
Zakir H. Ahmed

International Journal of Biometrics & Bioinformatics (IJBB) Volume (3): Issue (6)

96

Genetic Algorithm for the Traveling Salesman Problem using
Sequential Constructive Crossover Operator

Zakir H. Ahmed zhahmed@gmail.com
Department of Computer Science,
Al-Imam Muhammad Ibn Saud Islamic University,
P.O. Box No. 5701, Riyadh-11432
Kingdom of Saudi Arabia

Abstract

This paper develops a new crossover operator, Sequential Constructive crossover
(SCX), for a genetic algorithm that generates high quality solutions to the Traveling
Salesman Problem (TSP). The sequential constructive crossover operator
constructs an offspring from a pair of parents using better edges on the basis of their
values that may be present in the parents' structure maintaining the sequence of
nodes in the parent chromosomes. The efficiency of the SCX is compared as
against some existing crossover operators; namely, edge recombination crossover
(ERX) and generalized N-point crossover (GNX) for some benchmark TSPLIB
instances. Experimental results show that the new crossover operator is better than
the ERX and GNX.

Keywords: Traveling salesman problem, NP-complete, Genetic algorithm, Sequential constructive crossover.

1. INTRODUCTION

The Traveling Salesman problem (TSP) is one of the benchmark and old problems in Computer
Science and Operations Research. It can be stated as:

A network with ‘n’ nodes (or cities), with 'node 1' as ‘headquarters’ and a travel cost (or distance, or
travel time etc.,) matrix C= [cij] of order n associated with ordered node pairs (i, j) is given. The
problem is to find a least cost Hamiltonian cycle.

On the basis of the structure of the cost matrix, the TSPs are classified into two groups – symmetric

and asymmetric. The TSP is symmetric if cij = cji, ∀ i, j and asymmetric otherwise. For an n-city

asymmetric TSP, there are)!1(−n possible solutions, one or more of which gives the minimum cost.

For an n-city symmetric TSP, there are
2

)!1(−n
possible solutions along with their reverse cyclic

permutations having the same total cost. In either case the number of solutions becomes extremely
large for even moderately large n so that an exhaustive search is impracticable.

There are mainly three reasons why TSP has been attracted the attention of many researcher’s and
remains an active research area. First, a large number of real-world problems can be modeled by
TSP. Second, it was proved to be NP-Complete problem [1]. Third, NP-Complete problems are
intractable in the sense that no one has found any really efficient way of solving them for large

Zakir H. Ahmed

International Journal of Biometrics & Bioinformatics (IJBB) Volume (3): Issue (6)

97

problem size. Also, NP-complete problems are known to be more or less equivalent to each other; if
one knew how to solve one of them one could solve the lot.

The TSP finds application in a variety of situations such as automatic drilling of printed circuit boards
and threading of scan cells in a testable VLSI circuit [2], X-ray crystallography [3], etc.

The methods that provide the exact optimal solution to the problem are called exact methods. An implicit
way of solving the TSP is simply to list all the feasible solutions, evaluate their objective function values
and pick out the best. However it is obvious that this “exhaustive search” is grossly inefficient and
impracticable because of vast number of possible solutions to the TSP even for problem of moderate
size. Since practical applications require solving larger problems, hence emphasis has shifted from
the aim of finding exactly optimal solutions to TSP, to the aim of getting, heuristically, ‘good solutions’
in reasonable time and ‘establishing the degree of goodness’. Genetic algorithm (GA) is one of the
best heuristic algorithms that have been used widely to solve the TSP instances.

