
Yasser M. Abdullah & Mussa M. Ahmed

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (8) : Issue (4) : 2019 78

Shallow vs. Deep Image Representations:
A Comparative Study with Enhancements Applied For The

Problem of Generic Object Recognition

Yasser M. Abdullah yasware@gmail.com
Faculty of Engineering/Department of IT
Aden University
Aden, Yemen

Mussa M. Ahmed mussa_m7@yahoo.com
Faculty of Engineering/Department of ECE
Aden University
Aden, Yemen

Abstract

The traditional approach for solving the object recognition problem requires image
representations to be first extracted and then fed to a learning model such as an SVM. These
representations are handcrafted and heavily engineered by running the object image through a
sequence of pipeline steps which requires a good prior knowledge of the problem domain in order
to engineer these representations. Moreover, since the classification is done in a separate step,
the resultant handcrafted representations are not tuned by the learning model which prevents it
from learning complex representations that might would give it more discriminative power.
However, in end-to-end deep learning models, image representations along with the classification
decision boundary are all learnt directly from the raw data requiring no prior knowledge of the
problem domain. These models deeply learn the object image representation hierarchically in
multiple layers corresponding to multiple levels of abstraction resulting in representations that are
more discriminative and give better results on challenging benchmarks. In contrast to the
traditional handcrafted representations, the performance of deep representations improves with
the introduction of more data, and more learning layers (more depth) and they perform well on
large-scale machine learning problems. The purpose of this study is six fold: (1) review the
literature of the pipeline processes used in the previous state-of-the-art codebook model
approach for tackling the problem of generic object recognition, (2) Introduce several
enhancements in the local feature extraction and normalization steps of the recognition pipeline,
(3) compare the enhancements proposed to different encoding methods and contrast them to
previous results, (4) experiment with current state-of-the-art deep model architectures used for
object recognition, (5) compare between deep representations extracted from the deep learning
model and shallow representations handcrafted through the recognition pipeline, and finally, (6)
improve the results further by combining multiple different deep learning models into an ensemble
and taking the maximum posterior probability.

Keywords: Shallow Models, Deep Learning Models, Encoding Methods, Object Recognition,
BoVW.

1. INTRODUCTION
Generic object recognition problem is simply to assign a label for an object image. The image
may contain multiple objects (such as elephants, leopards, sunflowers, grand pianos, faces, etc.)
and hence multiple labels should be assigned accordingly. This problem is one of the most
fundamental problems in computer vision and pattern recognition and has wide range of
applications like web content analysis and video surveillance. However, it is a challenging

Yasser M. Abdullah & Mussa M. Ahmed

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (8) : Issue (4) : 2019 79

problem especially in the presence of intra-class variation, clutter, occlusion, deformation,
illumination and viewpoint changes.

The best known shallow framework used for solving this problem is the Bag of Visual Words
(BoVW) [1, 2] model which makes use of a pretrained codebook as shown in figure 1. BoVW
passes the query image through a pipeline consisting of several steps to get the final
representation describing the image. It starts out by extracting local features of the object image.
The local features are detected and described to get local feature descriptors. Many feature
detection and description methods were proposed in the literature and are reviewed in section 2.
In a later step, these features are transferred from their feature space onto the codebook space
using an encoding method. For a particular feature descriptor, the encoding methods can
produce a single code or a block of codes for each codeword in the codebook. Many encoding
algorithms were proposed in the literature and are discussed in section 4. To get a global
representation of the image, the coding responses for each codeword is then integrated into a
single code (or a block of codes) using a pooling method like sum or max pooling. Pooling
process can be improved if performed spatially using a Spatial Pyramid (SP) [3]. At the end of the
pipeline, the resultant image representation is normalized using a normalization method like or
power normalization. At this stage, the image hand-engineered representation is ready and can
be fed to a machine learning model (e.g., SVM) to give the class of the query image.

FIGURE 1: Bag of Visual Words (BoVW).

FIGURE 2: Deep model architecture (CNN).

Yasser M. Abdullah & Mussa M. Ahmed

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (8) : Issue (4) : 2019 80

To improve the performance of shallow representations, we proposed a new pipeline step in
which the previously extracted local features are enhanced (see figure 1). In this step, feature
descriptors are square-rooted as suggested by Arandjelović and Zisserman [4] and are reduced
in dimensionality and decorrelated using Principal Component Analysis (PCA). Additionally, they
are augmented by their spatial location [5]. BoVW model will be discussed in section 3.

On the contrary, a deep learning model doesn’t need features to be extracted beforehand but the
object image raw pixels can be fed directly to the deep model for both feature extraction and
classification in a single step. In this model, features are deeply leant inside the deep model in
multiple learning layers and no prior knowledge about the problem domain is required. Deep
models are sometimes called generalized feature extractors since they can be used to extract
features for different data domains such as text, audio and video. Figure 2 displays a deep model
architecture used for object recognition and is called a convnet or Convolutional Neural Network
(CNN). CNNs start learning directly from the input image and succeeding layers consume the
output of the preceding layer(s). Mainly, they consist of many Learning layers, some pooling
layers, and one classification layer. A learning layer can be a convolutional layer or a fully
connected layer (FC). Convolutional layers are many in number and can accept and produce
multidimensional data whereas FC layers are a few and only accept and produce one-
dimensional data. FC layers can exist only at the end of the network whereas convolutional layers
are dispersed throughout the network. Inside the learning layers, there exist a nonlinearity to help
the network learn interesting functions. They also contain many free parameters that are adjusted
during the supervised training process. The classification layer (final layer) computes the loss that
the network has incurred in learning non-discriminative representations. The network then
updates its free parameters so as to produce more discriminative representations to bring the
network loss down. To reduce the dimensionality of the convolutional layer output, a pooling layer
is used. In addition to dimensionality reduction, it summarizes local inputs by one statistic that
gives the network invariance to simple translations. Deep learning and its models will be
discussed in section 5.

In this study, we have conducted many experiments to compare the performance of shallow and
deep representations. We evaluated our proposed enhancements to different encoding methods
used in the BoVW codebook model and obtained better results than before. Also, we
experimented with deep model architectures and compared between different architectures on
one hand and between deep and shallow models on another hand. We studied further the
discriminative power of deep and shallow features extracted from deep and shallow models
respectively. Finally, we improved the results further by combining several deep models into an
ensemble and taking the maximum posterior probability. All of experiment details are mentioned
in section 6. Conclusion, future work and references are given in sections 7, 8 and 9 respectively.

2. LOCAL FEATURES
For any object image, local features can be interest points or interest regions. They are extracted
from the appearance of an object and are local in the sense that they describe a local part of the
object appearance. An image can produce several hundred (or thousands) of local features. The
next subsections review the detection and description methods used to extract and describe
image local features.

2.1 Feature Detectors
Many feature detectors were proposed in the literature such as Scale-Invariant Feature
Transform (SIFT [6]) and Speeded Up Robust Features (SURF [7]). Feature detection is about
detecting points (or regions) in an image that are repeatable – i.e., given a different image of the
same object, the feature is distinctive enough that we can find it again in the correct location. A lot
of methods were used for the detection process. Harris [8] has used the second moment matrix
(Harris matrix) which contains image first derivatives in order to detect corner points. He used a
corner quality measure that is based on eigenvalues of this matrix (Harris measure). To detect a
feature at multiple spatial scales, a Gaussian scale-space for an image is constructed and

