
Isidor Konrad Maier & Matthias Wolff

International Journal of Computational Linguistics (IJCL), Volume (15) : Issue (3) : 2025 35
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

Reversing Hurford’s Packing Strategy using Arithmetic Criteria -
A Numeral Decomposer for Incremental Unsupervised Grammar

Induction

Isidor Konrad Maier maier@b-tu.de
Chair of Communication Engineering
Brandenburg University of Technology Cottbus – Senftenberg
DE-03046, Cottbus/Chóśebuz, Siemens-Halske-Ring 14, Deutschland

matthias.wolff@b-tu.de
Chair of Communication Engineering
Brandenburg University of Technology Cottbus – Senftenberg
DE-03046, Cottbus/Chóśebuz,Siemens-Halske-Ring 14, Deutschland

Abstract

This paper presents a novel numeral decomposer based on arithmetic criteria. It enables a new
automatic learning process for numeral grammars that is universally applicable to all languages,
as it is based on fundamental, language-independent arithmetic properties. Specifically, the
arithmetic criteria depend on Hurford’s Packing Strategy but not on a base-10 assumption.
Hurford’s Packing Strategy constitutes numerals by packing factors and summands to multipliers.

We found out that a numeral of value 𝑛 has a multiplier larger than √𝑛, a summand smaller than

𝑛/2 and a factor smaller than √𝑛. Using these findings, the numeral decomposer attempts to detect
and unpack factors and summands in order to reverse Hurford’s Packing Strategy. We tested
applicability for incremental unsupervised grammar induction in 257 languages. In this way, we
obtained grammars with sensible mathematical attributes that explain the structure of numerals.
The grammars induced by the numeral decomposer are often close to expert-made and more
compact than numeral grammars induced by the modern state-of-the-art grammar induction tool
GITTA. Furthermore, this paper contains a report about the few cases of incorrectly induced
mathematical attributes, which are often linked to linguistic peculiarities like context sensitivity.

Keywords: Numeral Words, Hurford’s Packing Strategy, Numeral Decomposition, Incremental
Grammar Induction, Context Sensitivity in Numerals.

1. INTRODUCTION
1.1 Motivation and Related Work
Text normalization tasks like detecting and forming complex numerals correctly consistently pose
a challenge to neural networks (Sproat, 2022). Therefore, numeral grammars are often
programmed manually (Akinadé & Ọdẹ́jọbí, 2014; Khamdamov et al., 2020; Rhoda, 2017). Numeral
grammar induction is the way to automate the programming. The following numeral grammar
induction approaches exist.

• Hammarström (2008) proposed a method that subdivides a set of numerals into 𝑘-sized
clusters based on a similarity measure. Then, generalizations can be made inside the
clusters.

• Flach et al. (2000) made a proposal for automatic learning of finite-state numeral
grammars.

https://www.cscjournals.org/journals/IJCL/description.php

Isidor Konrad Maier & Matthias Wolff

International Journal of Computational Linguistics (IJCL), Volume (15) : Issue (3) : 2025 36
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

• Beim Graben et al. (2019) proposed that numerals may be added to a lexicon until a
boundary is reached. Then, a penalty signal arises that urges the learner increasingly to
summarize several numerals in a generalization.

In a broader sense, the topic of numeral grammar induction is related to the linguistic theory of
numerals and their computational modeling on the one hand, and to general grammar induction of
natural language on the other hand.

Regarding the linguistic theory of numerals, Brainerd (1966) collected seven studies on numeral
grammars in different languages and attempted to draw general conclusions. Our work is mainly
based on Hurford (2007). His theory is outlined in more detail in his book (Hurford, 2011). Other
works on numeral morphology include Zabbal (2005), Veselinova (2020), and Žoha et al. (2022).
Ionin and Matushansky (2006) discusses the morphology of complex numerals in the context of
morphosyntax, i.e., the relation of the morphology to the sentence structure. Other related sources
on numeral morphosyntax include Ivani (2017) and Martí (2020). Derzhanski and Veneva (2018)
give a summary of exceptional phenomena in the structures of numerals. Specifically, for the
number 58, Derzhanski (2025) describes structures of the numeral in 720 diverse languages. The
study has been conducted based on WALS (Dryer & Haspelmath, 2013), a large database about
structural properties of languages including chapters about numerals (Gil, 2013a, 2013b; Stolz &
Veselinova, 2013). Andersen (2004) discusses implications of the structure of numerals in various
languages on the question whether or not all humans use an universal grammar. Mendia (2018)
and Anderson (2019) discussed epistemic numbers, i.e., generalized number phrases like
’twentysome’.

