
Jyotirmay Dewangan, Somnath Dey & Debasis Samanta

International Journal of Biometrics and Bioinformatics (IJBB), Volume (7) : Issue (2) : 2013 93

Face Images Database Indexing for Person Identification
Problem

Jyotirmay Dewangan jyotirmay.sg@gmail.com
M. Tech Student, School of Information Technology
Indian Institute of Technology Kharagpur
Kharagpur, 721302, India

Somnath Dey somnathd@iiti.ac.in
Faculty, Department of Computer Science and Engineering
Indian Institute of Technology Indore
Indore, 453441, India

Debasis Samanta dsamanta@iitkgp.ac.in
Faculty, School of Information Technology
Indian Institute of Technology Kharagpur
Kharagpur, 721302, India

Abstract

Face biometric data are with high dimensional features and hence, traditional searching
techniques are not applicable to retrieve them. As a consequence, it is an issue to identify a
person with face data from a large pool of face database in real-time. This paper addresses this
issue and proposes an indexing technique to narrow down the search space. We create a two
level index space based on the SURF key points and divide the index space into a number of
cells. We define a set of hash functions to store the SURF descriptors of a face image into the
cell. The SURF descriptors within an index cell are stored into kd-tree. A candidate set is
retrieved from the index space by applying the same hash functions on the query key points and
kd-tree based nearest neighbor searching. Finally, we rank the retrieved candidates according to
their occurrences. We have done our experiment with three popular face databases namely,
FERET, FRGC and CalTech face databases and achieved 95.57%, 97.00% and 92.31% hit rate
with 7.90%, 12.55% and 23.72% penetration rate for FERET, FRGC and CalTech databases,
respectively. The hit rate increases to 97.78%, 99.36% and 100% for FERET, FRGC and
CalTech databases, respectively when we consider top fifty ranks. Further, in our proposed
approach, it is possible to retrieve a set of face templates similar with query template in the order
of milliseconds. From the experimental results we can substantiate that application of indexing
using hash function on SURF key points is effective for fast and accurate face image retrieval.

Keywords: Biometric, Face Identification, Biometric-data Indexing, SURF, Index Key Generation.

1. INTRODUCTION

Of late, biometric-based person authentication system is gaining importance due to its wide
spread applications such as personal identification [1], PDA, smart card [2, 3], access control [4,
5], surveillance [6], forensic applications [1, 7, 8], biometric passports [5, 9, 10], national identity
card registration [11, 12, 13] and human computer interaction, etc. [1]. In these applications, there
is a need to deal with large-scale databases [11, 14]. For example, Unique Identification Authority
of India [11, 14] has planned to register 600 million users in India in next few years where the
number of accesses per day (in different public and private domains) are expected to be around 1
to 5 million.

The major concern in the face identification is high dimensional feature vector. In a large-scale
biometric system, exhaustive searching in face database to retrieve an identity is typically slow

Jyotirmay Dewangan, Somnath Dey & Debasis Samanta

International Journal of Biometrics and Bioinformatics (IJBB), Volume (7) : Issue (2) : 2013 94

and may not be acceptable. Also, the false acceptance error grows with the size of database [15].
As a consequence, the response time, search and retrieval efficiency are affected in addition to
the accuracy of the system.

However, the current state-of-the-art research [24, 25, 26] in face recognition is mainly focused to
solve the problem of variable lighting, pose, facial expression and aging in verification mode. The
Face Recognition Grand Challenge (FRGC) [44, 45] shows a large improvement on face
recognition accuracy for large number of face images with different lighting conditions,
illuminations, poses and expressions. There are very few works [28, 29, 30] which addressed the
problem of identification of a face image in large database. Though, some work [16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26] tried to alleviate the limitations of identification by proposing the
dimensionality reduction techniques. But they use linear searching or nearest neighbor searching
with the reduced low dimensional feature vector. Such techniques are not well suited for large
scale applications. In this work, we address this problem by reducing the search space. We
investigate for a fast and accurate mechanism to index the face databases.

In this paper, we propose an indexing technique to narrow down the search space. First, we
preprocess the face image to detect face part from the background and enhance the intensity
values of the extracted face image. We detect Speed Up Robust Feature (SURF) key points [27,
35] in different scale spaces of the preprocessed face images and extract SURF feature
descriptors at each key point. We generate a set of sixty eight dimensional index keys from the
key points, feature descriptors and identity of a face image. Among these the first four dimensions
of index keys are used to create a two-level index space. The first level index space divides all
face images into two groups depending on the value of the first dimension. In the second level
index space, we create two index cubes based on the other three dimensions. Each cell of an
index cube keeps the reference of a kd-tree where we store the feature descriptors and the
identity of a set of face images. We apply a set of hash functions on the index keys to find the cell
positions for face images. At the time of identification, we apply the same hash functions on the
query key points and search the kd-tree to retrieve a small set of similar identities from the index
space. Finally, we rank all retrieved identities according to their occurrences.

The rest of the paper is organized as follows. In Section 2, we discuss the existing face indexing
techniques for face biometric identification system. We briefly describe the preprocessing task in
Section 3. In Section 4, we discuss our proposed approach for face indexing. The experimental
results are presented in Section 5. Finally, the paper concludes in Section 6.

2. RELATED WORK
In the existing literature, very few work have been reported for face indexing to reduce the search
space. We describe these techniques [28, 29, 30] in this section. Lin et al. [28] proposed an
indexing structure to search the face from a large database. They compute a set of eigenfaces
based on the faces in the database. Then, they assign a rank to each face in the database
according to its projection onto each of the eigenface. Similarly, they compute the eigenfaces for
a query and rank a query face. They select a set of faces from the database corresponding to the
nearest faces in the ranked position with respect to each eigenface of the query face. These
selected faces are used for recognition.

Mohanty et al. [29] propose a linear subspace approximation method for face indexing. They build
a linear model to create a subspace-based on the match scores. They apply a linear
transformation to project face images into the linear subspace. To do this, first, they apply a rigid
transformation obtained through principal component analysis and then a non-rigid, affine
transformation. They use an iterative stress minimization algorithm to obtain a distance matrix in
a low-dimensional space and propose a linear out-of-sample projection scheme for test images.
Any new face image is projected into this embedded space using an affine transformation.

Kaushik et al. [30] propose a modified geometric hashing technique to index the face database.
They extract features from a face image using Speeded-Up Robust Features (SURF) operator.

Jyotirmay Dewangan, Somnath Dey & Debasis Samanta

International Journal of Biometrics and Bioinformatics (IJBB), Volume (7) : Issue (2) : 2013 95

They apply mean centering, principal component analysis, rotation and normalization to
preprocess the SURF features. Finally, they use geometric hashing to hash these features to
index each facial image in the database.

The major concern in eigenface and linear approximation method is the number of computations
at the time of selecting top matches from the database. The number of computations in eigenface
based method [28] depends on the number of eigenfaces considered for matching. To achieve
good recognition rate a large number of eigenfaces are needed to consider and this does not give
much computational advantages over the linear methods. The Linear subspace approximation
method [29] does not give computational advantages when linear projection on raw templates
(such as PCA, LDA etc.) are used for matching because the computation time for matching two
face images in the database and mapping of face images into linear model space are same. The
main concern in the geometric hashing technique is the selection of basis points for hashing [31,
32]. Wrong selection of basis points may deteriorate the performance of the geometric hashing
based face indexing. Another problem in geometric hashing technique is that more number of
basis points selection leads to the more computation time in indexing technique.

3. PREPROCESSING
Input face image of a biometric system contains background and is not necessarily good quality.
To extract the features from a face image we need to enhance the image. This makes feature
extraction task easy and ensures the quality of the extracted features. The steps followed in the
preprocessing are briefly described in the following.

3.1 Geometric Normalization
 The input face images may not be in same size and align in the same direction (due to
movement of head at the time of capturing). We follow geometric normalization process of Bolme
et al. [33] and Beveridge et al. [53] to align and scale the images so that the face images are in
the same position, same size and at same orientation. To get the geometric normalized image,
first, we rotate the face image by an angle such that the eye coordinates are in same line with the
horizontal axis. After rotating the face image, we detect the face part from the rotated image. To
do this we use Viola & Jones [34] face detection algorithm. The detected face is shown in Fig.
1(a). To make the face image scale invariant, we map the detected face part (DW×DH) into a
fixed size image (FW×FH) by applying scaling transformation. Figure 1(b) shows the fixed size
image of width FW and height FH.

3.2 Face Masking
 We apply masking to separate the foreground region from the background region of a face
image. The foreground region is corresponding to the clear face area which is the area of interest.
This area contains the significant feature values. We mask the face image to ensure that the face
recognition system does not respond to features corresponding to background, hair, clothing etc.
We use an elliptical mask [33, 53] such that only the face from forehead to chin and left cheek to

(a) Detected face boundary (b) Detected face image mapped
into fixed size image

(c) Masked face image (d) Enhanced face image
after masking

FIGURE 1: Face Images after Different Preprocessing Tasks.

Jyotirmay Dewangan, Somnath Dey & Debasis Samanta

International Journal of Biometrics and Bioinformatics (IJBB), Volume (7) : Issue (2) : 2013 96

right cheek is visible. Figure 1(c) shows the face image after applying the elliptical mask on the
geometric normalized image where only face part is present in the image and background is
masked out.

3.3 Intensity Enhancement
Intensity enhancement is required to reduce image variation due to lighting and sensor
differences. We do the intensity enhancement in two steps [33]. First, we equalize the histogram
of the unmasked face part and then normalize the intensity of the image to a mean of zero and
standard deviation of one. Figure 1(d) shows the intensity enhancement image of the masked
face image.

4. PROPOSED APPROACH
Speed-Up-Robust-Feature (SURF) [35, 27] method is known as a good image interest points
(also called key points) and feature descriptors detector. We apply SURF method in our
approach. We use SURF feature extraction method because it has several advantages over other
feature extraction methods. The most important property of an interest point detector using SURF
method is its repeatability. Repeatability means that the same interest points will be detected in
different scales, orientations and illuminations of a given image. Another advantage is that the
SURF method is computationally very fast. In addition to these, the SURF feature provides scale,
rotation and illumination invariant feature descriptors.

Figure 2 shows the different tasks in enrollment and identification process of our approach. Both
enrollment and identification processes have four common tasks as shown in Figure 2. In this
section, first we present the key point extraction steps followed by orientation calculation of each
key point. Then we discuss the feature descriptor extraction at each key point followed by the
index key generation. Then, we describe index space creation and storing of index keys. Finally,
we discuss the querying method to retrieve the identity from the index space.