Yasser M. Abdullah & Mussa M. Ahmed

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (8) : Issue (4) : 2019 81

features are detected at all scales. To prevent multiple detections for the same feature and select
the scale that is most significant for the feature, Lindeberg [9] introduced the concept of automatic
scale selection which allows to detect interest points in an image, each with its own characteristic
scale. The characteristic scale is the one that gives the maximum of the scale-normalized
Laplacian of Gaussian function in scale space. Lindeberg [9] also proposed another detection
method that is based on the scale-normalized Hessian matrix of image second derivatives. In this
method, an interest point is detected if the trace of this matrix (which is the scale-normalized
Laplacian of Gaussian or LoG) is locally maximal in scale space. Lowe [6], in his SIFT detector,
approximated the Laplacian of Gaussian (LoG) detector using the Difference of Gaussians (DoG)
which is computationally more efficient. Another measure of detection is to use the determinant of
the Hessian (DoH) as a feature quality measure. Mikolajczyk and Schmid [10] refined the
previous methods, creating robust and scale-invariant feature detectors with high repeatability,
which they coined Harris-Laplace and Hessian-Laplace. They used a scale-adapted Harris
measure or the determinant of the Hessian matrix to select the location, and the Laplacian to
select the scale. Bay et al. [7] noted that the discrete Gaussian filters used in the computation of
the scale-normalized Hessian could be approximated by extremely simple box filters involving
simple sums and differences of pixels and have used this idea, in their SURF detector, to
approximate the determinant of the Hessian. The box filters can be applied very quickly
compared to filters with floating-point coefficients. Moreover, if integral images [11] are used for
the computation, then the speed of applying the box filter is independent of the filter size resulting
in what they called Fast Hessian. Rosten and Drummond [12] proposed a fast detection algorithm
for what they called FAST Corners. In their method, a candidate pixel is compared to a

discretized circle of pixels around it; if all the pixels on a contiguous arc of pixels
around the circle are significantly darker or brighter than the candidate pixel, it is detected as a
feature. They [13] later extended the FAST idea using a machine learning approach (a decision
tree) based on the intensities of the sixteen surrounding pixels of the candidate pixel to yield a
detector that is higher in performance and speed. Matas et al. [14] proposed a new type of
feature called Maximally Stable Extremal Regions or MSERs. These too are extremely fast to
compute and are based on the basic thresholding operation. A region (connected component) is
detected as feature if it satisfies two conditions: (1) all the pixels inside that region are either all
darker or all brighter than pixels in the boundary, (2) the region should be stable, i.e., it should
change little to threshold variations.

It is important to mention that most of the above feature detectors are not robust to large
viewpoint changes. If the viewpoint of an object undergoes a large affine transformation, then the
region of the same pixels around the interest point in both cases would be different. The
fundamental theory of affine-invariant regions was first proposed by Lindeberg and Gårding [15]
and applied by other researchers including Baumberg [16], Schaffalitzky and Zisserman [17], and
Mikolajczyk and Schmid [18]. An elliptical affine invariant region can be computed by an iterative
procedure called affine adaptation. After applying this procedure, the resulting circular region and
that region before the transformation are identical but up to a rotation. Mikolajczyk and Schmid
[18] proposed to simultaneously detect feature point locations and corresponding affine-invariant
regions using an iterative algorithm, resulting in Harris-Affine or Hessian-Affine features according
to the type of detector used whether Harris or Hessian.

After determining the feature location and scale, the next problem for the detector is to determine
the feature support region - i.e., the set of pixels in the feature neighborhood that should
contribute to a feature’s descriptor. For scale-invariant features such as Harris-Laplace, Hessian-
Laplace, and DoG where features are detected at a characteristic scale, the support region can
be a circle drawn with a radius proportional to the feature characteristic scale. For features like
MSERs and Hessian-Affine which produce affine-covariant regions, we can use the circular
region produced at the end of the affine adaptation process as a support region. However, many
description methods assume a square patch is given around the feature location as opposed to a
circular one which means that we need to assign a reliable orientation to the feature to define the
top edge of the square.

Yasser M. Abdullah & Mussa M. Ahmed

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (8) : Issue (4) : 2019 82

2.2 Feature Descriptors
Once a feature’s location (and perhaps some additional information such as its scale or support
region) has been determined, the next step is to describe the feature with a vector of numbers
called a descriptor. Throughout the literature, large number of feature descriptors were proposed.
Lowe’s SIFT [6] descriptor used a square patch around the feature point as opposed to a circular
one which requires a reliable orientation for the square patch to be calculated. He suggested
estimating this orientation based on a histogram of pixel gradient orientations over the support
region of a scale-invariant circle and taking the dominant gradient orientation as the patch
orientation. The square patch is then rotated upwards to normalize its direction, resampled, and
smoothed by a Gaussian. The gradient at each resampled pixel is estimated and weighted by a
Gaussian. The square is then subdivided into smaller sub-squares with one histogram of
eight direction bins in each sub-square. These sixteen histograms are then concatenated to form
a -dimensional vector which is normalized twice to make it robust to illumination
changes. Mikolajczyk and Schmid [19] proposed a SIFT variant called GLOH (Gradient Location
and Orientation Histogram). Instead of the square grid, a log polar grid of three rings is created.
The outer and second outer rings are subdivided into eight bin locations each whereas the center
ring is undivided to give a total of seventeen bin locations. In each bin location, a histogram of
sixteen quantized directions is computed. Histograms from different bin locations are
concatenated to form a raw -dimensional descriptor. The dimensionality of the
descriptor is then reduced using PCA to give a 128-dimensional vector. SURF descriptor is very
efficient to compute because it uses Haar wavelets which are simple box filters. As in SIFT, the
oriented square at a feature’s detected scale is split into a square grid. However, instead of
computing gradient orientation histograms in each subsquare, Haar wavelet responses at twenty-
five points in each subsquare are computed. The sums of the original and absolute responses in
the and directions are computed in each sub-square, yielding a -dimensional
descriptor. Ke and Sukthankar [20] addressed the problem of dimensionality reduction of the
SIFT descriptor using PCA in what they coined PCA-SIFT. They collected a large number of DoG
keypoints and constructed patches at the estimated scale and orientation of each
keypoint. The and gradients at the interior pixels of each patch were collected into a
 -dimensional vector, and PCA was applied to determine a much smaller number of basis
vectors (e.g., twenty or thirty-six). Thus, the high-dimensional vector of gradients for a candidate
feature is represented by a low-dimensional descriptor given by its projection onto the learned
basis vectors. Belongie et al. [21] proposed shape contexts as a method for matching shapes,
which were modified by Mikolajczyk and Schmid [19] for feature point description. The approach
is similar to GLOH in that a log-polar location grid is constructed at the feature point location.
However, instead of using the gradients of all points to construct the histograms in each
subregion, only edge points detected with the Canny detector [22] are allowed to contribute their
gradient orientations. Each edge point’s contribution is further weighted by its gradient magnitude.
Johnson and Hebert [23] originally proposed spin images for describing features in range data.
Lazebnik et al. [24] proposed modifying them to create feature descriptors for grayscale images.
We simply compute a histogram of quantized intensities for each of several rings around the
feature location, after the intensities have been normalized. The dimension of the descriptor is the
number of intensity bins times the number of rings. Since there are no angular subdivisions of the
rings, the descriptor is rotation-invariant.

Another class of descriptors that do not require the patch orientation estimation and explicit
orientation, are called Invariant-based descriptors. They are based on invariant functions of the
patch pixels with respect to a class of geometric transformations, typically rotations or affine
transformations. Schmid and Mohr [25] popularized the idea of differential invariants for
constructing rotation invariant descriptors. That is, the descriptor is constructed using
combinations of increasingly higher-order derivatives of the Gaussian smoothed image. Moment-
invariant [26] descriptors are another type of invariant descriptors that are computed using the
image intensities and spatial locations.

Yasser M. Abdullah & Mussa M. Ahmed

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (8) : Issue (4) : 2019 83

3. BAG OF VISUAL WORDS MODEL
The first decade of this century has seen the rise of Bag of Visual Words (BoVW) (or Bag of
Features (BoF)) in computer vision and has been applied to many problems such as object
recognition and image retrieval. BoVW model was developed from the Bag of Words model used
in document classification and is probably the most popular and effective shallow framework for
object classification. In this model, an object image is passed through a pipeline consisting of
typically five steps to give at the end the image final handcrafted representation (see figure 1).
The five pipeline steps are (1) local feature extraction, (2) local feature enhancement, (3) feature
descriptor encoding, (4) code pooling and finally, (5) normalization. In the first step, patches from
an image are extracted and represented using feature descriptors such as SIFT. The extraction
process employs different sampling strategies which can be dense or sparse. In dense sampling,
a patch is extracted and represented at every pixels on a fine fixed grid while in sparse
sampling, patches are extracted only at interest points or regions detected by a feature detector.
Multiscale features can also be extracted by using different patch sizes. It is worth noting that the
sets of local descriptors produced for different images may have different cardinality especially if
sparse sampling is used or if images have different resolutions.

The second step of the pipeline is optional, but we have seen much improvement in the final
results when employed. To enhance the features, we first square-root their descriptors. After that,
we reduce their dimensionality by learning from the training data a set of basis vectors using PCA
and then projecting the features onto a subset of these basis vectors that has the highest
projection variance. Feature descriptors are then decorrelated by whitening their descriptor
dimensions. Moreover, the feature spatial location information is embedded inside its descriptor
[5]. Let be a feature descriptor, then the feature is augmented by its normalized spatial

location:

 where is the descriptor spatial location, and are

the image dimensions.

