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Abstract 
 
This paper presents a novel numeral decomposer based on arithmetic criteria. It enables a new 
automatic learning process for numeral grammars that is universally applicable to all languages, 
as it is based on fundamental, language-independent arithmetic properties. Specifically, the 
arithmetic criteria depend on Hurford’s Packing Strategy but not on a base-10 assumption. 
Hurford’s Packing Strategy constitutes numerals by packing factors and summands to multipliers. 

We found out that a numeral of value 𝑛 has a multiplier larger than √𝑛, a summand smaller than 

𝑛/2 and a factor smaller than √𝑛. Using these findings, the numeral decomposer attempts to detect 
and unpack factors and summands in order to reverse Hurford’s Packing Strategy. We tested 
applicability for incremental unsupervised grammar induction in 257 languages. In this way, we 
obtained grammars with sensible mathematical attributes that explain the structure of numerals. 
The grammars induced by the numeral decomposer are often close to expert-made and more 
compact than numeral grammars induced by the modern state-of-the-art grammar induction tool 
GITTA. Furthermore, this paper contains a report about the few cases of incorrectly induced 
mathematical attributes, which are often linked to linguistic peculiarities like context sensitivity. 
 
Keywords: Numeral Words, Hurford’s Packing Strategy, Numeral Decomposition, Incremental 
Grammar Induction, Context Sensitivity in Numerals. 

 
 
1. INTRODUCTION 
1.1 Motivation and Related Work 
Text normalization tasks like detecting and forming complex numerals correctly consistently pose 
a challenge to neural networks (Sproat, 2022). Therefore, numeral grammars are often 
programmed manually (Akinadé & Ọdẹ́jọbí, 2014; Khamdamov et al., 2020; Rhoda, 2017). Numeral 
grammar induction is the way to automate the programming. The following numeral grammar 
induction approaches exist. 
 

• Hammarström (2008) proposed a method that subdivides a set of numerals into 𝑘-sized 
clusters based on a similarity measure. Then, generalizations can be made inside the 
clusters. 

• Flach et al. (2000) made a proposal for automatic learning of finite-state numeral 
grammars. 
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• Beim Graben et al. (2019) proposed that numerals may be added to a lexicon until a 
boundary is reached. Then, a penalty signal arises that urges the learner increasingly to 
summarize several numerals in a generalization. 

 
In a broader sense, the topic of numeral grammar induction is related to the linguistic theory of 
numerals and their computational modeling on the one hand, and to general grammar induction of 
natural language on the other hand. 
 
Regarding the linguistic theory of numerals, Brainerd (1966) collected seven studies on numeral 
grammars in different languages and attempted to draw general conclusions. Our work is mainly 
based on Hurford (2007). His theory is outlined in more detail in his book (Hurford, 2011). Other 
works on numeral morphology include Zabbal (2005), Veselinova (2020), and Žoha et al. (2022). 
Ionin and Matushansky (2006) discusses the morphology of complex numerals in the context of 
morphosyntax, i.e., the relation of the morphology to the sentence structure. Other related sources 
on numeral morphosyntax include Ivani (2017) and Martí (2020). Derzhanski and Veneva (2018) 
give a summary of exceptional phenomena in the structures of numerals. Specifically, for the 
number 58, Derzhanski (2025) describes structures of the numeral in 720 diverse languages. The 
study has been conducted based on WALS (Dryer & Haspelmath, 2013), a large database about 
structural properties of languages including chapters about numerals (Gil, 2013a, 2013b; Stolz & 
Veselinova, 2013). Andersen (2004) discusses implications of the structure of numerals in various 
languages on the question whether or not all humans use an universal grammar. Mendia (2018) 
and Anderson (2019) discussed epistemic numbers, i.e., generalized number phrases like 
’twentysome’. 
 
Grammar induction is a wide field of research that refers to the process of learning formal grammars 
from data. It arose in the 1990s (Carroll & Charniak, 1992; Klein & Manning, 2001; Stolcke & 
Omohundro, 1994). A systematic and detailed review of the literature on unsupervised grammar 
induction till 2019 was performed by Muralidaran et al., 2021. Notably, only 1 out of 33 reviewed 
studies presented an incremental grammar learning method, namely Seginer (2007). Since 2018, 
significant advancements have been made, particularly with deep learning and neural models, 
leading to more effective and scalable grammar induction techniques. In particular, Kim et al. (2019) 
showed that a neural parametrization of marginal dependencies enhances the induction of 
probabilistic context-free grammars. Shen et al. (2019) tested LSTMs with ordered neurons on a 
variety of tasks related to grammar induction. Other significant works on neural approaches include 
Htut et al. (2018) and Drozdov et al. (2019). Three of the newest tools for natural language grammar 
induction are GITTA (Winters & Raedt, 2020), ShortcutGrammar (Friedman et al., 2022), and 
LanguageLearner (Jon-And & Michaud, 2024). In this work, we use GITTA as a baseline method 
among Hammarström (2008), and Derzhanski and Veneva (2020). GITTA induces context-free 
grammars by using the Wagner-Fischer algorithm (Wagner & Fischer, 1974) to create common 
templates for similar expressions. Lately, Li et al. (2024) and Zhao et al. (2025) argued that 
heterogeneous data including vision or speech in addition to text can improve grammar induction. 
 
Our experiments show that our symbolic arithmetic-based approach outperforms state-of-the-art 
grammar induction approaches in numeral grammar induction, since it utilizes special sophisticated 
knowledge about the structure of numerals. 
 
1.2  Overview 
This work employs both, inductive and deductive, reasoning. Inductively, we establish a theory of 
the arithmetical relations between subnumerals and an idea how the theory can be applied in an 
algorithm to decompose numeral words. Deductively, we test and enhance the algorithm for the 
task of grammar induction in 257 natural languages. The developed numeral decomposer is 
supposed to reverse Hurford’s Packing Strategy (Hurford, 2011). The Packing Strategy—which is 
explained in Section 2 in more detail—constitutes a numeral word by packing 0, 1 or 2 numerals to 
a base morpheme 𝑀. In English, examples for base morphemes 𝑀 are ’teen’, ’ty’, ’hundred’, and 

’thousand’. The numerals packed to 𝑀 must be interpreted either by addition—in which case we 
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call them summands—or by multiplication—in which case we call them factors. Example: For the 
English numeral ’two hundred sixty’, two numerals are packed to the base morpheme ’hundred’, 
’two’ as a factor, and ’sixty’ as a summand. Therefore, our numeral decomposition algorithm is 
supposed to unpack the subnumerals ’two’ and ’sixty’ when parsing the input (260,’two hundred 

sixty’), and therefore, the desired output would be ’_ hundred _’(2, 60). In this regard, the algorithm 
works similarly to a part-of-speech-tagger, stemmer or parser (compare Alkhazi (2019), Sumamo 
and Teferra (2018), and Chorozoglou et al. (2021), respectively). 

In Section 3 we specify the objectives of the numeral decomposer. 

The algorithm requires knowledge about the parsed numeral’s number value, as well as a lexicon 
of number-numeral pairs that allows to recognize subnumerals. The algorithm evaluates found 
subnumerals based on arithmetic criteria presented in Section 4. Based on the criteria, it decides 
whether or not to unpack them. When assuming that the numeral must follow a base-10 system, 
criteria for decomposing are well known. One can calculate the decimal digits of the number value 

𝑛 as ⌊𝑛/10𝑘−1⌋(𝑚𝑜𝑑 10) for 𝑘 = 1,2, … and detect the numeral words of the digits inside 𝑛’s numeral 

word (compare Graben et al. (2019)). 

However, we do not assume a certain base system. Instead, we mainly rely on our finding that 
factors and summands of a numeral 𝑁 cannot have more than half of 𝑁’s value. Therefore, when 

𝑁’s value is 𝑛, being ≤ 𝑛/2  is a necessary criterion for a subnumeral of 𝑁 to be unpacked. Only 
this necessary criterion is used for a basic numeral decomposer that we present in Section 5.1. It  
works in standard cases, but it can fail if the numeral uses an unusual order of subnumerals, or if 
a certain critical subnumeral—such as ’veinte’ in ’veintiuno’—is not contained letter-by-letter. These 
details are described in Section 5.2. Extra unpacking criteria are established for an advanced 
numeral decomposer algorithm that fixes most errors of the basic version. The advanced algorithm 
is presented in Section 5.3. 
 
In Section 6, we discuss the performance of both numeral decomposer versions by reviewing 
induced grammars in 257 languages. 

1.3 Notations and Wordings 
In this subsection we establish our notation for numbers and numeral words. 

Specific numbers are normally written with Hindu-Arab digits. For number variables, we use lower 
case letters. If 𝑋 is a numeral word, then 𝑛(𝑋) denotes the number of 𝑋. Often, we will also denote 

𝑛(𝑋) by 𝑋’s lower-case letter 𝑥. 

Specific numerals or strings are written in quotation marks. The empty string is denoted by 𝜀. For 

numeral or string variables, we use capital letters. If 𝑥 is any kind of number expression, then 𝑁(𝑥) 

denotes the numeral of 𝑥 in the language dealt with1. Often, we will also denote 𝑁(𝑥) by 𝑥’s upper-

case letter 𝑋. By 𝒩, we denote the set of numeral words of natural numbers ℕ in the language 
dealt with2. 

 

 

 

 

                                                 
1 For the sake of simplicity, we assume that there is one unambiguous spelling for each numeral. Deviating 
spellings or names may be considered part of another language (variety). 
2 Numeral words only exist for a finite set of natural numbers in most languages, so 𝒩 and ℕ do not have a 
one-to-one correspondence. 

Examples: Numbers Numerals 

specific 6 ’six’ 

variable 𝑥 =  100 𝑋 =’one hundred’ 

dependent 𝑛(’six’⋅ 𝑋)  =  600 𝑁(6 + 𝑥)  =’one hundred and six’ 
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By ’⋅’ we denote the concatenation of strings. We use the same words for number relations to also 
describe relations between the respective numerals. The wordings  

”Numeral 𝑋 
is larger than / is smaller than / equals / is a divisor of / is a multiple of 

numeral 𝑌” 

mean that the numbers 𝑥 and 𝑦 have the respective relation. This allows us to describe arithmetic 
relations between two numerals or between a numeral and a number with less effort. 

Note that ”Numeral 𝑋 is larger than numeral 𝑌” should not be interpreted as if 𝑌 is a substring of 𝑋. 
In order to describe string relations between numerals we will only use the wordings ’is a 
substring/subnumeral/superstring/supernumeral of’ or ’contains’/’is contained in’. 

As mentioned before, the decomposer unpacks certain subnumerals out of a numeral. Suppose 

that in a numeral 𝑋 the subnumerals 𝑈1, . . . , 𝑈𝑘 are unpacked. This implies that 𝑋 =  𝑆1 · 𝑈1 · 𝑆2 ·. . .·

𝑈𝑘 · 𝑆𝑘+1 with strings 𝑆𝑖 . Then we present the decomposition as 

𝑋 = 𝑆1_𝑆2_. . . _𝑆𝑘+1(𝑈1, . . . , 𝑈𝑘) 

where the _ denote placeholders. The term 𝑆1_𝑆2_. . . _𝑆𝑘+1  can be seen as an epistemic number 

expression that would be spoken 𝑆1 · some · 𝑆2 · some... · 𝑆𝑘+1 (compare Mendia, 2018 and 
Anderson, 2019). In the following, S1_..._Sk+1 is interpreted as a function of numeral words, defined 

on a domain 𝒟 ⊂ 𝒩𝑘: 

         𝑆1_. . . _𝑆𝑘+1: 𝒟 → 𝒩, (𝑈1, . . . , 𝑈𝑘) ↦ 𝑆1 · 𝑈1 · 𝑆2 · 𝑈2 · 𝑆3 ·. . .· 𝑈𝑘 · 𝑆𝑘+1                            (1) 
 

We call 𝑆1_. . . _𝑆𝑘+1 the template or template function of the decomposition. Alternatively, when 𝑥 

and 𝑢1, . . . , 𝑢𝑘 are the numbers of the numerals 𝑋 and 𝑈1, . . . , 𝑈𝑘, we can present the decomposition 
with the numbers as 

𝑥 =  𝑆1_𝑆2_. . . _𝑆𝑘+1(𝑢1, . . . , 𝑢𝑘) 

The notation implies that 𝑆1_. . . _𝑆𝑘+1 can be interpreted as a number function on 𝔻 ⊂ ℕ𝑘: 

                      𝑆1_. . . _𝑆𝑘+1 ∶ 𝔻 → ℕ, (𝑢1, . . . , 𝑢𝑘) ↦ 𝑛(𝑆1 · 𝑁(𝑢1) · 𝑆2 ·. . .· 𝑁(𝑢𝑘) · 𝑆𝑘+1)                              (2) 

 
Example: In the English (en_GB)3 numeral 𝑋 = ’twenty-seven thousand and two hundred and six’, 

the subnumerals 𝑁(27) and 𝑁(206) can be unpacked. Then, we present the decomposition as 

𝑋 = _ thousand and _(’twenty-seven’,’two hundred and six’), or 

 27206 = _ thousand and _(27, 206). 

The resulting numeral function is 

_ thousand and_ : {𝑁(𝑑) | 𝑑 =  1, . . . ,999}2 → 𝒩, (𝑈1, 𝑈2) ↦ 𝑈1 · thousand and ·  𝑈2, 

                                                 
3 In parentheses, we mention the names of our datasets of a newly mentioned language, if they deviate from 

the mentioned name. 
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and the number function is 

_ thousand and _ : {1, . . . ,999}2 → ℕ, (𝑢1, 𝑢2) ↦ 𝑛(𝑁(𝑢1)  · thousand and ·  𝑁(𝑢2)). 

English speakers know that 𝑛(𝑁(𝑢1) ⋅ thousand and ⋅ 𝑁(𝑢2)) means 1000 ∗ 𝑢1 + 𝑢2. For the general 
case, however, such an arithmetical equation is not trivial to find. 

2. AXIOMS BASED ON HURFORD’S PACKING STRATEGY 
First, we briefly summarize the explanation of the Packing Strategy from Hurford (2007). Hurford 
says: ”The Packing Strategy is a universal constraint on numeral systems. It applies very widely to 
developed numeral systems. It is not a truism, but exceptions are rare. The Packing Strategy 
operates in conjunction with a small set of phrase structure rules, which are shared by all developed 
numeral systems.” These rules are given in Fig. 1. 

Hurford also mentioned that 

• in each rule, ”the sister constituent of NUMBER must have the highest possible value”. 

• ”the Packing Strategy says nothing about linear order, but only about the hierarchical 
dominance relationships between constituents of numeral expression”. 

Number → {
Digit

Phrase (NUMBER)
}      (Interpreted by addition) 

Phrase    → ( NUMBER) M                  (Interpreted by multiplication) 

FIGURE 1: Graphic originally from Hurford, 2007. Curly brackets indicate ’either/or’ options, Parentheses 
indicate optional choices. DIGIT is the category of basic lexical numerals, such as in English ’one’, ..., ’nine’. 
M is the category of multiplicative base morphemes, such as in English ’ty-’, ’teen’, ’hundred’, ’thousand’, or 

’million’. 

 

FIGURE 2: Reinterpreting Hurford’s idea of the composition of ’two-hundred sixty’ as a dependency tree. 

We establish a new interpretation of the Packing Strategy based on the following axioms. The 
reinterpretation is also in line with the theories of Zabbal (2005) and Ionin and Matushansky (2006). 
An example of the English numeral 𝑁(260) in Fig. 2 shows the generation of the numeral according 
to Hurford, as well as according to our reinterpretation. 
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Axiom 1. The wording of each compound numeral 𝑋 implies a calculation of its number value 𝑥 as 
𝑥 = 𝑓𝑎 ∗ 𝑚𝑢 + 𝑠𝑢, in which 𝑚𝑢 is the value of a multiplicative base morpheme from 𝑀 (see Figure 

1) and 𝑓𝑎 and 𝑠𝑢 are the ”factor” and ”summand” numbers.  