4.1 Key Point Detection
We follow Bay et al. [27, 35] method to detect key points from an face image. The method
consists of three steps.

In first step, we create scale spaces of the preprocessed image, which helps us to detect key
points at different scales of the image. We construct eight distinct Gaussian filters with different
sizes and different standard deviations. Then, we convolve the image with these Gaussian filters.

 In next step, we calculate Hessian-matrix [27, 36] at each pixel position in the different scale
space images. To compute the Hessian-matrix, we use integral images [27] to reduce the
computation time of key point detection. We detect the key points based on the determinant
values of the Hessian matrices. Note that all detected key points are not necessarily discriminant
because the determinant of the Hessian Matrix does not produce local maximum or minimum

FIGURE 2: Overview of the Proposed Approach.

Jyotirmay Dewangan, Somnath Dey & Debasis Samanta

International Journal of Biometrics and Bioinformatics (IJBB), Volume (7) : Issue (2) : 2013 97

response at all detected points.

Finally, the most discriminant key points are localized from all the detected key points. To do this,
first, we consider those points whose the determinant value is high and remove the points whose
values are less than a threshold value. Bay et al. [35] shows that the threshold value 600 is good
for detecting the discriminant key points from an image with average contrast and sharpness.
Then, we perform non-maximal suppression to find the candidate key points. We do it by
comparing each key point with its neighbors and finding the local maxima. We localize the key
points by interpolating the maxima of the determinant of the Hessian matrix in scale and image
spaces.

4.2 Orientation Assignment
We assign an orientation to a key point to extract rotation invariant features from the face image.
The orientation is important because we extract the feature descriptors relative to this orientation

in later stage. We follow Bay et al. [27, 35] method to compute the orientation at each key point.

To find the orientation of a key point, first, we create a circular area centered with the key point.
Then, we calculate the Haar wavelet responses [37] at each key point within the circular area in x
and y direction and compute the weighted responses of the Haar wavelet responses with a
Gaussian filter. The weighted response is represented by a point in the vector space. We find the
dominating orientation at each key point by calculating the resultant vector in a window of size 60
degree. The longest vector leads as orientation of the key point.

A set of key points is detected from an image and we estimate orientation of each key point. A
key point can be represented with position, orientation, scale space in which the key point is
detected, Laplacian value and the determinant of Hessian matrix. Let k1, k2, …, kL be the L
detected key points of an input image. We represent the key points of an image as shown in Eq.
(1).

θ σ

θ σ

θ σ

=

=

… …

=

1 1 1 1 1 1

2 2 2 2 2 2

i

i

L L L L i L L

k x y ls hs

k x y ls hs

k x y ls hs

 (1)

In Eq. (1), (x, y) and θ represent the position and orientation of a key point, respectively; σi (i=1,2,
…,8) denotes scale space at which key point is detected; ls and hs represent the Laplacian value
and determinant of Hessian matrix, respectively.

4.3 Key Point Descriptor Extraction
In this step, we extract the feature descriptors at each key point from the scale space images as
follows. Scale space images are created by applying Gaussian filter on the images (as discussed

in Section 4.1). We follow SURF method Bay et al. [27] to extract the feature descriptors from

the face image. First, we create a square window of size 20σ where σ is the scale or standard
deviation of the Gaussian filter at which key point is detected. The window is centered at key
point position and the direction of window is the same with the orientation of the key point (see
Fig. 3). Now, the window is divided into 4×4 square sub regions and within each sub-region 25
(5×5) regularly distributed sample points are placed. We calculate Haar wavelet responses [37] at
each sample point of a sub-region in x and y directions. We weight the Haar wavelet responses
with a Gaussian filter with standard deviation 3.3σ centered at key point to reduce the effect of
geometric deformations and localization errors. Let dx and dy be the Haar wavelet responses at
each sample point within each sub-region. We consider ∑dx, ∑|dx|, ∑dy and ∑|dy| as four
features at each sub-region. Hence, we create 64 (4×4×4) descriptors corresponding to each key
point. In Eq. (2), d1, d2,…, di,…, dL represent descriptors of L key points and fi

j
 represents the j

th

descriptor of the i
th
 key point.

Jyotirmay Dewangan, Somnath Dey & Debasis Samanta

International Journal of Biometrics and Bioinformatics (IJBB), Volume (7) : Issue (2) : 2013 98

= … …

…

= … …

… …

= … …

1 2 3 64

1 1 1 1 1 1

1 2 3 64

1 2 3 64

...

j

j

i i i i i i

j

L L L L L L

d f f f f f

d f f f f f

d f f f f f

(2)

4.4 Index Key Generation
We extract all key points and feature descriptors from all face images. We can represent a face
image with a set of index keys. The set of index keys are generated from the extracted key points
of a face image such that for each key point there is an index key. More precisely, we use key
point information, feature descriptors and identity of person as the constituents of an index key.
We represent an index key as a row vector of sixty nine elements. The first four values of an
index key contain the sign of Laplacian, position and orientation of a key point. Next sixty four
values of the index key hold the feature descriptors corresponding to the key point and the last
value keeps the identity of a person. The first four values are used to index the database and the
feature descriptors are used to search the identity of a person. Let Lp be the number of key points
(
p
k1, …,

p
kLp) and feature descriptors (

p
d1, …,

p
dLp) extracted from the p

th
 face image. Note that Lp

may vary from one face image to another. Thus, Lp number of index keys are generated for the
p

th
 face image. We represent the index keys of the p

th
 person in Eq. (3). The i

th
 index key (

p
indxi)

of the p
th
 face image is generated by the i

th
 key point (

p
ki) and corresponding feature descriptors

(
p
di),and the identity (id

p
) of the p

th
 face image. In Eq. (3),

p
lsi,

p
xi,

p
yi,

p
θi and

p
di represent the sign

of Laplacian, x and y positions, orientation and feature descriptors of the i
th
 key point (

p
ki), and id

p

represents the identity of the p
th
 face image.

θ

θ

θ

θ

=

=

=

=

1 1 1 1 1 1

2 2 2 2 2 2

... ...

... ...

p p p p p p

p p p p p p p

p p p p p p p

p p p p p p p

i i i i i i

p p p p p p p

L L L L L L

indx ls x y d id

indx ls x y d id

indx ls x y d id

indx ls x y d id

 (3)

FIGURE 3: SURF Descriptor Extraction at a Key Point.

Jyotirmay Dewangan, Somnath Dey & Debasis Samanta

International Journal of Biometrics and Bioinformatics (IJBB), Volume (7) : Issue (2) : 2013 99

4.5 Index Space Creation and Storing
Once the index keys are generated, we have to create an index space to store all index keys into
the database. The created index space helps us to find a match corresponding to a query in fast
and accurate manner. To create index space, we use first four components of an index key.
These are the sign of Laplacian (ls), positions (x and y) and orientation θ) of a key point. All index
keys can be classified into two groups based on the sign of the Laplacian value (ls) because this
value distinguishes the brightness (dark and light) at a key point position. Note that all face
images are aligned in the same direction and scaled to the same size in the preprocessing step.
Hence, a key point will occur at the same or near to the same position in the image and the
orientation of the key point will remain almost same although, the face images are captured at
different time. So, we can divide the index keys in each group into sub-groups based on the
positions (x and y) and orientation (θ) of a key point.

Due to the above characteristics of key points we propose a two-level index space to store the
index keys. In the first level, we divide the index space based on the value of ls of index keys.
The value of ls can be either ‘-1’ for low intensity value or ‘+1’ for high intensity value for a key
point. Hence, the first level index space (LS) is divided into two sub-index spaces (LS0 and LS1)
as shown in Fig. 4. In the second level, each sub-index space is divided into a number of cells
based on the positions (x and y) and orientation (θ) of key points. We represent the second level
index space (INDX) as a three dimensional index space. The three dimensions of index space
are x, y and θ. Each dimension is in different scales. To bring each dimension in same scale we
normalize the each dimension. To do this we quantize each dimension of the second level index
space into the same number of units. Each dimension is quantized into δ number of units. The
value of δ is decided experimentally (discussed in Section 5). We refer each three dimensional
index space in the second level as an index cube. Each index cube contains δ

3
 number of cells.

Figure 4 shows two three-dimension index cubes for storing the index keys.

Now, we store all index keys into the index space based on the first four values of the index keys.
Note that a number of index keys may map into a single cell of an index cube because index
values of a set of index keys may fall within the same range. We find the cell positions for all
index keys. To do this we define a set of hash functions based on the sign value of Laplacian,
positions and orientation of a key point. Let ls, (x, y) and θ be the sign value of Laplacian,
positions and orientation of a key point, respectively. Then the hash functions are defined in Eq.
(4). In Eq. (4), ls', x', y', and θ' are the cell index of the two-level index space and FH and FW

represent the height and width of the normalized face image, respectively.

LS

x

y

θ
0 1 2 δ-1

0
1
2

δ-1

0
1
2

δ-1

INDX
x

y

θ
0 1 2 δ-1

0
1
2

δ-1

0
1
2

δ-1

INDX

LS0

0

LS1

1

First level index space

Second level index space
FIGURE 4: Proposed index space to store all index keys of all face images.

Jyotirmay Dewangan, Somnath Dey & Debasis Samanta

International Journal of Biometrics and Bioinformatics (IJBB), Volume (7) : Issue (2) : 2013 100

θ θ

δ

δ

θ δ
θ θ θ

+
′ = =

× 
′ = =  

 

× 
′ = =  

 

× 
′ = =  

 

1
(), where ()

2

(), where ()

(), where ()

(), where ()
360

ls ls

x x

y y

ls
ls H ls H ls

x
x H x H x

FW

y
y H y H y

FH

H H

 (4)

We illustrate the storing of an index key into the proposed two-level index space with an example.
Let indx = <ls= -1, x=55, y=89, θ=45, d1, d2, …, d64, id> be an index key of a face image of size
130×150 (FW×FH) , d1 to d64 are the 64 dimensional feature descriptor of that key point and id be
the identity of the subject. To store the feature descriptors (d1, d2, …, d64) and the identity (id) into
the index space, we apply the hash functions (defined in Eq. (4)) on ls, x, y and θ of the key point.
The feature descriptors will be stored into the first index cube (LS0) of the first level of index
space because the value of ls' is 0 after applying the hash function on ls. The cell position of the
index cube in second level index space (INDX) is decided by applying the hash function on x, y
and θ. Let us assume that each dimension of second level index space is divided into 15 units
(i.e. δ = 15). After applying the hash function on x, y and θ the value of x', y' and θ' are 6, 8 and 1,
respectively. Hence, the feature descriptors (d1, d2, …, d64) and identity (id) of the index key (indx)

is stored at [6,8,1] location in the first index cube which is represented as LS0→INDX[6][8][1].