In the third step of the pipeline, the set of local features extracted in previous steps are encoded
using an encoding process which makes use of a previously generated codebook (also called
dictionary or vocabulary). The codebook is generated in an offline process using an unsupervised
learning method such as -means clustering [27, 28] or Gaussian Mixture Model (GMM, [29]).

Local feature descriptors from all training images are clustered in feature space into clusters to
form the codewords of the codebook. Hence, the inputs to the encoding process are the image
local feature descriptors and the previously learnt codebook. The encoding process in turn
produces a coding matrix per image, one coding vector for each local descriptor, by using one of
different encoding methods. Feature coding is a key component of object recognition and has
been widely studied in the past several years. Various encoding methods were proposed and
they differ in how they activate the codewords for a given local feature. These algorithms encode
a feature descriptor by producing a response for each codeword in the dictionary. The coding
response can have different dimensionality for different encoding methods. Encoding methods
will be discussed in section 4.

The fourth step of the pipeline (pooling process) converts the image coding matrix into a vector
(called the pooling vector) which forms the image global representation. For each codeword,
codes from multiple local features are integrated dimension-wise into a single code (or a block of
codes) using one of the classic pooling methods. Common examples include sum pooling and
max pooling. Let

 be the response of descriptor for codeword , and be the pooling

response for codeword . In sum pooling, responses corresponding to the same codeword are

summed for all descriptors, i.e.,

 , whereas in max pooling, the maximum of the codes
is taken, i.e., max

 .

In the last pipeline step, the image raw representation is normalized to form the image final
representation. Different normalization methods exist such as -normalization, -normalization,

power normalization, and intra-normalization [30]. In -and -normalization, the representation
dimensions are divided by the corresponding -, or - norm respectively. In power normalization,

Yasser M. Abdullah & Mussa M. Ahmed

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (8) : Issue (4) : 2019 84

we apply to each dimension of the representation the following function: , where

 is the
th
 dimension of the representation, and . Sign-square-root normalization is a

special case of power normalization when . Intra-normalization carries out normalization in

a block by block manner and can be done using - or - normalization. Intra-normalization can
be applied when the coding process produces a block of codes per codeword. We proposed
different normalization strategies for different encoding methods which are based on - and sign-
square-root normalization and are detailed in section 6.1.

3.1 Spatial information
Generally, the BoVW model is orderless and hence discards all the information about the location
of the patches and this in turn incurs a loss of information. The dominant approach to include
spatial information is to use the Spatial Pyramid (SP). Inspired by the pyramid match kernel of
Grauman
and Darrell [31], Lazebnik et al. [3] proposed to partition an image into a set of regions in a
course-to-fine manner. They propose to partition the image into , , and , for a total

of regions. Each region is described independently and the region-level pooling vectors are
then concatenated into an image-level pooling vector. Marszalek et al. [32] suggested a different
partitioning strategy in which the image is partitioned into , , and , for a total of
regions.

3.2 Classification
After running the image through the recognition pipeline, the image final representation is ready
for classification. Many machine learning models were tried throughout the literature but the most
popular one is the SVM which gives better results when used in conjunction with BoVW model.
The SVM searches the space of linear decision boundaries to find the one that gives the
maximum margin between two binary classes. It optimizes a constrained convex quadratic
problem that uses the dot product between input features (linear kernel) and hence the kernel
trick can be used. The nonlinear kernel function transfers the input features into a higher
dimensional space and computes the dot product there in that space. Since the mapping process
is done implicitly, we benefit from the increase in dimensionality by noting that problems become
more likely to be linearly separable in high dimensional spaces. Moreover, the dot product is
computed in the mapped space by computing the kernel function in the original space.

Many non-linear kernels for BoVW model were proposed and used throughout the literature such
as the histogram intersection kernel, pyramid match kernel, chi-square kernel, and Hellinger’s
kernel. Despite their better classification results, they are less efficient than the linear kernel.
There exist a class of kernels (additive homogeneous kernels [33]) that are as efficient as linear
ones up to the computation of an efficient explicit feature map. Several non-linear kernels can be
approximated by explicitly computing their feature maps.

Encoding

Algorithm
HA SA LSA FV VLAD SPC LCC LLC

App.

LLC
SC GSC LTC SVC

dimensionality

()

1 1 1 1 1 1 1 1 1 1 1

No. of

codewords

activated

1 1 1 1

TABLE 1: Coding response for different encoding methods. Top row: Coding Response dimensionality

per codeword. Bottom row: number of codewords activated by a single feature descriptor. Star symbol ()
indicates a sparse set of codewords activated per feature descriptor and might be variable.

Yasser M. Abdullah & Mussa M. Ahmed

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (8) : Issue (4) : 2019 85

4. ENCODING METHODS
Let be a set of -dimensional local descriptors extracted from an image, i.e.,
 ,

 be the codebook of M codewords and

 be the coding vector produced by the encoding method corresponding to feature descriptor

 , where
 is the coding response of the codeword and is the coding response

dimensionality which can be a scalar or a block of codes. Each local descriptor may activate
one or more codewords during the encoding process. The dimensionality of the coding response
per codeword and the number of activated codewords for a feature descriptor are different for
different encoding methods and are given in table 1.

4.1 Hard Assignment (HA)
This coding method [1] forms the baseline encoding upon which other encoding methods
improve. It is also called by other names like Vector Quantization (VQ) or histogram encoding. HA
encodes a feature descriptor by assigning the whole coding weight to the nearest codeword.
HA is defined as:

(1)

4.2 Soft Assignment (SA)
Instead of assigning all the coding weight to the closest codeword, this method [34-36] distributes
the coding weight among all the codewords in a soft manner proportional to how far each
codeword is from the feature descriptor. It achieves this by making use of a distance function like
the Gaussian kernel. In contrast to HA, SA takes into account the uncertainty of codewords in
case two or more codewords are strong candidates for a given feature descriptor. SA is defined
as:

 (2)

where is a smoothing factor controlling the softness of the assignment.

4.3 Localized Soft Assignment (LSA)
Unlike SA, this method [37] only considers the closest codewords in the neighborhood of the

feature descriptor. Let
 , be the closest codewords to the feature descriptor .

LSA is defined as:

(3)

4.4 Fisher Vector
Fisher coding [38] is inspired by the Fisher kernel which describes a signal with a gradient vector
derived from its generative probability density function [39]. In the context of object recognition,
the signal is the image, the gradient vector is used for feature coding, and the probability density
function is a Gaussian Mixture Model (GMM). A GMM of components with parameters

 , is given by:

 (4)

where denotes Gaussian :

(5)

and denote the weight, the mean vector, and the covariance matrix of Gaussian
respectively and can be estimated using Expectation Maximization (EM) algorithm. We require
 and

 to ensure is a valid distribution. We assume a diagonal

Yasser M. Abdullah & Mussa M. Ahmed

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (8) : Issue (4) : 2019 86

s.t .

covariance matrix so is reduced to a variance vector denoted by
 . Supposing all the

features are independent from each other, an image can be expressed as the log-likelihood of all
the features:

 (6)

We can define Fisher vector as the gradient of with respect to normalized by the square root

of the inverse of Fisher information matrix , i.e.,

 (7)

where
 . The gradient with respect to the weight parameter was omitted since it

adds a little information [38]. Note that the Fisher information matrix has an approximated closed-form

solution, and
 normalization corresponds to the whitening of the dimensions. FV encoding is defined

as:

 (8)

4.5 Vector of Locally Aggregated Descriptors (VLAD)
In FV, each codeword is represented by its first and second order statistics. In contrast, VLAD [30,
40] can be viewed as a hard version of FV and it only keeps the first order statistics. It encodes a
feature descriptor by the vector difference to its closest codeword. VLAD is defined as:

(9)

4.6 Sparse Coding (SPC)

SPC [41] finds a sparse set of codewords with corresponding coefficients that can reconstruct
the input feature descriptor . SPC solves an regularized least-square optimization problem
defined as:

 (10)

Sparsity is attained in due to the norm which is known to induce sparsity. SPC is defined as:

 , (11)

where is the reconstruction coefficient of descriptor for the codeword .