Justification. According to Hurford’s Packing Strategy, 𝑋 is composed of PHRASE (NUMBER), 

which should be interpreted as 𝑝ℎ𝑟𝑎𝑠𝑒(+𝑛𝑢𝑚𝑏𝑒𝑟). Further, PHRASE is composed of (NUMBER) 

M, which means (𝑛𝑢𝑚𝑏𝑒𝑟 ∗)𝑚. 

Combined, we have 𝑋 = (NUMBER) M (NUMBER), which means (𝑛𝑢𝑚𝑏𝑒𝑟 ∗)𝑚(+𝑛𝑢𝑚𝑏𝑒𝑟). After 
renaming the words, we have 𝑋 = (𝐹𝐴)𝑀𝑈(𝑆𝑈), which means (𝑓𝑎 ∗)𝑚𝑢(+𝑠𝑢). If both, 𝐹𝐴 and 𝑆𝑈, 

exist in 𝑋, then our assumption is established. 

If 𝐹𝐴 is left out, then 𝑋 means 𝑚𝑢 + 𝑠𝑢. In this case we interpret it so that 𝑋 contains 𝐹𝐴 as an 

empty string that implies the neutral factor 1. This invisible string does not have an effect on the 

meaning, since 𝑚𝑢 + 𝑠𝑢 =  1 ∗ 𝑚𝑢 + 𝑠𝑢, so it does not hide information either. 

Likewise, if 𝑆𝑈 is left out, then 𝑋 means 𝑓𝑎 ∗ 𝑚𝑢. In this case we interpret it so that 𝑋 contains 𝑆𝑈 

as an empty string that implies the neutral summand 0. This empty string does not have an effect 

on the meaning, since 𝑓𝑎 ∗ 𝑚𝑢 = 𝑓𝑎 ∗ 𝑚𝑢 + 0.  □ 

As showcased in the justification of Axiom 1, the supposed calculation 𝑓𝑎 ∗ 𝑚𝑢 + 𝑠𝑢 does not mean 

that the corresponding numeral words 𝐹𝐴, 𝑀𝑈 and 𝑆𝑈 are contained in 𝑋 literally. If an implied 
subnumeral 𝐹𝐴, 𝑀𝑈 or 𝑆𝑈 is not contained in 𝑋 literally, we call it a masked subnumeral. 
Subnumerals can be masked for several reasons, including the following. 

1. ’one hundred’: As already mentioned, if 𝑓𝑎 = 1 or 𝑠𝑢 = 0, then the implied subnumerals 

𝐹𝐴 and 𝑆𝑈 can be left out because of redundancy, e.g., in English one simply says 
’one hundred’ instead of ’one hundred and zero’. In many other languages, the ’one’ is 
also left out. 

2. ’thirteen’: Implied subnumerals can be subject to grammatical flexion, fusion with 
adjacent morphemes, or any other phenomenon that causes them to deviate from their 
standard form. E.g., in the English numeral ’thirteen’, both implied subnumerals ’three’ 
and ’ten’ are not literal subnumerals because of that. 

As a complement to Axiom 1, we assume: 

Axiom 2. Each subnumeral of 𝑋 not containing 𝑀𝑈 is 𝐹𝐴, 𝑆𝑈, or a subnumeral of those.  

Moreover, we establish a basic assumption on the arithmetical relations between 𝑓𝑎, 𝑚𝑢 and 𝑠𝑢. 

Axiom 3. In the implied calculation 𝑥 = 𝑓𝑎 ∗ 𝑚𝑢 + 𝑠𝑢 of a numeral 𝑋, we postulate that 𝑓𝑎 < 𝑚𝑢 

and 𝑠𝑢 < 𝑚𝑢. 

Justification. If 𝑓𝑎 ≥ 𝑚𝑢, then 𝑥 ≥ 𝑢2. Therefore, we suspect that a bigger multiplicative base 
morpheme number mu could have been used, which contradicts that ”the sister constituent of 
NUMBER [𝐹𝐴] must have the highest possible value”. If 𝑠𝑢 ≥ 𝑚𝑢, we question why the numeral 𝑋 

would not be formed as 𝐹𝐴′ ⋅ 𝑀𝑈 ⋅ 𝑆𝑈′ with 𝑛(𝐹𝐴′) = 𝑓𝑎 + 1 and 𝑛(𝑆𝑈′) = 𝑠𝑢 − 𝑚𝑢.  □ 

The established axioms are used in Section 4 to prove unpacking criteria that can distinguish the 
subnumerals 𝐹𝐴 and 𝑆𝑈—which are supposed to be unpacked—from other subnumerals. 

3. OBJECTIVES 
In this section we describe the practical objectives of the numeral decomposer algorithm. In Section 
6 we describe to what degree these objectives have been achieved. 
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We had initially stated that the goal is to design a numeral decomposer that mimics Hurford’s 
Packing Strategy, i.e., the factor word 𝐹𝐴 and the summand word 𝑆𝑈 should be unpacked. For the 
sole purpose of grammar induction, we state our objectives in a more pragmatic way. A flat list of 
number-numeral pairs 

{(1, ’one’), (2, ’two’), . . . (4, ’four’), . . . (14, ’fourteen’). . . }, 

is given as the input numeral data set. The numeral decomposer maps each numeral to a template. 
While for basic numerals like ’one’, ’two’, or ’four’ the template will be the numeral itself, a complex 
numeral like ’fourteen’ is mapped to ’_teen’. In either case, the numeral can be reconstructed from 
the template. In the cases of ’one, ’two’, and ’four’ the reconstruction is trivial, while in the case of 
’_teen’ the template has to be combined with another template ’four’ in order to reconstruct 
’fourteen’. Since the templates collectively reconstruct the numerals, the set of templates 
constitutes a lexicon that—with given grammar rules—generates the input data set. 

The lexicon of templates is smaller than the original list, because several numerals can share one 
template. E.g., if the numbers 14, 16, 17, 19 are decomposed as 

14 = _teen(4), 16 = _teen(6), 17 = _teen(7) and 19 = _teen(9), 

then four entries of the original list are replaced by one entry in the lexicon of templates. As 
described in Section 1.3, the template ’_teen’ can then be described as a function that operates in 
the domain {4, 6, 7, 9}. And a template ’_ hundred and _’ may comprise 9 ∗ 99 numerals in one entry. 
Overall, a reduction of lexicon is achieved if numerals are decomposed in a uniform way. 

Objective 1 (Compactness). The numeral decomposer should produce as few different templates 
as possible. 

However, templates should not be too uniform. Numerals that share a common template should 
have a reasonable relation. The English numerals ’twenty-one’ and ’twenty-seven thousand’ could 
both be mapped to the same template, which may be ’twenty-_’ or ’_-_’, even if their mathematical 
relation seems unreasonable. We define a reasonable relation in the following way: 

Objective 2 (Correctness). The functional equation of each template function must be affine linear. 

Finally, we comment on the frequent phenomenon of masked subnumerals. 

Comment on treatment of masked subnumerals: Masked subnumerals cannot be found or 
unpacked unless tolerant pattern recognition is involved. We decided not to include tolerance 
because it would leed to inaccurate grammars. If ’thir’ would get unpacked in ’thirty’ as if it was 
𝑁(3), then the decomposition _ty(3) = 30 would imply that 𝑁(3) ⋅’ty’ = ’threety’ is 𝑁(30) which is 
inaccurate. Generally, masked subnumerals usually constitute exceptions, and exceptions are 
unsuitable for generalization. 

4. UNPACKING CRITERIA 
Based on our new interpretation of Hurford’s Packing Strategy, we establish unpacking criteria, i.e., 
criteria that distinguish 𝐹𝐴, 𝑆𝑈 and their subnumerals from 𝑀𝑈 and its supernumerals. The 
unpacking criteria are mathematically proven under the following working assumption. 

Working assumption: If a numeral 𝑁 contains another numeral 𝑁′, then 𝑛′ ≤ 𝑛. 

We comment on the validity of this assumption at the end of this chapter. 

Unpacking Criterion 1 (Necessary Criterion). Let 𝑋 be a numeral. Let 𝑆 be a subnumeral of 𝑋 that 

is contained in 𝑋’s factor word 𝐹𝐴 or in 𝑋’s summand word 𝑆𝑈. Then 2 ∗ 𝑠 < 𝑥. 
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Proof. 𝑆 being contained in 𝐹𝐴 or 𝑆𝑈 implies 𝑠 ≤ 𝑓𝑎 or 𝑠 ≤ 𝑠𝑢. If 𝑠 ≤ 𝑓𝑎, then 

2 ∗ 𝑠 ≤ 2 ∗ 𝑓𝑎 ≤ 𝑚𝑢 ∗ 𝑓𝑎 ≤ 𝑓𝑎 ∗ 𝑚𝑢 + 𝑠𝑢 = 𝑥 

Thus, we have 2 ∗ 𝑠 < 𝑥 unless the numeral system is base 2 and 𝑚𝑢 = 2 and 𝑠𝑢 = 0. 

If 𝑠 ≤ 𝑠𝑢, then 

2 ∗ 𝑠 ≤ 2 ∗ 𝑠𝑢 = 𝑠𝑢 + 𝑠𝑢 < 𝑚𝑢 + 𝑠𝑢 ≤ 𝑓𝑎 ∗ 𝑚𝑢 + 𝑠𝑢 = 𝑥. 

Thus, in either case, 2 ∗ 𝑠 < 𝑥.  □ 

This criterion alone is sufficient for a basic numeral decomposer, see I. Maier and Wolff, 2022. 

Unpacking Criterion 2 (Sufficient Criterion). Let 𝑋 be a numeral. Let 𝑆 be a subnumeral of 𝑋 that 

satisfies 𝑠2 ≤ 𝑛. Then, 𝑆 is contained in 𝑋’s factor word 𝐹𝐴 or in 𝑋’s summand word 𝑆𝑈. 

Proof. If 𝑆 is neither contained in 𝐹𝐴 nor 𝑆𝑈, then by Axiom 2, 𝑆 contains 𝑀𝑈. Therefore we assume 

that 𝑠 ≥ 𝑚𝑢. Then, since 𝑓𝑎 < 𝑚𝑢 and 𝑠𝑢 < 𝑚𝑢, we have 

𝑠2 ≥ 𝑚𝑢2 = 𝑚𝑢 ∗ 𝑚𝑢 = (𝑚𝑢 − 1) ∗ 𝑚𝑢 + 𝑚𝑢 > (𝑚𝑢 − 1) ∗ 𝑚𝑢 + (𝑚𝑢 − 1) ≥ 𝑓𝑎 ∗ 𝑚𝑢 + 𝑠𝑢 = 𝑥 

Hence, 𝑆 must be contained in either 𝐹𝐴 or 𝑆𝑈.  □ 

The criteria can be used to decide whether or not to unpack subnumerals. The criteria do not only 
apply to 𝐹𝐴 and 𝑆𝑈 directly but also to all sub-subnumerals of those. Thus, in order to use the 
criteria, one may look for the longest subnumerals that still match the criteria. 

The criteria presented so far leave a gap for subnumerals valued between √x and 
x

2
, for which 

further unpacking criteria are needed. 
 
Next, we add a classification for subnumerals that are supposed to be unpacked despite not 
satisfying Unpacking Criterion 2: 

Unpacking Criterion 3 (Auxiliary Criterion). Let 𝑋 be a numeral. Let 𝑆 be a subnumeral of 𝑋 that 

does not contain 𝑋’s multiplier word 𝑀𝑈, but let 𝑠2 > 𝑥. Then, 𝑆 is 𝑆𝑈 or contained in 𝑆𝑈. 

Proof. By Axiom 2, 𝑆 must be equal or contained in either 𝐹𝐴 or 𝑆𝑈. If it is contained in 𝐹𝐴, then 

𝑠 ≤  𝑓𝑎, hence 

𝑠2 ≤ 𝑓𝑎2 < 𝑓𝑎 ∗ 𝑚𝑢 ≤ 𝑓𝑎 ∗ 𝑚𝑢 + 𝑠𝑢 = 𝑥 

Thus, 𝑆 must be contained in 𝑆𝑈.  □ 

The criteria 1-3 can be summarized as: 

𝑠 < √𝑛 ⇒ S is (contained in) FA or SU 

√𝑛< s < n/2    ⇒ S can be (contained in) SU 

n/2 < s⇒ S is not (contained in) FA or SU 
 

Subnumerals valued between √n and 𝑛/2 remain undecidable up to this point. Examples for such 
yet undecidable subnumerals are abundant. E.g., in English, 𝑁(26) = ’twenty-six’ has the 

summand word 𝑆𝑈 = 𝑁(6), but 62 > 26. Hence, it is not yet decidable whether 𝑁(6) is a summand 
or not. Without context, the algorithm cannot exclude that the numeral uses base 6 with 𝑥 = 4 ∗ 6 +
2, so 𝑁(6) would be the multiplier. The given counterexample is transferrable to any numeral 𝑛 in 

which 𝑠𝑢2 > 𝑛 = 𝑓𝑎 ∗ 𝑚𝑢 + 𝑠𝑢. This affects every third numeral as the ratio of pairs (𝑓𝑎, 𝑠𝑢) ∊
{1, … , 𝑚𝑢– 1}2 satisfying 𝑠𝑢2 > 𝑛 is 
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#{(𝑓𝑎, 𝑠𝑢) ∊ {1, … , 𝑚𝑢 − 1}2 𝑠𝑢2 > 𝑛}

#{1, … , 𝑚𝑢 − 1}2
=

∑ #{𝑠𝑢 |√𝑓𝑎 ∗ 𝑚𝑢 + 𝑠𝑢 < 𝑠𝑢 < 𝑚𝑢}𝑚𝑢−1
𝑓𝑎=1

#{1, … , 𝑚𝑢 − 1}2
 

=
∑ ⌊𝑚𝑢 − √𝑓𝑎 ∗ 𝑚𝑢 + 𝑛𝑢⌋𝑚𝑢−1

𝑓𝑎=1

(𝑚𝑢 − 1)2
≈

∫ 𝑚𝑢 − √𝑓𝑎 ∗ 𝑚𝑢   𝑑(𝑓𝑎)
𝑚𝑢

1

𝑚𝑢2
≈

1

3
 

For a working decomposer, we should close the gap of decision. We were not able to find a 
definitive solution. Instead, we use a leaky criterion based on the idea that 𝑠𝑢 is usually not a divisor 

of 𝑥. 

Unpacking Criterion 4 (Leaky Criterion). Let 𝑋 be a numeral to be interpreted as 𝑓𝑎 ∗ 𝑚𝑢 + 𝑠𝑢. 

Let 𝑆 be a subnumeral of 𝑋, such that 

• 𝑁(𝑓𝑎 ∗ 𝑚𝑢) is masked in 𝑋, 

• 𝑥/2 > 𝑠 > √𝑥 

• 𝑆 has no subnumerals. 

Then we assume that 𝑆 is a subnumeral of 𝑆𝑈 if and only if 𝑠 ∤ 𝑓𝑎 ∗ 𝑚𝑢. 

