images were processed 
as they are without resizing them. We only used a single descriptor type, i.e., SIFT descriptors 

extracted densely from an image with a stride of   pixels at   different scales with    scale 
increments. The spatial bin size of the SIFT descriptor was fixed to cover   pixels. The feature 
descriptors were enhanced by running them through the feature enhancement pipeline step 
where they were square-rooted as suggested in [4], reduced in dimensionality from     to    
dimensions using PCA, and then whitened. Moreover, the reduced descriptors were augmented 
with their normalized spatial location to get   -dimensional descriptors. For performance reasons, 
we didn’t use feature augmentation for FV. 
 
Codebook Generation. A codebook of size      codewords was constructed by clustering a 
random subset of feature descriptors from the training set using  -means clustering algorithm. 

The codebook was fixed in size (to     ) for all experiments except for FV, and VLAD encoding 
methods which use a codebook of size 256 codewords. For VLAD, the codebook was 
constructed using  -means, whereas a GMM was used for FV. For GMM training, the mixture 
parameters were learnt from the training set using Expectation Maximization (EM, [29]) algorithm. 
The means of the GMM were initialized by the means of  -means algorithm run for a few 
iterations. The diagonal of the covariance matrix of each Gaussian was initialized by the diagonal 
of the covariance matrix of the points assigned to initial mean of each Gaussian. The mixing 
coefficients of each Gaussian were initialized by the proportion of points assigned to each 
Gaussian. 
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Encoding Methods. We compare the proposed pipeline enhancements to seven popular encoding 
methods used in the codebook model and for each we provide the parameters used in the 
encoding process: 
 

 HA: It uses hard quantization and requires computing the nearest neighbor for each feature 
descriptor. 

 LSA: It uses soft quantization and requires the computation of the   nearest neighbors to 
each feature descriptor. The parameter   was set to 5, and   was set to       . 

 FV: It represents feature descriptors by their first and second order statistics for each 
codeword.  

 VLAD: It represents each descriptor by the vector difference between the descriptor and its 
closest codeword. It requires the computation of the nearest neighbor. 

 LLC: The approximated version of LCC was used to achieve both sparsity and locality. The 
parameter   was set to  , and   was set to     . 

 SC: It requires the computation of the   nearest neighbors for each descriptor. Each 
descriptor is encoded just by its closest codeword as in HA. Unlike HA, the coding weight is 
not constant and depends on the distances of the descriptor from its   nearest codewords. 

The parameter   was set to  . 

 GSC: It is a soft version of SC and requires the computation of the   nearest neighbors for 
each descriptor. The parameter   was set to  . 
 

Spatial information. To introduce weak geometry to the representation, spatial pyramid was used 
for all experiments. It divides the image into three levels:    ,    , and     for a total of    
regions. 
 
Pooling and Normalization. Different pooling and normalization strategies were used for different 
encoding methods. Region encodings are pooled separately and normalization is done for all 
regions. The following pooling and normalization strategies were used for each encoding method: 
 

 HA: The resulting coding vectors from different feature descriptors are sum-pooled, sign-
square-root normalized, globally   -normalized, and again sign-square-root normalized. The 
final representation has                dimensions. 

 LSA: Same as in HA.  

 FV: Average-pooling is used for image coding vectors to get the pooling vector. Each 
gradient sub-vector of the pooling vector is   -normalized (intra-normalization), and each 

region is also   -normalized.  After that, sign-square-root normalization followed by global   -
normalization is done on the whole representation. The dimensionality of the representation 
is                    . 
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 VLAD: Coding vectors corresponding to image feature descriptors are sum-pooled, and the 
resulting pooling vector is sign-square-root normalized, and   -intra-normalized. The 

representation has                   dimensions. 

 LLC: Max-pooling is used followed by global    and sign-square-root normalization. The 

representation has                dimensions. 

 SC: Max-pooling followed by same normalization as in HA. The representation has      
          dimensions. 

 GSC: Max-pooling followed by the same normalization as in HA. The representation has 
               dimensions. 
 

Classifier. In all experiments, multi-class classification is done with    SVM classifiers trained 
using one-versus-all setting. We did not use nonlinear kernels or any explicit feature mapping. 
Only linear kernels were used. The SVM regularization parameter was set to   . 
 