4.7 Local Coordinate Coding (LCC)
In practice, SPC tends to be local, i.e., it reconstructs a feature descriptor using codewords in
its neighborhood. But this locality cannot be ensured theoretically. Yu et al. [42] suggested a
modification that explicitly encourages the coding to be local. They pointed out that under certain
assumptions locality is more important than sparsity for successful nonlinear function learning
using the obtained codes. LCC solves the following regularized least-square optimization
problem:

 (12)

Yasser M. Abdullah & Mussa M. Ahmed

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (8) : Issue (4) : 2019 87

 s.t

and LCC is defined as:

 (13)

where is the reconstruction coefficient of feature descriptor for the codeword .

4.8 Locality-Constrained Linear Coding (LLC)
The computational cost of LCC and SPC is high because their solution relies on iterative
optimization. To address this problem, LLC [43] changed the term in (12) into a

differentiable term
 (as in (14)) to yield an optimization problem that has a closed-form

solution. LLC optimizes the following regularized problem:

 (14)

 s.t

where is used for adjusting the weighted decay speed for the locality function (exponential
term). The coding vector corresponding to the feature descriptor is given by:

(15)

where denotes element-wise multiplication. LLC is defined as:

 (16)

To further enhance the encoding speed, approximated LLC was proposed. The second term in
the above optimization problem (14) was omitted, and a feature is reconstructed just from the

closest codewords. Let
 be the closest codewords to the feature descriptor and

 be their corresponding coefficient codes, then the approximated LLC reduces the above
optimization problem to:

 (17)

 s.t

Approximated LLC is defined as:

(18)

where is the reconstruction coefficient of the feature descriptor for the codeword .

4.9 Salient Coding (SC)
SC considers a representation for each codeword that is salient when combined with max
pooling. The idea behind SC [44] is that a codeword should receive a strong response if it is
much similar with a feature than other codewords. That is, if a codeword is much closer to a
feature belonging to this codeword than the other closest codewords, then the response on this
codeword is strong. This response is likely to be preserved during max pooling. As a result, the
codeword can independently describe this feature without the help of other codewords. SC is
defined as:

(19)

Yasser M. Abdullah & Mussa M. Ahmed

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (8) : Issue (4) : 2019 88

where denotes the saliency degree, and
 are the closest codewords to the descriptor .

4.10 Group Salient Coding (GSC)
In SC, weak responses to a codeword are suppressed by the response of the feature that is
closest to this codeword compared to others. This results in some features not represented. To
alleviate the suppression effect, GSC [45] proposed an idea that is based on group coding.
Different group sizes can be formed with a feature . In a group of size , we only consider the

feature and the nearest codewords. A saliency response for is calculated for each group
size and the response is shared among all the codewords in the group. Each feature will have
multiple coding vectors, one coding vector for each group size. The final coding vector is obtained
by taking the maximum of the responses for each codeword over all group sizes. GSC is defined
as:

where denotes the set of the nearest codewords to , and is the maximum group
size.

4.11 Local Tangent Coding (LTC)
LTC [46] assumes that the codewords and feature descriptors are embedded in a smooth
manifold. The main components of LTC are manifold approximation and intrinsic dimensionality
estimation. Under the Lipschitz smooth condition, the nonlinear function can be
approximated by a local linear function as:

 (21)

where
 is a scalar coefficient associated with codeword that is used for representing the

feature , and is obtained by LCC. The above approximate function (21) can be viewed as a

linear function of a coding vector

 . LTC argues that there is a

lower intrinsic dimensionality in the feature manifold. To get it, PCA is applied to the high

dimensional term
 using a projection matrix

 trained from the
training data). Theses directions correspond to the local tangent directions of the
manifold. Therefore, the final coding vector for LTC is defined as:

 (22)

where is a positive scaling factor to balance the two types of codes.

4.12 Super Vector Coding (SVC)

SVC [47] is a simple version of LTC. Unlike LTC, SVC uses just the closest codeword to
represent and obtains

 via HA, i.e.,
 . Moreover, SVC does not apply PCA to the term

 in (21). In SVC, equation (21) simplifies to:

(23)

consequently, the coding vector simplifies to:

(24)

(20)

Yasser M. Abdullah & Mussa M. Ahmed

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (8) : Issue (4) : 2019 89

5. DEEP LEARNING
5.1 Review
Deep Learning is about learning a task in a hierarchy of layers. The first layer learns from the
input and succeeding layers learn from previous ones. Multilayer Perceptron (MLP), proposed in
the past, is an architecture that can be built to go deeper but due to many problems it did not do.
First of all, backpropagation [48] does not work well for deep MLPs. This is mainly due to the type
of nonlinearities used. The traditional sigmoid and hyperbolic tangent activation functions kill the
flowing gradients when neurons are saturated and hence layers down in the hierarchy do not
receive theses gradients in order to update their weights. Moreover, proper initialization of
weights is critical for backpropagation to work well. Improper initialization might cause most
neurons down in the hierarchy to output zero as their activation which too kills the gradients from
flowing. Second, the introduction of the Universal Approximation theorem [49] – which states that
a single hidden layer can be used to approximate any continuous function to any desired
precision – diverted people from going deeper with this model. Third, deep models are data
hungry, and need much labeled data to train which was very difficult to get at that time. Lastly,
deep models need much computation to train because most of the training is matrix multiplication
and CPUs were not optimized for this operation.

Recently, the introduction of new activation functions [50-52], better initialization strategies [51,
53, 54], big data like ImageNet [55], better optimization methods like Adam optimization [56],
better regularization methods [57-59], and finally the introduction of GPUs, all made deep model
training possible.

Deep learning has changed the view of how problems are solved. In end-to-end deep learning,
the input to the model is the signal itself, not features extracted from that signal. This produces a
unified framework for the two steps that were considered separate for a long time: feature
extraction and classification. Learning the features along with the classification boundary in one
step produces more discriminative features far better than hand engineered ones and gives much
better classification results.

5.2 Convolutional Neural Networks (CNNs)
A Convolutional Neural Network (CNN) is a powerful machine learning technique from the field of
deep learning. CNNs were inspired by the experiments of Hubel and Weisel [60-62] in which they
discovered that different neurons in the cat visual cortex fire for different light edge orientations.
They also showed that locality is preserved in processing, i.e., nearby cells in the cortex
represent nearby regions in visual field. They hypothesized through their experiments that the
visual cortex has a kind of hierarchical organization where simple cells feed to other complex
cells which in turn feed to hypercomplex cells. Fukushima [63] introduced the neurocognitron
which models the visual cortex in computers. It is composed of a hierarchy of layers where each
neuron in upstream layers looks at a small region of input in the downstream layer. Since
backpropagation was not invented yet, Fukushima trained his model with an unsupervised
procedure. LeCun et al. [64] built on Fukushima’s work and trained his network (LeNet-5) with
backpropagation. Many years later, Hinton and Salakhutdinov [65] described an effective way of
initializing the weights that allows deep autoencoder networks to learn a low-dimensional
representation of data. Krizhevsky et al. [66] designed a convolutional neural network that they
called AlexNet. It is very similar to LeNet except that it is bigger, deeper, uses Rectified Linear
Unit (ReLU) activation function, and is trained on GPUs with more training data (ImageNet). This
network has won the ILSVRC2012 competition and reduced the error rate by a large margin.
Since then, these models have drawn people attention and many deeper and wider CNNs were
proposed. Common CNN examples include VGG [67], GoogleNet [68], ResNet [69, 70],
DenseNet [71], etc. These networks have millions of parameters and need proper training.

CNNs are a special kind of multi-layer neural networks which have two fundamental differences:
(1) neurons share weights, where many neurons in a layer share the same weights (2) they have
sparse connections, i.e., not every neuron in upstream layer is connected to every other neuron
in downstream layer. CNNs are composed of many layers of different types like convolutional

Yasser M. Abdullah & Mussa M. Ahmed

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (8) : Issue (4) : 2019 90

 layers, pooling layers, FC layers, softmax and classification layers. A convolutional layer is where
downstream neurons are convolved (dot product operation) with a filter bank to give rise to many
output feature maps, one map for each filter. Convolution filters need not to be flipped and this
operation is similar to correlation. After filtering, a non-linearity such as ReLU is applied on the
filtered input. It thresholds negative activations and passes positive activations as they are. A
pooling layer down-samples each feature map by computing some statistic over it. Common
statistics include average and the popular max pooling. Other pooling methods were recently
proposed like fractional max-pooling [72] and spatial pyramid pooling [73]. At the end of the
network, there exists the FC layers which are like the traditional MLP and it runs for a few layers
before the softmax layer. The softmax layer uses the softmax function to convert class scores into
class probabilities. The classification layer takes the class probabilities to compute the cross-
entropy loss function to be optimized. Other types of layers that prevents the network from
overfitting the training data were proposed like batch normalization [74] layer (which also speeds
up the training process) and dropout layer [59].