Justification. ⟸: Given that 𝑠2 > 𝑥, by Unpacking Criterion 3, 𝑆 cannot be contained in 𝐹𝐴. If 𝑠 ∤
𝑓𝑎 ∗ 𝑚𝑢, then 𝑆 cannot be 𝑀𝑈 either. 𝑆 can be 1)𝑁(𝑓𝑎′ ∗ 𝑚𝑢) with a subnumeral 𝐹𝐴′ of 𝐹𝐴 with 
𝑓𝑎′ ∤ 𝑓𝑎, or 2)𝑁(𝑚𝑢 + 𝑠𝑢′) with a subnumeral 𝑆𝑈′ of 𝑆𝑈, or 3)𝑆𝑈. Any 𝑁(𝑓𝑎′ ∗ 𝑚𝑢) or 𝑁(𝑚𝑢 + 𝑠𝑢′) 

is unlikely to be a subnumeral of 𝑋 given that 𝑁(𝑓𝑎 ∗ 𝑚𝑢) is masked. Also, they likely have 

subnumerals unlike 𝑆 does. Hence, we assume that 𝑆 is a subnumeral of 𝑆𝑈.  □ 

⟹: In this direction, we argue that there is no 𝑥 = 𝑓𝑎 ∗ 𝑚𝑢 + 𝑠𝑢 with 𝑁(𝑓𝑎 ∗ 𝑚𝑢) being masked, 𝑆𝑈 

having no subnumerals, 𝑠𝑢2 > 𝑥 and 𝑠𝑢|𝑓𝑎 ∗ 𝑚𝑢. Although this claim is not generally true, we 
explain why exceptions are rare and showcase which amount of coincidences they require. 

First, it is rare to have 𝑁(𝑓𝑎 ∗ 𝑚𝑢) masked, especially at higher numbers with 3 digits4 or more. 

And, even if a 3-digit numeral had 𝑁(𝑓𝑎 ∗ 𝑚𝑢) masked, it would still require 𝑁(𝑠𝑢) to have no 

subnumerals, which often means that 𝑠𝑢 is small, so it is unlikely that 𝑠𝑢2 > 𝑥. 

For 2-digit numbers, 𝑁(𝑠𝑢) is 1-digit, so there are few possibilities to construct an exception. In 

base 10, the only pairs (𝑓𝑎, 𝑠𝑢)—that satisfy the arithmetic properties 𝑠𝑢|𝑓𝑎 ∗ 𝑚𝑢 and  𝑠𝑢2 > 𝑓𝑎 ∗
10 + 𝑠𝑢—are (1, 5) and (4, 8). So, if in English 𝑁(48) would be ’fortaj-eight’, while 𝑁(40) would still 
be ’forty’, then ’eight’ can be suspected as a multiplier, because 8 | 48. Base 20 systems offer more 

space for exceptions. Arithmetically, with 𝑚𝑢 = 20 they are possible if (𝑓𝑎, 𝑠𝑢) ∊ 

{(1,10), (2,10), (3,10), (4,10), (3,12), (6,12), (7,14), (3,15), (6,15), (9,15), (4,16), (8,16), (9,18)}. 

Hence, whenever a vigesimal numeral has its subnumeral 𝑁(𝑓𝑎 ∗ 𝑚𝑢) masked, an exception could 

occur. It actually occurs in French (fr) where the numerals 𝑁(4 ∗ 20 + 𝑘) for 𝑘 = 1, . . . , 19 are spelled 

’quatre-vingt- ⋅ 𝑁(𝑘)’ and do not contain 𝑁(4 ∗ 20) = ’quatre-vingts’ letter-by-letter. The numerals 
𝑁(4 ∗ 20 + 10) =’quatre-vingt-dix’ and 𝑁(4 ∗ 20 + 16) = ’quatre-vingt-seize’ also fulfill the 

arithmetic requirements, and 𝑁(10)  = ’dix’ and 𝑁(16) = ’seize’ also do not have subnumerals. 

                                                 
4 ’Digit’ does not necessarily refer to base-10 digits here, but more generally to the coefficients 𝑐𝑖 

 in base-𝑏 representation 𝑐0 ∗ 𝑏0 + 𝑐1 ∗ 𝑏1 + . .. 
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Posing an exception to Unpacking Criterion 4 leeds to 𝑁(10) and 𝑁(16) being interpreted as 

multipliers, as will be seen later.  □ 

The use case for Unpacking Criterion 4 may not seem obvious, but in Section 5.3 we present a 
situation for which it is tailor-made. The leakiness of Unpacking Criterion 4 is not very problematic, 
as its failure can only cause a small lack in generalization (Objective 1) rather than a problematic 
overgeneralization (Objective 2). 

Comment on working assumption: Generally, it is possible that a numeral 𝑁 is smaller than its 

subnumeral. Derzhanski and Veneva (2018) mention two possibilities, namely when 𝑁’s structure 
involves overcounting (Dékány, 2025) or subtraction. These possibilities lead to logical violations 
of the unpacking criteria. However, the unpacking criteria keep their present validity for the main 
cases 𝑆 ∊ {𝐹𝐴, 𝑀𝑈, 𝑆𝑈} and since subtraction and overcounting only allow 𝑛′ to be slightly larger 

than 𝑛, there are few possibilities for logical violation. Such violation did not practically harm our 
grammar induction tests. 

5. NUMERAL DECOMPOSER ALGORITHM 
5.1 Basic Version 
In our study, we had first discovered Unpacking Criterion 1, and we noticed that it alone can drive 
a decent decomposition algorithm. Since it is just a necessary but not sufficient criterion, it may 
unpack subnumerals larger than 𝐹𝐴 and 𝑆𝑈. Specifically, 𝑚𝑢 and 𝑚𝑢 + 𝑠𝑢 are often < 𝑛/2. In the 

basic Algorithm 1, we circumvent this issue by setting a checkpoint so that 𝑁(𝑚𝑢) and 𝑁(𝑚𝑢 + 𝑠𝑢) 
are never tested on the criterion in the first place. 

Algorithm 1 Basic algorithm as pseudocode using Python syntax. 𝑐𝑝 stands for checkpoint. 

Function isNumeral returns 𝑇𝑟𝑢𝑒 iff the input string is a grammatically correct numeral word based 
on an available lexicon. 𝑛(𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔) is the number value of the numeral 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔. Instruction 

’Unpack 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔’ adds 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔 to a list of unpacked subnumerals. A ’Repack...’ instruction 
removes an entry from the list of unpacked subnumerals. 

1: Decompose 𝑛𝑢𝑚𝑒𝑟𝑎𝑙 
2: 𝑐𝑝 ← 0 

3: for 𝑒𝑛𝑑 in range (length(𝑛𝑢𝑚𝑒𝑟𝑎𝑙)) do: 

4:    for 𝑠𝑡𝑎𝑟𝑡 in range(𝑐𝑝:𝑒𝑛𝑑) do: 
5:       𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔 ← 𝑛𝑢𝑚𝑒𝑟𝑎𝑙[𝑠𝑡𝑎𝑟𝑡:𝑒𝑛𝑑] 

6:       if 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔 isNumeral then: 

7:          if 2 ∗ 𝑛(𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔) < 𝑛(𝑛𝑢𝑚𝑒𝑟𝑎𝑙) then: 
8:             Unpack 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔 

9:             Repack sub-substrings of 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔 that were unpacked before 
10:        else: 
11:            𝑐𝑝 ← 𝑒𝑛𝑑 
12:        end if 
13:        break 𝑠𝑡𝑎𝑟𝑡-loop 
14:      end if 
15:    end for 
16: end for 

 
For illustration, we describe the decomposition of the complex English numeral 𝑁(27001)  = 
’twenty seven thousand and one’. 

The 𝑒𝑛𝑑- and 𝑠𝑡𝑎𝑟𝑡-loops (lines 3,4) make the code check substrings of ’twenty-seven thousand 
and one’ in the order ’t’, ’tw’, ’w’, ’twe’, ’we’, ’e’, ’twen’, ’wen’... At [𝑠𝑡𝑎𝑟𝑡: 𝑒𝑛𝑑] = [0: 6], the 

subnumeral 𝑁(20) = ’twenty’ is found (ln. 6). Since 20 < 27001/2 (ln. 7), it gets unpacked (ln. 8). 

Then the 𝑠𝑡𝑎𝑟𝑡-loop breaks (ln. 13), so the next substring to check is ’twenty-’ at [𝑠𝑡𝑎𝑟𝑡: 𝑒𝑛𝑑] =
[0: 7] rather than ’wenty’ at [1: 6]. At [0: 12], 𝑁(27) = ’twenty-seven’ is found (ln. 6). Since 27 <
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27001/2 (ln. 7), it is also unpacked (ln. 8) and its previously unpacked sub-subnumeral 𝑁(20) =
 ’twenty’ is repacked (ln. 9). Moreover, 𝑠𝑡𝑎𝑟𝑡-loop breaks (ln. 13), so the next substring to check is 

’twenty seven ’ at [0: 13] and the algorithm will never see the 𝑁(7) = ’seven’ at [7: 12]. With lines 9 

and 13 we make sure that the factor word 𝑁(27) is unpacked in one rather than having 𝑁(20) and 

𝑁(7) being unpacked separately. At [0: 21], 𝑁(27000) = ’twenty-seven thousand’ is discovered. 
Since 27000 ≮ 27001/2 (ln. 7,10), it is not unpacked, but the 𝑠𝑡𝑎𝑟𝑡-loop breaks (l. 13), so the 

algorithm will continue at 𝑒𝑛𝑑 = 22. This way, it is avoided that the algorithm finds 𝑁(7000) at 

[7: 21] or 𝑁(𝑚𝑢)  =  𝑁(1000)5 at [13: 21]. If it would find 𝑁(7000) or 𝑁(1000), it would unpack it, 

since it is < 27001/2. Also, the checkpoint 𝑐𝑝 is reset to 21 (ln. 11), which makes the 𝑠𝑡𝑎𝑟𝑡-loop no 
longer check substrings with 𝑠𝑡𝑎𝑟𝑡 < 21 (ln. 4). This way, we avoid that 𝑁(7001) at [7: 29] or 

𝑁(1001) at [13: 29] may be found and unpacked. Instead, it will find 𝑁(1) next at [26: 29] (ln. 6) 
and unpack it (ln. 7). The algorithm terminates then (ln. 13) and—as intended—has unpacked the 
subnumerals 𝐹𝐴 = 𝑁(27) and 𝑆𝑈 = 𝑁(1). 

In order to describe such numeral decompositions systematically we use a format as in 
Decomposition 1. It contains a numeral description with all relevant information about the numeral, 
including the numeral’s language, number value, and desired decomposition and it visualizes all 
subnumerals of the numeral. A zero-based index scale facilitates referencing between [𝑠𝑡𝑎𝑟𝑡: 𝑒𝑛𝑑] 
values and substrings. The actual decomposition process is described by a table that explains the 
algorithm’s behaviour at every time when a subnumeral is found (ln. 6). 

Language: English   Number: 27001 = (20+7)*1000+1 

Index:       0 1 2 3 4 5 6 7 8 9 10  12    15        20        25    28 

Numeral:     t w e n t y - s e v e n   t h o u s a n d   a n d   o n e 

Subnumerals:|---N(20)---| |------------------N(7001)------------------| 

            |--------N(27)----------| |------------N(1001)------------| 

                          |--N(7)---| |----N(1000)----|         |-N(1)| 

            |------------------N(27000)---------------| 

                          |---------N(7000)-----------| 

Desired decomposition: _ thousand and _ (27,1) 

[𝑠𝑡𝑎𝑟𝑡: 𝑒𝑛𝑑]: [0: 6] [0: 12] [0: 21] [26: 29] 

Subnumeral: 𝑁(20) 𝑁(27) 𝑁(27000) 𝑁(1) 

Criterion: < 27001/2 < 27001/2 ≮ 27001/2 < 27001/2 

Checkpoint: 0 0 0 →  21 21 

Unpacked: {20} {27} {27} {27,1} 

References: ln. 7,8 ln. 7-9 ln. 10,11 ln. 7,8 

⇒_thousand and _(27,1) 

DECOMPOSITION 1: English ’twenty-seven thousand and one’ decomposed by basic Algorithm 1. 

The example of decomposing ’twenty-seven thousand and one’ showcases that the basic algorithm 
unpacks exactly 𝐹𝐴 and 𝑆𝑈 when all of the following 4 conditions are true. 

1. The subwords 𝐹𝐴, 𝑀𝑈 and 𝑆𝑈 are arranged in the order 𝐹𝐴 ⋅ 𝑀𝑈 ⋅ 𝑆𝑈. 

2. 𝑁(𝑓𝑎 ∗ 𝑚𝑢) is not masked. (Otherwise, the checkpoint is not reset properly, so  

𝑁(𝑚𝑢 + 𝑠𝑢) may be unpacked instead of 𝑁(𝑠𝑢).) 

                                                 
5 Officially, 𝑁(1000) is ’one thousand’ in English. However, we show that it even works if it was just spelled 

’thousand’. Same holds for ’thousand and one. 
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3. 𝑁(𝑚𝑢) ends at the same letter as 𝑁(𝑓𝑎 ∗ 𝑚𝑢) or is masked. (Otherwise, 𝑁(𝑚𝑢) may 
be unpacked.) 

4. 𝑁(𝑓𝑎) and 𝑁(𝑠𝑢) are not masked. (Otherwise, they cannot be found and unpacked.) 

Under these conditions, the algorithm perfectly reverses Hurford’s Packing Strategy. 
Decomposition 2 showcases that the basic version works fine with non-base-10 numerals. 

            Language: Tsez   Number: 86 = 4*20+6 

Index:       0       4       8 9       13 

Numeral:     u y n o q u n o   i ł n o 

Subnumerals:|-N(4)--|-N(20)-| |-N(6)--| 

            |----N(80)------| 

                    |-----N(26)-------| 

Desired decomposition: _ quno _ (4,6) 

 

⇒_ quno _(4,6) 

DECOMPOSITION 2: Tsez ’uynoquno iłno’ decomposed by basic Algorithm 1. 

The resulting template ’_quno _’ is obtained analogously when parsing any other Tsez numeral 
𝑁(𝑎 ∗ 20 + 𝑏) for (𝑎, 𝑏) ∊ {2,3,4} ⨯ {1, … ,19}. It constitutes a proper functional equation (𝑥1, 𝑥2) ↦
20𝑥1 + 𝑥2. 

In I. Maier and Wolff, 2022 we already published the present basic decomposition algorithm and 
showed that it is surprisingly well-rounded. However, it still has systematic errors, which we show 
in the following subsection. 

5.2 Problems of the Basic Algorithm 
In the last subsection we showed that errors do not appear if the parsed numeral has a generic 
𝐹𝐴 ⋅ 𝑀𝑈 ⋅ 𝑆𝑈 order, 𝑀𝑈 terminates exactly with 𝑀𝑈, and no subnumerals are masked. In this 
section, we show what errors can occur otherwise and what issues they can cause with respect to 
the objectives stated in Section 3. This is not a complete analysis of what errors could theoretically 
appear, but only a summary of what errors we found in our database of 257 languages, see Section 
6.1. 

Masked subnumerals: As stated in Section 3, masked subnumerals cannot be unpacked and they 
are not supposed to be unpacked. However, masked subnumerals can also cause a factor or 
summand not to be unpacked, even if the factor or summand itself is not masked, as the example 
of Spanish (es) 𝑁(25) = ’veinticinco’ shows (Decomposition 3). Here, since 𝐹𝐴 ⋅ 𝑀𝑈 = 𝑁(20) =
 ’veinte’ is masked, the checkpoint 𝑐𝑝 is not moved early enough. The algorithm only enters the if-

clause in line 6 for the first time at [0: 11] with the total numeral 𝑁(25) = ’veinticinco’. Nothing is 

unpacked because 25 > 25/2 (ln. 7) and the 𝑠𝑡𝑎𝑟𝑡-loop breaks (ln. 13), causing the algorithm not 

to find 𝑁(5) = ’cinco’ at all. 