Since the crossover operator plays a vital role in GA, so many crossover operators have been
proposed for the TSP. Goldberg and Lingle [4] defined an operator called PMX (partially mapped
crossover), which used two crossover points. The section between these points defines an
interchange mapping. This PMX operator was the first attempt to apply GAs to the TSP, in which they
found near-optimal solutions to a well-known 33-node problem. The OX (ordered crossover) operator
developed by Davis [5] builds offspring by choosing a subsequence of a tour from one parent and
preserving the relative order of nodes from the other parent. Another crossover operator, named CX
(cycle crossover) operator was proposed by Oliver et al. [6], where offspring are built in such a way
that each node (and its position) comes from one of the parents. Whitley et al. [7] proposed edge
recombination crossover (ERX) operator that uses an ‘edge map’ to construct an offspring that inherits
as much information as possible from the parent structures. This edge map stores all the connections
from the two parents that lead into and out of a node. A crossover operator based on the conventional
N-point crossover operator, named as generalized N-point crossover (GNX), was proposed by
Radcliffe and Surry [8]. Poona and Carter [9] developed a tie break crossover (TBX), which was then
modified by Choi et al. [10] by combining PMX and TBX operators. Moon et al. [11] proposed a new
crossover operator named Moon Crossover (MX), which mimics the changes of the moon such as
waxing moon → half moon → gibbous → full moon. As reported, performance of MX operator and OX
operator is almost same, but OX never reached an optimal solution for all trials.

In this paper, a new crossover operator named sequential constructive crossover (SCX) is developed and
accordingly a genetic algorithm based on SCX is developed for solving the TSP.

This paper is organized as follows: Section 2 develops a genetic algorithm based on SCX for the TSP.
Section 3 describes computational experiments for three crossover operators. Finally, Section 4 presents
comments and concluding remarks.

2. GENETIC ALGORITHMS

Genetic algorithms (GAs) are based essentially on mimicking the survival of the fittest among the
species generated by random changes in the gene-structure of the chromosomes in the evolutionary
biology [12]. In order to solve any real life problem by GA, two main requirements are to be satisfied:

(a) a string can represent a solution of the solution space, and

(b) an objective function and hence a fitness function which measures the goodness of a solution can
be constructed / defined.

A simple GA works by randomly generating an initial population of strings, which is referred as gene
pool and then applying (possibly three) operators to create new, and hopefully, better populations as
successive generations. The first operator is reproduction where strings are copied to the next
generation with some probability based on their objective function value. The second operator is
crossover where randomly selected pairs of strings are mated, creating new strings. The third
operator, mutation, is the occasional random alteration of the value at a string position. The crossover
operator together with reproduction is the most powerful process in the GA search. Mutation

Zakir H. Ahmed

International Journal of Biometrics & Bioinformatics (IJBB) Volume (3): Issue (6)

98

diversifies the search space and protects from loss of genetic material that can be caused by
reproduction and crossover. So, the probability of applying mutation is set very low, whereas the
probability of crossover is set very high.

2.1. Genetic coding

To apply GA for any optimization problem, one has to think a way for encoding solutions as feasible
chromosomes so that the crossovers of feasible chromosomes result in feasible chromosomes. The
techniques for encoding solutions vary by problem and, involve a certain amount of art. For the TSP,
solution is typically represented by chromosome of length as the number of nodes in the problem.
Each gene of a chromosome takes a label of node such that no node can appear twice in the same
chromosome. There are mainly two representation methods for representing tour of the TSP –
adjacency representation and path representation. We consider the path representation for a tour,
which simply lists the label of nodes. For example, let {1, 2, 3, 4, 5} be the labels of nodes in a 5 node
instance, then a tour {1→ 3→4→ 2→ 5 →1} may be represented as (1, 3, 4, 2, 5).

2.2. Fitness function

The GAs are used for maximization problem. For the maximization problem the fitness function is
same as the objective function. But, for minimization problem, one way of defining a ‘fitness function’

is as
)(

1
)(

xf
xF = , where f(x) is the objective function. Since, TSP is a minimization problem; we

consider this fitness function, where f(x) calculates cost (or value) of the tour represented by a
chromosome.