We may note that a cell of an index cube can contain a set of index keys. To store the index keys
we propose two storing structures: linear storing structure and kd-tree storing structure. These
storing structures are discussed in the following.

4.5.1 Linear Storing Structure
In this technique, we create a two-dimensional linear index space (LNINDX) for each cell of the
index cube. Each linear index space is assigned a unique id (lid) and this id is stored in the
corresponding cell of the index cube. Note that there are δ

3
 number of cells in each index cube.

Hence, 2δ
3
 number of linear index spaces is created to store all index keys using linear storage

structure. The linear index space (LNINDX) stores the 64-dimensional feature descriptors (d1, d2,
…, d64) of index keys and identities (id) of individuals. The size of the linear index space
(LNINDX) is N×(D+1) where N is the number of index keys in the cell and D is the number of
feature descriptors within an index key. We store all index keys of a cell into the linear index
space (LNINDX) for that cell. Figure 5 shows the linear index space for a cell of an index cube. In

Fig. 5, LNINDXi is the linear index space for the i
th
 cell of the first index cube (LS[0]→INDX). The

cell stores the id (lid) of the linear index space (LNINDXi). The i
th
 cell of the index cube

LS[0]→INDX is represented as CELL[i]. The method for creating linear index space is

summarized in Algorithm 1. In Step 6 of Algorithm 1, we find the index cube from the first level
index space. The cell position of the index cube is found in Step 7 to Step 9. Step 10 calculates
the id of linear index space and Step 11 assigns that id to a cell of an index cube. We copy the
descriptor values and the identities of index keys in Step 12 and 13.

Jyotirmay Dewangan, Somnath Dey & Debasis Samanta

International Journal of Biometrics and Bioinformatics (IJBB), Volume (7) : Issue (2) : 2013 101

FIGURE 5: Linear indexing to store all index keys in i
th

 cell of the index space.

Algorithm 1 Creating index space with linear storing structure

Input: All index keys of all person's face image (indx1
p
, indx2

p
, ..., indxLp

p
; for p=1 to P). Two level

index space (LS[]→INDX[][][]).

Output: Index space (LS[]→INDX[][][]) with linearly stored index keys for each cell
(CELL[]→LNINDX[][])

1. for c=0 to 2×δ
3
-1 do

2. inc[c] = 0 //Initialize linear index counter

3. end for

4. for p=1 to P do

5. for i=1 to Lp do

6. ls = Hls(lsi
p
) //Decide first level index space

 //Decide cell location of second level index space

7. x = Hx(xi
p
)

8. y = Hy(yi
p
)

9. θ = Hθ(θi
p
)

10. lid = ls × δ
3
 + x × δ

2
 + y × δ + θ //Calculate id for linear index space

11. LS[ls]→INDX[x][y][θ] = lid //Copy id of linear index space into a cell

12. CELL[lid]→LNINDX[inc[lid]] =
p
di //Copy descriptor values of index key into linear

index space

13. CELL[lid]→LNINDX[inc[lid]][65] = id
p
 //Copy identity of person into linear index space

14. inc[lid] = inc[lid] + 1 //Increment linear index counter

15. end for

16. end for

4.5.2 Kd-tree Storing Structure
In this technique, we create a kd-tree for each cell of an index cube and assign a unique identity
(kid) to the each kd-tree. The identity of the kd-tree is stored into the corresponding cell of the
index cube. There are 2δ

3
 number of cells in the index space. Hence, the total number of kd-trees

Jyotirmay Dewangan, Somnath Dey & Debasis Samanta

International Journal of Biometrics and Bioinformatics (IJBB), Volume (7) : Issue (2) : 2013 102

required is 2δ
3
. All index keys of a cell are stored into a kd-tree. A kd-tree is a data structure for

storing a finite set of points from a k-dimensional space [38]. The kd-tree is a binary tree in which
every node stores a k-dimensional point. In other words, the node of a kd-tree stores an eight
dimensional point. The node structure of kd-tree is shown in Fig. 6(a). In a node of kd-tree,
keyVector field stores the k-dimensional index key and Split field stores the splitting dimension or
a discriminator value. leftTree and rightTree store a kd-tree representing the pointers to the left
and the right of the splitting plane, respectively. For an example, let there are eleven number of
three dimensional points (P1, P2, …, P11) as shown in Fig. 6(b) and kd-tree with these points is
shown in Fig. 6(c). We insert the first point P1 at the root of the kd-tree. At the time of insertion,
we choose one of the dimensions as a basis (Split) of dividing the rest of the points. In this
example, the value of Split in the root node is 1. In other words, if the value of the first dimension
of the current point to be inserted is less than the same of the root, then the point is stored in
leftTree otherwise in rightTree. This means all items to the left of root will have the first dimension
value less than that of the root and all items to the right of the root will have greater than (or equal
to) that of the root. The point P2 is inserted in the right kd-tree and P3 is inserted in the left kd-
tree of the root. When we insert the point P4, we first compare the first dimension value of P4
with the root and then compare the second dimension value of P4 with the second dimension
value of P2 at next level. The point P4 is inserted in the right kd-tree of the point P2. Similarly, we
insert all other points into the kd-tree. First dimension will be chosen again as the basis (Split=1)
for discrimination at level 3.

(a) Components of a kd-tree node (b) Sample 3D points

(c) Kd-tree example

FIGURE 6: Structure of a kd-tree and an example of kd-tree with 3-dimensional points.

We store all sixty four dimensional points (descriptors of an index key) within a cell in a kd-tree
data structure. To store the index keys we apply the method proposed by Arya and Mount [54,
55] which follows Bentley [38] kd-tree insertion method. The maximum height of the optimized kd-
tree with N number of k-dimensional point is ⌊log2(N)⌋ [40]. The kd-tree structure for the i

th
 cell is

shown in Fig. 7. In Fig. 7, KDINDXi is the kd-tree for the i
th
 cell of the first index cube

(LS[0]→INDX). The cell stores the identity (kid) of the kd-tree (KDINDXi). The i
th
 cell of the first

index cube LS[0]→INDX is represented as CELL[i]. We summarize the method for creating kd-

Jyotirmay Dewangan, Somnath Dey & Debasis Samanta

International Journal of Biometrics and Bioinformatics (IJBB), Volume (7) : Issue (2) : 2013 103

tree index space in Algorithm 2. Step 6 of Algorithm 2 finds the position of first level index space
and Step 7 to Step 9 calculate the cell position in the index cube. In Step 10, we calculate the
unique identity of the kd-tree. We assign the identity of the kd-tree into a cell of an index cube in
Step 11. Finally, we insert the descriptor values and the identity of an individual into the kd-tree in
Step 14.

4.6 Querying
Querying is the process of retrieving a set of candidates from the enrolled face templates (also
called gallery) corresponds to a query template. The templates in the candidate set are most
likely to match with the query face template. We investigate two different searching techniques to
retrieve the face templates from the gallery of two different storage structures discussed
previously. In each searching technique, first we generate the index keys corresponding to the
query face using index key generation technique (discussed in Section 4.4). Let the index keys
generated from a query face are represented in Eq. (5).

θ

θ

θ

=

=

=

1 1 1 1 1 1

... ...

... ...

q q q q q q

q q q q q q q

q q q q q q q

i i i i i i

q q q q q q q

L L L L L L

indx ls x y d id

indx ls x y d id

indx ls x y d id

 (5)

 Algorithm 2 Creating index space with kd-tree storing structure}

 Input: All index keys of all person's face image (indx1
p
, indx2

p
, ..., indxLp

p
; for p=1 to P). Two

level index space (LS[]→INDX[][][]).

 Output: Index space (LS[]→INDX[][][]) with kd tree stored index keys for each cell
(CELL[]→ KDINDX).

 1. for c=0 to 2×δ
3
-1 do

 2. inc[c] = 0 //Initialize linear index counter

 3. end for

 4. for p=1 to P do

 5. for i=1 to Lp do

 6. ls = Hls(lsi
p
) //Decide first level index space

 //Decide cell location of second level index space

 7. x = Hx(xi
p
)

KDINDXi

LS[0]→INDX[x][y][θ]

(CELL[i])

KDINDX

kidi

FIGURE 7: Kd-tree to store the index keys of i

th
 cell of the index space.

Jyotirmay Dewangan, Somnath Dey & Debasis Samanta

International Journal of Biometrics and Bioinformatics (IJBB), Volume (7) : Issue (2) : 2013 104

 8. y = Hy(yi
p
)

 9. θ = Hθ(θi
p
)

 10. kid = ls × δ
3
 + x × δ

2
 + y × δ + θ //Calculate id for kd-tree index space

 11. LS[ls]→INDX[x][y][θ] = kid //Copy id of the kd-tree into a cell

 12. Temp[] =
p
di //Copy descriptors of index key into temporary vector

 13. Temp[65] = id
p
 //Copy identity of person into the temporary vector

 14. Insert Temp into Kd-treekid

 15. inc[kid] = inc[kid] + 1 //Increment kd-tree index counter

 16. end for

 17. end for

The i

th
 query index key is represented as indx

q
i =

q
lsi,

q
xi,

q
yi,

q
θi,

q
di, id

q
 where

q
lsi,

q
xi,

q
yi and

q
θi,

represent the sign of Laplacian, x and y position, and orientation of the i
th
 key point (

q
ki), and

q
di

and id
q
 represent the feature descriptor of the i

th
 key point and identity of the query face image,

respectively. Then, we apply indexing on the first level index space using the value of ls of the
query index key. The indexing is done using hash functions defined in Eq. (4). The first level of
indexing selects the index cube for a query index key. Let us assume that the value of ls of the i

th

index key of query is -1. Then index cube (LS[0]→INDX) in the first level index space (LS) is
selected for the i

th
 index key of the query. Then, we use the value of x, y and θ of the query index

key to find the cell position of the index cube in the second level index space. The cell position is
calculated using the hash functions defined in Eq. (4). Then, the candidate set is generated by
counting the vote received for each identity of the retrieved index keys from the database. A
candidate set CS is shown in Fig. 8. The id and vote fields of the CS store the identity of an
individual and the number of vote received for that identity. The candidate set is generated for
every type of searching. To generate the candidate set we search the corresponding linear or kd-
tree storage whose identity is stored in the cell of an index cube and find the closest match in the
linear or kd-tree index space. If x, y and θ of the i

th
 index key of a query select the

LS[0]→INDX[x][y][θ] cell of the index cube (LS[0]→INDX) and retrieve the j
th
 linear or kd-tree

identity then we find the closest match in the LNINDXj linear index space for linear search and
KDTREEj for kd-tree search. Finally, ranks are calculated based on the vote received for each
identity. The search techniques are described in the following.