Grammar induction is a wide field of research that refers to the process of learning formal grammars
from data. It arose in the 1990s (Carroll & Charniak, 1992; Klein & Manning, 2001; Stolcke &
Omohundro, 1994). A systematic and detailed review of the literature on unsupervised grammar
induction till 2019 was performed by Muralidaran et al., 2021. Notably, only 1 out of 33 reviewed
studies presented an incremental grammar learning method, namely Seginer (2007). Since 2018,
significant advancements have been made, particularly with deep learning and neural models,
leading to more effective and scalable grammar induction techniques. In particular, Kim et al. (2019)
showed that a neural parametrization of marginal dependencies enhances the induction of
probabilistic context-free grammars. Shen et al. (2019) tested LSTMs with ordered neurons on a
variety of tasks related to grammar induction. Other significant works on neural approaches include
Htut et al. (2018) and Drozdov et al. (2019). Three of the newest tools for natural language grammar
induction are GITTA (Winters & Raedt, 2020), ShortcutGrammar (Friedman et al., 2022), and
LanguageLearner (Jon-And & Michaud, 2024). In this work, we use GITTA as a baseline method
among Hammarström (2008), and Derzhanski and Veneva (2020). GITTA induces context-free
grammars by using the Wagner-Fischer algorithm (Wagner & Fischer, 1974) to create common
templates for similar expressions. Lately, Li et al. (2024) and Zhao et al. (2025) argued that
heterogeneous data including vision or speech in addition to text can improve grammar induction.

Our experiments show that our symbolic arithmetic-based approach outperforms state-of-the-art
grammar induction approaches in numeral grammar induction, since it utilizes special sophisticated
knowledge about the structure of numerals.

1.2 Overview
This work employs both, inductive and deductive, reasoning. Inductively, we establish a theory of
the arithmetical relations between subnumerals and an idea how the theory can be applied in an
algorithm to decompose numeral words. Deductively, we test and enhance the algorithm for the
task of grammar induction in 257 natural languages. The developed numeral decomposer is
supposed to reverse Hurford’s Packing Strategy (Hurford, 2011). The Packing Strategy—which is
explained in Section 2 in more detail—constitutes a numeral word by packing 0, 1 or 2 numerals to
a base morpheme 𝑀. In English, examples for base morphemes 𝑀 are ’teen’, ’ty’, ’hundred’, and

’thousand’. The numerals packed to 𝑀 must be interpreted either by addition—in which case we

https://www.cscjournals.org/journals/IJCL/description.php

Isidor Konrad Maier & Matthias Wolff

International Journal of Computational Linguistics (IJCL), Volume (15) : Issue (3) : 2025 37
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

call them summands—or by multiplication—in which case we call them factors. Example: For the
English numeral ’two hundred sixty’, two numerals are packed to the base morpheme ’hundred’,
’two’ as a factor, and ’sixty’ as a summand. Therefore, our numeral decomposition algorithm is
supposed to unpack the subnumerals ’two’ and ’sixty’ when parsing the input (260,’two hundred

sixty’), and therefore, the desired output would be ’_ hundred _’(2, 60). In this regard, the algorithm
works similarly to a part-of-speech-tagger, stemmer or parser (compare Alkhazi (2019), Sumamo
and Teferra (2018), and Chorozoglou et al. (2021), respectively).

In Section 3 we specify the objectives of the numeral decomposer.

The algorithm requires knowledge about the parsed numeral’s number value, as well as a lexicon
of number-numeral pairs that allows to recognize subnumerals. The algorithm evaluates found
subnumerals based on arithmetic criteria presented in Section 4. Based on the criteria, it decides
whether or not to unpack them. When assuming that the numeral must follow a base-10 system,
criteria for decomposing are well known. One can calculate the decimal digits of the number value

𝑛 as ⌊𝑛/10𝑘−1⌋(𝑚𝑜𝑑 10) for 𝑘 = 1,2, … and detect the numeral words of the digits inside 𝑛’s numeral

word (compare Graben et al. (2019)).