2.3. Reproduction operator

In reproduction/selection process, chromosomes are copied into next generation mating pool with a
probability associated with their fitness value. By assigning to next generation a higher portion of the
highly fit chromosomes, reproduction mimics the Darwinian survival-of-the-fittest in the natural world.
In natural population, fitness is determined by a creature’s ability to survive predators, pestilence, and
other obstacles to adulthood and subsequent reproduction. In this phase no new chromosome is
produced. The commonly used reproduction operator is the proportionate reproduction operator,
where a string is selected for the mating pool with a probability proportional to its fitness value. We
have considered the stochastic remainder selection method [13] for our genetic algorithms.

2.4. Sequential constructive crossover operator (SCX)

The search of the solution space is done by creating new chromosomes from old ones. The most
important search process is crossover. Firstly, a pair of parents is randomly selected from the mating
pool. Secondly, a point, called crossover site, along their common length is randomly selected, and the
information after the crossover site of the two parent strings are swapped, thus creating two new
children. Of course, this basic crossover method does not support for the TSP.

The sequential constructive crossover (SCX) operator constructs an offspring using better edges on
the basis of their values present in the parents' structure. It also uses the better edges, which are
present neither in the parents' structure. As the ERX and GNX, the SCX does not depend only on the
parents' structure; it sometimes introduces new, but good, edges to the offspring, which are not even
present in the present population. Hence, the chances of producing a better offspring are more than
those of ERX and GNX. A preliminary version of the operator is reported as local improvement
technique [14, 15]. The algorithm for the SCX is as follows:

Step 1: - Start from 'node 1’ (i.e., current node p =1).

Step 2: - Sequentially search both of the parent chromosomes and consider the first ‘legitimate node'
(the node that is not yet visited) appeared after 'node p’ in each parent. If no 'legitimate node'
after 'node p’ is present in any of the parent, search sequentially the nodes {2, 3, …, n} and
consider the first 'legitimate' node, and go to Step 3.

Zakir H. Ahmed

International Journal of Biometrics & Bioinformatics (IJBB) Volume (3): Issue (6)

99

Step 3: Suppose the 'node α' and the 'node β' are found in 1
st
 and 2

nd
 parent respectively, then for

selecting the next node go to Step 4.

Step 4: If cpα < cpβ, then select 'node α', otherwise, 'node β' as the next node and concatenate it to the
partially constructed offspring chromosome. If the offspring is a complete chromosome, then
stop, otherwise, rename the present node as 'node p' and go to Step 2.

Let us illustrate the SCX through the example given as cost matrix in Table 1. Let a pair of selected
chromosomes be P1: (1, 5, 7, 3, 6, 4, 2) and P2: (1, 6, 2, 4, 3, 5, 7) with values 312 and 331
respectively.

Node 1 2 3 4 5 6 7

1 999 75 99 9 35 63 8

2 51 999 86 46 88 29 20

3 100 5 999 16 28 35 28

4 20 45 11 999 59 53 49

5 86 63 33 65 999 76 72

6 36 53 89 31 21 999 52

7 58 31 43 67 52 60 999

TABLE 1: The cost matrix.

Select 'node 1' as the 1
st
 gene. The ‘legitimate’ nodes after 'node 1' in P1 and P2 are 'node 5' and 'node

6' respectively with c15=35 and c16=63. Since c15 < c16, we accept 'node 5'. So, the partially constructed
chromosome will be (1, 5). The ‘legitimate’ node after 'node 5' in both P1 and P2 is 'node 7'. So, we
accept the 'node 7', and the partially constructed chromosome will be (1, 5, 7). The ‘legitimate’ node
after 'node 7' in P1 is 'node 3', but none in P2. So, for P2, we consider the first 'legitimate' node in the
set {2, 3, 4, 5, 6, 7}, that is, 'node 2'. Since c72 = 31 < 43 = c73, we accept 'node 2'. Thus, the partially
constructed chromosome will be (1, 5, 7, 2). Again, the ‘legitimate’ node after 'node 2' in P1 is none,
but in P2 is 'node 4'. So, for P1, we consider the first 'legitimate' node in the set {2, 3, 4, 5, 6, 7}, that
is, 'node 3'. Since c24 = 46 < 86 = c23, we accept 'node 4'. So, the partially constructed chromosome
will be (1, 5, 7, 2, 4). The ‘legitimate’ node after 'node 4' in P1 is none, but in P2 is 'node 3'. So, for P1,
we consider the first 'legitimate' node in the set {2, 3, 4, 5, 6, 7}, that is, 'node 3'. We accept 'node 3',
which will lead to the partial chromosome (1, 5, 7, 2, 4, 3). The ‘legitimate’ node after 'node 3' in P1 is
'node 6', but none in P2. So, for P2, we consider the first 'legitimate' node in the set {2, 3, 4, 5, 6, 7},
that is, 'node 6'. We accept the 'node 6'. Thus the complete offspring chromosome will be (1, 5, 7, 2,
4, 3, 6) with value 266 which is less than value of both the parent chromosomes. The crossover is
shown in Figure 1. The parents are showing as (a) and (b), while (c) is a possible offspring.