Bonsai

Butterflies

Crabs

Elephants

Euphoniums

Faces

Grand
pianos

Joshua
trees

Leopards

Lotuses

Motorbikes

Schooners

Stop signs

Sunflowers

Watches

FIGURE 3: Example Images from The Image Dataset.

Yasser M. Abdullah & Mussa M. Ahmed

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (8) : Issue (4) : 2019 91

6. EXPERIMENTS
In this section, we describe four types of experiments carried out to evaluate the performance of
shallow and deep image representations. The first experiment compares the performance of
shallow image representations taking into consideration the enhancements proposed in the
feature enhancements and normalization pipeline steps of the BoVW model for different encoding
methods. Moreover, we contrast the results obtained to previous results obtained without using
the proposed enhancements. The second experiment compares the performance of deep image
representations on different CNN architectures finetuned on the training set. The third experiment
evaluates the performance of handcrafted representations extracted from the BoVW pipeline and
representations extracted from the CNN. The last experiment improves the performance by
combining multiple CNNs into an ensemble.

The dataset used in the experiments consists of 2533 images each belonging to one of object
categories. These categories were taken from Caltech-101 dataset and include bonsais,
butterflies, crabs, elephants, euphoniums, faces, grand pianos, Joshua trees, leopards, lotuses,
motorbikes, schooners, stop signs, sunflowers, and watches. Each category contains different
number of images and are of different resolutions. Example images from each category are
shown in figure 3.

The dataset was split into two sets: training and testing sets. The first examples of each class
were used as a training set for a total of images while the rest was used as a testing set for a

total of images.

To demonstrate the results, we used MATLAB and two external libraries: VLFeat [75] and Lib-
linear [76]. The results were reported using top 1 and top 2 accuracy evaluation metrics.
Precisions for each category were also reported.

6.1 BoVW Pipeline Enhancements Experiments
In these experiments, we evaluate the performance of shallow representations for the
enhancements proposed for different encoding methods. Furthermore, we compare these results
to previous results that do not use the proposed enhancements.

Local Feature extraction and enhancement. All images were converted to grayscale even when

color is available. Since all images have a medium resolution , images were processed
as they are without resizing them. We only used a single descriptor type, i.e., SIFT descriptors

extracted densely from an image with a stride of pixels at different scales with scale
increments. The spatial bin size of the SIFT descriptor was fixed to cover pixels. The feature
descriptors were enhanced by running them through the feature enhancement pipeline step
where they were square-rooted as suggested in [4], reduced in dimensionality from to
dimensions using PCA, and then whitened. Moreover, the reduced descriptors were augmented
with their normalized spatial location to get -dimensional descriptors. For performance reasons,
we didn’t use feature augmentation for FV.

Codebook Generation. A codebook of size codewords was constructed by clustering a
random subset of feature descriptors from the training set using -means clustering algorithm.

The codebook was fixed in size (to) for all experiments except for FV, and VLAD encoding
methods which use a codebook of size 256 codewords. For VLAD, the codebook was
constructed using -means, whereas a GMM was used for FV. For GMM training, the mixture
parameters were learnt from the training set using Expectation Maximization (EM, [29]) algorithm.
The means of the GMM were initialized by the means of -means algorithm run for a few
iterations. The diagonal of the covariance matrix of each Gaussian was initialized by the diagonal
of the covariance matrix of the points assigned to initial mean of each Gaussian. The mixing
coefficients of each Gaussian were initialized by the proportion of points assigned to each
Gaussian.

Yasser M. Abdullah & Mussa M. Ahmed

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (8) : Issue (4) : 2019 92

Encoding Methods. We compare the proposed pipeline enhancements to seven popular encoding
methods used in the codebook model and for each we provide the parameters used in the
encoding process:

 HA: It uses hard quantization and requires computing the nearest neighbor for each feature
descriptor.

 LSA: It uses soft quantization and requires the computation of the nearest neighbors to
each feature descriptor. The parameter was set to 5, and was set to .

 FV: It represents feature descriptors by their first and second order statistics for each
codeword.

 VLAD: It represents each descriptor by the vector difference between the descriptor and its
closest codeword. It requires the computation of the nearest neighbor.

 LLC: The approximated version of LCC was used to achieve both sparsity and locality. The
parameter was set to , and was set to .

 SC: It requires the computation of the nearest neighbors for each descriptor. Each
descriptor is encoded just by its closest codeword as in HA. Unlike HA, the coding weight is
not constant and depends on the distances of the descriptor from its nearest codewords.

The parameter was set to .

 GSC: It is a soft version of SC and requires the computation of the nearest neighbors for
each descriptor. The parameter was set to .

Spatial information. To introduce weak geometry to the representation, spatial pyramid was used
for all experiments. It divides the image into three levels: , , and for a total of
regions.

Pooling and Normalization. Different pooling and normalization strategies were used for different
encoding methods. Region encodings are pooled separately and normalization is done for all
regions. The following pooling and normalization strategies were used for each encoding method:

 HA: The resulting coding vectors from different feature descriptors are sum-pooled, sign-
square-root normalized, globally -normalized, and again sign-square-root normalized. The
final representation has dimensions.

 LSA: Same as in HA.

 FV: Average-pooling is used for image coding vectors to get the pooling vector. Each
gradient sub-vector of the pooling vector is -normalized (intra-normalization), and each

region is also -normalized. After that, sign-square-root normalization followed by global -
normalization is done on the whole representation. The dimensionality of the representation
is .

Yasser M. Abdullah & Mussa M. Ahmed

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (8) : Issue (4) : 2019 93

 VLAD: Coding vectors corresponding to image feature descriptors are sum-pooled, and the
resulting pooling vector is sign-square-root normalized, and -intra-normalized. The

representation has dimensions.

 LLC: Max-pooling is used followed by global and sign-square-root normalization. The

representation has dimensions.

 SC: Max-pooling followed by same normalization as in HA. The representation has
 dimensions.

 GSC: Max-pooling followed by the same normalization as in HA. The representation has
 dimensions.

Classifier. In all experiments, multi-class classification is done with SVM classifiers trained
using one-versus-all setting. We did not use nonlinear kernels or any explicit feature mapping.
Only linear kernels were used. The SVM regularization parameter was set to .

Parameters used for previous results. We compared our enhancements to previous settings in
the recognition pipeline. To achieve a fair comparison, we have tested the previous encoding
methods with the parameters used in their original papers or with enhancements introduced
afterwards. As before, we extracted SIFT descriptors with the same scales and sampling
frequency. We do not perform square rooting for features except for FV. Moreover, features are
neither augmented nor reduced in dimensionality (except for FV and VLAD which were reduced
to 80 dimensions). The same pooling strategies and pyramid levels were used for all encoding
methods as before. For normalization, we used -normalization for individual regions and global

 -normalization for the whole representation. Moreover, we used -intra-normalization for
encoding methods that produce a block of codes for each codeword, i.e., FV and VLAD. For
classification, we used the SVM classifier as before. Intersection kernel was used for HA and
LSA, Hellinger kernel for FV and VLAD, while a linear kernel was used for the rest of encoding
methods. For nonlinear kernels, we used explicit feature mapping using additive homogeneous
kernels.

Results and analysis. Results for the enhancements proposed are summarized in table 2(a).
Different settings for spatial information, feature reduction, and pooling and normalization
parameters were tested for each experiment. A performance increase was noticed when we
introduce the feature enhancement step in the recognition pipeline and a sequence of
representation normalization that is based on - and sign-square-root normalization as described
above. The performance increase was attained using the efficient and inexpensive linear kernel
which yield same or better performance than nonlinear kernels using the above parameter
settings. The results show that the relatively fast and sparse methods like GSC, LLC, HA, LSA,
and SC yield better results than the slow and dense FV method. For this dataset, we see that

Encoding
Methods

Top1
Accuracy

(%)

Top2
Accuracy

(%)

 Encoding
Methods

Top1
Accuracy

(%)

Top2
Accuracy

(%)
HA 96.35 98.94 HA 91.60 96.45

LSA 96.74 98.90 LSA 93.95 98.03

FV 95.58 98.08 FV 95.58 98.08

VLAD 96.69 98.80 VLAD 94.38 98.22

LLC 97.12 99.09 LLC 93.61 98.03

SC 96.50 98.90 SC 93.37 97.65

GSC 97.22 98.99 GSC 92.80 96.69
(a) (b)

TABLE 2: Top 1 and top 2 accuracies of different encoding methods. (a) Using our proposed
enhancements in the feature extraction and normalization steps of the recognition pipeline. (b) Previous

methods implemented as in their original papers including enhancements introduced afterwards.