However, we do not assume a certain base system. Instead, we mainly rely on our finding that
factors and summands of a numeral 𝑁 cannot have more than half of 𝑁’s value. Therefore, when

𝑁’s value is 𝑛, being ≤ 𝑛/2 is a necessary criterion for a subnumeral of 𝑁 to be unpacked. Only
this necessary criterion is used for a basic numeral decomposer that we present in Section 5.1. It
works in standard cases, but it can fail if the numeral uses an unusual order of subnumerals, or if
a certain critical subnumeral—such as ’veinte’ in ’veintiuno’—is not contained letter-by-letter. These
details are described in Section 5.2. Extra unpacking criteria are established for an advanced
numeral decomposer algorithm that fixes most errors of the basic version. The advanced algorithm
is presented in Section 5.3.

In Section 6, we discuss the performance of both numeral decomposer versions by reviewing
induced grammars in 257 languages.

1.3 Notations and Wordings
In this subsection we establish our notation for numbers and numeral words.

Specific numbers are normally written with Hindu-Arab digits. For number variables, we use lower
case letters. If 𝑋 is a numeral word, then 𝑛(𝑋) denotes the number of 𝑋. Often, we will also denote

𝑛(𝑋) by 𝑋’s lower-case letter 𝑥.

Specific numerals or strings are written in quotation marks. The empty string is denoted by 𝜀. For

numeral or string variables, we use capital letters. If 𝑥 is any kind of number expression, then 𝑁(𝑥)

denotes the numeral of 𝑥 in the language dealt with1. Often, we will also denote 𝑁(𝑥) by 𝑥’s upper-

case letter 𝑋. By 𝒩, we denote the set of numeral words of natural numbers ℕ in the language
dealt with2.

1 For the sake of simplicity, we assume that there is one unambiguous spelling for each numeral. Deviating
spellings or names may be considered part of another language (variety).
2 Numeral words only exist for a finite set of natural numbers in most languages, so 𝒩 and ℕ do not have a
one-to-one correspondence.

Examples: Numbers Numerals

specific 6 ’six’

variable 𝑥 = 100 𝑋 =’one hundred’

dependent 𝑛(’six’⋅ 𝑋) = 600 𝑁(6 + 𝑥) =’one hundred and six’

https://www.cscjournals.org/journals/IJCL/description.php

Isidor Konrad Maier & Matthias Wolff

International Journal of Computational Linguistics (IJCL), Volume (15) : Issue (3) : 2025 38
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

By ’⋅’ we denote the concatenation of strings. We use the same words for number relations to also
describe relations between the respective numerals. The wordings

”Numeral 𝑋
is larger than / is smaller than / equals / is a divisor of / is a multiple of

numeral 𝑌”

mean that the numbers 𝑥 and 𝑦 have the respective relation. This allows us to describe arithmetic
relations between two numerals or between a numeral and a number with less effort.

Note that ”Numeral 𝑋 is larger than numeral 𝑌” should not be interpreted as if 𝑌 is a substring of 𝑋.
In order to describe string relations between numerals we will only use the wordings ’is a
substring/subnumeral/superstring/supernumeral of’ or ’contains’/’is contained in’.

As mentioned before, the decomposer unpacks certain subnumerals out of a numeral. Suppose

that in a numeral 𝑋 the subnumerals 𝑈1, . . . , 𝑈𝑘 are unpacked. This implies that 𝑋 = 𝑆1 · 𝑈1 · 𝑆2 ·. . .·

𝑈𝑘 · 𝑆𝑘+1 with strings 𝑆𝑖 . Then we present the decomposition as

𝑋 = 𝑆1_𝑆2_. . . _𝑆𝑘+1(𝑈1, . . . , 𝑈𝑘)

where the _ denote placeholders. The term 𝑆1_𝑆2_. . . _𝑆𝑘+1 can be seen as an epistemic number

expression that would be spoken 𝑆1 · some · 𝑆2 · some... · 𝑆𝑘+1 (compare Mendia, 2018 and
Anderson, 2019). In the following, S1_..._Sk+1 is interpreted as a function of numeral words, defined

on a domain 𝒟 ⊂ 𝒩𝑘:

 𝑆1_. . . _𝑆𝑘+1: 𝒟 → 𝒩, (𝑈1, . . . , 𝑈𝑘) ↦ 𝑆1 · 𝑈1 · 𝑆2 · 𝑈2 · 𝑆3 ·. . .· 𝑈𝑘 · 𝑆𝑘+1 (1)

We call 𝑆1_. . . _𝑆𝑘+1 the template or template function of the decomposition. Alternatively, when 𝑥

and 𝑢1, . . . , 𝑢𝑘 are the numbers of the numerals 𝑋 and 𝑈1, . . . , 𝑈𝑘, we can present the decomposition
with the numbers as

𝑥 = 𝑆1_𝑆2_. . . _𝑆𝑘+1(𝑢1, . . . , 𝑢𝑘)

The notation implies that 𝑆1_. . . _𝑆𝑘+1 can be interpreted as a number function on 𝔻 ⊂ ℕ𝑘:

 𝑆1_. . . _𝑆𝑘+1 ∶ 𝔻 → ℕ, (𝑢1, . . . , 𝑢𝑘) ↦ 𝑛(𝑆1 · 𝑁(𝑢1) · 𝑆2 ·. . .· 𝑁(𝑢𝑘) · 𝑆𝑘+1) (2)

Example: In the English (en_GB)3 numeral 𝑋 = ’twenty-seven thousand and two hundred and six’,

the subnumerals 𝑁(27) and 𝑁(206) can be unpacked. Then, we present the decomposition as

𝑋 = _ thousand and _(’twenty-seven’,’two hundred and six’), or

 27206 = _ thousand and _(27, 206).

The resulting numeral function is

_ thousand and_ : {𝑁(𝑑) | 𝑑 = 1, . . . ,999}2 → 𝒩, (𝑈1, 𝑈2) ↦ 𝑈1 · thousand and · 𝑈2,

3 In parentheses, we mention the names of our datasets of a newly mentioned language, if they deviate from

the mentioned name.

https://www.cscjournals.org/journals/IJCL/description.php

Isidor Konrad Maier & Matthias Wolff

International Journal of Computational Linguistics (IJCL), Volume (15) : Issue (3) : 2025 39
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

and the number function is

_ thousand and _ : {1, . . . ,999}2 → ℕ, (𝑢1, 𝑢2) ↦ 𝑛(𝑁(𝑢1) · thousand and · 𝑁(𝑢2)).

English speakers know that 𝑛(𝑁(𝑢1) ⋅ thousand and ⋅ 𝑁(𝑢2)) means 1000 ∗ 𝑢1 + 𝑢2. For the general
case, however, such an arithmetical equation is not trivial to find.

2. AXIOMS BASED ON HURFORD’S PACKING STRATEGY
First, we briefly summarize the explanation of the Packing Strategy from Hurford (2007). Hurford
says: ”The Packing Strategy is a universal constraint on numeral systems. It applies very widely to
developed numeral systems. It is not a truism, but exceptions are rare. The Packing Strategy
operates in conjunction with a small set of phrase structure rules, which are shared by all developed
numeral systems.” These rules are given in Fig. 1.

Hurford also mentioned that

• in each rule, ”the sister constituent of NUMBER must have the highest possible value”.

• ”the Packing Strategy says nothing about linear order, but only about the hierarchical
dominance relationships between constituents of numeral expression”.

Number → {
Digit

Phrase (NUMBER)
} (Interpreted by addition)

Phrase → (NUMBER) M (Interpreted by multiplication)

FIGURE 1: Graphic originally from Hurford, 2007. Curly brackets indicate ’either/or’ options, Parentheses
indicate optional choices. DIGIT is the category of basic lexical numerals, such as in English ’one’, ..., ’nine’.
M is the category of multiplicative base morphemes, such as in English ’ty-’, ’teen’, ’hundred’, ’thousand’, or

’million’.