Parameters used for previous results. We compared our enhancements to previous settings in 
the recognition pipeline. To achieve a fair comparison, we have tested the previous encoding 
methods with the parameters used in their original papers or with enhancements introduced 
afterwards. As before, we extracted SIFT descriptors with the same scales and sampling 
frequency. We do not perform square rooting for features except for FV. Moreover, features are 
neither augmented nor reduced in dimensionality (except for FV and VLAD which were reduced 
to 80 dimensions). The same pooling strategies and pyramid levels were used for all encoding 
methods as before. For normalization, we used    -normalization for individual regions and global 

  -normalization for the whole representation. Moreover, we used   -intra-normalization for 
encoding methods that produce a block of codes for each codeword, i.e., FV and VLAD. For 
classification, we used the SVM classifier as before. Intersection kernel was used for HA and 
LSA, Hellinger kernel for FV and VLAD, while a linear kernel was used for the rest of encoding 
methods. For nonlinear kernels, we used explicit feature mapping using additive homogeneous 
kernels. 
 
Results and analysis. Results for the enhancements proposed are summarized in table 2(a). 
Different settings for spatial information, feature reduction, and pooling and normalization 
parameters were tested for each experiment. A performance increase was noticed when we 
introduce the feature enhancement step in the recognition pipeline and a sequence of 
representation normalization that is based on   - and sign-square-root normalization as described 
above. The performance increase was attained using the efficient and inexpensive linear kernel 
which yield same or better performance than nonlinear kernels using the above parameter 
settings. The results show that the relatively fast and sparse methods like GSC, LLC, HA, LSA, 
and SC yield better results than the slow and dense FV method. For this dataset, we see that 

Encoding 
Methods 

Top1 
Accuracy 

(%) 

Top2 
Accuracy 

(%) 

 Encoding 
Methods 

Top1 
Accuracy 

(%) 

Top2 
Accuracy 

(%) 
HA 96.35 98.94 HA 91.60 96.45 

LSA 96.74 98.90 LSA 93.95 98.03 

FV 95.58 98.08 FV 95.58 98.08 

VLAD 96.69 98.80 VLAD 94.38 98.22 

LLC 97.12 99.09 LLC 93.61 98.03 

SC 96.50 98.90 SC 93.37 97.65 

GSC 97.22 98.99 GSC 92.80 96.69 
(a)  (b) 

TABLE 2: Top 1 and top 2 accuracies of different encoding methods. (a) Using our proposed 
enhancements in the feature extraction and normalization steps of the recognition pipeline. (b) Previous 

methods implemented as in their original papers including enhancements introduced afterwards. 



Yasser M. Abdullah & Mussa M. Ahmed 

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (8) : Issue (4) : 2019 94 

among single-dimensional response hard coding methods, SC gives better results than HA. 
Moreover, the multi-dimensional response hard coding method, VLAD, gives better performance 
than single-dimensional response hard coding methods like HA and SC. Among sparse soft 
encoding methods, we see that GSC and LLC produce better result than LSA. Among multi-
dimensional response coding methods, we see that VLAD produces better results than FV. 
Among all methods, we see that GSC produces the best result. Moreover, LLC and GSC produce 
the best results in terms of top   accuracy. Class precisions for different encoding methods using 
the proposed enhancements are shown in table 4(a). 
 
Results for previous encoding methods are shown in table 2(b). We see that the FV outperforms 
other methods. Despite its best accuracy, FV is the slowest among all encoding methods since it 
needs more computation and memory resources for its multi-dimensional representation. 
However, we have achieved the best result using the faster and more efficient GSC encoding 
method using the proposed enhancements. Moreover, we see a large performance gap favoring 
our proposed enhancements over the previous methods for all encoding methods. Class 
precisions for previous results are given in table 4(b). 
 
6.2 CNN Architectures Experiments 
In these experiments, we finetune different pretrained deep CNN architectures on our dataset. 
Fine-tuning a network with transfer learning is usually much faster and easier than training a 
network with randomly initialized weights from scratch, and this might be necessary in case you 
don’t have enough training data. The early layers of a pretrained CNN learn low-level features 
(blobs, corners, edges) that are general to any task, and the last layers learn features that are 
task specific. Therefore, early layers were retained with their weights, and last layers were 
replaced with new layers of our own to learn features that are specific to our dataset. 
 
CNN Architectures. Different CNNs expect different image sizes, so images were resized to fit the 
input layer of each network. Moreover, since the dataset contains a mixture of grayscale and 
RGB images, color preprocessing is important to ensure that all the images have the same 
number of channels required by the network. In the experiments, all images were converted to 
RGB. in the experiments, four popular and recent CNNs were used: 
 

 AlexNet: It was named after Alex Krizhevsky [66] and has won the ILSVRC2012 competition 
on object classification and considered the first CNN-based winner. The network consists of 8 
layers, 5 convolutional and 3 FC layers and uses      ,    , and     convolutions. The 
network has around 60 million parameters and expects input of size         RGB image. 