Yasser M. Abdullah & Mussa M. Ahmed

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (8) : Issue (4) : 2019 94

among single-dimensional response hard coding methods, SC gives better results than HA.
Moreover, the multi-dimensional response hard coding method, VLAD, gives better performance
than single-dimensional response hard coding methods like HA and SC. Among sparse soft
encoding methods, we see that GSC and LLC produce better result than LSA. Among multi-
dimensional response coding methods, we see that VLAD produces better results than FV.
Among all methods, we see that GSC produces the best result. Moreover, LLC and GSC produce
the best results in terms of top accuracy. Class precisions for different encoding methods using
the proposed enhancements are shown in table 4(a).

Results for previous encoding methods are shown in table 2(b). We see that the FV outperforms
other methods. Despite its best accuracy, FV is the slowest among all encoding methods since it
needs more computation and memory resources for its multi-dimensional representation.
However, we have achieved the best result using the faster and more efficient GSC encoding
method using the proposed enhancements. Moreover, we see a large performance gap favoring
our proposed enhancements over the previous methods for all encoding methods. Class
precisions for previous results are given in table 4(b).

6.2 CNN Architectures Experiments
In these experiments, we finetune different pretrained deep CNN architectures on our dataset.
Fine-tuning a network with transfer learning is usually much faster and easier than training a
network with randomly initialized weights from scratch, and this might be necessary in case you
don’t have enough training data. The early layers of a pretrained CNN learn low-level features
(blobs, corners, edges) that are general to any task, and the last layers learn features that are
task specific. Therefore, early layers were retained with their weights, and last layers were
replaced with new layers of our own to learn features that are specific to our dataset.

CNN Architectures. Different CNNs expect different image sizes, so images were resized to fit the
input layer of each network. Moreover, since the dataset contains a mixture of grayscale and
RGB images, color preprocessing is important to ensure that all the images have the same
number of channels required by the network. In the experiments, all images were converted to
RGB. in the experiments, four popular and recent CNNs were used:

 AlexNet: It was named after Alex Krizhevsky [66] and has won the ILSVRC2012 competition
on object classification and considered the first CNN-based winner. The network consists of 8
layers, 5 convolutional and 3 FC layers and uses , , and convolutions. The
network has around 60 million parameters and expects input of size RGB image.

 VGG19: It was designed by Simonyan and Zisserman [67] and achieved the second rank in
ILSVRC2014 object classification and the first in object localization. It consists of 19 layers,
16 convolutional and 3 FC layers. The network uses only convolutions but lots of filters

and is deeper than AlexNet. It contains around million parameters and expects inputs of
size RGB image.

 GoogLeNet: It was designed by Google and has won the ILSVRC2014 competition on object
classification. It is deeper than VGG19 and consists of layers. It features efficient

inception modules where each module uses , , and convolutions. It does not

contain FC layers and contains only million parameters. The network expects inputs of size
 RGB image.

 ResNet: It was designed by Microsoft and has won the ILSVRC2015 competition on object
classification. It is much deeper and consists of 152 layers. To improve the training process, it
introduced a novel architecture with “skip connections” and featured heavy batch
normalization.

Yasser M. Abdullah & Mussa M. Ahmed

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (8) : Issue (4) : 2019 95

It expects inputs of size RGB image. In the experiment, we have used only 50 layers
(ResNet50).

Training Parameters. The last FC, softmax, and classification layers were removed from each
network and new FC, softmax, and classification layers were added. The weights of the CNN
initial layers were frozen while were allowed to update in last layers. The unfrozen layers were
trained on the training set using Stochastic Gradient Descent with Momentum (SGDM) for a
maximum of epochs. The momentum was set to and the effective learning rate was set to

 . The -regularization constant for weights of the FC layer was set to with zero
regularization for biases. Since these networks contain some stochastic layers, the networks
were trained and tested for times and the average accuracies and standard deviations were
reported.

Results. Results for different CNN architectures are shown in table 3(a). They are better than
previous results for shallow representation encoding methods. Some CNNs give better results
than others on the dataset. For example, GoogLeNet gives the best result among all and is fast to
train and test. Second comes Resnet50 which gives comparable result and is also fast to train
and test. VGG19 gives good performance but is slow in training and testing. Finally comes
AlexNet which gives relatively lower result but is fast at training and testing. Precisions for each
class are given in table 4(c).

6.3 Shallow vs. Deep Representations Experiment
In this experiment, we compare between hand-engineered shallow features produced using the
previous encoding methods and deeply learnt features extracted from a CNN. Here, we treat a
CNN as a generalized feature extractor, and activations of the last newly added fully connected
layer were used as the image representation. These representations were then fed to a linear
SVM for classification. Same parameters for SVM were used as before.

Results and analysis. Results for this experiment are shown in table 3(b). Despite the low
dimensionality of deep features (15 dimensions in our case), they produce better results than the
high dimensional (tens of thousands) handcrafted features. Moreover, the performance gain is
achieved without using any normalization method or applying nonlinear kernels. Class precisions
are given in table 4(d).

CNN
Top 1

Accuracy (%)
Top 2

Accuracy (%)

Experiment

Top 1
Accuracy

(%)

Top 2
Accuracy

(%)

AlexNet Deep
features on
linear SVM

VGG19

ResNet50 Ensemble of
5 CNNs

GoogleNet

(a) (b)

TABLE 3: (a) Top 1 and top 2 accuracies for different deep network architectures. (b) Top row: deeply

learnt features extracted from a CNN and trained on an SVM. Bottom row: ensemble of 5 CNN learners
combining their predictions by taking the maximum posterior probability.

Yasser M. Abdullah & Mussa M. Ahmed

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (8) : Issue (4) : 2019 96

6.4 CNN Ensemble Experiment
In this experiment we combine multiple deep CNN learners into an ensemble using maximum
posterior probability. The CNN learners are trained as before and are of different architectures.
We achieved the best result using only five learners.

Results. The ensemble of deep network learners gives the best results (table 3(b)) among all
experiments since it selects the most probable class among all the participating learners. Class
precisions are given in table 4(e) and misclassified images along with their predictive probability
are shown in figure 4.

7. CONCLUSION
In this study, we have reviewed the different steps used in the BoVW recognition pipeline used to
extract shallow image representations. Moreover, we have provided a concrete mathematical
framework for the different encoding methods used in the pipeline. Several enhancements in the
local feature extraction and normalization pipeline steps were introduced that give better image
representations and perform well than previous methods. We have achieved a top 1 accuracy of
 for shallow representations using the GSC encoding method which outperforms the best

encoding method (FV) in the previous results having a top 1 accuracy of %.

(a)

 Class

 Expr.

HA 93.88 86.89 79.07 97.06 91.18 99.75 98.55 97.06 100 86.11 97.01 100 94.12 94.55 93.78

LSA 92.86 88.52 83.72 94.12 97.06 99.51 92.75 97.06 100 91.67 98.31 100 94.12 89.09 94.26

SC 90.82 88.52 86.05 97.06 94.12 99.75 92.75 97.06 100 88.89 98.44 100 94.12 87.27 92.34

GSC 92.86 88.52 83.72 97.06 97.06 100 94.20 97.06 100 91.67 98.83 100 94.12 89.09 95.22

LLC 92.86 86.89 86.05 97.06 97.06 99.75 94.20 97.06 100 91.67 98.96 100 94.12 87.27 94.74

VLAD 94.90 83.61 88.37 100 94.12 99.75 98.55 97.06 100 91.67 96.35 100 94.12 94.55 96.17

FV 84.69 81.97 79.07 94.12 91.18 99.51 97.10 100.00 100 77.78 98.70 96.97 85.29 87.27 91.87

(b)