              Language: Spanish Number: 25 = 20+5 

 Index: 0 6 10 

 Numeral: v e i n t i c i n c o 

 Subnumerals: |---N(5)--| 

     Desired decomposition: veinti_(5) 
  

[𝑠𝑡𝑎𝑟𝑡: 𝑒𝑛𝑑]: [0: 4] [0: 8] [9: 13] 

Subnumeral: 𝑁(4) 𝑁(80) 𝑁(6) 

Criterion: < 86/2 ≥ 86/2 < 86/2 

Checkpoint: 0 0 → 8 8 

Unpacked: {4} {4} {4,6} 

References: ln. 7,8 ln. 10,11 ln. 7,8 
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⇒veinticinco() 

DECOMPOSITION 3: Spanish ’veinticinco’ decomposed by basic Algorithm 1. 

The same issue concerns all Spanish numerals from 𝑁(21) to 𝑁(29). 

We state: An error can be caused by 𝑁(𝑓𝑎 ∗ 𝑚𝑢) being masked. 

Order of subnumerals: According to Hurford, the subnumerals 𝐹𝐴, 𝑀𝑈 and 𝑆𝑈 can be in a 
different order, since the rules in Fig. 1 only represent a hierarchy. 

Order 𝑆𝑈 ⋅ 𝐹𝐴 ⋅ 𝑀𝑈: This order of subnumerals does not generally cause an undue decomposition, 
as Decomposition 4 showcases. 

Language: Upper-Sorbian     Number: 61 = 1+6*10 

Index:       0         5 6       10        15 

Numeral:     j ě d y n a š ě s ć d ź e s a t 

Subnumerals:|---N(1)--| |--N(6)-| 

                        |-------N(60)-------| 

Desired decomposition: _a_ dźesat(1,6) 

 

⇒_a_dźesat(1,6) 

 

DECOMPOSITION 4: Upper-Sorbian ’jedynašěsćdźesat’ decomposed by basic Algorithm 1. 

Similar cases occur in Somali, Lower-Sorbian, Slovene, and many Germanic languages. The order 
𝐹𝐴 ⋅ 𝑆𝑈 ⋅ 𝑀𝑈 would be decomposed in the same way, but we have not found any real examples for 
it in our database. 

Order 𝑀𝑈 ⋅ 𝐹𝐴 ⋅ 𝑆𝑈: This order of subnumerals can cause 𝑀𝑈 instead of 𝐹𝐴 to be unpacked as 
Decomposition 5 showcases. 

 Language: Nyungwe Number: 34 = 10*3+4 

 Index: 0 2 7 10 14 20 22 

 Numeral: m a k ´ u m i m a t a t u n a z i n a i 

 Subnumerals: |--N(10)--| |--N(3)-| |-N(4)| 

|-----------N(30)-----------| 

Desired decomposition: mak´umi ma_ na zi_(3,4) 

 

 

 

 

[𝑠𝑡𝑎𝑟𝑡: 𝑒𝑛𝑑]: [0: 11] 

Subnumeral: 𝑁(25) 

Criterion: ≮ 25/2 

Checkpoint: 0 → 9 

Unpacked: {} 

References: ln. 10,11,13 

[𝑠𝑡𝑎𝑟𝑡: 𝑒𝑛𝑑]: [0: 5] [6: 10] [0: 16] 

Subnumeral: 𝑁(1) 𝑁(6) 𝑁(61) 

Criterion: < 61/2 < 61/2 ≮ 61/2 

Checkpoint: 0 0 0 →  16 

Unpacked: {1} {1,6} {1,6} 

References: ln. 7,8 ln. 7,8 ln. 10,13 
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   ⇒ma_ matatu na zi_(10,4) 

 

DECOMPOSITION 5: Nyungwe ’mak´umi matatu na zinai’ decomposed by basic Algorithm 1. 

The problem is that subnumeral 𝑁(𝑓𝑎 ∗ 𝑚𝑢)—that usually is the first to be ≥ 𝑛/2—is not finished 

by 𝑁(𝑚𝑢) but by 𝑁(𝑓𝑎), which lets the basic algorithm confuse 𝐹𝐴 with 𝑀𝑈. 

If 𝐹𝐴 is a compound numeral, the algorithm may only interpret an initial part of 𝐹𝐴 as 𝑀𝑈 as 
Decomposition 6 showcases.  

Language: Makhuwa     Number: 60 = 10*(5+1) 

 Index:       0                 9         14      18    21 

Numeral:     m i l o k o   m i t h a n u   n a   m o s a 

Subnumerals:|-----------N(50)-----------|       |--N(1)-| 

                              |---N(5)--| 

                              |-----------N(6)----------| 

Desired decomposition: miloko mi_(6)  

 

⇒miloko mithanu na_(1) 

DECOMPOSITION 6: Makhuwa ’miloko mithanu na mosa’ decomposed by basic Algorithm 1. 

The same issue would arise whenever 𝑀𝑈 stands before 𝐹𝐴, also in orders 𝑀𝑈 ⋅ 𝑆𝑈 ⋅ 𝐹𝐴 and  

𝑆𝑈 ⋅ 𝑀𝑈 ⋅ 𝐹𝐴. However, we did not find any numerals arranged like this. 

We state: An error can be caused if 𝑁(𝑚𝑢) appears before 𝑁(𝑓𝑎). 

We can generalize the statement to: An error can be caused if 𝑁(𝑚𝑢) ends before 𝑁(𝑓𝑎 ∗ 𝑚𝑢). 
An example is found in Suomi (Finnish, fi) (Decomposition 7). 

 Language: Suomi Number: 201 = 2*100+1 

 Index: 0 5 9 10 13 

 Numeral: k a k s i s a t a a y k s i 

Subnumerals:|---N(2)--|-N(100)| |--N(1)-| 

            |-------N(200)------| 

Desired decomposition: _sataa_(2,1) 

  

[𝑠𝑡𝑎𝑟𝑡: 𝑒𝑛𝑑]: [2: 7] [0: 13] [19: 22] 

Subnumeral: 𝑁(10) 𝑁(30) 𝑁(4) 

Criterion: < 34/2 ≮ 34/2 < 34/2 

Checkpoint: 0 0 →  13 13 

Unpacked: {10} {10} {10,4} 

References: ln. 7,8 ln. 7,8,9,13 ln. 7,8 

[𝑠𝑡𝑎𝑟𝑡: 𝑒𝑛𝑑]: [0: 14] [18: 22] 

Subnumeral: 𝑁(50) 𝑁(1) 

Criterion: ≮ 60/2 < 60/2 

Checkpoint: 0 →  14 14 

Unpacked: {} {1} 

References: ln. 10,11,13 ln. 7,8 

https://www.cscjournals.org/journals/IJCL/description.php


Isidor Konrad Maier & Matthias Wolff 

International Journal of Computational Linguistics (IJCL), Volume (15) : Issue (3) : 2025 49 
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php 

 

⇒__a_(2,100,1) 

 
DECOMPOSITION 7: Suomi ’kaksisataayksi’ decomposed by basic Algorithm 1. 

In this case, both 𝑁(𝑓𝑎) and 𝑁(𝑚𝑢) get unpacked, as neither is right at the end of 𝑁(𝑓𝑎 ∗ 𝑚𝑢). 

Overall, we have identified two causes of error: 

• Cause 1: Masked 𝐹𝐴 ⋅ 𝑀𝑈 (𝑁(𝑓𝑎 ∗ 𝑚𝑢) is no subnumeral). 

• Cause 2: Early 𝑀𝑈 (𝑁(𝑚𝑢) ends before 𝑁(𝑓𝑎 ∗ 𝑚𝑢) ends) 

These causes can lead to two different types of problems: 

• Type 1: 𝐹𝐴 or 𝑆𝑈 not getting unpacked, despite not being masked. 

• Type 2: 𝑀𝑈 getting unpacked. 

Either cause can lead to either type of problem. For each combination, an example numeral word 
is given in the following table. Each example has been explained in this subsection. 

 
Problems of type 1 lead to issues with lexicon size (Objective 1). Whenever a 𝐹𝐴 or 𝑆𝑈 is not 
unpacked in a numeral 𝑋 = 𝑁(𝑓𝑎 ∗ 𝑚𝑢 + 𝑠𝑢), the numeral 𝑋 cannot be identified with similar 

numerals like 𝑁(𝑓𝑎′ ∗ 𝑚𝑢 + 𝑠𝑢) or 𝑁(𝑓𝑎 ∗ 𝑚𝑢 + 𝑠𝑢′), so 𝑋 would need its own template. 

Problems of type 2 can cause wrong functional equations (Objective 2) because of undue 
generalization. As mentioned in Section 3, if in English 𝑁(21) − 𝑁(29) got generalized with 

𝑁(27000) to a single function twenty-_ with input set {1, . . . , 9, 7000}, a correct affine linear 
functional equation would not exist. 

5.3 Advanced Algorithm 
In this subsection, we explain how Algorithm 2 solves issues of the basic algorithm. In the following 
subsections, we show how the added lines 12-32 enhance lexicon size reduction and how the 
added lines 38-60 avoid overgeneralization. 

5.3.1 Dealing with lexicon reduction 
In this section we explain lines 1-37 in the advanced Algorithm 2. These code lines are built out of 
Algorithm 1 and the added lines 12-32. The added lines deal with errors of Algorithm 1 where 𝐹𝐴 

or 𝑆𝐴 did not get unpacked despite not being masked, such as in the cases of ’veinticinco’ and 
’mak´umi matatu na zinai’. Fixing these errors enhances desired generalizations of words, whereby 
𝐹𝐴 or 𝑆𝑈 can be replaced by other factor or summand words. In this way, the lexicon size can be 
reduced. We present use cases in the following examples.  

[𝑠𝑡𝑎𝑟𝑡: 𝑒𝑛𝑑]: [0: 5] [5: 9] [0: 10] [10: 14] 

Subnumeral: 𝑁(2) 𝑁(100) 𝑁(200) 𝑁(201) 

Criterion: < 201/2 < 201/2 ≮  34/2 < 34/2 

Checkpoint: 0 0 0 →  10 10 

Unpacked: {2} {2,100} {2,100} {2,100,1} 

References: ln. 7,8 ln. 7,8 ln. 10,11 ln. 7,8 

 𝐹𝐴 or 𝑆𝑈 not unpacked 𝑀𝑈 unpacked 

Masked 𝐹𝐴 ⋅ 𝑀𝑈 ’veinticinco’ ’quatre-vingt-seize’ 

Early 𝑀𝑈 ’mak´umi matatu na zinai’ ’kaksisataayksi’ 
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Algorithm 2 Advanced numeral decomposition algorithm. In the new lines 12-32, further criteria are added under 
which subnumerals can get unpacked. The new lines 38-60 are tests based on which unpacked multipliers are 
detected and repacked. 

1: Decompose 𝑛𝑢𝑚𝑒𝑟𝑎𝑙 
2: 𝑐𝑝 ←  0 
3: for 𝑒𝑛𝑑 in range(length(𝑛𝑢𝑚𝑒𝑟𝑎𝑙)) do: 
4:   for 𝑠𝑡𝑎𝑟𝑡1 in range(𝑐𝑝: 𝑒𝑛𝑑) do: 
5:        𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔 ←  𝑛𝑢𝑚𝑒𝑟𝑎𝑙[𝑠𝑡𝑎𝑟𝑡1: 𝑒𝑛𝑑] 
6:        if 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔 isNumeral then: 
7:   if 2 ∗ 𝑛(𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔) < 𝑛(𝑛𝑢𝑚𝑒𝑟𝑎𝑙) then: 
8:       Unpack 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔 
9:       Repack sub-substrings of 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔 that were unpacked before 
10:     else: 
11:        𝑐𝑝 ←  𝑒𝑛𝑑 
12:             for 𝑠𝑡𝑎𝑟𝑡2 in range(𝑠𝑡𝑎𝑟𝑡1 + 1, 𝑒𝑛𝑑) do: 
13:   𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔2 ←  𝑛𝑢𝑚𝑒𝑟𝑎𝑙[𝑠𝑡𝑎𝑟𝑡2: 𝑒𝑛𝑑] 
14:   if 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔2 isNumeral then: 

15:     if 𝑛(𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔2)2  ≤  𝑛(𝑛𝑢𝑚𝑒𝑟𝑎𝑙) then: 
16:          Unpack 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔2 
17:          Repack sub-substrings of 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔2 
18:          𝑐𝑝 ←  𝑠𝑡𝑎𝑟𝑡2 
19:          𝑚𝑎𝑦𝑏𝑒𝑈𝑛𝑝𝑎𝑐𝑘 ←  𝑁𝑜𝑛𝑒 
20:          break 𝑠𝑡𝑎𝑟𝑡2-loop 
21:     else if 𝑛(𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔2) ∤ 𝑛(𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔) and 𝑛(𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔2) ∗ 2 < 𝑛(𝑛𝑢𝑚𝑒𝑟𝑎𝑙) then: 
22:        𝑚𝑎𝑦𝑏𝑒𝑈𝑛𝑝𝑎𝑐𝑘 ←  𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔2 
23:        𝑚𝑎𝑦𝑏𝑒𝐶𝑃 ←  𝑠𝑡𝑎𝑟𝑡2 
24:     else: 
25:        𝑚𝑎𝑦𝑏𝑒𝑈𝑛𝑝𝑎𝑐𝑘 ←  𝑁𝑜𝑛𝑒 
26:     end if 
27:   end if 
28:        end for 
29:         if 𝑚𝑎𝑦𝑏𝑒𝑈𝑛𝑝𝑎𝑐𝑘 ≠ 𝑁𝑜𝑛𝑒 then: 
30:              Unpack 𝑚𝑎𝑦𝑏𝑒𝑈𝑛𝑝𝑎𝑐𝑘 
31:   𝑐𝑝 ←  𝑚𝑎𝑦𝑏𝑒𝐶𝑃 
32:        end if 
33:     end if 
34:     break 𝑠𝑡𝑎𝑟𝑡1-loop 
35:  end if 
36:     end for 
37: end for 
38: 𝑚𝑎𝑦𝑏𝑒𝑀𝑈 ← value-largest unpacked subnumeral 
39: 𝑜𝑡ℎ𝑒𝑟𝑈𝑛𝑝𝑎𝑐 ←  {unpacked subnumerals}  \ {𝑚𝑎𝑦𝑏𝑒𝑀𝑈} 
40: if length(𝑜𝑡ℎ𝑒𝑟𝑈𝑛𝑝𝑎𝑐) =  1 then: 
41:    if 𝑛(𝑚𝑎𝑦𝑏𝑒𝑀𝑈) + 𝑛(𝑜𝑡ℎ𝑒𝑟𝑈𝑛𝑝𝑎𝑐) = 𝑛(𝑛𝑢𝑚𝑒𝑟𝑎𝑙) then: 
42:     Repack 𝑚𝑎𝑦𝑏𝑒𝑀𝑈 
43:    else if 𝑛(𝑚𝑎𝑦𝑏𝑒𝑀𝑈) ∗ 𝑛(𝑜𝑡ℎ𝑒𝑟𝑈𝑛𝑝𝑎𝑐) = 𝑛(𝑛𝑢𝑚𝑒𝑟𝑎𝑙) then: 
44:  Repack 𝑚𝑎𝑦𝑏𝑒𝑀𝑈 
45:    end if 
46: else if length(𝑜𝑡ℎ𝑒𝑟𝑈𝑛𝑝𝑎𝑐) = 2 then: 
47:    if 𝑛(𝑜𝑡ℎ𝑒𝑟𝑈𝑛𝑝𝑎𝑐[0]) ∗ 𝑛(𝑚𝑎𝑦𝑏𝑒𝑀𝑈) + 𝑛(𝑜𝑡ℎ𝑒𝑟𝑈𝑛𝑝𝑎𝑐[1]) = 𝑛(𝑛𝑢𝑚𝑒𝑟𝑎𝑙) then: 
48:        Repack 𝑚𝑎𝑦𝑏𝑒𝑀𝑈 
49:    else if 𝑛(𝑜𝑡ℎ𝑒𝑟𝑈𝑛𝑝𝑎𝑐[1]) ∗ 𝑛(𝑚𝑎𝑦𝑏𝑒𝑀𝑈) + 𝑛(𝑜𝑡ℎ𝑒𝑟𝑈𝑛𝑝𝑎𝑐[0]) = 𝑛(𝑛𝑢𝑚𝑒𝑟𝑎𝑙) then: 