Parents' characteristics are inherited mainly by crossover operator. The operator that preserves good
characteristics in the offspring is said to be good operator. The SCX is excellent in preserving good
characteristics of the parents in offspring. In Figure 1(c), bold edges are the edges which are present
either in first parent or in second parent. Out of seven edges five edges are selected from either of the
parents. That is, 71.4 % of edges are selected from parents. The edge (5, 7) is common in both the
parents, the edges (1, 5) and (3, 6) are selected from the first parent, while the edges (2, 4) and (4, 3)
are from the second parent. The edges (1, 5) and (3, 6) are the 2

nd
 and 3

rd
 minimum edges in the first

parent, while the edges (4, 3) and (2, 4) are the 1
st
 and 3

rd
 minimum in the second parent. Also, the

new edges (6, 2) and (7, 1) have lesser values. In addition, the SCX can generate a wide variety of
offspring.

Zakir H. Ahmed

International Journal of Biometrics & Bioinformatics (IJBB) Volume (3): Issue (6)

100

2.5. Offspring by two other crossover operators

We consider here two more crossover operators – edge recombination crossover (ERX) and
generalized N-point crossover (GNX) for producing offspring using the same pair of parents P1 and P2
in section 2.4.

For ERX, the edge table of the example is shown in Table 2. The new offspring is initialized with 'node
1'. The candidates for the next node are 5, 2, 6 and 7. The nodes 5, 2 and 7 have two edges: initial
three minus ‘node 1’, and the 'node 6' has three edges: initial four minus ‘node 1’. Node 6 has three
edges and thus is not considered. Assume 'node 5' is randomly chosen. Node 5 now has edges to
nodes 7 and 3, so 'node 7 is chosen next. Node 7 only has an edge to node 3, so 'node 3' is chosen
next. Node 3 has edges to nodes 6 and 4, both of which have two edges left. Suppose the 'node 4' is
randomly chosen; then the 'node 4' has edges to the nodes 6 and 2, both of which have one edge left.
Next, randomly choose 'node 6', which has an edge to ‘node 2’; of course this is the last node to be
selected, so 'node 2' is chosen next. The resulting offspring may be (1, 5, 7, 3, 4, 6, 2) with value 323,
which is more than one of the parents' value. Here also, five edges are selected from either of the
parents, but with higher values.

Node Edge list Node Edge list

1 5, 2, 6, 7 5 1, 7, 3

2 4, 1, 6 6 3, 4, 1, 2

3 7, 6, 4, 5 7 5, 3, 1

4 6, 2, 3

TABLE 2: The edge table for the parents P1 and P2.