HA 94.90 85.25 83.72 94.12 94.12 99.26 98.55 91.18 100 86.11 84.90 96.97 94.12 94.55 94.90

LSA 94.90 86.89 83.72 94.12 94.12 99.51 97.10 91.18 99.41 83.33 91.80 96.97 91.18 92.73 91.87

SC 84.69 83.61 79.07 91.18 91.18 99.75 95.65 91.18 100 80.56 92.84 100 94.12 83.64 91.39

GSC 90.82 85.25 79.07 91.18 91.18 99.51 95.65 91.18 99.41 86.11 88.93 100 97.06 94.55 93.30

LLC 95.92 86.89 79.07 94.12 94.12 99.51 97.10 91.18 100 88.89 90.36 100 94.12 90.91 92.34

VLAD 93.88 80.33 83.72 97.06 94.12 98.77 100 97.06 99.41 91.67 91.67 100 94.12 92.73 95.69

FV 84.69 81.97 79.07 94.12 91.18 99.51 97.10 100 100 77.78 98.70 96.97 85.29 84.69 81.97

(c)

AlexNet 96.53 85.90 97.67 97.06 92.94 99.41 100 98.24 97.41 90.56 99.17 100 100 100 95.60

VGG19 98.16 92.13 97.21 98.24 95.88 99.21 100 95.29 98.82 87.22 99.53 99.39 100 97.82 98.76

ResNet50 97.96 92.79 95.81 97.65 96.47 99.26 100 96.47 95.41 93.89 99.77 100 97.96 92.79 95.81

GoogLeNet 95.92 94.43 93.49 99.41 91.18 99.60 100 92.94 99.06 91.11 99.87 100 100 97.45 99.33

(d)
Deep

features
96.12 87.87 96.74 98.24 94.71 99.51 100 98.24 98.00 89.44 99.27 100 100 100 96.17

(e)
CNN

ensemble
97.96 96.72 97.67 100 97.06 100 100 100 98.24 94.44 100 100 100 100 100

TABLE 4: Class precisions for different methods. (a) Encoding methods with enhancements in the

recognition pipeline. (b) Encoding methods with previous settings without the proposed enhancements. (c)
Average precision for deep network architectures trained and tested five times. (d) Deeply learnt features

extracted from a CNN and classified on an SVM. (e) Ensemble of 5 CNN architectures.

Yasser M. Abdullah & Mussa M. Ahmed

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (8) : Issue (4) : 2019 97

Instead of handcrafting the image representations, we have demonstrated that better
representations can be extracted by learning them directly from the input image while training the
CNN deep learning model. We have achieved a top accuracy of using

GoogleNet CNN and boosted the results to using an ensemble of only CNNs. As have
been seen, the deeply learnt representations are concise, more discriminative, and outperform
shallow representations.

8. FUTURE WORK
There are many parameters in the recognition pipeline that need to be further explored. These
include: different types of feature descriptors, sampling strategies, clustering algorithms,
codebook size, encoding methods, pooling methods, normalization methods, and classification
models. Each pipeline step might include other parameters that requires further tuning. For
CNNs, different architectures need to be explored. Deeper and wider CNNs are the state-of-the-
art architectures. Other CNN tunable parameters include: initialization strategies, pooling
methods, optimization algorithms, batch normalization, nonlinearities and many others. Moreover,
we want to extend these ideas to video data which has a temporal dimension in addition to the
spatial dimensions. Instead of extracting spatial SIFT descriptors, we need other descriptors that
take the time dimension into consideration like Histogram of Optical Flow (HOF). The rest of the
clustering, encoding, pooling, and normalization methods need to be tested on video data. In the
same manner, CNNs need to be changed in architecture to include the temporal dimension of
video data. There exist many applications for video recognition such as human action recognition
and gesture recognition.

9. REFERENCES
 [1] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray. "Visual categorization with bags

of keypoints". Workshop on statistical learning in computer vision, ECCV, 2004.

[2] J. Sivic and A. Zisserman. "Video Google: A text retrieval approach to object matching in
videos". IEEE International Conference on Computer Vision, 2003.

 Actual
Class

bonsai bonsai butterfly butterfly crab euponium

Image

 Output
class

joshua
tree

joshua
tree

lotus schooner lotus
grand
piano

 Posterior
prob.

97.27% 58.80% 69.78% 76.86% 89.69% 47.74%

 Actual
Class

leopard leopard leopard lotus lotus

Image

 Output
class

joshua
tree

joshua
tree

joshua
tree

sunflower sunflower

 Posterior
prob.

82.52% 88.81% 90.17% 67.30% 99.13%

FIGURE 4: Misclassified images for the 5 CNN ensemble experiment. Image

actual class, predicted class and the posterior probability are shown above.

Yasser M. Abdullah & Mussa M. Ahmed

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (8) : Issue (4) : 2019 98

[3] S. Lazebnik, C. Schmid, and J. Ponce. "Beyond bags of features: Spatial pyramid matching
for recognizing natural scene categories". IEEE Conference on Computer Vision and Pattern
Recognition, 2006.

[4] R. Arandjelović and A. Zisserman. "Three things everyone should know to improve object
retrieval". IEEE Conference on Computer Vision and Pattern Recognition, 2012.

[5] J. Sánchez, F. Perronnin, and T. De Campos. "Modeling the spatial layout of images beyond
spatial pyramids". Pattern Recognition Letters, vol. 33, no. 16, pp. 2216-2223, 2012.

[6] D. Lowe. "Distinctive image features from scale-invariant keypoints". International Journal of
Computer Vision, vol. 60, no. 2, pp. 91-110, 2004.

[7] H. Bay, T. Tuytelaars, and L. Van Gool. "Surf: Speeded up robust features". European
Conference on Computer Vision, 2006.

[8] C. Harris and M. Stephens ". A combined corner and edge detector". Alvey Vision
Conference, 1988.

[9] T. Lindeberg. "Feature detection with automatic scale selection," International Journal of
Computer Vision, vol. 30, no. 2, pp. 79-116, 1998.

[10] K. Mikolajczyk and C. Schmid. "Indexing based on scale invariant interest points". IEEE
International Conference on Computer Vision, 2001.

[11] P. Viola and M. J. Jones. "Robust real-time face detection". International Journal of
Computer Vision, vol. 57, no. 2, pp. 137-154, 2004.

[12] E. Rosten and T. Drummond. "Fusing points and lines for high performance tracking". IEEE
International Conference on Computer Vision, 2005.

[13] E. Rosten and T. Drummond. "Machine learning for high-speed corner detection". European
Conference on Computer Vision, 2006.

[14] J. Matas, O. Chum, M. Urban, and T. Pajdla. "Robust wide baseline stereo from Extremal
Maximally Stable regions.," Image and Vision Computing, vol. 22, no. 10, pp. 761-767, 2004.

[15] T. Lindeberg and J. Gårding, "Shape-adapted smoothing in estimation of 3-D shape cues
from affine deformations of local 2-D brightness structure." Image and Vision Computing,
vol. 15, no. 6, pp. 415-434, 1997.

[16] A. Baumberg. "Reliable feature matching across widely separated views." in IEEE
Conference on Computer Vision and Pattern Recognition., 2000.

[17] F. Schaffalitzky and A. Zisserman. "Multi-view matching for unordered image sets, or “How
do I organize my holiday snaps?”". European Conference on Computer Vision, 2002.

[18] K. Mikolajczyk and C. Schmid. "Scale & affine invariant interest point detectors".
International Journal of Computer Vision, vol. 60, no. 1, pp. 63-86, 2004.

[19] K. Mikolajczyk and C. Schmid. "A performance evaluation of local descriptors". IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 10, pp. 1615–1630,
2005.

[20] Y. Ke and R. Sukthankar. "PCA-SIFT: A more distinctive representation for local image
descriptors". IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2004.

Yasser M. Abdullah & Mussa M. Ahmed

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (8) : Issue (4) : 2019 99

[21] S. Belongie, J. Malik, J. Puzicha, and M. Intelligence. "Shape matching and object
recognition using shape contexts". IEEE Transactions on Pattern Analysis and Machine
Intelligence, no. 4, pp. 509-522, 2002.

[22] J. Canny. "A computational approach to edge detection". IEEE Transactions on Pattern
Analysis Machine Intelligence, vol. 6, no. 6, pp. 679-698, 1986.

[23] A. Johnson, M. Hebert. "Using spin images for efficient object recognition in cluttered 3D
scenes". IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 21, no. 5, pp.
433-449, 1999.

[24] S. Lazebnik, C. Schmid, J. Ponce. "A sparse texture representation using local affine
regions". IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 8, pp.
1265-1278, 2005.

[25] C. Schmid, R. Mohr. "Local grayvalue invariants for image retrieval". IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 19, no. 5, pp. 530-535, 1997.

[26] J. Flusser. "On the independence of rotation moment invariants". Pattern Recognition, vol.
33, no. 9, pp. 1405-1410, 2000.