FIGURE 2: Reinterpreting Hurford’s idea of the composition of ’two-hundred sixty’ as a dependency tree.

We establish a new interpretation of the Packing Strategy based on the following axioms. The
reinterpretation is also in line with the theories of Zabbal (2005) and Ionin and Matushansky (2006).
An example of the English numeral 𝑁(260) in Fig. 2 shows the generation of the numeral according
to Hurford, as well as according to our reinterpretation.

https://www.cscjournals.org/journals/IJCL/description.php

Isidor Konrad Maier & Matthias Wolff

International Journal of Computational Linguistics (IJCL), Volume (15) : Issue (3) : 2025 40
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

Axiom 1. The wording of each compound numeral 𝑋 implies a calculation of its number value 𝑥 as
𝑥 = 𝑓𝑎 ∗ 𝑚𝑢 + 𝑠𝑢, in which 𝑚𝑢 is the value of a multiplicative base morpheme from 𝑀 (see Figure

1) and 𝑓𝑎 and 𝑠𝑢 are the ”factor” and ”summand” numbers.

Justification. According to Hurford’s Packing Strategy, 𝑋 is composed of PHRASE (NUMBER),

which should be interpreted as 𝑝ℎ𝑟𝑎𝑠𝑒(+𝑛𝑢𝑚𝑏𝑒𝑟). Further, PHRASE is composed of (NUMBER)

M, which means (𝑛𝑢𝑚𝑏𝑒𝑟 ∗)𝑚.

Combined, we have 𝑋 = (NUMBER) M (NUMBER), which means (𝑛𝑢𝑚𝑏𝑒𝑟 ∗)𝑚(+𝑛𝑢𝑚𝑏𝑒𝑟). After
renaming the words, we have 𝑋 = (𝐹𝐴)𝑀𝑈(𝑆𝑈), which means (𝑓𝑎 ∗)𝑚𝑢(+𝑠𝑢). If both, 𝐹𝐴 and 𝑆𝑈,

exist in 𝑋, then our assumption is established.

If 𝐹𝐴 is left out, then 𝑋 means 𝑚𝑢 + 𝑠𝑢. In this case we interpret it so that 𝑋 contains 𝐹𝐴 as an

empty string that implies the neutral factor 1. This invisible string does not have an effect on the

meaning, since 𝑚𝑢 + 𝑠𝑢 = 1 ∗ 𝑚𝑢 + 𝑠𝑢, so it does not hide information either.

Likewise, if 𝑆𝑈 is left out, then 𝑋 means 𝑓𝑎 ∗ 𝑚𝑢. In this case we interpret it so that 𝑋 contains 𝑆𝑈

as an empty string that implies the neutral summand 0. This empty string does not have an effect

on the meaning, since 𝑓𝑎 ∗ 𝑚𝑢 = 𝑓𝑎 ∗ 𝑚𝑢 + 0. □

As showcased in the justification of Axiom 1, the supposed calculation 𝑓𝑎 ∗ 𝑚𝑢 + 𝑠𝑢 does not mean

that the corresponding numeral words 𝐹𝐴, 𝑀𝑈 and 𝑆𝑈 are contained in 𝑋 literally. If an implied
subnumeral 𝐹𝐴, 𝑀𝑈 or 𝑆𝑈 is not contained in 𝑋 literally, we call it a masked subnumeral.
Subnumerals can be masked for several reasons, including the following.

1. ’one hundred’: As already mentioned, if 𝑓𝑎 = 1 or 𝑠𝑢 = 0, then the implied subnumerals

𝐹𝐴 and 𝑆𝑈 can be left out because of redundancy, e.g., in English one simply says
’one hundred’ instead of ’one hundred and zero’. In many other languages, the ’one’ is
also left out.

2. ’thirteen’: Implied subnumerals can be subject to grammatical flexion, fusion with
adjacent morphemes, or any other phenomenon that causes them to deviate from their
standard form. E.g., in the English numeral ’thirteen’, both implied subnumerals ’three’
and ’ten’ are not literal subnumerals because of that.

As a complement to Axiom 1, we assume:

Axiom 2. Each subnumeral of 𝑋 not containing 𝑀𝑈 is 𝐹𝐴, 𝑆𝑈, or a subnumeral of those.