For GNX, suppose N=2, consider same parents P1: (1, 5, 7, 3, 6, 4, 2) and P2: (1, 6, 2, 4, 3, 5, 7) and
G2X with cross points 3 and 5, where the bold nodes are the ones that would normally be chosen by
N-point crossover. Suppose the order in which the segments are tested is (2, 3, 1). Then the 2

nd

Zakir H. Ahmed

International Journal of Biometrics & Bioinformatics (IJBB) Volume (3): Issue (6)

101

segment of P1 will be inserted whole, giving the proto-child (x, x, x, 3, 6, x, x). Nodes in the 3
rd

segment from P2 will then be tested in a random order. Both the city 5 and 7 will be accepted, giving
the proto-child (x, x, x, 3, 6, 5, 7). The 1

st
 segment of P2 is then tested, and 1 and 2 will be accepted,

giving final proto-child at the end of the 1
st
 phase as (1, x, 2, 3, 6, 5, 7). The untested segments are

the visited in random order. Only the 1
st
 segment for P1 is relevant here. All the nodes are rejected. So,

the proto-child at the end of 2
nd

 phase is as (1, x, 2, 3, 6, 5, 7). Since this child is still incomplete, it
must be randomly filled up. In this case however, only one legal chromosome has the required node
pattern, so the final child may be given by (1, 4, 2, 3, 6, 5, 7) with value 326, which is more than one of
the parents' value. Here, four edges are selected from either of the parents with higher values.

From the above analysis, we can draw the conclusion that our SCX gives is better than ERX and
GNX.

2.6. Survivor selection

After performing crossover operation survivor selection method is used for selecting next generation
population. Traditionally, the survivor selection of GA considers only the fitter chromosomes. The
survivor selection of GA considers two kinds of chromosomes for the next generation: (1) parents in
current population of size m, and (2) offspring that are generated by crossover of size m. We consider
the (µ+λ) survivor selection method that combines chromosomes in (1) and (2), sorts them in
ascending order according to their fitness, and considers the first m chromosomes for the next
generation. In worst case, all the µ parents in the present generation will survive into the next
generation.

2.7. Mutation operator

The mutation operator randomly selects a position in the chromosome and changes the
corresponding allele, thereby modifying information. The need for mutation comes from the fact that
as the less fit members of successive generations are discarded; some aspects of genetic material
could be lost forever. By performing occasional random changes in the chromosomes, GAs ensure
that new parts of the search space are reached, which reproduction and crossover alone couldn’t fully
guarantee. In doing so, mutation ensures that no important features are prematurely lost, thus
maintaining the mating pool diversity. For the TSP, the classical mutation operator does not work. For
this investigation, we have considered the reciprocal exchange mutation that selects two nodes
randomly and swaps them.

2.8. Control parameters

These are the parameters that govern the GA search process. Some of them are:

(a) Population size: - It determines how many chromosomes and thereafter, how much genetic
material is available for use during the search. If there is too little, the search has no chance to
adequately cover the space. If there is too much, the GA wastes time evaluating chromosomes.

(b) Crossover probability: - It specifies the probability of crossover occurring between two
chromosomes.

(c) Mutation probability: - It specifies the probability of doing bit-wise mutation.

(d) Termination criteria: - It specifies when to terminate the genetic search.

2.9. Structure of genetic algorithms

GAs may be summarized as follows:

GA()
{ Initialize random population;
 Evaluate the population;
 Generation = 0;
 While termination criterion is not satisfied

Zakir H. Ahmed

International Journal of Biometrics & Bioinformatics (IJBB) Volume (3): Issue (6)

102

 { Generation = Generation + 1;
 Select good chromosomes by reproduction procedure;
 Perform crossover with probability of crossover (Pc);
 Select fitter chromosomes by survivor selection procedure;
 Perform mutation with probability of mutation (Pm);
 Evaluate the population;
 }
}

3. COMPUTATIONAL EXPERIMENTS

For comparing the efficiency of the different crossover operators, genetic algorithms using SCX, ERX
and GNX have been encoded in Visual C++ on a Pentium 4 personal computer with speed 3 GHz and
448 MB RAM under MS Windows XP, and for some TSPLIB instances. Initial population is generated
randomly. The following common parameters are selected for the algorithms: population size is 200,
probability of crossover is 1.0 (i.e., 100%), probability of mutation is 0.01 (i.e., 1%), and maximum of
10,000 generations as the terminating condition. The experiments were performed 10 times for each
instance. The solution quality is measured by the percentage of excess above the optimal solution
value reported in TSPLIB website, as given by the formula

100(%) x
ValueSolutionOptimal

ValueSolutionOptimalValueSolution
Excess

−
= .