 

 VGG19: It was designed by Simonyan and Zisserman [67] and achieved the second rank in 
ILSVRC2014 object classification and the first in object localization. It consists of 19 layers, 
16 convolutional and 3 FC layers. The network uses only     convolutions but lots of filters 

and is deeper than AlexNet. It contains around     million parameters and expects inputs of 
size         RGB image. 

 

 GoogLeNet: It was designed by Google and has won the ILSVRC2014 competition on object 
classification. It is deeper than VGG19 and consists of    layers. It features   efficient 

inception modules where each module uses    ,    , and     convolutions. It does not 

contain FC layers and contains only   million parameters. The network expects inputs of size 
        RGB image. 

 

 ResNet: It was designed by Microsoft and has won the ILSVRC2015 competition on object 
classification. It is much deeper and consists of 152 layers. To improve the training process, it 
introduced a novel architecture with “skip connections” and featured heavy batch 
normalization.  
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It expects inputs of size         RGB image. In the experiment, we have used only 50 layers 
(ResNet50). 
 
Training Parameters. The last FC, softmax, and classification layers were removed from each 
network and new FC, softmax, and classification layers were added. The weights of the CNN 
initial layers were frozen while were allowed to update in last layers. The unfrozen layers were 
trained on the training set using Stochastic Gradient Descent with Momentum (SGDM) for a 
maximum of    epochs. The momentum was set to     and the effective learning rate was set to 

    . The   -regularization constant for weights of the FC layer was set to      with zero 
regularization for biases. Since these networks contain some stochastic layers, the networks 
were trained and tested for   times and the average accuracies and standard deviations were 
reported. 
 
Results. Results for different CNN architectures are shown in table 3(a). They are better than 
previous results for shallow representation encoding methods. Some CNNs give better results 
than others on the dataset. For example, GoogLeNet gives the best result among all and is fast to 
train and test. Second comes Resnet50 which gives comparable result and is also fast to train 
and test. VGG19 gives good performance but is slow in training and testing. Finally comes 
AlexNet which gives relatively lower result but is fast at training and testing. Precisions for each 
class are given in table 4(c). 
 
6.3 Shallow vs. Deep Representations Experiment 
In this experiment, we compare between hand-engineered shallow features produced using the 
previous encoding methods and deeply learnt features extracted from a CNN. Here, we treat a 
CNN as a generalized feature extractor, and activations of the last newly added fully connected 
layer were used as the image representation. These representations were then fed to a linear 
SVM for classification. Same parameters for SVM were used as before. 
 
Results and analysis. Results for this experiment are shown in table 3(b). Despite the low 
dimensionality of deep features (15 dimensions in our case), they produce better results than the 
high dimensional (tens of thousands) handcrafted features. Moreover, the performance gain is 
achieved without using any normalization method or applying nonlinear kernels. Class precisions 
are given in table 4(d). 

CNN 
Top 1 

Accuracy (%) 
Top 2 

Accuracy (%) 

 
Experiment 

Top 1 
Accuracy 

(%) 

Top 2 
Accuracy 

(%) 

AlexNet                        Deep 
features on 
linear SVM 

            
VGG19                        

ResNet50                        Ensemble of 
5 CNNs 

            
GoogleNet                        

(a)  (b) 

TABLE 3: (a) Top 1 and top 2 accuracies for different deep network architectures. (b) Top row: deeply 

learnt features extracted from a CNN and trained on an SVM. Bottom row: ensemble of 5 CNN learners 
combining their predictions by taking the maximum posterior probability. 
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6.4 CNN Ensemble Experiment 
In this experiment we combine multiple deep CNN learners into an ensemble using maximum 
posterior probability. The CNN learners are trained as before and are of different architectures. 
We achieved the best result using only five learners. 
 
Results. The ensemble of deep network learners gives the best results (table 3(b)) among all 
experiments since it selects the most probable class among all the participating learners. Class 
precisions are given in table 4(e) and misclassified images along with their predictive probability 
are shown in figure 4. 

 
7. CONCLUSION 
In this study, we have reviewed the different steps used in the BoVW recognition pipeline used to 
extract shallow image representations. Moreover, we have provided a concrete mathematical 
framework for the different encoding methods used in the pipeline. Several enhancements in the 
local feature extraction and normalization pipeline steps were introduced that give better image 
representations and perform well than previous methods. We have achieved a top 1 accuracy of 
       for shallow representations using the GSC encoding method which outperforms the best 

encoding method (FV) in the previous results having a top 1 accuracy of        %. 

 
  

(a) 

        Class 
 

  Expr. 