Moreover, we establish a basic assumption on the arithmetical relations between 𝑓𝑎, 𝑚𝑢 and 𝑠𝑢.

Axiom 3. In the implied calculation 𝑥 = 𝑓𝑎 ∗ 𝑚𝑢 + 𝑠𝑢 of a numeral 𝑋, we postulate that 𝑓𝑎 < 𝑚𝑢

and 𝑠𝑢 < 𝑚𝑢.

Justification. If 𝑓𝑎 ≥ 𝑚𝑢, then 𝑥 ≥ 𝑢2. Therefore, we suspect that a bigger multiplicative base
morpheme number mu could have been used, which contradicts that ”the sister constituent of
NUMBER [𝐹𝐴] must have the highest possible value”. If 𝑠𝑢 ≥ 𝑚𝑢, we question why the numeral 𝑋

would not be formed as 𝐹𝐴′ ⋅ 𝑀𝑈 ⋅ 𝑆𝑈′ with 𝑛(𝐹𝐴′) = 𝑓𝑎 + 1 and 𝑛(𝑆𝑈′) = 𝑠𝑢 − 𝑚𝑢. □

The established axioms are used in Section 4 to prove unpacking criteria that can distinguish the
subnumerals 𝐹𝐴 and 𝑆𝑈—which are supposed to be unpacked—from other subnumerals.

3. OBJECTIVES
In this section we describe the practical objectives of the numeral decomposer algorithm. In Section
6 we describe to what degree these objectives have been achieved.

https://www.cscjournals.org/journals/IJCL/description.php

Isidor Konrad Maier & Matthias Wolff

International Journal of Computational Linguistics (IJCL), Volume (15) : Issue (3) : 2025 41
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

We had initially stated that the goal is to design a numeral decomposer that mimics Hurford’s
Packing Strategy, i.e., the factor word 𝐹𝐴 and the summand word 𝑆𝑈 should be unpacked. For the
sole purpose of grammar induction, we state our objectives in a more pragmatic way. A flat list of
number-numeral pairs

{(1, ’one’), (2, ’two’), . . . (4, ’four’), . . . (14, ’fourteen’). . . },

is given as the input numeral data set. The numeral decomposer maps each numeral to a template.
While for basic numerals like ’one’, ’two’, or ’four’ the template will be the numeral itself, a complex
numeral like ’fourteen’ is mapped to ’_teen’. In either case, the numeral can be reconstructed from
the template. In the cases of ’one, ’two’, and ’four’ the reconstruction is trivial, while in the case of
’_teen’ the template has to be combined with another template ’four’ in order to reconstruct
’fourteen’. Since the templates collectively reconstruct the numerals, the set of templates
constitutes a lexicon that—with given grammar rules—generates the input data set.

The lexicon of templates is smaller than the original list, because several numerals can share one
template. E.g., if the numbers 14, 16, 17, 19 are decomposed as

14 = _teen(4), 16 = _teen(6), 17 = _teen(7) and 19 = _teen(9),

then four entries of the original list are replaced by one entry in the lexicon of templates. As
described in Section 1.3, the template ’_teen’ can then be described as a function that operates in
the domain {4, 6, 7, 9}. And a template ’_ hundred and _’ may comprise 9 ∗ 99 numerals in one entry.
Overall, a reduction of lexicon is achieved if numerals are decomposed in a uniform way.

Objective 1 (Compactness). The numeral decomposer should produce as few different templates
as possible.

However, templates should not be too uniform. Numerals that share a common template should
have a reasonable relation. The English numerals ’twenty-one’ and ’twenty-seven thousand’ could
both be mapped to the same template, which may be ’twenty-_’ or ’_-_’, even if their mathematical
relation seems unreasonable. We define a reasonable relation in the following way:

Objective 2 (Correctness). The functional equation of each template function must be affine linear.

Finally, we comment on the frequent phenomenon of masked subnumerals.