We report percentage of excess of best solution value and average solution value over the optimal
solution value of 10 runs. The table also reports the average time of convergence (in second) by the
algorithms.

ERX GNX SCX Instance n Opt.

Sol. Best

(%)

Avg

(%)

Avg

Time

Best

(%)

Avg

(%)

Avg

Time

Best

(%)

Avg

(%)

Avg

Time

br17 17 39 0.00 0.00 2.10 0.00 0.00 0.26 0.00 0.00 0.11

ftv33 34 1286 1.94 4.98 70.22 15.47 19.49 7.64 0.00 3.58 2.25

ftv35 36 1473 3.19 5.20 76.39 17.58 18.56 1.48 0.00 0.59 9.69

ftv38 39 1530 4.38 5.45 160.87 6.99 13.18 4.03 0.24 0.46 6.89

p43 43 5620 1.44 1.89 213.99 2.46 2.58 22.33 0.05 0.10 22.98

ftv44 45 1613 5.46 6.39 157.23 14.01 15.71 18.46 0.62 0.93 19.22

ftv47 48 1776 5.97 8.48 200.70 20.10 20.38 42.67 0.51 1.73 25.99

ry48p 48 14422 2.04 2.31 185.59 15.18 18.13 39.33 0.59 0.60 25.73

ft53 53 6905 18.03 19.51 122.75 18.29 23.33 29.35 1.03 1.77 36.73

ftv55 56 1608 13.18 14.41 328.59 22.51 24.71 23.74 0.62 1.45 35.11

ftv64 65 1839 25.24 27.48 326.95 25.23 29.87 91.39 0.49 1.54 76.56

ft70 70 38673 10.40 10.56 561.14 6.53 7.81 90.13 0.70 0.86 74.19

ftv70 71 1950 30.41 34.56 432.31 20.72 23.04 135.97 2.15 2.75 58.69

kro124p 100 36230 30.96 37.15 542.57 25.72 28.58 178.64 4.24 4.93 142.02

ftv170 171 2755 62.45 66.15 526.46 51.00 60.69 483.21 6.13 8.93 259.60

TABLE 3: Summary of the results by the crossover operators for asymmetric TSPLIB instances.

Table 3 gives the result for fifteen asymmetric TSPLIB instances of size from 17 to 171. The solution
quality of the algorithms is insensitive to the number of runs. Only one instance, br17 of size 17, could
be solved exactly by ERX and GNX, whereas three instances, br17, ftv33 and ftv35, could be solved
exactly, at least once in ten runs, by SCX. Between ERX and GNX, on the basis of quality of best
solution value and average solution value, for the instances from ftv33 to ftv64, ERX is found to be
better; but for four instances ft70, ftv70, kro124p and ftv170, GNX is found to be better. That means,
as size of the problem increases GNX is found to be better than ERX. It is to be noted that we have

Zakir H. Ahmed

International Journal of Biometrics & Bioinformatics (IJBB) Volume (3): Issue (6)

103

implemented only the original versions of ERX and GNX for the comparative study. On the basis of
quality of the solution, as a whole, for all the instances SCX is found to be the best one. On the basis
of time of convergence, GNX is found to be better than ERX, and SCX is the best one.

Figure 2 shows performance of different crossover operators for the instance ftv170 (considering only
1000 generations). All crossover operators have some randomized factors, which make them more
efficient when trying to copy an allele. The more randomized these operators are, the more
possibilities of progress should have. Among them GNX operator has wide range of variations, but it is
not the best. Also, ERX operator has some variations, but is the worst. On the other hand, SCX
provides us best results. But it has limited range of variations and gets stuck in local minimums
quickly.