4.6.1 Linear Search
In linear search, first we find the cell position in an index cube for a query index key. Then, we
search the linear index space of that cell. We compute Euclidean distance between feature
descriptor of a query index key and all the feature descriptors stored in the linear index space to
find a match. Let the j

th
 cell in the index cube is selected for the i

th
 index key of a query. Then, we

select the linear index space (CELL[j]→LNINDX) corresponding to the j
th
 cell to find a match. We

compute the Euclidean distances between the feature descriptors of the i
th
 index key of the query

and all the descriptors stored in the linear index space (CELL[j]→LNINDX) using Eq. (6). We
retrieve the identity corresponding to the minimum distance. The retrieved identity is then placed
in the candidate set (CS) and cast a vote for this identity. We follow the same procedure for all
other index keys of the query face. We summarize the linear searching method in Algorithm 3. In
Step 2 of Algorithm 3, we initialize the length of each linear index space. Step 6 and Steps 7 to 9
find the index of the first and second level index spaces, respectively. We calculate the cell id in
Step 10. In Steps 11 to 19, we find the minimum distance for an index key of query face and
retrieve the identity corresponding to the minimum distance. Steps 23 to 29 generate the
candidate set for a query index key. Finally, we sort the candidate set in Step 33.

=

=

= −∑

,

64
2

1

(,),

where, (,) ()

q

i j j i

q f q f

j i j i
f

ED EuclidDist d d

EuclidDist d d d d
 (6)

Jyotirmay Dewangan, Somnath Dey & Debasis Samanta

International Journal of Biometrics and Bioinformatics (IJBB), Volume (7) : Issue (2) : 2013 105

4.6.2 Kd-tree Search
In kd-tree search, first we find the cell position in an index cube for an index key of a query. Then
we retrieve the id of a kd-tree (kid) from the cell and search the kd-tree corresponding to the
retrieved kd-tree id. We apply hash functions to find the cell position in the index cube. Let the j

th

cell in the index cube is selected for the i
th
 query index key. Then we search kd-tree index space

(CELL[j]→KDINDX) corresponding to the j
th
 cell to find a match. We apply approximate nearest

neighbor search [54, 55, 56, 57] to reduce the searching time. Arya and Mount’s [54, 56]
approximate k nearest neighbor search method is used to search the kd-tree. In this technique,
we examine only the k closest bins of the kd-tree and use a priority queue to identify the closest
bins based their distances from query. The expected searching complexity of the nearest
neighbor search can be reduced to O(kdlogn) and space complexity is O(dn). For this purpose, a
public domain library (FLANN) [56, 57] for faster approximate nearest neighbors search is
available. In our approach, we utilize this library for implementing kd-tree algorithms. We retrieve
the identity corresponding to the closest match from the kd-tree. The retrieved identity is then
placed in the candidate set (CS) and cast a vote for this identity. We follow the same procedure
for all other index keys of the query face. The searching method for kd-tree index space is
summarized in Algorithm 4. Step 3 and Steps 4 to 6 of Algorithm 4 find the index of the first and
second level index spaces, respectively. In Step 7, we calculate the cell id of an index cube for a
query index key. Step 8 finds the nearest neighbor for a query index key and Step 9 retrieves the
identity corresponding to the nearest neighbor. In Steps 11 to 15, we generate the candidate set
for a query index key. Finally, we sort the candidate set in Step 18.

FIGURE 8: Schematic view of the candidate set.

 Algorithm 3 Candidate set generation in linear search from index space

 Input: All index keys from query face image indx1
q
, indx2

p
, ..., indxLq

q
), index space (LS[]→

INDX[][][]) with linearly stored index keys for each cell (CELL[]→LNINDX[][]).

 Output: Candidate Set (CS[]→(id, vote))

1. for cellid = 0 to 2×δ
3
-1 do //Initialize length in each linear index space

2. KEYS[cellid] = Number of keys in CELL[cellid]→LNINDX[][]

3. end for

4. idc = 1

5. for i = 1 to Lq do //Lq is the total number of query index key

6. ls' = Hls(lsi
q
) //Find first level index space

 //Find cell location of second level index space

7. x' = Hx(xi
q
)

8. y' = Hy(yi
q
)

9. θ' = Hθ(θi
q
)

10. cellid = LS[ls]→INDX[x'][y'][θ'] //Calculate cell id of an index cube

 //Retrieve the matched identities from CELL[cellid]→LNINDX[][]

11. MinDist = ∞

12. for j = 0 to KEYS[cellid]-1 do //KEYS[cellid] is the total number of index key in the
cellid

th
 cell

13. EDi,j = EucleadDist(CELL[cellid]→LNINDX[j],
q
di)

Jyotirmay Dewangan, Somnath Dey & Debasis Samanta

International Journal of Biometrics and Bioinformatics (IJBB), Volume (7) : Issue (2) : 2013 106

 Algorithm 4 Candidate set generation in kd-tree search from index space

 Input: All index keys from query face image indx1
q
, indx2

p
, ..., indxLq

q
), index space (LS[]→

INDX[][][]) with kd-tree index space for each cell (CELL[]→ KDINDX[]).

 Output: Candidate Set (CS[]→(id, vote))

 1. idc = 1

 2. for i = 1 to Lq do //Lq is the total number of query index key

 3. ls' = Hls(lsi
q
) //Find first level index space

 //Find cell location of second level index space

 4. x' = Hx(xi
q
)

 5. y' = Hy(yi
q
)

 6. θ' = Hθ(θi
q
)

 7. cellid = LS[ls]→INDX[x'][y'][θ'] //Calculate cell id of an index cube

 //Retrieve the matched identities from Kd-tree (Kd-tree[cellid]) by finding nearest
neighbor of a query index key

 8. NN = findNN(Kd-tree[cellid],
q
di) //Find the nearest neighbor

 9. id = retrieveIdFromNN(NN) //Select id of nearest neighbor

 10. if id ∉ CS[]→(id) then //Generate candidate set

 11. CS[idc]→id = id

 12. CS[idc]→vote = 1

 13. idc = idc+1

 14. else

 15. CS[id]→vote = CS[id]→vote + 1

 16. end if

 17. end for

 18. Sort CS[]→(id,vote) in descending order based on vote

14. if EDi,j ≤ MinDist then //Find match identities corresponding to the minimum distance

15. m=1

16. MatchId[m] = CELL[cellid]→LNINDX[j][65]

17. else if EDi,j = MinDist then

18. m = m + 1

19. MatchId[m] = CELL[cellid]→LNINDX[j][65]

20. end if

21. end for

22. for j = 1 to m do

23. id = MatchId[m]

24. if id ∉ CS[]→(id) then //Generate candidate set

25. CS[idc]→id = id

26. CS[idc]→vote = 1

27. idc = idc+1

28. else

29. CS[id]→vote = CS[id]→vote + 1

30. end if

31. end for

32. end for

33. Sort CS[]→(id,vote) in descending order based on vote

Jyotirmay Dewangan, Somnath Dey & Debasis Samanta

International Journal of Biometrics and Bioinformatics (IJBB), Volume (7) : Issue (2) : 2013 107

4.7 Analysis of the Proposed Approach
In this section, we analyze the time complexity of linear and kd-tree based search techniques in
the proposed index space. We also analyze the memory requirement of the proposed method.

4.7.1 Searching Time Complexity
Let N be the total number of face images enrolled in the database and Tp be the average number
of index keys in each enrolled face image. Thus, the total number of index keys in the index
space is Tn = Tp×N. If there are K number of cells in all index cubes, then the average number of
index keys in each cell is Tk = Tn/K. Let Tq be the average number of index keys in each query
face image. To perform linear search or kd-tree based search in the index space, first, we find the
index cell position for a index key of a query using hash functions defined in Eq.(4). This
operation requires O(1) computation time for both type of searches. The time complexity analysis
of linear and kd-tree based searches within the located cell are given in the following.

Linear Search: In linear search, Tk×Tq number of comparisons are required to retrieve a set of
similar index keys and their identities, and TqlogTq comparisons are required to sort the retrieved
identities based on their ranks. Thus, we can calculate the average time complexity of linear
search (denoted as TLS) as follows.

= × + × +

×
= × + × +

=

(1) log

(1) log

()

LS q k q q q

p

q q q q

T O T T T T T

N T
O T T T T

K

O N

 (7)

Kd-tee Search: The number of comparisons required in kd-tree based search to find a set of
nearest index keys and their identities are logTk× Tq, and to sort the retrieved identities based on
their ranks are TqlogTq. Thus, we can calculate the average time complexity of kd-tree based
search (denoted as TKS) as follows.

= × + × +

×
= × + × +

=

(1) log log

(1) log log

(log)

KS q k q q q

p

q q q q

T O T T T T T

N T
O T T T T

K

O N

 (8)

4.7.2 Memory Requirement
Let b1 and b2 bytes memory are required to store the reference of the index cubes into the first
level index space and the reference of linear or kd-tree index spaces into the index cube,
respectively. Let m bytes are required to store a feature value of an index key and 2 bytes are
required to store an identity of an individual. If there are P individuals then we can compute the
memory requirement for linear and kd-tree index spaces using Eq. (9) and (10), respectively. In
Eq. (9) and (10), Lp represents the number of index keys for the p

th
 individual and δ denotes the

number of quantization levels of the second level index space.

δ
=

= × + × + × + ×∑3

1 2
1

2 () (64 2)
P

LS p
p

M b b m L (9)

δ
=

= × + × + × + ×∑3

1 2
1

2 () (64 14)
P

KD p
p

M b b m L (10)

5. EXPERIMENTS AND EXPERIMENTAL RESULTS
This section describes the different experimental setups and the experimental results to evaluate
the accuracy and the efficiency of our proposed approach.

Jyotirmay Dewangan, Somnath Dey & Debasis Samanta

International Journal of Biometrics and Bioinformatics (IJBB), Volume (7) : Issue (2) : 2013 108

5.1 Database
We perform our experiments on two widely used large face databases namely Color FERET [40,
41, 42] and FRGC V2.0 [43, 44, 45]. We also carry out our experiments on CalTech 256 [46, 47]
face database. A detail description of each database is given in the following.