[27] S. Lloyd. "Least squares quantization in PCM". IEEE Transactions on Information Theory,
vol. 28, no. 2, pp. 129-137, 1982.

[28] M. Muja and D. G. Lowe. "Fast approximate nearest neighbors with automatic algorithm
configuration". International Conference on Computer Vision Theory and Applications,
VISAPP, vol. 2, 2009.

[29] G. McLachlan and D. Peel. Finite mixture models. John Wiley & Sons, 2004.

[30] R. Arandjelovic and A. Zisserman. "All about VLAD". IEEE Conference on Computer Vision
and Pattern Recognition, 2013.

[31] K. Grauman and T. Darrell, "Pyramid match kernels: Discriminative classification with sets of
image features," in IEEE International Conference on Computer Vision (ICCV), 2005.

[32] M. Marszalek, C. Schmid, H. Harzallah, and J. van de Weijer. "Learning representations for
visual object class recognition". Proceedings of the PASCAL Visual Object Classes
Challenge, 2007.

[33] A. Vedaldi, A. Zisserman. "Efficient additive kernels via explicit feature maps," vol. 34, no. 3,
pp. 480-492, 2012.

[34] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. "Lost in quantization: Improving
particular object retrieval in large scale image databases," IEEE conference on Computer
Vision and Pattern Recognition, 2008.

[35] V. Gemert, J. Geusebroek, C. Veenman, and A. Smeulders, "Kernel codebooks for scene
categorization," European Conference on Computer Vision, 2008.

[36] V. Gemert, J. Geusebroek, C. Veenman, and A. Smeulders. "Visual word ambiguity". IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 7, pp. 1271-1283,
2010.

[37] L. Liu, L. Wang, and X. Liu. "In defense of soft-assignment coding". IEEE International
Conference on Computer Vision, 2011.

Yasser M. Abdullah & Mussa M. Ahmed

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (8) : Issue (4) : 2019 100

[38] F. Perronnin, J. Sánchez, and T. Mensink. "Improving the fisher kernel for large-scale image
classification". European Conference on Computer Vision, 2010, pp. 143-156.

[39] T. Jaakkola and D. Haussler. "Exploiting generative models in discriminative classifiers".
Advances in Neural Information Processing Systems, 1999.

[40] H. Jégou, F. Perronnin, M. Douze, J. Sánchez, C. Schmid, and P. Pérez. "Aggregating local
descriptors into a compact image representation". IEEE Conference on Computer Vision &
Pattern Recognition, 2010.

[41] J. Yang, K. Yu, Y. Gong, and T. Huang. "Linear spatial pyramid matching using sparse
coding for image classification". IEEE Conference of Computer Vision and Pattern
Recognition, 2009.

[42] K. Yu, T. Zhang, and Y. Gong. "Nonlinear learning using local coordinate coding". Advances
in Neural Information Processing Systems, 2009.

[43] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. "Locality-constrained linear coding
for image classification". IEEE Conference on Computer Vision and Pattern Recognition,
2010.

[44] Y. Huang, K. Huang, Y. Yu, and T. Tan. "Salient coding for image classification". IEEE
Conference on Computer Vision and Pattern Recognition, 2011.

[45] Z. Wu, Y. Huang, L. Wang, and T. Tan. "Group encoding of local features in image
classification". International Conference on Pattern Recognition, 2012.

[46] K. Yu and T. Zhang. "Improved Local Coordinate Coding using Local Tangents".
International Conference of Machine Learning, 2010.

[47] X. Zhou, K. Yu, T. Zhang, and T. Huang. "Image classification using super-vector coding of
local image descriptors". European Conference on Computer Vision, 2010.

[48] D. Rumelhart, G. Hinton, and R. Williams. " Learning representations by back-propagating
errors". Nature, vol. 323, pp. 533-536, 1986.

[49] G. Cybenko. "Approximation by superpositions of a sigmoidal function". Mathematics of
Control, Signals, and Systems, vol. 2, no. 4, pp. 303-314, 1989.

[50] V. Nair and G. Hinton. "Rectified linear units improve restricted boltzmann machines".
International Conference on Machine Learning, 2010.

[51] K. He, X. Zhang, S. Ren, and J. Sun. "Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification". IEEE International Conference on Computer
Vision, 2015.

[52] D.-A. Clevert, T. Unterthiner, and S. Hochreiter. "Fast and accurate deep network learning
by exponential linear units (elus)". arXiv preprint arXiv: 1511.07289v5, 2016.

[53] S. Kumar. "On weight initialization in deep neural networks". arXiv preprint arXiv:
1704.08863, 2017.

[54] X. Glorot and Y. Bengio. "Understanding the difficulty of training deep feedforward neural
networks". International Conference on Artificial Intelligence and Statistics, 2010.

[55] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. "Imagenet: A large-scale
hierarchical image database". IEEE Conference on Computer Vision and Pattern
Recognition, 2009.

Yasser M. Abdullah & Mussa M. Ahmed

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (8) : Issue (4) : 2019 101

[56] D. P. Kingma and J. Ba. "Adam: A method for stochastic optimization". arXiv preprint arXiv:
1412.6980, 2014.

[57] L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, and R. Fergus, "Regularization of neural networks
using dropconnect". International Conference on Machine Learning, 2013.

[58] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger. "Deep networks with stochastic
depth". European Conference on Computer Vision, 2016.

[59] G. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. "Improving
neural networks by preventing co-adaptation of feature detectors". arXiv preprint
arXiv:.1207.0580, 2012.

[60] D. Hubel and T. Wiesel. "Receptive fields of single neurones in the cat's striate cortex". The
Journal of Physiology, vol. 148, no. 3, pp. 574-591, 1959.

[61] D. Hubel and T. Wiesel. "Receptive fields, binocular interaction and functional architecture in
the cat's visual cortex". The Journal of Physiology, vol. 160, no. 1, pp. 106-154, 1962.

[62] D. Hubel and T. Wiesel. "Receptive fields and functional architecture of monkey striate
cortex". The Journal of Physiology, vol. 195, no. 1, pp. 215-243, 1968.

[63] K. Fukushima. "Neocognitron: A self-organizing neural network model for a mechanism of
pattern recognition unaffected by shift in position". Biological Cybernetics, vol. 36, no. 4, pp.
193-202, 1980.

[64] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based learning applied to
document recognition". Proc. Of IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.

[65] G. Hinton and R. Salakhutdinov. "Reducing the dimensionality of data with neural networks".
Science, vol. 313, no. 5786, pp. 504-507, 2006.

[66] A. Krizhevsky, I. Sutskever, and G. Hinton, "Imagenet classification with deep convolutional
neural networks". Advances in Neural Information Processing Systems, 2012.

[67] K. Simonyan and A. Zisserman. "Very deep convolutional networks for large-scale image
recognition". arXiv preprint arXiv: 1409.1556, 2014.

[68] C. Szegedy et al. "Going deeper with convolutions". IEEE Conference on Computer Vision
and Pattern Recognition, 2015, pp. 1-9.

[69] K. He, X. Zhang, S. Ren, and J. Sun. "Deep residual learning for image recognition". IEEE
Conference on Computer Vision and Pattern Recognition, 2016.

[70] K. He, X. Zhang, S. Ren, and J. Sun. "Identity mappings in deep residual networks".
European Conference on Computer Vision, 2016.

[71] G. Huang, Z. Liu, L. Van Der Maaten, and K. Weinberger. "Densely connected convolutional
networks". IEEE Conference on Computer Vision and Pattern Recognition, 2017.

[72] B. Graham. "Fractional max-pooling". arXiv preprint arXiv: 1412.6071, 2014.

[73] K. He, X. Zhang, S. Ren, and J. Sun. "Spatial Pyramid Pooling in Deep Convolutional
Networks for Visual Recognition". European Conference on Computer Vision, 2014.

[74] S. Ioffe and C. Szegedy. "Batch normalization: Accelerating deep network training by
reducing internal covariate shift". arXiv preprint arXiv:.1502.03167, 2015.

Yasser M. Abdullah & Mussa M. Ahmed

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (8) : Issue (4) : 2019 102

[75] A. Vedaldi and B. Fulkerson. "VLFeat: An open and portable library of computer vision
algorithms". ACM International Conference on Multimedia, 2010.

[76] “Lib-linear”. Internet: https://www.csie.ntu.edu.tw/~cjlin/liblinear/, [Jun. 19, 2018].

https://www.csie.ntu.edu.tw/~cjlin/liblinear/