ERX GNX SCX Instance n Opt.
Sol. Best

(%)
Avg
(%)

Avg
Time

Best
(%)

Avg
(%)

Avg
Time

Best
(%)

Avg
(%)

Avg
Time

bayg29 29 1610 0.00 0.25 18.11 9.25 10.62 0.65 0.00 0.00 2.19

eil51 51 426 1.41 2.03 157.32 18.78 20.11 20.44 0.00 0.63 4.59

berlin52 52 7542 0.00 3.19 78.57 19.32 22.24 40.11 0.00 0.24 5.10

eil76 76 538 5.20 5.95 286.90 20.07 20.76 141.96 0.00 0.87 128.94

pr76 76 108159 9.08 9.75 230.67 25.13 26.36 142.89 0.11 1.43 131.10

kroA100 100 21282 27.43 32.60 583.55 54.93 68.47 110.55 4.04 4.37 48.75

kroC100 100 20749 40.22 42.25 222.51 54.69 59.02 201.09 1.80 2.77 123.76

eil101 101 629 27.03 27.72 531.80 32.59 32.80 219.37 0.75 1.12 226.42

lin105 105 14379 30.05 33.31 728.44 48.13 50.30 264.80 2.52 2.67 185.90

brg180 180 1950 65.77 74.76 706.00 58.46 59.66 516.69 0.00 0.51 636.67

d198 198 15780 69.04 78.92 870.77 65.71 73.35 304.23 4.09 4.56 542.23

TABLE 4: Summary of the results by the crossover operators for symmetric TSPLIB instances.

We continue this study for some symmetric TSPLIB instances, which is reported in Table 4. The table
gives the result for eleven symmetric TSPLIB instances of size from 29 to 198. For these instances
also, the solution quality of the algorithms is insensitive to the number of runs. Only one instance,
bayg29 of size 29, could be solved exactly by ERX, and none could be solved exactly by GNX,

0

20 00

40 00

60 00

80 00

1 00 00

1 20 00

1 40 00

1 60 00

1 80 00

2 00 00

1 8 5 16 9 2 53 3 37 4 21 505 58 9 67 3 7 57 8 41 9 25

G e n e ra tio n

T
o

u
r

V
a
lu

e

S C X

G N X

E R X

FIGURE 2: Performance of different crossover operators on the instance ftv170.

Zakir H. Ahmed

International Journal of Biometrics & Bioinformatics (IJBB) Volume (3): Issue (6)

104

whereas five instances, bayg29, eil51, berlin52, eil76 and brg180, could be solved exactly, at least
once in ten runs, by SCX. Between ERX and GNX, on the basis of quality of best solution value and
average solution value, for the instances from bayg29 to lin105, ERX is found to be better; but for two
instances brg180 and d198, GNX is found to be better. For these symmetric instances also, as size of
the problem increases GNX is found to be better than ERX. On the basis of quality of the solution, for
all of these instances also, SCX is found to be the best one.

4. CONCLUSION & FUTURE WORK

We have proposed a new crossover operator named sequential constructive crossover (SCX) for a
genetic algorithm for the Traveling Salesman Problem (TSP). We presented a comparative study
among SCX, ERX and GNX for some benchmark TSPLIB instances. In terms of quality of the
solution, for the less sized instances, ERX is found to be better than GNX. But, as the size increases
GNX is found to be better than ERX. Among all the operators, experimental results show that our
proposed crossover operator (SCX) is better than the ERX and GNX, in terms of quality of solutions
as well as solution times.

In this present study, we only consider the original version of ERX and GNX. Our aim was only to
compare the quality of the solutions by different crossover operators. Our aim was not to improve the
solution quality by any of the operators. That is why; we do not use any local search technique to
improve the solution quality. We do not set high population size and do not consider parallel version of
algorithms to obtain exact solution as was done by Whitley et al. [7]. Also, we set here highest
probability of crossover to show the exact nature of crossover operators. Mutation with lowest
probability is applied just not to get stuck in local minima quickly.

it is very difficult to say that what moderate sized instance is unsolvable exactly by our crossover
operator, because, for example, the instance brg180 of size 180 could be solved exactly, at least one
in ten runs, whereas ftv38 of size 39 could not be solved within ten runs. So an incorporation of good
local search technique to the algorithm may solve exactly the other instances, which is under our
investigation.