5.1.1 Color FERET Face Database
The FERET database is developed for the Facial Recognition Technology (FERET) program [41,
42]. The database is designed by the Defense Advanced Research Products Agency (DARPA)
during 1993 to 1997 to give common standard for face recognition experiments. The database
contains 11338 images from 994 different subjects. These images are collected in different
sessions. The resolution of the captured images is 256×384 pixel. The database contains 2722
frontal images with different facial expressions (Neutral and Alternate). There are 1364 images
with neutral expression and 1358 images with alternate expression. Figure 9(a) and (b) shows the
four images with different facial expressions of two different subjects.

5.1.2 FRGC 2.0 Face Database
FRGC Still version 2.0 data set [43, 44, 45] is collected at University of Notre Dame as a part of
Face Recognition Grand Challenge program. The primary goal of the FRGC program is to
promote and advance the face recognition technology designed to support existing face
recognition systems. This database contains color face images, which are taken in different
lightning conditions and different environments. The database consists of 24038 frontal face
images of 466 subjects. These images are captured in Fall 2003 and Spring 2004 semesters of
2003-2004 academic year. A total of 16024 images from all subjects are captured in indoor
environment with two different protocols (FERET and Mugshot) and two different facial
expressions (Neutral and Smiley) [43]. The resolution of each image is either 1704×2272 pixel or
1200×1600 pixel. The images are collected in 4007 subject sessions. Four images (FERET-
Neutral, FERET-Smiley, Mugshot-Neutral and Mugshot-Smiley) are captured in each subject
session. The database contains 4007 FERET-Neutral, 4007 FERET-Smiley, 4007 Mugshot-
Neutral and 4007 Mugshot-Smiley face images. Figure 9(c) and (d) show four images with two
facial expressions of two different subjects. FRGC Still version 2.0 data set [43, 44, 45] contains
8014 face images which are captured in outdoor environment with different backgrounds and
different illuminations. Figure 9(e) shows two face images of two different subjects in different
backgrounds.

5.1.3 CalTech 256 Face Database
Caltech-256 object category data set [47, 46] contains a total of 30607 images from 256 different
categories. In our experiment, we use face category images of the Caltech-256 data set. The face
category set consists of 432 face images from 28 subjects. Each face image is captured in
complex background with different facial expressions. Figure 9(f) shows two face images of two
different subjects from CalTech 256 face database.

5.2 Implementation Environment
All methods described in our approach are implemented using C programming language and
OpenCV [48] image processing library on the Linux operating system. All methods are evaluated
with Intel Core-2 Duo processor of speed 2.00GHz and 2GB RAM.

Jyotirmay Dewangan, Somnath Dey & Debasis Samanta

International Journal of Biometrics and Bioinformatics (IJBB), Volume (7) : Issue (2) : 2013 109

5.3 Performance Metrics
Accuracy and efficiency are the two main criteria usually considered to measure the performance
of a face indexing technique. The accuracy of a face indexing approach is commonly evaluated

by the hit rate or recognition rate, and penetration rate [49, 50, 51, 52]. Hit rate is the percentage

of probes for which the correct identities are retrieved within a top rank for a gallery by the
indexing mechanism [50]. The penetration rate is the percentage of the database retrieved for a
query face to get a correct match [50]. Let Ng be the number of entries in the database and Np be
the number of queries in the probe set. If Nr is the number of entries retrieved for the i

th
probe

then the penetration rate (PR) for a query is defined as in Eq. (11). If Nc (Nc < Np) is the number of
queries for which successful matches are found within the top r retrieved candidates then the hit
rate (HR) at rank r is defined as Eq. (12)

=

= ∑
1

1 pN

r

ip g

N
PR

N N
 (11)

=
c

p

N
HR

N
 (12)

We also substantiate our results in terms of cumulative match score. The cumulative match score
gives the probability of at least one correct identity presents within a top rank which also
represents the cumulative hit rate at different ranks. The cumulative hit rates at different ranks are
represented with the Cumulative Match Characteristics (CMC) curve.

5.4 Evaluation Setup
To evaluate our proposed indexing method, we have partitioned each face database into two
sets: Gallery Set and Probe Set. Gallery Set contains the face images which are enrolled into the
index database and Probe Set contains the face images which are used as queries to search the
index database. In our experiment, we create different gallery and probe sets for each database.

(a) Frontal face image samples
without expression from FERET
database

(b) Frontal face image samples with
expression from FERET database

(c) Frontal face image samples
without expression from FRGC
database

(d) Frontal face image samples with
expression from FRGC database

(e) Sample face images in outdoor
environment from FRGC database

(f) Sample face images from CalTech
database

FIGURE 9: Sample images of FERET, FRGC and CalTech256 databases.

Jyotirmay Dewangan, Somnath Dey & Debasis Samanta

International Journal of Biometrics and Bioinformatics (IJBB), Volume (7) : Issue (2) : 2013 110

The description of different gallery and probe sets for FERET, FRGC and CalTech256 databases
are given in Table 1.

5.5 Experiments and Results
We have conducted a number of experiments to evaluate the performance of our proposed
indexing methods. The description of these experiments and the results of each experiment are
given in the following.

5.5.1 Experiment 1: Determining dimension quantization value of second level index space
To determine the value of the number of quantization (δ) of each dimension of the second level
index space, we have done this experiment. We perform kd-tree based search for a set of query
images with different values of δ. The value of δ is varied from 2 to 50 with increment of 2. This
experiment is conducted with FERET, FRGC and CalTech databases. We use Gallery11 and
Probe11 for FERET database, Gallery21 and Probe21 for FRGC database, and Gallery41 and
Probe41 for CalTech database. The rank 1 hit rate and penetration rate for different values of δ
are reported in Fig. 10. From Fig. 10(a), we observe that for FERET database rank 1 hit rate
decreases nearly 2% when the value of δ is changed 2 to 14 whereas rank 1 hit rate decreases
more than 4% when the value of δ is changed 16 to 20. On the other hand, the penetration rate
decreases more than 85% when the value of δ is changed 2 to 14 but penetration rate decreases
only 5% for the change of δ value 14 to 20 for FERET database. The same thing is observed
from Fig. 10(b) for FRGC database also. But for Caltech database the value of δ equal to 12
gives better performance than the other values of δ (see Fig. 10(c)). Hence, in our other
experiments, we choose the value of δ equal to 15 for FERET and FRGC databases, and 12 for
Caltech database, respectively. However, user may choose the other values of δ according to
their requirements.

DB Name # images # subjects Description

C
o
lo

r
F

E
R

E
T

Gallery11 994 994 First face image with neutral facial expression of first session for all subjects.

Gallery12 1984 992
First face image with neutral and alternate facial expressions of first session for all
subjects.

Probe11 992 992 First face image with alternate facial expression of first session for all subjects.

Probe12 370 250 Face images with neutral facial expressions of other sessions for all subjects.

Probe13 366 247 Face images with alternate facial expressions of other sessions for all subjects.

Probe14 736 250
Face images with neutral and alternate facial expressions of other sessions for all
subjects.

Probe15 228 75
Face images with neutral and alternate facial expressions of other sessions for all
subjects. But images are captured with minimum six months difference.

F
R

G
C

 V
2
.0

Gallery21 466 466
First face image with neutral facial expression of first session for all subjects.
Images are captured with FERET protocol.

Gallery22 932 466
First face image with neutral and smiley facial expressions of first session for all
subjects. Images are captured with FERET protocol.

Probe21 466 466
First face image with smiley facial expression of first session for all subjects.
Images are captured with FERET protocol.

Probe22 3541 411
Face images with neutral facial expressions of other sessions for all subjects.
Images are captured with FERET protocol

Probe23 3541 411
Face images with smiley facial expressions of other sessions for all subjects.
Images are captured with FERET protocol.

Probe24 7082 411
Face images with neutral and smiley facial expressions of other sessions for all
subjects. Images are captured with FERET protocol

Probe25 1134 193 Face images with neutral and smiley facial expressions of other sessions for all
subjects. Images are captured with FERET protocol. The time difference from first

Jyotirmay Dewangan, Somnath Dey & Debasis Samanta

International Journal of Biometrics and Bioinformatics (IJBB), Volume (7) : Issue (2) : 2013 111

captured image is minimum six months.

Probe26 466 466
First face image with neutral facial expression of first session for all subjects.
Images are captured with Mugshot protocol.

Probe27 466 466
First face image with smiley facial expression of first session for all subjects.
Images are captured with Mugshot protocol.

Probe28 3541 411
Face images with neutral facial expressions of other sessions for all subjects.
Images are captured with Mugshot protocol

Probe29 3541 411
Face images with smiley facial expressions of other sessions for all subjects.
Images are captured with Mugshot protocol.

Probe30 7082 411
Face images with neutral and smiley facial expressions of other sessions for all
subjects. Images are captured with Mugshot protocol

Probe31 1134 193
Face images with neutral and smiley facial expressions of other sessions for all
subjects. Images are captured with Mugshot protocol. The time difference from
first captured image is minimum six months.

Probe32 8014 466 Face images with at outdoor environment.

C
a
lT

e
c
h
2
5
6

Gallery41 28 28 One face image from each subject. Face image is selected randomly.

Gallery42 28 350 Eighty percent face images of each subject. Face images are selected randomly.

Probe41 26 26
One face image from each subject. Face image is selected randomly from the rest
of the Gallery1.

Probe42 26 404 All face images of each subject except the Gallery 1 face images.

Probe43 26 82 All face images of each subject except the Gallery 2 face images.

TABLE 1: Description of gallery and probe sets of FERET, FRGC and CalTech256 face databases.