50:  Repack 𝑚𝑎𝑦𝑏𝑒𝑀𝑈 
51:    end if 
52: else if length(𝑜𝑡ℎ𝑒𝑟𝑈𝑛𝑝𝑎𝑐) > 2 then: 
53:  for 𝑢𝑛𝑝𝑎𝑐𝑘𝑒𝑑 in 𝑜𝑡ℎ𝑒𝑟𝑈𝑛𝑝𝑎𝑐 do: 
54:       𝑚𝑎𝑦𝑏𝑒𝐹𝐴 ←  𝑢𝑛𝑝𝑎𝑐𝑘𝑒𝑑 
55:       𝑚𝑎𝑦𝑏𝑒𝑆𝑈𝑠 ←  𝑜𝑡ℎ𝑒𝑟𝑈𝑛𝑝𝑎𝑐 \ {𝑚𝑎𝑦𝑏𝑒𝐹𝐴} 
56:       if 𝑚𝑎𝑦𝑏𝑒𝐹𝐴 ∗ 𝑚𝑎𝑦𝑏𝑒𝑀𝑈 + 𝛴(𝑚𝑎𝑦𝑏𝑒𝑆𝑈𝑠) = 𝑛(𝑛𝑢𝑚𝑒𝑟𝑎𝑙) then: 
57:   Repack 𝑚𝑎𝑦𝑏𝑒𝑀𝑈 
58:       end if 
59:      end for 
60: end if 
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Recall Decomposition 5. The factor ’tatu’ did not get unpacked due to early 𝑀𝑈 (Cause 2). In order 
to resolve the issue, in line 12, we open a second 𝑠𝑡𝑎𝑟𝑡2-loop that looks for more substrings 

𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔2 that end at the current 𝑒𝑛𝑑 (ln. 13), so that the factor ’tatu’ can be found at all. In line 

15, we check 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔2 for Unpacking Criterion 2. Since 32 ≤ 34, the if clause is entered and 
𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔2 = 𝑁(3) = ’tatu’ is unpacked in line 16. In detail, lines 1-37 of Algorithm 2 yield 
Decomposition 8 for ’mak´umi matatu na zinai’. 

 

 

⇒ma_ ma_ na zi_(10,3,4) 

DECOMPOSITION 8: Nyungwe ’mak´umi matatu na zinai’ decomposed by lines 1-37 of advanced Alg. 2. 

We will show in Subsection 5.3.2 that 𝑁(10) = ’k´umi’ will still get repacked by algorithm lines 38-

60. In this way the desired decomposition 34 = mak´umi ma_ na zi_(3, 4) will be obtained finally. 
Note the following details: 

1. In line 15, we use the sufficient Unpacking Criterion 2 rather than the necessary Unpacking 
Criterion 1 to avoid unpacking multiplier words. If we used Criterion 1 instead, errors would appear 
frequently in basic cases, like in English ’two hundred and one’. When 𝑁(100) = ’hundred’6 is 

found, Criterion 1 would unpack it, while Criterion 2 does not, since √201 < 100 < 201/2. 
2. In line 18, the checkpoint is reset from the current 𝑒𝑛𝑑 to the current 𝑠𝑡𝑎𝑟𝑡2. This becomes 

important in cases such as the following in which the order is 𝑀𝑈 ⋅ 𝐹𝐴 ⋅ 𝑆𝑈 and 𝐹𝐴 is a composed 
numeral. For a detailed understanding, compare Decomposition 6 with Decomposition 9. 

 

    ⇒miloko mi_(6) 

DECOMPOSITION 9: Makhuwa ’miloko mithanu na mosa’ decomposed by advanced Algorithm 2. 

Cause 1 (Masked 𝑁(𝑓𝑎 ∗ 𝑚𝑢)) has also caused summand words not to get unpacked by Algorithm 
1, such as in ’veinticinco’. In the case of ’veinticinco’, this issue is already resolved with lines 15-20 
of Algorithm 2 (see Decomposition 10). 

 

  ⇒veinti_(5) 

 

DECOMPOSITION 10: Spanish ’veinticinco’ decomposed by advanced Algorithm 2. 

                                                 
6 Here we assume that 𝑁(100) = ’hundred’ rather than ’one hundred’. Otherwise, the example works similar 

with 𝑁(201) in Deutsch or various other languages. 

[𝑠𝑡𝑎𝑟𝑡: 𝑒𝑛𝑑]: [2: 6] [0: 13] [9: 13] [19: 22] 

Subnumeral: 𝑁(10) 𝑁(30) 𝑁(3) 𝑁(4) 

Criterion: < 34/2 ≮ 34/2 ≤ √34 < 34/2 

Checkpoint: 0 0 →  13 13 →  9 9 

Unpacked: {10} {10} {10,3} {10,3,4} 

References: ln. 7,8 ln.10,11 ln.15,16 ln. 7,8 

[𝑠𝑡𝑎𝑟𝑡: 𝑒𝑛𝑑]: [0: 14] [9: 14] [9: 22] 

Subnumeral: 𝑁(50) 𝑁(5) 𝑁(6) 

Criterion: ≮ 60/2 ≤  √60 < 60/2 

Checkpoint: 0 →  14 14 →  9 9 

Unpacked: {} {5} {6} 

References: ln. 10 ln. 15,16,18 ln. 7,8,9 

[𝑠𝑡𝑎𝑟𝑡: 𝑒𝑛𝑑]: [0: 11] [6: 11] 

Subnumeral: 𝑁(25) 𝑁(5) 

Criterion: ≮ 25/2 ≤  √25 

Checkpoint: 0 →  11 11 →  6 

Unpacked: {} {5} 

References: ln. 10 ln. 15,16 
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Correct decompositions of 𝑁(21) = ’veintiuno’, ..., 𝑁(24) = ’veintiquatro’ are obtained 

analogously. However, for 𝑁(20 + 𝑥) with 𝑥 > 5, the summand 𝑥 is larger than √20 + 𝑥, so it does 
not satisfy Criterion 2. So, when processing ’veintiseis’ with Algorithm 2, lines 15-20 do not cause 
𝑁(6) = ’seis’ to be unpacked. Therefore, we added the else-if clause in line 21, to deal with 
numerals of order 𝐹𝐴 ⋅ 𝑀𝑈 ⋅ 𝑆𝑈 with masked 𝑁(𝑓𝑎 ∗ 𝑚𝑢). 

 
Usually, 𝑁(𝑓𝑎 ∗ 𝑚𝑢) is the substring that enters the else-clause in line 10, since it is > 𝑛/2. 

However, when 𝑁(𝑓𝑎 ∗ 𝑚𝑢) is masked, it never becomes 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔. Instead, another substring, at 

latest the total 𝑁 = 𝑁(𝑓𝑎 ∗ 𝑚𝑢 + 𝑠𝑢) itself, will eventually be > 𝑛/2. Precisely, it will be 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔 =
𝐹𝐴 ⋅ 𝑀𝑈 ⋅ 𝑆𝑈′, in which 𝑆𝑈′ is the minimal suffix of 𝑆𝑈 that makes 𝐹𝐴 ⋅ 𝑀𝑈 ⋅ 𝑆𝑈′ = 𝑁(𝑓𝑎 ∗ 𝑚𝑢 + 𝑠𝑢′) 
a proper numeral word. Then, after 𝐹𝐴 ⋅ 𝑀𝑈 ⋅ 𝑆𝑈′ has been processed (ln. 6,7,10), a 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔2 is 
browsed for. While the if-clause in line 15 checks Unpacking Criterion 2, the else-if-clause in line 
21 checks the remaining arithmetic requirements of Criterion 4 for 𝑆 = 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔2. Note that the 
requirement 𝑛(𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔2)|𝑓𝑎 ∗ 𝑚𝑢 is equivalent to 𝑛(𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔2)|𝑛(𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔), since 

𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔 = 𝑁(𝑓𝑎 ∗ 𝑚𝑢 + 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔2). In order to use Unpacking Criterion 4, it is still required that 

𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔2 has no subnumerals. Therefore, 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔2 is not immediately unpacked after passing 

line 21. Instead, it is saved as 𝑚𝑎𝑦𝑏𝑒𝑈𝑛𝑝𝑎𝑐𝑘 (ln. 22). If and only if another 𝑠𝑢𝑏𝑛𝑢𝑚𝑒𝑟𝑎𝑙2 is found 
inside 𝑚𝑎𝑦𝑏𝑒𝑈𝑛𝑝𝑎𝑐𝑘 at a later 𝑠𝑡𝑎𝑟𝑡2 (ln. 14), 𝑚𝑎𝑦𝑏𝑒𝑈𝑛𝑝𝑎𝑐𝑘 is reset again (ln. 19, ln. 22 or ln. 25). 

If not, then we assume that 𝑚𝑎𝑦𝑏𝑒𝑈𝑛𝑝𝑎𝑐𝑘 = 𝑆𝑈′ has no subnumerals and unpack it in line 30, as 

it fulfills the requirements of Criterion 4. In this way, the Spanish numeral 𝑁(26) = ’veintiseis’ gets 
decomposed properly by Algorithm 2 (Decomposition 11). 

 Language: Spanish Number: 26 = 20+6 

 Index: 0 6 9 

 Numeral: v e i n t i s e i s  

 Subnumerals: |--N(6)-| 

    Desired decomposition: veinti_ (6)  
 

 

⇒veinti_(6) 

 

 

DECOMPOSITION 11: Spanish ’veintiseis’ decomposed by advanced Algorithm 2. 

It works the same for 𝑁(27) − 𝑁(29). Also, for most French numerals of the shape ’quatre-vingt-

’⋅ 𝑋, the summand 𝑋 now gets unpacked properly (see Decomposition 12). 

However, since Criterion 4 is leaky, X can still remain packed in rare cases like Decomposition 13 
in which 𝑛(𝑋) ∣ 𝑛(’quatre-vingt-’⋅ 𝑋). 

The same issue also appears for ’quatre-vingt-dix’, which is decomposed _-_-dix(4, 20). A related 

issue appears in Decomposition 14 with the numerals 𝑁(97), 𝑁(98) and 𝑁(99), as their summand 

begins with the sub-subnumeral 𝑆𝑈′ = ’dix’ = 𝑁(10) and 𝑛(𝑆𝑈′)|𝑛(’quatre-vingt-’⋅ 𝑆𝑈′). 

This far we have attained proper unpacking of summand words. In the few cases in French in which 
summands are not unpacked, some lexicon efficiency is lost due to the leakiness of Unpacking 
Criterion 4. Specifically, the five numerals 𝑁(90) and 𝑁(96) − 𝑁(99) cannot be covered by the 
function _-vingt-_, but need their own separate lexicon entries. 

 

[𝑠𝑡𝑎𝑟𝑡: 𝑒𝑛𝑑]: [0: 10] [6: 10] 

Subnumeral: 𝑁(26) 𝑁(6) 

Criterion: < 26/2 < 26/2 ∧  | 26 ∧  𝑖𝑠 𝑎𝑡𝑜𝑚 

Checkpoint: 0 →  10 10 →  6 

Unpacked: {} {6} 

References: ln. 10 ln. 21,22,29,30 

https://www.cscjournals.org/journals/IJCL/description.php


Isidor Konrad Maier & Matthias Wolff 

International Journal of Computational Linguistics (IJCL), Volume (15) : Issue (3) : 2025 53 
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php 

          Language: French Number: 91 = 4*20+11 

 Index: 0 6 12   16 

 Numeral: q u a t r e - v i n g t - o n z e 

Subnumerals:|----N(4)---| |--N(20)--| |-N(16)-| 

Desired decomposition: _ -vingt-_ (4,11) 

 

 ⇒_-_-_(4,20,11) 

 

DECOMPOSITION 12: French ’quatre-vingt-onze’ decomposed by ln. 1-37 of advanced Alg. 2. 

 

 Language: French Number: 96 = 4*20+16 

 Index: 0 6 12 17 

 Numeral: q u a t r e - v i n g t - s e i z e 

Subnumerals:|----N(4)---| |--N(20)--| |--N(16)--| 

Desired decomposition: _- vingt-_ (4,16) 

 

 ⇒_-_-seize(4,20) 

DECOMPOSITION 13: French ’quatre-vingt-seize’ decomposed by advanced Algorithm 2. 

 

 Language: French Number: 99 = 4*20+19 

 Index: 0 6 12 16 20 

 Numeral: q u a t r e - v i n g t - d i x - n e u f 

Subnumerals:|----N(4)---| |--N(20)--| |-----N(19)-----| 

|--------------N(90)------------| |--N(9)-| 

                          |N(10)| 

Desired decomposition: _-vingt-_(4,19) 

[𝑠𝑡𝑎𝑟𝑡: 𝑒𝑛𝑑]: [0: 6] [7: 12] [0: 16] [13: 16] [17: 21] 

Subnumeral: 𝑁(4) 𝑁(20) 𝑁(90) 𝑁(10) 𝑁(9) 

Criterion: < 99/2 < 99/2 ≮ 99/2 ≰ √99 and |90 < 99/2 

Checkpoint: 0 0 0 →  16 16 16 

Unpacked: {4} {4,20} {4,20} {4,20} {4,20,9} 

References: ln. 7,8 ln. 7,8 ln. 10 ln. 24 ln. 7,8 

⇒_-_-dix-_(4,20,9) 

DECOMPOSITION 14: French ’quatre-vingt-dix-neuf’ decomposed by advanced Algorithm 2. 

[𝑠𝑡𝑎𝑟𝑡: 𝑒𝑛𝑑]: [0: 6] [7: 12] [0: 17] [13: 17] 

Subnumeral: 𝑁(4) 𝑁(20) 𝑁(91) 𝑁(11) 

Criterion: < 91/2 < 91/2 ≮ 91/2 ≮ 91/2 ∧  | 91 ∧is atom 

Checkpoint: 0 0 0 →  17 17 →  12 

Unpacked: {4} {4,20} {4,20} {4,20,11} 

References: ln. 7,8 ln. 7,8 ln. 10 ln. 21,22,29,30 

[𝑠𝑡𝑎𝑟𝑡: 𝑒𝑛𝑑]: [0: 6] [7: 12] [0: 18] [13: 18] 

Subnumeral: 𝑁(4) 𝑁(20) 𝑁(96) 𝑁(16) 

Criterion: < 96/2 < 96/2 ≮ 96/2 ≮ √96 and |96 

Checkpoint: 0 0 0 →  18 18 

Unpacked: {4} {4,20} {4,20} {4,20} 

References: ln. 7,8 ln. 7,8 ln. 10 ln. 24 
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5.3.2 Dealing with Overgeneralization 
As can be seen in the examples of ’mak´umi matatu na zinai’, ’kaksisataayksi’ and ’quatre-vingtdix’, 
whenever 𝑁(𝑚𝑢) ends before 𝑁(𝑓𝑎 ∗ 𝑚𝑢) (like ’k´umi’ in ’mak´umi matatu’, ’sata’ in ’kaksisataa’ 
and ’vingt’ in ’quatre-vingts’), then Algorithm 1 unpacks the multiplier despite our intention. This 
leads to decompositions like 80 = _-_s(4,20) or 201 = _ _a_(2,100). Such functions are prone to 

overgeneralization. Specifically, ’_ _a_’ cannot only generate Suomi numerals between 102 and 

103, but also numerals between 106 and 1012 when the second input is 𝑁(106) =’miljoona’ or 

𝑁(109) = ’miljardi’ instead of 𝑁(100) = ’sata’. This is an undue overgeneralization with respect to 
Objective 2, since ’_ _a_’ cannot work with an affine linear function in this value range. Algorithm 2 
overcomes this issue with the added lines 38-60. There, it looks for clues to detect an unpacked 
𝑀𝑈 in order to repack it. 