               

HA 93.88 86.89 79.07 97.06 91.18 99.75 98.55 97.06 100 86.11 97.01 100 94.12 94.55 93.78 

LSA 92.86 88.52 83.72 94.12 97.06 99.51 92.75 97.06 100 91.67 98.31 100 94.12 89.09 94.26 

SC 90.82 88.52 86.05 97.06 94.12 99.75 92.75 97.06 100 88.89 98.44 100 94.12 87.27 92.34 

GSC 92.86 88.52 83.72 97.06 97.06 100 94.20 97.06 100 91.67 98.83 100 94.12 89.09 95.22 

LLC 92.86 86.89 86.05 97.06 97.06 99.75 94.20 97.06 100 91.67 98.96 100 94.12 87.27 94.74 

VLAD 94.90 83.61 88.37 100 94.12 99.75 98.55 97.06 100 91.67 96.35 100 94.12 94.55 96.17 

FV 84.69 81.97 79.07 94.12 91.18 99.51 97.10 100.00 100 77.78 98.70 96.97 85.29 87.27 91.87 

(b) 

HA 94.90 85.25 83.72 94.12 94.12 99.26 98.55 91.18 100 86.11 84.90 96.97 94.12 94.55 94.90 

LSA 94.90 86.89 83.72 94.12 94.12 99.51 97.10 91.18 99.41 83.33 91.80 96.97 91.18 92.73 91.87 

SC 84.69 83.61 79.07 91.18 91.18 99.75 95.65 91.18 100 80.56 92.84 100 94.12 83.64 91.39 

GSC 90.82 85.25 79.07 91.18 91.18 99.51 95.65 91.18 99.41 86.11 88.93 100 97.06 94.55 93.30 

LLC 95.92 86.89 79.07 94.12 94.12 99.51 97.10 91.18 100 88.89 90.36 100 94.12 90.91 92.34 

VLAD 93.88 80.33 83.72 97.06 94.12 98.77 100 97.06 99.41 91.67 91.67 100 94.12 92.73 95.69 

FV 84.69 81.97 79.07 94.12 91.18 99.51 97.10 100 100 77.78 98.70 96.97 85.29 84.69 81.97 

(c) 

AlexNet 96.53 85.90 97.67 97.06 92.94 99.41 100 98.24 97.41 90.56 99.17 100 100 100 95.60 

VGG19 98.16 92.13 97.21 98.24 95.88 99.21 100 95.29 98.82 87.22 99.53 99.39 100 97.82 98.76 

ResNet50 97.96 92.79 95.81 97.65 96.47 99.26 100 96.47 95.41 93.89 99.77 100 97.96 92.79 95.81 

GoogLeNet 95.92 94.43 93.49 99.41 91.18 99.60 100 92.94 99.06 91.11 99.87 100 100 97.45 99.33 

(d) 
Deep 

features 
96.12 87.87 96.74 98.24 94.71 99.51 100 98.24 98.00 89.44 99.27 100 100 100 96.17 

(e) 
CNN 

ensemble 
97.96 96.72 97.67 100 97.06 100 100 100 98.24 94.44 100 100 100 100 100 

 

TABLE 4: Class precisions for different methods. (a) Encoding methods with enhancements in the 

recognition pipeline. (b) Encoding methods with previous settings without the proposed enhancements. (c) 
Average precision for deep network architectures trained and tested five times. (d) Deeply learnt features 

extracted from a CNN and classified on an SVM. (e) Ensemble of 5 CNN architectures. 
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Instead of handcrafting the image representations, we have demonstrated that better 
representations can be extracted by learning them directly from the input image while training the 
CNN deep learning model. We have achieved a top   accuracy of              using 

GoogleNet CNN and boosted the results to        using an ensemble of only   CNNs. As have 
been seen, the deeply learnt representations are concise, more discriminative, and outperform 
shallow representations.  

 

8. FUTURE WORK 
There are many parameters in the recognition pipeline that need to be further explored. These 
include: different types of feature descriptors, sampling strategies, clustering algorithms, 
codebook size, encoding methods, pooling methods, normalization methods, and classification 
models. Each pipeline step might include other parameters that requires further tuning. For 
CNNs, different architectures need to be explored. Deeper and wider CNNs are the state-of-the-
art architectures. Other CNN tunable parameters include: initialization strategies, pooling 
methods, optimization algorithms, batch normalization, nonlinearities and many others. Moreover, 
we want to extend these ideas to video data which has a temporal dimension in addition to the 
spatial dimensions. Instead of extracting spatial SIFT descriptors, we need other descriptors that 
take the time dimension into consideration like Histogram of Optical Flow (HOF). The rest of the 
clustering, encoding, pooling, and normalization methods need to be tested on video data. In the 
same manner, CNNs need to be changed in architecture to include the temporal dimension of 
video data. There exist many applications for video recognition such as human action recognition 
and gesture recognition. 
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