(a) Hit rate and penetration rate with
FERET Gallery11 and Probe11 sets
for different values of δ

(b) Hit rate and penetration rate with
FRGC Gallery21 and Probe21 sets for
different values of δ

(c) Hit rate and penetration rate with
CalTech256 Gallery41 and Probe41
sets for different values of δ

FIGURE 10: HR and PR with FERET, FRGC and CalTech256 databases for different values of δ

5.5.2 Experiment 2: Performance comparison without and with indexing
In this experiment, we compare the performance of the system with and without applying the
proposed indexing technique. We use Gallery11 and Probe11 for FERET, Gallery21 and Probe21
for FRGC databases, and Gallery41 and Probe41 for CalTech databases. The CMC curves with
and without indexing for different databases are shown in Fig. 11. Figure 11(a) shows that the
approach without indexing gives better cumulative match score for FERET database. Whereas,
From Fig. 11(b) and (c), we can see that the approach with and without indexing gives almost the
same cumulative match score after 15

th
 rank for FRGC database and after 7

th
 rank for the

CalTech database. We also report the rank 1 hit rate, penetration rate and average searching
time for linear and kd-tree search using indexing and without indexing in Table 2. From Table 2,
we can see that kd-tree search with indexing achieves 95.57%, 97% and 92.31% hit rate with
9.70%, 12.55% and 7.14% penetration rate for FERET, FRGC and CalTech databases,

Jyotirmay Dewangan, Somnath Dey & Debasis Samanta

International Journal of Biometrics and Bioinformatics (IJBB), Volume (7) : Issue (2) : 2013 112

respectively. We also observe that kd-tree search requires very less average searching time for
all three databases.

(a) CMC curve with and without
indexing for FERET Gallery11 and
Probe11 sets

(b) CMC curve with and without
indexing for FRGC Gallery21 and
Probe21 sets

(c) CMC curve with and without
indexing for CalTech256 Gallery41
and Probe41 sets

FIGURE 11: CMC curve with and without indexing for FERET, FRGC and CalTech256 databases.

5.5.3 Experiment 3: Performance with different probe sets
In this experiment, we check the performance of linear and kd-tree search with the proposed
indexing method for different probe sets. The probe sets are created with different conditions as
discussed in Table 1. We enroll the all images of Gallery11 (with neutral expression), Gallery21
(with neutral expression) and Gallery41 into the database for FERET, FRGC and CalTech
databases, respectively and use all probe sets to test the indexing performances of linear and kd-
tree search. Figure 12(a) shows the CMC curve of all five probe sets of FERET database, Fig.
12(b) shows the CMC curve of all twelve probe sets of FRGC database and Fig. 12(c) shows the
CMC curve of all three probe sets of CalTech database. From Fig. 12(a) and (b), we can note that
cumulative match scores are reduced for the probe sets which contain the face images captured
in more than six month difference. On the other hand, face images captured in different
expressions but in the same session give the better results than the others. We observe that face
images with complex background (Probe32 of FRGC database) gives less match score than the
others. However, face images with complex background for CalTech database give above 90%
match score. We also report the rank 1 hit rate, penetration rate and searching time for linear and
kd-tree search for different probe sets in Table 3. We observe that the penetration rate and
searching time for kd-tree based search are less for all probe sets.

Database Performance
Linear Kd-tree

Without
Indexing

With
Indexing

Without
Indexing

With
Indexing

FERET

Hit Rate 97.28 95.57 97.28 95.57

Penetration Rate 100 10.54 49.43 7.90

Average Search Time 4.46×10
5
 114 2.21×10

5
 85.40

FRGC

Hit Rate 98.93 97.00 98.93 97.00

Penetration Rate 100 16.36 51.47 12.55

Average Search Time 2.78×10
5
 92.55 1.43×10

5
 71.02

CalTech

Hit Rate 96.15 92.31 96.15 92.31

Penetration Rate 100 26.91 61.78 23.72

Average Search Time 1.24×10
4
 8.10 7.64×10

3
 7.14

TABLE 2: Comparison of the proposed approach with and without indexing using linear and
kd-tree search.

Jyotirmay Dewangan, Somnath Dey & Debasis Samanta

International Journal of Biometrics and Bioinformatics (IJBB), Volume (7) : Issue (2) : 2013 113

5.5.4 Experiment 4: Performance of multiple enrolments of a subject into the index space
We have done the experiment to check the effect of multiple enrolments on the performance. In
this experiment, we enroll all samples of Gallery12 for FERET, Gallery22 for FRGC and Gallery42
for CalTech databases, and test with all probe sets of FERET, FRGC and CalTech databases.
The CMC curves of all probe sets are shown in Fig. 13. From Fig. 13, we can see that 100%
cumulative match score is achieved for Probe11 and Probe21 because the images in the
Probe11 and Probe21 sets are also in the Gallery12 and Gallery22, respectively. We observe that
in multiple enrolments of a subject, cumulative match scores for other probe sets are increased
than that of in the single enrolments. We have computed the penetration rate, rank 1 hit rate and
searching time for linear and kd-tree based search with multiple enrolments. The results are
summarized in Table 4. From this experiment we observe that better rank 1 hit rate is achieved
without affecting the penetration rate. Though, higher searching time is required to search the
database with multiple enrolments.

(a) CMC curves for different probe
sets with FERET Gallery11

(b) CMC curves for different probe
sets with FRGC Gallery21

(c) CMC curves for different probe
sets with CalTech256 Gallery41

FIGURE 12: CMC curves for different probe sets with single enrolment of a subject with FERET, FRGC and
CalTech256 databases

DB Probe

Linear Kd-tree

Hit rate Penetration
rate

Searching
time (ms)

Hit rate Penetration
rate

Searching
time (ms)

F
E

R
E

T

Probe11 95.57 10.54 114.00 95.57 7.90 85.40

Probe12 87.44 11.13 121.98 87.44 8.34 91.38

Probe13 86.11 11.28 122.32 86.11 8.45 91.64

Probe14 86.75 11.20 121.29 86.75 8.39 90.87

Probe15 82.44 10.62 114.29 82.44 7.96 85.62

F
R

G
C

Probe21 97.00 16.36 92.55 97.00 12.55 71.02

Probe22 90.40 14.66 82.48 90.40 11.25 63.29

Probe23 80.41 16.13 92.01 80.41 12.38 70.60

Probe24 85.40 15.40 87.66 85.40 11.81 67.27

Probe25 87.31 15.69 88.48 87.31 12.04 67.89

Probe26 98.07 14.62 81.73 98.07 11.22 62.71

Probe27 96.36 16.20 91.73 96.36 12.43 70.39

Probe28 89.70 14.41 81.72 89.70 11.06 62.71

Probe29 79.39 16.07 91.24 79.39 12.33 70.01

Probe30 84.54 15.24 84.86 84.54 11.69 65.12

Probe31 85.46 15.42 86.88 85.46 11.83 66.67

Probe32 81.40 15.47 86.38 81.81 11.87 66.28

Jyotirmay Dewangan, Somnath Dey & Debasis Samanta

International Journal of Biometrics and Bioinformatics (IJBB), Volume (7) : Issue (2) : 2013 114

C
a
lT

e
c
h
 Probe41 92.31 26.91 8.19 92.31 23.72 7.22

Probe42 94.55 27.52 8.29 94.55 24.27 7.31

Probe43 93.90 27.72 8.48 93.90 24.44 7.47

TABLE 3: Performance of different probe sets with single enrolment of a subject in linear and kd-tree search.

(a) CMC curves for different probe
sets with FERET Gallery12

(b) CMC curves for different probe
sets with FRGC Gallery22

(c) CMC curves for different probe
sets with CalTech256 Gallery42

FIGURE 13: CMC curves for different probe sets with multiple enrolment of a subject with FERET, FRGC
and CalTech256 databases.

5.5.5 Experiment 5: False Match Rate (FMR) vs False Non Match Rate (FNMR)
We have analyzed the performance of our proposed system with respect to false match rate
(FMR) and false non match rate (FNMR). We use Gallery11, Gallery21 and Gallery42 datasets as
gallery sets, and Probe11, Probe21 and Probe43 as probe sets for FERET, FRGC and CalTech
databases, respectively. We have computed 992, 466 and 1297 genuine scores and 985056,
216690 and 27403 imposter scores for FERET, FRGC and CalTech databases, respectively. The
receiver operating characteristics (ROC) curves show the trade-off between FMR and FNMR in
Fig. 14. The equal error rates (ERR) of the system are 5.51%, 5.73% and 6.84% for FERET,
FRGC and CalTech databases, respectively.

DB Probe

Linear Kd-tree

Hit rate Penetration
rate

Searching
time(ms)

Hit rate Penetration
rate

Searching
time(ms)

F
E

R
E

T

Probe11 100 9.33 207.66 100 6.74 149.98

Probe12 88.94 9.85 215.93 88.94 7.11 155.96

Probe13 86.56 9.99 216.59 86.56 7.21 156.43

Probe14 87.73 9.92 214.91 87.73 7.16 155.22

Probe15 82.31 9.40 205.35 82.31 6.79 148.31

F
R

G
C

Probe21 100 13.69 164.07 100 10.14 121.54

Probe22 91.11 12.27 146.87 91.11 9.09 108.79

Probe23 93.93 13.50 163.63 93.93 10.00 121.21

Probe24 92.52 12.88 153.78 92.52 9.54 113.91

Probe25 95.59 13.13 157.14 95.59 9.73 116.40

Probe26 98.93 12.23 148.34 98.93 9.06 109.88

Probe27 99.57 13.56 160.79 99.57 10.04 119.11

Probe28 90.23 12.06 144.72 90.23 8.93 107.20

Probe29 93.31 13.45 160.29 93.31 9.96 118.73

Probe30 91.77 12.75 151.78 91.77 9.45 112.43

Jyotirmay Dewangan, Somnath Dey & Debasis Samanta

International Journal of Biometrics and Bioinformatics (IJBB), Volume (7) : Issue (2) : 2013 115

Probe31 93.30 12.90 151.07 93.30 9.56 111.90

Probe32 87.00 12.94 153.26 87.44 9.59 113.53

C
a

lT
e

c
h

Probe41 96.15 14.21 55.70 96.15 11.12 43.58

Probe42 97.52 14.54 57.35 97.52 11.38 44.87

Probe43 98.78 14.64 57.85 98.78 11.46 45.27

TABLE 4: Performance of different probe sets for multiple enrolments of a subject in linear and kd-tree
search.

(a) ROC curve for FERET database (b) ROC curve for FRGC database (c) ROC curve for FRGC database

FIGURE 14: ROC curve for FERET, FRGC and CalTech256 databases.

5.5.6 Experiment 6: Searching time with different number of enrolled samples
In this section, we compute the searching time and the average number of comparisons required
for linear and kd-tree based search techniques with the proposed index space. To compute these
we enrolled different number of samples into the index space for FERET, FRGC and CalTech
databases.

(a) Average searching time for FERET
database

(b) Average searching time for FRGC
database

(c) Average searching time for
CalTech256 database

FIGURE 15: Average searching time with different sizes of databases for FERET, FRGC and CalTech256
databases.