If a numeral 𝑋 has three unpacked subnumerals 𝑈1, 𝑈2, 𝑈3 that happen to satisfy 𝑢1 ∗ 𝑢2 + 𝑢3 = 𝑥 

with 𝑢1 < 𝑢2, then we suspect 𝑀𝑈 = 𝑈2, 𝐹𝐴 = 𝑈1 and 𝑆𝑈 = 𝑈3, hence we would repack 𝑈2. Note 

that first one would need to find the distribution of the unpacked subnumerals on the roles 𝐹𝐴, 𝑀𝑈 

and 𝑆𝑈. In light of Axioms 2 and 3, 𝑀𝑈 would always have the largest value of all. 

Thus, if we have three unpacked subnumerals, our strategy is: Set the value-largest unpacked 
subnumeral 𝑈𝑚𝑎𝑥 to 𝑚𝑎𝑦𝑏𝑒𝑀𝑈 (ln. 38), as we suspect it may be 𝑀𝑈. If the other two 𝑈1, 𝑈2 satisfy 

𝑢1 ∗ 𝑢𝑚𝑎𝑥 + 𝑢2 = 𝑥 (ln. 47) or 𝑢2 ∗ 𝑢𝑚𝑎𝑥 + 𝑢1 = 𝑥 (ln. 49), then we repack 𝑚𝑎𝑦𝑏𝑒𝑀𝑈 = 𝑈𝑚𝑎𝑥  (ln. 

48,50), as the suspicion 𝑈𝑚𝑎𝑥 = 𝑀𝑈 has been strengthened. 

If we have a number of unpacked subnumerals different from three, we use a similar strategy, as 
can be seen in lines 40-45 and 52-59 of Algorithm 2. 

With this fix, we were able to solve the errors of type 𝑀𝑈 unpacked on a large scale. 

For example, it solved the issue in the decomposition of ’kaksisataayksi’ = 201 = _ _a_(2, 100, 1), 
as the algorithm can find out that 2 ∗ 100 + 1 = 201 and detect 100 as a multiplier. By repacking 

𝑁(100), the desired decomposition 201 = _ sataa_(2, 1) is obtained. Likewise, it works in the cases 
of ’quatre-vingts’ and ’mak´umi matatu na zinai’. 

 
If, in the processing of ’quatre-vingt-seize’, Algorithm 2 would have unpacked the summand 
𝑁(16) = ’seize’ properly, then it would also repack the multiplier 𝑁(20) = ’vingt’ after noticing that 
96 = 4 ∗ 20 + 16. This would have led to the desired decomposition 96 = _-vingt-_(4, 16). Since 

’seize’ did not get unpacked, the algorithm only checks whether or not 96 = 4 ∗ 20 or 96 = 4 + 20 

and does not notice that 96 = 4 ∗ 20 + 16. By lacking this clue, ’vingt’ remains unpacked despite 
our intention. The same happened for ’quatre-vingt-dix’ and the ’quatre-vingt-dix’⋅ 𝑁(𝑦) for  

𝑦 ∊ {7, 8, 9}. However, the French numerals 𝑁(81) − 𝑁(89) and 𝑁(91) − 𝑁(96) are properly 

decomposed by Algorithm 2 as _-vingt-_(4, _). 

While many errors got fixed by lines 38-60, a few new ones were caused, such as in Decomposition 
15. 

Numeral 𝑁(80) = quatre-vingt 

⇓ 

𝑁(34) = mak´umi matatu na zinai 
⇓ 

Alg. 2 dec. till l. 37 _-_s(4, 20) 

⇓ 

ma_ ma_ na zi_(10, 3, 4) 

⇓ 

Finding 80 = 4 ∗ 20 

⇓ 

34 = 10 ∗ 3 + 4 
⇓ 

Diagnosis 𝑁(20) is 𝑀𝑈 

⇓ 

𝑁(10) is 𝑀𝑈 
⇓ 

Alg. 2 final dec. _-vingts(4) mak´umi ma_ na zi_(3, 4) 
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Language: Sakha     Number: 299 = 2*100+99 

Index:       0       4         9           15      18        23 

Numeral:     и к к и   с ү ү с   т о ҕ у с   у о н   т о ҕ у с 

Subnumerals:|--N(2)-| |-N(100)| |---N(9)--| |N(10)| |---N(9)--| 

            |------N(200)-----| |------N(90)------|       |N(3| 

                          |N(3|       |N(3| |------N(19)------| 

            |------------N(209)-----------| 

                      |-------N(109)------| 

            |----------------N(290)---------------| 

                      |-----------N(190)----------|  

                                |------N(90)------|  

                                      |---N(30)---|  

                      |-----------------N(199)----------------|  

                                |------------N(99)------------|  

                                      |---------N(39)---------|  

Desired decomposition: _ сүүс _(2,99) 

[𝑠𝑡𝑎𝑟𝑡: 𝑒𝑛𝑑]: [0: 4] [0: 9] [5: 9] [7: 9] [10: 15] … [10: 25] 

Subnumeral: 𝑁(2) 𝑁(200) 𝑁(100) 𝑁(3) 𝑁(9)  𝑁(99) 

Criterion: 
<

299

2
 ≮

299

2
 ≰  √299 ≤  √299 <

299

2
 

 
<

299

2
 

Checkpoint: 0 0 →  9 9 9 →  7 7 7 7 

Unpacked: {2} {2} {2} {2,3} {2,3,9} … {2,3,99} 

References: 7,8 10,11 24 15,16,18 7,8 7,8,9 7,8,9 

⇒_ сү_ _(2,3,99) 

⇒ Diagnosis: 299 = 3 ∗ 99 + 2 

⇒ 𝑁(99) is 𝑀𝑈 

⇒_ сү_тоҕус уон тоҕус(2,3) 

DECOMPOSITION 15: Sakha ’икки сүүс тоҕус уон тоҕус’ decomposed by advanced Algorithm 2. 

The Sakha (Yakut) numeral 𝑁(100) = ’сүүс’ accidentally contains 𝑁(3) = ’үс’, hence, in 𝑁(299), it 

gets unpacked among 𝑁(2) and 𝑁(99) due to its small value. Since 3 ∗ 99 + 2 = 299, there is the 
suspicion that 𝑁(99) is a multiplier, so it is repacked and the final decomposition is  

299 = _ сү_ тоҕус уон тоҕус(2, 3). Similar errors happen in 4 other languages: Breton, Rapa-Nui, 
Tok-Pisin, and Lachixio-Zapotec. Note that these errors do only minor damage, as they only require 
one extra lexicon entry for the single incorrectly decomposed numeral. 

6. EVALUATION 
We evaluated Algorithm 2 by testing it on data sets of numerals and analyzing the produced output 
lexica. The data sets are described in Subsection 6.1. The data set of English numerals < 1000 
induced the following lexicon of template functions: 

one: () ↦ 1  two:  () ↦ 2    three:  () ↦ 3 

four: () ↦ 4  five:  () ↦ 5  six:  () ↦ 6 

seven: () ↦ 7            eight:  () ↦ 8  nine:  () ↦ 9 

ten: () ↦ 10  eleven:    () ↦ 11  twelve:  () ↦ 12     

thirteen: () ↦ 13  _teen:  (𝑥) ↦ 𝑥 + 10  fifteen:  () ↦ 15 

-een: () ↦ 18  twenty:  () ↦ 20   twenty - _:  (𝑥) ↦ 𝑥 + 20 

thirty: () ↦ 30  forty:  () ↦ 40  forty - _:  (𝑥) ↦ 𝑥 + 40 

thirty-_: (𝑥) ↦ 𝑥 + 30       _ty:          (𝑥) ↦ 10 ∗ 𝑥       _ty -_:  (𝑥, 𝑦) ↦ 10 ∗ 𝑥 + 𝑦 

fifty:       () ↦ 50               _y:                  (𝑥) ↦80               _y -_:  (𝑥, 𝑦) ↦ 10 ∗ 𝑥 + 𝑦 

fifty - _:  (𝑥) ↦ 𝑥 + 50       _hundred: (𝑥) ↦ 100 ∗ 𝑥      _hundred and _:  (𝑥, 𝑦) ↦ 100 ∗ 𝑥 + 𝑦 
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We have left out the domains of the functions to save space. All functional equations are correct 
(Objective 2) and the lexicon comprises only 30 templates (Objective 1). It resembles expert-made 
grammars, as it is morphologically plausible. A broader and more comparative evaluation follows 
in the upcoming subsections. In Subsection 6.2 we compare three induced grammars with expert-
made gold standards. In Subsection 6.3 we analyze the correctness of all induced grammars 
(Objective 2), and in Subsection 6.4 the compactness (Objective 1). In Subsection 6.5 we attempt 
to present overall error statistics. 

6.1 Data 
From languagesandnumbers.com we obtained dictionaries of number-numeral pairs for numbers 
up to 999 in 242 languages, unless a language does not deliver numerals up to 999. 

From the Python package num2words, we got a dictionary of number-numeral pairs for numbers 
up to 1000 and a sample of 4-digit and 5-digit numbers in 35 languages. The sample contains the 

number 27206 and all 4- and 5-digit numbers that we could reasonably imagine to be contained in 

𝑁(27206) as a subnumeral in a base-10 system, which are 

         1002, 1006, 1100, 1200, 1206, 7000, 7002, 7006, 7100, 7200, 7206, 10000, 17000, 

  17200, 17206, 20000, 27000, 27006 and 27200.     (3) 

In base 20 or other base X systems, other subnumerals would be conceivable, but all base-20 
system languages that we have in our database either transition into base 10 when numbers 
become bigger, or the database does not have numerals for numbers over 1000. 13 of the 
languages from num2words are not obtained from languagesandnumbers.com. 

Using the TeX code from Derzhanski and Veneva (2020), we generated Birom numerals till 120 

and Yoruba numerals till 184. These 2 languages are not included in the other sources. 

All data sets only contain the standard grammatical forms of the numerals, since we assume that 
any challenge that an alternate form may pose on the performance of the numeral decomposer 
comes up in an analogous form in another language. 7 In Appendix A, all data sets are listed. 

6.2 Comparison with Expert-Made Grammars 
In this subsection, we compare three expert-made grammars with their numeral-decomposer-
induced counterparts. Derzhanski and Veneva (2020) present TeX implementations of grammars 
for Bulgarian numerals till 99, Birom numerals till 120 and Yoruba numerals till 184. The grammars 
come from solutions of exercises of the International Linguistic Olympiad and other linguistic 
contests. The authors chose Bulgarian, Birom, and Yoruba because their numeral systems offer a 
great variety of features. In particular, Bulgarian uses a standard base-10 system with subnumeral 
order factor-multiplier-summand, Birom uses a base-12 system involving backward counting and 
order multiplier-factor-summand, and Yoruba uses a combination of base 20 and base 10 with even 
more backward counting and order summand-multiplier-factor. 

Table 1 shows a direct comparison of induced and expert-made grammar for Birom. 

Comparisons for Bulgarian and Yoruba can be found in Appendix B. Notably, for Bulgarian both 
numeral decomposer version induced the same grammar as the experts, so they worked perfectly. 

In order to evaluate the other comparisons, we calculate the accuracy value that Hammarström 
(2008) used. He interprets grammars as clusters, with each cluster representing the set of 
expressions generated by a single rule. Accuracy is defined as 

                                                 
7 The interested reader may challenge this claim by testing the decomposer published on GitHub, see I. K. 

Maier, 2023. 
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𝐴𝑐𝑐 =

1

|𝐼|
∑ 𝑝𝑟𝑒𝑐(𝑟, 𝐺) +

1

|𝐺|
∑ 𝑝𝑟𝑒𝑐(𝑟, 𝐼)𝑟∊𝐺𝑟∊𝐼

2
 with 

𝑝𝑟𝑒𝑐(𝑟, 𝑋) =  
|𝑟| − |{𝑟𝑥 ∊ 𝑋  | 𝑟 ∩ 𝑟𝑥 ≠ ∅}| + 1

|𝑟|
. 

The formula is similar to cluster purity, see Manning et al., 2008, chapter 16.3. While purity 
measures how much of one induced rule can be covered by one gold rule, accuracy measures how 
many gold rules it takes to cover one induced rule completely. 

Induced grammar Expert-made grammar 

Rule/Function Values Rule/Function Values 

ATOMS 1, . . . ,8,12 ATOMS 1, . . . ,8,12 

Sāā_ 
(𝑥) ↦ −1𝑥 + 12 

9,10,11 Sāā_ 
(𝑥) ↦ −1𝑥 + 12 

9,10,11 

bākūrū bı̄_ 
(𝑥) ↦ 12𝑥 

12𝑥 for 

𝑥 ∊ {2, … ,8} 
bākūrū bı̄_ 
(𝑥) ↦ 12𝑥 

12𝑥 for 

𝑥 ∊ {2, … ,8} 
bā_ Sāābı̄_  
(𝑥, 𝑦) ↦ 12𝑥 − 12𝑦 

180, 120 bā_ Sāābı̄_  
(𝑥, 𝑦) ↦ 12𝑥 − 12𝑦 

180, 120 

kūrū na gwĒ _ 
(𝑥) ↦ 13                          

13 _ na gwĒ _                      
(𝑥, 𝑦) ↦ 𝑥 + 𝑦                       
 

12𝑥′ + 1 for 

𝑥′ ∊ {1, . . . ,9} 
bākūrū bı̄_ na gwĒ _             
(𝑥, 𝑦) ↦ 12𝑥 + 𝑦                      

12𝑥 + 1 for 

𝑥 ∊ {2, . . . ,8} 
bā_ Sāābı̄_ na gwĒ _ 
(𝑥, 𝑦, 𝑧) ↦ 109                     

109 

kūrū na vE_ 
(𝑥) ↦ 𝑥 + 12                           

14, . . . ,23 _ na vE_          
(𝑥, 𝑦) ↦ 𝑥 + 𝑦         

12𝑥′ + 𝑦 for 

𝑥′ ∊ {1, . . . ,9} 
𝑦 ∊ {2, . . . ,11} 
 
 

bākūrū bı̄_ na vE_                  
(𝑥, 𝑦) ↦ 12𝑥 + 𝑦                       
 

12𝑥 + 𝑦 for  

𝑥 ∊ {2, . . . ,8} 
𝑦 ∊ {2, . . . ,11} 

bā_ Sāābı̄_ na vE_ 
(𝑥, 𝑦, 𝑧) ↦ 8𝑥 + 4𝑦 + 𝑧                

110, . . . ,119 

 

TABLE 1: An advanced-numeral-decomposer induced grammar for Birom language in comparison with an 
expert-made gold standard. The decomposer has about the same idea as the expert but it splits up  

’_na gwĒ _’ and ’_ na vE_’ in three functions to avoid overgeneralization. 

 

 

 

TABLE 2: Accuracy values (Hammarström, 2008) of grammars induced by basic and advanced numeral 
decomposer in relation to Derzhanski and Veneva (2020)’s expert-made grammars. For Bulgarian, both 

decomposer versions induced the same grammar as the experts made. 