Acknowledgements

This research was supported by Deanery of Academic Research, Al-Imam Muhammad Ibn Saud
Islamic University, Saudi Arabia vide Grant No. 280904.

5. REFERENCES

[1] C.H. Papadimitriou and K. Steglitz. “Combinatorial Optimization: Algorithms and Complexity”.
Prentice Hall of India Private Limited, India, 1997.

[2] C.P. Ravikumar. "Solving Large-scale Travelling Salesperson Problems on Parallel Machines”.
Microprocessors and Microsystems 16(3), pp. 149-158, 1992.

[3] R.G. Bland and D.F. Shallcross. "Large Travelling Salesman Problems arising form Experiments
in X-ray Crystallography: A Preliminary Report on Computation". Operations Research Letters 8,
pp. 125-128, 1989.

[4] D.E. Goldberg and R. Lingle. “Alleles, Loci and the Travelling Salesman Problem”. In J.J.
Grefenstette (ed.) Proceedings of the 1

st
 International Conference on Genetic Algorithms and

Their Applications. Lawrence Erlbaum Associates, Hilladale, NJ, 1985.

[5] L. Davis. “Job-shop Scheduling with Genetic Algorithms”. Proceedings of an International
Conference on Genetic Algorithms and Their Applications, pp. 136-140, 1985.

Zakir H. Ahmed

International Journal of Biometrics & Bioinformatics (IJBB) Volume (3): Issue (6)

105

[6] I.M. Oliver, D. J. Smith and J.R.C. Holland. “A Study of Permutation Crossover Operators on the
Travelling Salesman Problem”. In J.J. Grefenstette (ed.). Genetic Algorithms and Their
Applications: Proceedings of the 2

nd
 International Conference on Genetic Algorithms. Lawrence

Erlbaum Associates, Hilladale, NJ, 1987.

[7] D. Whitley, T. Starkweather and D. Shaner. “The Traveling Salesman and Sequence Scheduling:
Quality Solutions using Genetic Edge Recombination”. In L. Davis (Ed.) Handbook of Genetic
Algorithms. Van Nostrand Reinhold, New York, pp. 350-372, 1991.

[8] N.J. Radcliffe and P.D. Surry. “Formae and variance of fitness”. In D. Whitley and M. Vose
(Eds.) Foundations of Genetic Algorithms 3. Morgan Kaufmann, San Mateo, CA, pp. 51-72,
1995.

[9] P. Poon and J. Carter. “Genetic algorithm crossover operations for ordering applications”.
Computers and Operations Research 22, pp. 135–47, 1995.

[10] I. Choi, S. Kim and H. Kim. "A genetic algorithm with a mixed region search for the asymmetric
traveling salesman problem". Computers & Operations Research 30, pp. 773 – 786, 2003.

[11] C. Moon, J. Kim, G. Choi and Y. Seo. "An efficient genetic algorithm for the traveling salesman
problem with precedence constraints". European Journal of Operational Research 140, pp. 606-
617, 2002.

[12] D.E. Goldberg. "Genetic Algorithms in Search, Optimization, and Machine Learning". Addison-
Wesley, New York, 1989.

[13] K. Deb. “Optimization For Engineering Design: Algorithms And Examples”. Prentice Hall Of India
Pvt. Ltd., New Delhi, India, 1995.

[14] Z.H. Ahmed. "A sequential Constructive Sampling and Related approaches to Combinatorial
Optimization". PhD Thesis, Tezpur University, India, 2000.

[15] Z.H. Ahmed and S.N.N. Pandit. “The travelling salesman problem with precedence constraints”.
Opsearch 38, pp. 299-318, 2001.

[16] TSPLIB, http://www.iwr.uni-heidelberg.de/iwr/comopt/software/TSPLIB95/