The execution time (in Intel Core-2 Duo 2.00 GHz processor and 2GB RAM implementation
environment) of linear and kd-tree search with FERET, FRGC and CalTech databases are shown
in Fig. 15(a), (b) and (c), respectively. We observe that the execution time for kd-tree search is
less than the linear search method. It is also observed that the rate of increment in execution time
for kd-tree based search is less when the number of enrolled sample increases. We have given
the average number of comparisons for linear and kd-tree based search in Fig. 16. From Fig. 16,
we can see that the rate of increment in number comparisons is also less for kd-tree based
search. Hence, we may conclude that to retrieve the similar identities for a given query, kd-tree
based search within index cell is better than the linear search.

Jyotirmay Dewangan, Somnath Dey & Debasis Samanta

International Journal of Biometrics and Bioinformatics (IJBB), Volume (7) : Issue (2) : 2013 116

(a) Average number of comparisons
for FERET database

(b) Average number of comparisons
for FRGC database

(c) Average number of comparisons
for CalTech256 database

FIGURE 16: Average number of comparisons with different sizes of databases for FERET, FRGC and
CalTech256 databases.

5.5.7 Experiment 7: Memory for different number of enrolled samples
In our approach, 2 bytes are required to store the reference of index cube into a cell of first level
index space and 4 bytes are required to store the reference of linear or kd-tree index space into a
cell of index cube. There are 64 feature values in an index key and 4 bytes are required to store a
feature value. We also store the identity of an individual with each index key. The identity field
requires 2 bytes extra memory for each index key. We can store 216 identities with 2 byte identity
field. Hence, a total of 258 bytes are required to store an index key along with the identity in linear
index space. In kd-tree based index space, a single node of kd-tree requires 270 bytes memory.
Fig. 17(a), (b) and (c) show the memory requirements for linear and kd-tree index spaces to store
different number of samples for FERET, FRGC and CalTech databases, respectively. From Fig.
17 we observe that the memory requirements are almost same for the linear and kd-tree based
index spaces.

5.6 Discussion of Experimental Results
We have performed seven set of experiments to establish the accuracy and the efficiency of our
proposed method. The first experiment is carried out to decide the parameter (number of the cells
in an index cube). From this experiment, we observed that better penetration rate can be
achieved by increasing the number of cells in index cube as it distributes the index key among
more number of cells and it retrieved less number of keys at the time of querying. However, the
probability of retrieving correct keys corresponding to the query is also reduced and it affects the
hit rate of the identification system.

In experiment 2, we achieved less penetration rate when we apply indexing before identification.
If we perform identification without indexing, query index keys are compared with the all stored

(a) Memory requirements for FERET
database

(b) Memory requirements for FRGC
database

(c) Memory requirements for
CalTech256 database

FIGURE 17: Memory requirements with different sizes of databases for FERET, FRGC and CalTech256
databases.

Jyotirmay Dewangan, Somnath Dey & Debasis Samanta

International Journal of Biometrics and Bioinformatics (IJBB), Volume (7) : Issue (2) : 2013 117

keys and the probability of matching is high at that time and we can achieve better hit rate but at
the same time it increases the penetration rate. At the time of identification with indexing,
probability of matching is reduced but the number of comparisons is also decreased which is
reflected in the result of the second experiment.

There is an impact of sessions of capturing face images in the hit rate. From the third experiment,
we can see that the performance of an indexing system is improved when we used the probe sets
which are captured with less time gap. Further, the face image captured in indoor environment
offers better performance. Further, if we consider the higher rank, the probability of matches will
increase. The CMC curve shows the same trend of the hit rate in this experiment.

If we enroll multiple samples of a subject, the probability of matching a query subject will
increase. From the fourth experiment, we observed that we achieved the maximum accuracy
when we enrolled two samples per subject. It may be noted that accuracy of the system is
improved if we enroll the samples with the different poses of a subject. Further, in the fifth
experiment, we achieved better FMR and FNMR for the same reason.

As the searching complexity of the kd-tree is less than the linear search, we required less
searching time when we used kd-tree in our indexing approach. The result of the sixth experiment
substantiates that fact. If the number of samples for enrollment increases the memory
requirement will also increase which we have shown in the seventh experiment.

5.7 Comparison with Existing Work
Lin et al. [28] propose an indexing structure to search the face from a large database. They
compute a set of Eigenfaces based on the faces in the database. Then, they assign a rank to
each face in the database according to its projection onto each of the Eigenface. Similarly, they
compute the Eigenfaces for a query and rank a query face. Finally, they select a set of faces from
the database corresponding to the nearest faces in the ranked position with respect to each
Eigenface of the query face. These selected faces are used for recognition.

A linear subspace approximation method for face indexing has been developed by Mohanty et al.
[29]. They build a linear model to create a subspace-based on the match scores. A linear
transformation is applied to project face images into the linear subspace. For this purpose, first,
they apply a rigid transformation obtained through principal component analysis and then a non-
rigid affine transformation. An iterative stress minimization algorithm is used to obtain a distance
matrix in a low-dimensional space and propose a linear out-of-sample projection scheme for test
images. Any new face image is projected into this embedded space using an affine
transformation.

Kaushik et al. [30] introduce a modified geometric hashing technique to index the face database.
They extract features from a face image using SURF [27] operator. They apply mean centering,
principal component analysis, rotation and normalization to preprocess the SURF features.
Finally, they use geometric hashing to hash these features to index each facial image in the
database.

We compare our approach with three existing face indexing approaches [28, 29, 30]. To compare
our proposed work, we use Gallery11, Gallery21 and Gallery41 as gallery sets, and Probe11,
Probe21 and Probe41 as probe sets for FERET, FRGC and CalTech databases, respectively.
The comparison result is reported in Table 5. The comparison is done with respect to rank 1 hit
rate, penetration rate and searching time. From Table 5 we can see that our approach gives
better performance than existing approaches.

Jyotirmay Dewangan, Somnath Dey & Debasis Samanta

International Journal of Biometrics and Bioinformatics (IJBB), Volume (7) : Issue (2) : 2013 118

Approach Performance FERET FRGC CalTech

L
in

 e
t

a
l.

[2
8

]

Hit Rate 83.87 85.19 73.08

Penetration Rate 41.07 45.49 83.99

Avg. Searching Time (ms) 2697.40 1738.35 895.27

M
o

h
a
n

ty
 e

t
a

l.

[2
9

] Hit Rate 94.15 95.06 80.77

Penetration Rate 25.58 24.95 60.5

Avg. Searching Time (ms) 745.61 623.56 46.77

K
a

u
s
h
ik

e

t
a

l.
 [

3
0

] Hit Rate 95.87 97.64 88.46

Penetration Rate 16.96 18.61 27.49

Avg. Searching Time (ms) 456.24 398.78 14.59

P
ro

p
o

s
e

d
 Hit Rate 95.57 97.00 92.31

Penetration Rate 7.90 12.55 23.72

Avg. Searching Time (ms) 85.40 71.02 7.22

TABLE 5: Comparison of the proposed approach with existing approaches.

6. CONCLUSION AND FUTURE WORK
Face-based biometric identification system with a large pool of database requires huge
computation time to search an individual's identity from the database. Best of our knowledge
there is no good indexing technique exist for face identification system, which can identify a
person in real-time when identification system is enrolled with a large number of users. In this
work, we propose a new two-level indexing mechanism to reduce the search space for a face
biometric-based identification system. We calculate a set of seventy dimensional index keys
using SURF feature extraction method from a face image. Among seventy dimensions we
consider only four dimensions to create the two-level index space. In the first level indexing, we
group the index keys based on the sign of Laplacian value; and in the second level, we group the

index keys based on the position and the orientation. We retrieve a set of similar identities for a

query from the two-level index space using a hashing technique. The hashing technique requires
O(1) time complexity to retrieve the identities. We propose linear and kd-tree based searching
mechanism to search the identities within the two-level index space. We have tested our
approach with FERET, FRGC and CalTech face databases. The experimental result shows that
kd-tree based search is performed better than the linear search. We can achieve 95.57%, 97%
and 92.31% rank 1 hit rate with 7.90%, 12.55% and 23.72% penetration rate for FERET, FRGC
and CalTech databases, respectively. Our approach gives better hit rate when multiple samples
of a subject are enrolled into the database. We achieve on the average 8.21%, 11.87% and
24.17% search space reduction for different probe sets of FERET, FRGC and CalTech,
respectively. With our proposed indexing approach, we achieve the computation time advantage
without compromising the accuracy compared to traditional person identification systems.

The limitation of our approach is that it does not give good results under different poses (e.g. left
or right profile) of face images. Our work can be extended to address the limitation said above.
Further, in this work, we have targeted the face images captured in the indoor environment. This
work can be utilized for the face images captured in outdoor environment.

Jyotirmay Dewangan, Somnath Dey & Debasis Samanta

International Journal of Biometrics and Bioinformatics (IJBB), Volume (7) : Issue (2) : 2013 119

7. REFERENCES

[1] T. Huang, Z. Xiong and Z. Zhang. Handbook of Face Recognition. NY: Springer, 2011, pp. 617–638.

[2] H. Lee, S.-H. Lee, T. Kim and H. Bahn. “Secure User Identification for Consumer Electronics Devices.”
IEEE Trans. on Consumer Electronics, vol. 54, no. 4, pp. 1798–1802, 2008.

[3] D.-S. Kim, S.-Y. Lee, B.-S. Kim, S.-C. Lee and D.-H. Chung. “On the Design of an Embedded Biometric
Smart Card Reader.” IEEE Trans. on Consumer Electronics. vol. 54, no. 2, pp. 573–577, 2008.

[4] “Physical access control biometrics.” Internet: http://www.findbiometrics.com/physical-access/ [Jun. 12,
2012].

[5] “Biometrics from Wikipedia.” Internet: http://en.wikipedia.org/ wiki/Biometrics#Countries applying
biometrics [Jul. 15, 2012].

[6] W. Louis and K. N. Plataniotis. “Frontal Face Detection for Surveillance Purposes using Dual Local
Binary Patterns Features,” in Proc. 17th IEEE International Conference on Image Processing (ICIP),
Sept 2010, pp. 3809–3812.

[7] P. Quintiliano and A. Rosa. “Face Recognition Applied to Computer Forensics.” The International Journal
of Forensic Computer Science, vol. 1, no. 1, pp. 19–27, 2006.

[8] A. K. Jain, B. Klare and U. Park. “Face Matching and Retrieval in Forensics Applications.” IEEE
Multimedia, vol. 19, no. 1, pp. 20–28, 2012.