For the Birom induced grammar, we calculate an accuracy of 99.13 %. All induced rules can be 

covered with one single expert-made rule, so 𝑝𝑟𝑒𝑐(𝑟, 𝐺) = 1 for all 𝑟 ∊ 𝐼. Out of the 𝑟 ∊ 𝐺, the 9 
atoms and the 3 functions ’Sāā_’, ’bākūrū bı̄_’ and ’bā_ Sāābı̄_’ are covered by one single induced 
rule each, while ’_ na gwĒ _’ and ’_ na vE_’ are covered by 3 rules. Thus  

𝐴𝑐𝑐𝐵𝑖𝑟𝑜𝑚 =
1 +

1

14
(12.1 +

9−3+1

9
+

90−3+1

90
)

2
= 0.9913. 

Accuracies Bulgarian      Birom          Yoruba 

Advanced Numeral Decomposer 100%            99.13%        98.73% 

Basic Numeral Decomposer 100%            89.28%        89.06% 

https://www.cscjournals.org/journals/IJCL/description.php


Isidor Konrad Maier & Matthias Wolff 

International Journal of Computational Linguistics (IJCL), Volume (15) : Issue (3) : 2025 58 
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php 

The accuracies of the other induced grammars can be found in Table 2. For comparison, the 
numeral grammars induced by Hammarström (2008) had an average accuracy of 71.56 % and 

amedian accuracy of 90 %. 

6.3 Regarding Correct Functional Equations 
For the induced grammars, the functional equation of each template is calculated by affine linear 
regression. A functional equation of a template is correct if it computes the correct number value 
for each numeral generated by the template. This subsection reports on all incorrect functional 
equations found in our data. 

We note that apart from our data, which do not go beyond 106, big English numeral words like 
’trillion’, ’quadrillion’, ’quintillion’ etc. are related to the Latin numerals ’tria’, ’quattuor’, ’quinque’, 
while the impact of these implied subnumerals is not linear but exponential. 

Inside our data, we have summarized a report regarding Objective 2 in the following table. Not all 
errors are caused by bad decomposition. Some occurred due to unintuitive context sensitivity, 
which we will explain later. 

 

 

 

 

 

In 243 out of 257 languages, the advanced numeral decomposer did not do any undue 

generalizations. So, for each template function in these 243 languages, an affine linear equation 
was found that interprets all its output numerals with the correct number value. 

In the 14 remaining languages, undue generalizations led to inexact functional equations and thus 
incorrect interpretations of numerals. 

In 11 out of the 14 failed languages, we consider the wrong interpretation reasonable enough that 
humans could misinterpret them as well. 

In many of these cases, we suspect that the data from languagesandnumbers.com have errors: In 
6 languages, Purepecha, Susu, Dogrib, Tunica, Yao, and Yupik, we found pairs of numbers with 
exact same numeral. It is also concievable that these pairs actually differ in intonation or something, 
and the differences are just not visible in the delivered written form. We also suspect wrong data in 
Haida, which we explain later. 

In the other 5 languages out of the 11, context sensitivities led to errors, i.e., there are compound 

numerals 𝑋 ⋅ 𝑌 and 𝑋′ ⋅ 𝑌′, in which (𝑋, 𝑋′) and (𝑌, 𝑌′) are pairs of intuitively similar numerals but 
the calculation of 𝑛(𝑋 ⋅ 𝑌) out of 𝑥 and 𝑦 is fundamentally different from the calculation of 𝑛(𝑋′ ⋅ 𝑌′) 

out of 𝑥′ and 𝑦′: 

Choapan-Zapotec: While 𝑁(1) = ’tu’, 𝑁(2) = ’chopa’ and 𝑁(3) = ’tzona’, and ’chopa galo’ and 

’tzona galo’ mean 2 ∗ 20 and 3 ∗ 20, respectively, the numeral ’tu galo’ means 20 − 1 instead of  

1 ∗ 20. 

Nume: When a 1-digit numeral 𝑆 (in base 10) is affixed to ’muweldul ’, then it means 100 ∗ 𝑠, but if 

𝑆 is a 2-digit numeral, then is means 100 + 𝑠. 

Farsi (Persian): In the Latin-transcripted form, we have 𝑁(600) =’sheshsad’, composed as 

𝑁(6) ⋅’sad’. The numeral 𝑁(300) is similarly composed, but 𝑁(3) =’se’ gets inflected to ’si’, which 

Error causes Languages 

Bad decomposition 3: Tongan, Kiribati, Nyungwe 

Context sensitivity 4: Choapan-Zapotec, Nume, Farsi (Persian), Hebrew (he) 

Incorrect input data(?) 7: Haida, Purepecha, Susu, Dogrib, Tunica, Yao, Yupi 

No errors 243: the rest 
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accidentally is 𝑁(30), so we have a template _sad mapping 6 to 600 and 30 to 300. Actually, an 

affine linear equation 𝑥 ↦ 600 +
300−600

30−6
∗ (𝑥 − 6) is still construable, but for code efficiency reasons 

we have only allowed integer coefficients for the functional equations. 

Haida: While 𝑁(2) = ’sdáng’, 𝑁(3) = ’hlgúnahl’ and 𝑁(8) = ’sdáansaangaa’, and ’lagwa uu sdáng’ 

and ’lagwa uu hlgúnahl’ mean 2 ∗ 20 and 3 ∗ 20, respectively, according to languages and 
numbers.com the numeral ’lagwa uu sdáansaangaa’ means 80 instead of 8 ∗ 20. We suspect that 

this is wrong information, since according to omniglot.com, 80 means ’lagwa uu stánsang’, which 

is logical since ’stánsang’ = 𝑁(4). 

Hebrew: While 𝑁(3) 𝑁(4) ,’שלוש’ = and 𝑁(10) ’ארבע’ = and 3 ,’עשר’ = ∗ 10 and 4 ∗ 10 are 
written ’שלושים’ and ’ארבעים’, respectively, the numeral ’עשרים’ means 10 + 10 instead of 10 ∗ 10.  

In the 3 remaining languages, undue generalizations were made due to bad decompositions: 

In Tongan-Telephone-Style, numbers are—with some minor inflections—simply called by the 
sequence of their decimal digits. The total lack of multiplier words leads to various words being 
identified with the template _ _. This template can sometimes mean (𝑥0, 𝑥1) ↦ 10 ∗ 𝑥0 + 𝑥1 for 2-

digit numerals and sometimes (𝑥0, 𝑥1) ↦ 100 ∗ 𝑥0 + 𝑥1. The fact that the rough value size of a 
numeral cannot be instantaneously estimated during reading—as any further number of digits could 
still be added— also makes it impossible to make proper use of the separated 𝑠𝑡𝑎𝑟𝑡2-loop in the 
algorithm. One could argue that this language does not really follow Hurford’s Theory of Numerals. 
This can be justified by an argument that the development of this numeral language is more 
influenced by telecommunication technology than by nature, so those numerals may not be 
considered a natural part of a language. 

In Gilbertese (Kiribati), the numerals 𝑁(90) and 𝑁(900) can accidentally be presented as ru ⋅ 𝑁(40) 

and ru ⋅ 𝑁(400). This causes the numerals 𝑁(90 + 𝑠) and 𝑁(900 + 𝑠) to be decomposed ru_(40 +
𝑠) and ru_(400 + 𝑠), respectively. A unification of these templates ru_ has no proper affine linear 

equation, since the points (41, 91), (42, 92), (401, 901) do not lie on a straight line. 

In Nyungwe, again multipliers got unpacked and generalized. The numerals 𝑁(31), 𝑁(41), 𝑁(301), 
and 𝑁(401) got all identified with the template ma_ ma_ na ibodzi with the inputs 

(10, 3), (10, 4), (100, 3), and (100, 4), respectively. As these input-output combinations do not lie on 
a straight surface, an affine linear functional equation for the template ma_ ma_ na ibodzi does not 
exist. 

6.4 Regarding Lexicon Sizes 
In this subsection, we discuss the lexicon sizes of numeral-decomposer induced grammars, which 
according to Objective 1 should be as small as possible. Lexicons containing undue generalization, 
as reported in Subsection 5.2, are not excluded. Some data sets have been removed from the 
analysis to avoid having two data sets for one language. 

Fig. 3 shows how many different template functions the two numeral decomposer versions induce 
to cover the numerals from 1 to 1000 plus the sample of 4 to 5-digit numbers (Eq. 3) in 34 
languages. The languages are sorted by the y values of the advanced version, so one can conclude 
that, e.g., in 24 of the 34 languages, the advanced numeral decomposer covers the numerals in 50 

templates or less. Fig. 4 shows the number of induced templates for numerals up to 999 and 399, 

respectively. For these ranges of values, we have data from over 200 languages. Therefore, the x 
axis does not show the names of the languages, but it represents their ordinal positions with respect 
to the number of advanced-numeral-decomposer induced template functions. The plots imply that 
the advanced numeral decomposer induces compact numeral grammars in most languages. In 168 

out of 202 languages, it maps the numerals till 999 to 50 templates or less. In only 8 languages, it 

produces over 100 different templates, which are Bavarian, Makhuwa, Hayastani (Armenian), 
Kartvelian (Georgian), Zulu, Timbisha, Xhosa and Kannada (kn). These languages have in 
common that most subnumerals of compound numerals are masked due to dropping or inflecting 
their last or first letter(s). 
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FIGURE 3: Sizes of grammars induced by numeral decomposer versions for numerals of numbers 1 − 1000 

and the numbers in Equation 3. 

 

FIGURE 4: The black data points show in how many languages the advanced numeral decomposer induced 

less than 100, 50 or 25 different template functions to cover numerals till 999 (top) or till 399 (bottom). Only 

about a sixth of the languages got more than 50 templates to get their numerals till 999 covered. The grey 

data points show that the basic decomposer induces much larger grammars in some languages. 
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FIGURE 5: Context-free-grammar induction by numeral decomposers and by GITTA. In about two thirds of 

the languages the advanced numeral decomposer induces exact CFGs for numerals till 99 with less than 50 

rules. GITTA’s CFGs are mostly larger. 

 
FIGURE 6: In about two thirds of languages the CFGs induced by the advanced decomposer are smaller 

than GITTA’s CFGs. In about a third of the languages they are smaller than half of GITTA’s size. 

The scattered grey data points above the black curves in Figures 3 and 4 show that the templates 
induced by the basic numeral decomposer are occasionally less generalizing than the advanced 
numeral decomposer’s induced templates. 

In order to give a comparison, we conducted grammar induction for numerals till 99 not only with 
the numeral decomposer versions but also with GITTA (Winters & Raedt, 2020). GITTA is a general 
tool that induces context-free grammars for natural language input. We assist GITTA by adding 
spaces into the numerals at any position where a subnumeral begins or ends. 

To make the comparison fair, we have to convert the numeral template grammars into CFGs. 
Therefore, each template function 𝑓 becomes the right-hand side of a context-free rule 𝑆 → 𝑓, in 
which each input slot ’_’ of 𝑓 is replaced by a unique nonterminal 𝑁, which yields a production rule 

𝑁 → 𝑔 for each function 𝑔 that can be applied on the input slot. Nonterminals that produce the same 
set of right-hand sides are merged. 

Example: The English function _ty-_:{6, 7, 9} ⨯ {1, . . . , 9} is modeled using 13 context-free rules  

𝑆 → 𝐴ty-𝐵, 𝐴 → six, seven, nine and 𝐵 → one, ..., nine. The function twenty-_:{1, . . . , 9} is modeled 
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as 𝑆 → twenty-𝐶 with 𝐶 → one, ..., nine. Since 𝐵 and 𝐶 produce the same words, they merge, so all 

rules of 𝐶 are removed and twenty-𝐶 is renamed to twenty-𝐵. 

Using the described conversion, the numeral-decomposer-induced CFGs do not overgenerate. 
Therefore, we set GITTA’s parameter 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑—that controls which 

nonterminals can merge—to 1 to also prevent GITTA from overgeneralizing. 

Fig. 5 shows the number of context-free rules induced for numerals till 99 by GITTA and the two 
numeral decomposer versions. Both decomposer versions outperform GITTA on average and on 
median, as we show in Fig. 6 and in the following table. 

#(Context-free rules) GITTA          Alg. 2 Alg. 1 

Average 65.95 46.20 47.77 
Median 61 44 44 

In addition, GITTA does not deliver arithmetical attributes to the rules. 

However, in some languages, the numeral decomposer does significantly worse than GITTA. This 
is because GITTA is not asked for arithmetic attributes, so it uses generalizations that the numeral 
decomposer considers too risky as they might cause generalizations that cannot be covered by 
affine linear equations. E.g., in Bavarian, the decomposers induce 101 rules, while GITTA only 
induces 49. Bavarian 2-digit numerals usually have masked factors and summands, so the numeral 
decomposer cannot unpack them. However, GITTA can still generalize  
𝑁(𝑓𝑎 ∗ 𝑚𝑢) then, whereas the unpacking criteria forbid the numeral decomposers to do the same 

as 𝑓𝑎 ∗ 𝑚𝑢 > (𝑓𝑎 ∗ 𝑚𝑢 + 𝑠𝑢)/2. GITTA also profits from generalizing empty strings, which the 
numeral decomposer does not dare. 

6.5 Overall Statistics of Decomposition Errors 
In this subsection, we attempt to determine the decomposition error rate of the numeral 
decomposer. A decomposition error rate is not to be confused with the word error rate of the 
induced grammars. While the word error rate only covers word errors, a decomposition error rate 
shall cover both, undergeneralization errors (Objective 1, compactness) that harm lexicon 
efficiency, and overgeneralization errors (Objective 2, correctness) that cause word errors. 

The most straightforward measure to quantify an error rate regarding Objective 2 (correctness) is 
the relative frequency of numeral word with wrong number values in the induced grammars. This 
corresponds to the word error rate. Across all 257 languages in our dataset, the this rate is 0.775 %. 
However, the word error rate of our induced grammars is not very expressive regarding 
decomposer performance. As mentioned in Subsection 5.2, in Choapan-Zapotec, a template  
’_ galo’ is induced that maps 𝑥 ∊ {2, 3, . . . } to 20 ∗ 𝑥, but it maps 1 to 19. If the affine linear functional 

equation is deduced from the value pairs (1, 19) and (2, 40), then it is 𝑥 ↦ 21 ∗ 𝑥 − 2. In this case, 
all numerals generated by ’_ galo’ get wrong number values, except for 𝑁(1) ⋅ ’galo’ and 𝑁(2) ⋅
 ’galo’. On the other hand, if the equation 𝑥 ↦ 20 ∗ 𝑥 is deduced from the pairs (2, 40) and (3, 60), 

then only one error occurs for the numeral 𝑁(1) ⋅ ’galo’. 

A consistent error statistic regarding Objective 2 (correctness) is the rate of templates with wrong 
functional equations among all templates. Across all languages, this rate is 0.325 %. 

An error rate for Objective 1 (compactness) is hard to determine, as it requires understanding the 
numeral systems of 257 languages in order to assess which templates could possibly be covered 
by others. 

A heuristic approach is to count how many words have not been generalized, i.e., words that have 
an exclusive template. Across all languages, 2.848 % of numeral words belong to an exclusive 

template. However, the atomic digit words—which are usually 𝑁(1) − 𝑁(9)—as well as exceptions 
obviously require their own template. 
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The number of unnecessary templates would be an accurate measure, but it is hard to determine 
for abovementioned reasons. However, we may estimate it. Recall that the induced English 
grammar for numerals till 999 presented at the start of Section 6 has 30 templates and appears 
morphologically plausible. The English numeral system has many irregularities for 2-digit numerals, 
but it becomes very regular for 3-digit numerals and higher. Therefore, we may assume that it has 
a typical number of exceptions. Considering that a morphologically plausible grammar for numerals 
till 999 in a language with average complexity has 30 templates, we may consider 30 as the 

expected number of templates needed to cover numerals till 999 in an arbitrary language. 