[9] “Using the Iris Recognition Immigration System (IRIS).” Internet:
http://www.ukba.homeoffice.gov.uk/customs-travel/Enteringtheuk/usingiris/ [Jan. 20, 2012].

[10] “Biometric Passport from Wikipedia.” Internet: http://en.wikipedia.org/wiki/Biometric passport [Jun. 22,
2012].

[11] “Unique Identification Authority of India.” Internet: http://uidai.gov.in/ [Jul. 12, 2012].

[12] “Identity Document from Wikipedia.” Internet: http://en.wikipedia.org/wiki/Identity document#Bangladesh
[Jul. 17, 2012].

[13] Identity Card Policy, “List of National Identity Card Policies by Country.” Internet:
http://en.wikipedia.org/wiki/List of identity card policies by country [Jun. 25, 2012].

[14] “UIDAI Strategy Overview: Creating a Unique Identity Number for Every Resident in India.” Internet:
http://uidai.gov.in/UID PDF/Front Page Articles/Documents/Strategy Overveiw- 001.pdf [May 18, 2012].

[15] A. Mhatre, S. Palla, S. Chikkerur and V. Govindaraju. “Efficient Search and Retrieval in Biometric
Databases.” in Proc. SPIE Defense and Security Symposium, vol. 5779, Orlando FL, Mar. 2005, pp.
265–273.

[16] M. Turk and A. Pentland. “Eigenfaces for Recognition.” Journal of Cognitive Neurosicence, vol. 3, no. 1,
pp. 71–86, 1991.

[17] A. Batur and M. Hayes. “Linear Subspace for Illumination Robust Face Recognition.” in Proc. IEEE
International Conference on Computer Vision and Pattern Recognition, Dec 2001.

[18] P. Yuen and J. Lai. “Face Representation Using Independent Component Analysis.” Pattern Recog-
nition, vol. 35, no. 6, pp. 1247–1257, 2002.

[19] P. Belhumeur, J. Hespanha and D. Kriegman. “Eigenfaces vs. Fisherfaces: Recognition Using Class
Specific Linear Projection.” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 19, no. 7,
pp. 711–720, 1997.

Jyotirmay Dewangan, Somnath Dey & Debasis Samanta

International Journal of Biometrics and Bioinformatics (IJBB), Volume (7) : Issue (2) : 2013 120

[20] J. Lu, K. Plataniotis and A. Venetsanopoulos. “Face Recognition Using LDA-Based Algorithms.” IEEE
Trans. on Neural Networks, vol. 14, no. 1, pp. 195–200, 2003.

[21] N. Mittal and E. Walia. “Face Recognition Using Improved Fast PCA Algorithm.” in Proc. Congress on
Image and Signal Processing, Sanya, Hainan, 2008, pp. 554–558.

[22] S. T. Roweis and L. K. Saul. “Nonlinear Dimensionality Reduction by Locally Linear Embedding.”
Science, vol. 290, no. 5500, pp. 2323–2326, 2000.

[23] T. Shakunaga and K. Shigenari. “Decomposed Eigenface for Face Recognition under Various Lighting
Conditions.” in Proc. IEEE International Conference on Computer Vision and Pattern Recognition, Dec
2001.

[24] W. Zhao, R. Chellappa, A. Rosenfeld and P. Phillips. “Face Recognition: A Literature Survey.” ACM
Computing Surveys, vol. 35, no. 4, pp. 399–458, 2003.

[25] W. Yu, X. Teng and C. Liu. “Face Recognition Using Discriminant Locality Preserving Projections.”
Image and Vision Computing, vol. 24, no. 3, pp. 239–248, 2006.

[26] X. He and P. Niyogi. “Locality Preserving Projections.” in Proc. Conference Advances In Neural
Information Processing Systems 16, 2003, pp. 153–160.

[27] H. Bay, A. Ess, T. Tuytelaars and L. V. Gool. “SURF: Speeded Up Robust Features.” Computer Vision
and Image Understanding, vol. 110, no. 3, pp. 346–359, 2008.

[28] K. H. Lin, K. M. Lam, X. Xie and W. C. Siu. “An Efficient Human Face Indexing Scheme Using
Eigenfaces.” in Proc. IEEE International Conference on Neural Networks and Signal Processing, 2003,
pp. 920–923.

[29] P. Mohanty, S. Sarkar, R. Kasturi and P. J. Phillips. “Subspace Approximation of Face Recognition
Algorithms: An Empirical Study.” IEEE Trans. on Information Forensics and Security, vol. 3, no. 4, pp.
734–748, 2008.

[30] V. D. Kaushik, A. K. Gupta, U. Jayaraman and P. Gupta. “Modified Geometric Hashing for Face
Database Indexing.” in Proc. 7th international conference on Advanced Intelligent Computing Theories
and Applications: with Aspects of Artificial Intelligence, 2011, pp. 608–613.

[31] H. Wolfson and I. Rigoutsos. “Geometric Hashing: An Overview.” IEEE Computational Science and
Engineering, vol. 4, no. 4, pp. 10–21, 1997.

[32] Y. Lamdan and H. J. Wolfson. “Geometric Hashing: A General and Efficient Model-based Recognition
Scheme.” in Proceedings of the 2nd International Conference on Computer Vision, 1988, pp. 238–249.

[33] D. S. Bolme, J. R. Beveridge, M. L. Teixeira and B. Draper. “The CSU Face Identification Evaluation
System: Its Purpose, Features and Structure.” in Proc. 3rd International Conf. on Computer Vision
Systems, 2003.

[34] P. Viola and M. J. Jones. “Robust Real-time Face Detection.” International Journal of Computer Vision,
vol. 57, no. 2, pp. 137–154, 2004.

[35] H. Bay, T. Tuytelaars and L. V. Gool. “SURF: Speeded Up Robust Features.” in Proc. 9th European
Conference on Computer Vision, vol. 3951, 2006, pp. 404–417.

[36] T. Lindeberg. “Feature Detection with Automatic Scale Selection.” International Journal of Computer
Vision, vol. 30, no. 2, pp. 79–116, 1998.

[37] A. Jensen and A. L. Cour-Harbo. Ripples in Mathematics: The Discrete Wavelet Transform. Springer,
2001.

Jyotirmay Dewangan, Somnath Dey & Debasis Samanta

International Journal of Biometrics and Bioinformatics (IJBB), Volume (7) : Issue (2) : 2013 121

[38] J. L. Bentley. “Multidimensional Binary Search Trees Used for Associative Searching.” Communications
of the ACM, vol. 18, no. 9, pp. 509–517, 1975.

[39] A. Moore. “A Tutorial on Kd-trees.” Tech. Rep., University of Cambridge,1991, Internet:
http://www.cs.cmu.edu/simawm/papers.html [Nov. 20, 2011].

[40] P. J. Phillips, H. Moon, S. A. Rizvi and P. J. Rauss. “The FERET Evaluation Methodology for Face
Recognition Algorithms.” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 22, no. 10, pp.
1090–1104, 2000.

[41] “The Facial Recognition Technology (FERET) Database.” Internet: http://www.itl.nist.gov/iad/
humanid/feret/feret master.html [Dec. 10, 2011].

[42] “The Color FERET Database: Version 2.” Internet: http://www.nist.gov/itl/iad/ig/colorferet.cfm [Feb. 10,
2012].

[43] J. Phillips and P. J. Flynn. “Overview of the Face Recognition Grand Challenge.” in Proc. IEEE
Conference on Computer Vision and Pattern Recognition, Jun, 2005.

[44] P. J. Phillips, P. J. Flynn, T. Scruggs, K. W. Bowyer and W. Worek. “Preliminary Face Recognition
Grand Challenge Results.” in Proc. 7th International Conference on Automatic Face and Gesture
Recognition, 2006, pp. 15–24.

[45] “Face Recognition Grand Challenge (FRGC).” Internet: http://www.nist.gov/itl/iad/ig/frgc.cfm [May 8,
2012].

[46] G. Griffin, A. Holub and P. Perona. “Caltech-256 Object Category Dataset.” Tech. Rep., California
Institute of Technology, 2007.

[47] “CalTech 256.” Internet: http://www.vision.caltech.edu/Image_Datasets/Caltech256/ [Mar. 7, 2012]

[48] “The Open Source Computer Vision (OpenCV) Library.” Internet: http://opencv.willowgarage.com/
wiki/Welcome [Dec. 16, 2011].

[49] N. B. Puhan and N. Sudha. “A Novel Iris Database Indexing Method Using the Iris Color.” in Proc. 3rd
IEEE Conf. on Industrial Electronics and Applications (ICIEA 2008), Singapore, Jun 2008, pp. 1886–
1891.

[50] A. Gyaourova and A. Ross. “Index Codes for Multibiometric Pattern Retrieval.” IEEE Trans. on
Information Forensics and Security, vol. 7, no. 2, pp. 518–529, 2012.

[51] B. Bhanu and X. Tan. “Fingerprint Indexing Based on Novel Features of Minutiae Triplet.” IEEE Trans.
on Pattern Analysis and Machine Intelligence, vol. 25, no. 5, pp. 616–622, 2003.

[52] R. Cappelli, M. Ferrara and D. Maltoni. “Fingerprint Indexing Based on Minutia Cylinder-Code.” IEEE
Trans. on Pattern Analysis and Machine Intelligence, vol. 33, no. 5, pp. 1051–1057, 2011.

[53] J. R. Beveridge, D. Bolme, B. A. Draper and M. Teixeira. “The CSU Face Identification Evaluation
System.” Machine Vision and Applications, vol. 16, no. 2, pp. 128–138, 2005.

[54] S. Arya and D. M. Mount. “Algorithms for Fast Vector Quantization.” in Proc. of DCC ’93: Data
Compression Conference, Snowbird, UT, 1993, pp. 381–390.

[55] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman and A. Y. Wu. “An Optimal Algorithm for
Approximate Nearest Neighbor Searching in Fixed Dimensions.” Journal of the ACM, vol. 45, no. 6, pp.
891–923, 1998.

Jyotirmay Dewangan, Somnath Dey & Debasis Samanta

International Journal of Biometrics and Bioinformatics (IJBB), Volume (7) : Issue (2) : 2013 122

[56] M. Muja and D. G. Lowe. “Fast Approximate Nearest Neighbors with Automatic Algorithm
Configuration.” in Proc. International Conference on Computer Vision Theory and Applications
(VISAPP’09), 2009, pp. 331–340.

[57] “FLANN - Fast Library for Approximate Nearest Neighbors.” Internet:
http://www.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN [May 27, 2012].