Grammars have been induced in 257 languages. For 168 languages, the grammars cover numerals 

till 999, for 34 languages they cover more numerals, and for 55 languages less. Therefore, the 

number of templates needed to morphologically plausibly cover the numerals from all 257 
languages may be estimated as 257 ∗ 30 = 7710. As all the induced numeral grammars actually 

have 9854 templates combined, we may estimate that (9854 − 7710)/(9854) = 21.758 % of the 

templates are unnecessary. We acknowledge that this percentage can easily fluctuate by 10 

percentage points if we misesitamate the complexity of the English numeral system by even 10 %. 

Overall, 0.325 % of templates are overgeneralizing and about 21.8 % of templates are 
undergeneralizing. They cause word errors and lexicon inefficiency, respectively. Combined, we 
yield a per-template decomposition error rate—not to be confused with the word error rate—of 
22 %. Note, that this number is not a classical per-input error rate, as it does not give the per-input 
rate of inputs (words) that lead to a wrong output (template) but the per-output rate of erroneous 
outputs. We expect the rate per input word to be lower because most of the erroneous output 
templates are undergeneralizing. This implies that most erroneous templates account for a lower 
number of words than the correct templates. 

7. SUMMARY 
We showed that an arithmetic-based numeral decomposer can work universally across language 
and outperform more general state-of-the-art approaches in numeral grammar induction. We have 
justified criteria with respect to Hurford’s Packing Strategy to detect the factor and the summand 
word of a numeral word. Given 𝑆 is a subnumeral of 𝑁, we found that 

if 𝑠 ≤ √𝑛,   then 𝑆 must be (part of) 𝑁’s factor or summand word, 

if √𝑛 < 𝑠 < 𝑛/2,  then 𝑆 could be (part of) 𝑁’s summand word and 

if 𝑛/2 < 𝑠,   then 𝑆 cannot be part of 𝑁’s factor or summand word. 

The criteria have been applied in two decomposition algorithms8 that were tested for incremental 
grammar induction in 257 languages which are listed in Appendix A. 

The advanced numeral decomposer induces plausible numeral grammars in a great variety of 
natural languages. In 2 out of 3 cases, its induced CFGs are more compact than CFGs induced by 
the state-of-the-art grammar induction algorithm GITTA (Winters & Raedt, 2020). The main 
limitation of the numeral-decomposer induced grammars is that they only allow for generalization 
of entire subnumerals. In languages like Kartvelian, Hayastani, or Bavarian, numerals often drop 
or change letters when used as subnumerals, so they cannot be detected and generalized, which 
significantly enlarges the numeral-decomposer induced grammars. 

In Bulgarian, Birom, and Yoruba, we compared numeral-decomposer induced grammars to expert 
made gold standard grammars (Derzhanski & Veneva, 2020). All three induced grammars are 
similar or equal to the gold standards. Specifically, they yield higher accuracies than the grammars 
that Hammarström’s k-cluster algorithm had deduced. 

                                                 
8 The source code of both algorithm versions is published in I. K. Maier (2023). 
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The numeral-decomposer induced grammars have the inherent advantage over general syntactic 
grammar induction algorithms of parallelly induced arithmetical attributes. In 243 out of 257 
languages, the induced arithmetical attributes were entirely correct. Incorrect arithmetic was mainly 
induced in such numerals in which a misunderstanding is also conceivable for humans. 

Another advantage of the numeral decomposer is that it can decompose numerals incrementally 
in a learning process. Syntactic grammar induction requires comparisons of expressions, like 
’twenty-one’, with other expressions of the same abstraction level, like ’twenty-two’, to find patterns 
for generalization. In contrast, the numeral decomposer just needs to know the expressions of the 
lower abstraction level, e.g., when it knows that ’one’ is the numeral of 1, then it understands that 
’one’ is a generalizable part of ’twenty-one’ based on the unpacking criteria. Incrementality 
facilitates the expansion of existing grammars. Most existing grammar induction methods are 
nonincremental (Muralidaran et al., 2021). 

8. OUTLOOK 
The presented numeral decomposition algorithm produced correct numeral grammars in 243 
languages and it can be used for any language. The numeral grammars can serve as valuable 
assets for low-resource languages, as they can be integrated into NLP pipelines to enhance named 
entity recognition, which supports data-driven language models. Further extensions of this work 
can support NLP even more. 

Two major limitations are that the tests have only been conducted on grammatical standard forms 
of numerals and that the numeral decomposer cannot unpack and generalize subnumerals that 
appear in a masked or inflected form. Both shortcomings could be dealt with by letting the numeral 
decomposer learn several grammatical forms of each numeral. In this way, a stem of all forms 
could be determined. In the process, the numeral decomposer could detect and evaluate not only 
fully contained subnumerals, but also just stems of such subnumerals. Depending on the degree 
of tolerance, it may therefore detect and unpack the ’thir’ in ’thirteen’ if it has learned before that 
’third’ is a grammatical variant of 𝑁(3). 

Such measures could greatly support generalizations. It could even prevent overgeneralizations in 
cases where the tolerance helps detect 𝑁(𝑓𝑎 ∗ 𝑚𝑢). E.g., when ’quatre-vingts’ is detected in 
’quatre-vingt-deux’, the problem dealt with in Subsection 5.3.2—which partly persists—does not 
come up. On the other hand, it can cause that substrings are unintentionally detected as 
subnumerals due to a random similarity, which may cause deeper problems. 

The numeral decomposer may be tested on learning numerals in a random unchronological order. 
The test poses the challenge of working with a limited lexicon. When the decomposer gets to learn 
’sixteen’ before ’six’, it cannot detect and unpack ’six’, which leads to a shortcoming in 
generalization. The shortcoming could be quantified by learning numerals in a random order that 
uses a suitable probability distribution. Unchronological learning could also be dealt with by giving 
up incrementality and decomposing ’sixteen’ again after ’six’ got learned. 

The numeral-decomposer-based incremental learning algorithm could also involve reinforcement. 
For a learned template like ’_ty-_’ the learning algorithm could think up words by inserting 
alternative subnumerals into the slots. It just needs some sort of supervisor that accepts or rejects 
generalizations of learned words. Such a reinforcement learning offers possibilities for 
applicationrelated projects: 

• If the supervisor is replaced by a human, the reinforcement learning algorithm can work 
like a chatbot that can create generative grammars for number words in low-resource 
languages with human support. The human would only need to answer questions like 
’What is the numeral of number 𝑥?’ and ’Does numeral 𝑋 exist?’. 

• If the learner is able to extract numerals out of text data, only answers to questions of the 
form ’Does numeral 𝑋 exist?’ would be needed. And these questions could be answered 
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with a search engine and a statistical model, which—given a numeral 𝑋 and the number of 

search results for 𝑋—could decide if 𝑋 is a correctly spelled numeral. 

Given that our error report (Subsection 5.2) names context-sensitive numerals, their authenticity 
and potential implications may be discussed further by linguists. 
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A. LIST OF DATA SETS (LANGUAGES) 
The languages of the data sets are written in parentheses when they are not obvious. 

Acholi Adyghe Afrikaans Albanian (Shqiperian) 
Aloapam-Zapotec Alsatian Alutiiq Amharic 
Antillean-Creole-Of-Martinique Arabic ar (Arabic) Araki 
Arberesh Arhuaco Arikara Armenian (Hayastani) 
Assiniboine Asturian Aukan Awa-Pit 
Aymara Azerbaijani Baka Bambara 
Bashkir Basque Bavarian Belarusian 
Bezhta Birom Breton Bulgarian 
Burushaski Calo Cape-Verdean-Creole Carrier (Dakelh) 
Catalan Central-Tarahumara Chavacano Cherokee 
Choapan-Zapotec Chol Chuvash Cocama 
Comox Copala-Triqui Cornish Corsican 
Crimean-Tatar Czech cs (Czech) Dagbani 
Danish da (Danish) Dogrib (Tłichǫ) Dzambazi-Romani 
English en_GB (British English) en_IN (Indian English) Eonavian 
Estonian Faroese Finnish (Suomi) fi (Suomi) 
French fr (French) fr_BE (Belgian French) fr_CH (Swiss French) 
fr_DZ (Algerian French) Friulian Ga Galician 
Gallo Garifuna Georgian (Kartvelian) German (Deutsch) 
de (Deutsch) Gilbertese (Kiribati) Gottscheerish Guarani 
Gwere Haida Haitian-Creole Halkomelem 
Hausa he (Hebrew) Hopi Hungarian (Magyar) 
Hunsrik Hupa Icelandic Igbo 
Inari-Sami Indonesian id (Indonesian) Ingrian 
Ingush Innu Inupiaq Irish 
Isthmus-Zapotec Italian it (Italian) Jakaltek 
Japanese (Nihongo) ja (Nihongo) Jaqaru Jerriais 
Kabiye Kalderash-Romani Kalina kn (Kannada) 
Kaqchikel Karelian Kazakh Kiliwa 
Kirmanjki Kituba Klallam Koasati 
ko (Korean) Kristang Kutenai Kven 
Kyrgyz Lachixio-Zapotec Ladin Lakota 
Lango Latin Latvian lv (Latvian) 
Laz Lezgian Lingala Lithuanian 
lt (Lithuanian) Livonian Llanito Lombard-Milanese 
Lower-Sorbian Lowland-Oaxaca-Chontal Lule-Sami Lushootseed 
Luxembourgish Macedonian Makhuwa Maltese 
Mandinka Manx-Gaelic Maori Mapudungun 
Marshallese Mauritian-Creole Mazahua Menominee 
Miami-Illinois Michif Micmac Minangkabau 
Mohawk Mohegan-Pequot Moloko Mussau-Emira 
Mwani Navajo Ndom Nelemwa 
Nengone Nigerian-Fulfulde nl (Nederlands) North-Frisian 
Northern-Kurdish Northern-Sami Northern-Yi Norwegian-Bokmal 
no (Norwegian) Nume Nyungwe Occitan 
Ojibwa Okanagan Oneida Oromo 
Paici Pennsylvania-German Persian (Farsi) Picard 
Pite-Sami Plautdietsch Polari Polish 
pl (Polish) Portuguese-Brazil pt_BR (Brazilian Portuguese) Portuguese-Portugal 
pt (Portuguese) Proto-Indo-European Punu Purepecha 
Quetzaltepec-Mixe Rapa-Nui Rincon-Zapotec Romani 
ro (Romanian) Romansh Russian ru (Russian) 
Saanich Sango Santa-Ana-Yareni-Zapotec Sardinian 
Saterland-Frisian Scots Scottish-Gaelic Serbian 
sr (Serbian) Shona Shuswap Sierra-Otomi 
Siletz-Dee-Ni Skolt-Sami Slovak Slovene 
sl (Slovene) Soga Somali Soninke 
South-Efate Southern-Quechua Southern-Sami Spanish 
es (Spanish) es_CO (Columbian Spanish) es_VE (Venezuelan Spanish) Squamish 
Sranan-Tongo Susu Swahili Swedish 
Swiss-German Tahitian Tamazight Tetun-Dili 
Tezoatlan-Mixtec th (Thai) Timbisha Tlingit 
Tok-Pisin Tolowa Tongan-Telephone-Style Totontepec-Mixe 
Tsez Tsonga Tswana Tukudede 
Tunica Turkish tr (Turkish) Ukrainian 
uk (Ukrainian) Ume-Sami Upper-Sorbian Uyghur 
Venetian Veps vi (Vietnamese) Votic 
Wayuu Welsh West-Frisian Wymysorys 
Xhosa Yakut (Sakha) Yao Yiddish 
Yoruba Yupik Zulu  
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B. YORUBA AND BULGARIAN INDUCED AND EXPERT-MADE GRAMMARS 

Bulgarian induced grammar Expert-made grammar 

Rule/Function Values Rule/Function Values 

ATOMS 1, . . . ,12,20 ATOMS 1, . . . ,12,20 

_nadeset 
(𝑥) ↦ 𝑥 + 10 

13, . . . ,19 _nadeset 
(𝑥) ↦ 𝑥 + 10 

13, . . . ,19 

dvadeset i _ 
(𝑥) ↦ 𝑥 + 20 

21, . . . ,29 dvadeset i _ 
(𝑥) ↦ 𝑥 + 20 

21, . . . ,29 

_deset 
(𝑥) ↦ 10𝑥 

10𝑥 for  
𝑥 ∊ {3, . . . ,9} 

_deset 
(𝑥) ↦ 10𝑥 

10𝑥 for  
𝑥 ∊ {3, . . . ,9} 

_deset i _ 
(𝑥, 𝑦) ↦ 10𝑥 + 𝑦 

10𝑥 + 𝑦 for 

𝑥 ∊ {3, … ,9}, 
𝑦 ∊ {1, … ,9} 

_deset i _ 
(𝑥, 𝑦) ↦ 10𝑥 + 𝑦 

10𝑥 + 𝑦 for 

𝑥 ∊ {3, … ,9}, 
𝑦 ∊ {1, … ,9} 

 
Yoruba induced grammar Expert-made grammar 

Rule/Function Values Rule/Function Values 

ATOMS 1, . . . ,10,20 ATOMS 1, . . . ,10,20 

ogun _ 
(𝑥) ↦ 20𝑥 

20𝑥 for 

𝑥 ∊ {2, . . . ,9} 
ogun _ 
(𝑥) ↦ 20𝑥 

20𝑥 for 

𝑥 ∊ {2, … ,9} 
_ l-e.wa 
(𝑥) ↦ 𝑥 + 10 

11, . . . ,14 _ l-_ 
(𝑥, 𝑦) ↦ 𝑥 + 𝑦 

𝑥 + 𝑦 for 

𝑥 ∊ {10,20, … ,180} 
𝑦 ∊ {1, … ,4} _ l-ogun 

(𝑥) ↦ 𝑥 + 20 
21, . . . ,24 

_ l-ogun eji 
(𝑥) ↦ 𝑥 + 40 

41, . . . ,44 

_ dinogun _ 
(𝑥, 𝑦) ↦ 𝑥 + 10𝑦 

30, . . . ,34 e.wa din ogun _ 
(𝑥) ↦ 20𝑥 − 10 

20𝑥 − 10 for 

𝑥 ∊ {2, … ,9} 
_ din_ _ 
(𝑥, 𝑦, 𝑧)
↦ 𝑥 − 𝑦 + 20𝑧 

𝑥 − 20 + 20𝑧 for 

𝑥 ∊ {10, … ,14} 
𝑧 ∊ {3, … ,10} 

_ din ogun 
(𝑥) ↦ −1𝑥 + 20 

15, . . . ,19 _ din _ 
(𝑥, 𝑦) ↦ 𝑥 − 𝑦 

𝑥 − 𝑦 for 

𝑥 ∊ {20, … ,180} 
𝑦 ∊ {1, … ,5} _ din e.wa dinogun _ 

(𝑥, 𝑦) ↦ 25 
25 

_ din _ dinogun _ 
(𝑥, 𝑦, 𝑧) ↦ −𝑥 + 3𝑦 

26, . . . ,29 

_ din _ din_ _ 
(𝑥, 𝑦, 𝑧, 𝑎)
↦ −𝑥 − 𝑦 + 20𝑎 

−𝑥 − 10 + 20𝑎  for 
𝑥 ∊ {1, … ,5} 
𝑎 ∊ {3, … ,10} 

_ _ 
(𝑥, 𝑦) ↦ 𝑥 + 20𝑦 − 20 

𝑥 + 20𝑦 − 20 for 

𝑥 ∊ {15, … ,24} ∖ {20} 
𝑦 ∊ {3, … ,10} 
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