Comment on treatment of masked subnumerals: Masked subnumerals cannot be found or
unpacked unless tolerant pattern recognition is involved. We decided not to include tolerance
because it would leed to inaccurate grammars. If ’thir’ would get unpacked in ’thirty’ as if it was
𝑁(3), then the decomposition _ty(3) = 30 would imply that 𝑁(3) ⋅’ty’ = ’threety’ is 𝑁(30) which is
inaccurate. Generally, masked subnumerals usually constitute exceptions, and exceptions are
unsuitable for generalization.

4. UNPACKING CRITERIA
Based on our new interpretation of Hurford’s Packing Strategy, we establish unpacking criteria, i.e.,
criteria that distinguish 𝐹𝐴, 𝑆𝑈 and their subnumerals from 𝑀𝑈 and its supernumerals. The
unpacking criteria are mathematically proven under the following working assumption.

Working assumption: If a numeral 𝑁 contains another numeral 𝑁′, then 𝑛′ ≤ 𝑛.

We comment on the validity of this assumption at the end of this chapter.

Unpacking Criterion 1 (Necessary Criterion). Let 𝑋 be a numeral. Let 𝑆 be a subnumeral of 𝑋 that

is contained in 𝑋’s factor word 𝐹𝐴 or in 𝑋’s summand word 𝑆𝑈. Then 2 ∗ 𝑠 < 𝑥.

https://www.cscjournals.org/journals/IJCL/description.php

Isidor Konrad Maier & Matthias Wolff

International Journal of Computational Linguistics (IJCL), Volume (15) : Issue (3) : 2025 42
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

Proof. 𝑆 being contained in 𝐹𝐴 or 𝑆𝑈 implies 𝑠 ≤ 𝑓𝑎 or 𝑠 ≤ 𝑠𝑢. If 𝑠 ≤ 𝑓𝑎, then

2 ∗ 𝑠 ≤ 2 ∗ 𝑓𝑎 ≤ 𝑚𝑢 ∗ 𝑓𝑎 ≤ 𝑓𝑎 ∗ 𝑚𝑢 + 𝑠𝑢 = 𝑥

Thus, we have 2 ∗ 𝑠 < 𝑥 unless the numeral system is base 2 and 𝑚𝑢 = 2 and 𝑠𝑢 = 0.

If 𝑠 ≤ 𝑠𝑢, then

2 ∗ 𝑠 ≤ 2 ∗ 𝑠𝑢 = 𝑠𝑢 + 𝑠𝑢 < 𝑚𝑢 + 𝑠𝑢 ≤ 𝑓𝑎 ∗ 𝑚𝑢 + 𝑠𝑢 = 𝑥.

Thus, in either case, 2 ∗ 𝑠 < 𝑥. □

This criterion alone is sufficient for a basic numeral decomposer, see I. Maier and Wolff, 2022.

Unpacking Criterion 2 (Sufficient Criterion). Let 𝑋 be a numeral. Let 𝑆 be a subnumeral of 𝑋 that

satisfies 𝑠2 ≤ 𝑛. Then, 𝑆 is contained in 𝑋’s factor word 𝐹𝐴 or in 𝑋’s summand word 𝑆𝑈.

Proof. If 𝑆 is neither contained in 𝐹𝐴 nor 𝑆𝑈, then by Axiom 2, 𝑆 contains 𝑀𝑈. Therefore we assume

that 𝑠 ≥ 𝑚𝑢. Then, since 𝑓𝑎 < 𝑚𝑢 and 𝑠𝑢 < 𝑚𝑢, we have

𝑠2 ≥ 𝑚𝑢2 = 𝑚𝑢 ∗ 𝑚𝑢 = (𝑚𝑢 − 1) ∗ 𝑚𝑢 + 𝑚𝑢 > (𝑚𝑢 − 1) ∗ 𝑚𝑢 + (𝑚𝑢 − 1) ≥ 𝑓𝑎 ∗ 𝑚𝑢 + 𝑠𝑢 = 𝑥

Hence, 𝑆 must be contained in either 𝐹𝐴 or 𝑆𝑈. □

The criteria can be used to decide whether or not to unpack subnumerals. The criteria do not only
apply to 𝐹𝐴 and 𝑆𝑈 directly but also to all sub-subnumerals of those. Thus, in order to use the
criteria, one may look for the longest subnumerals that still match the criteria.

The criteria presented so far leave a gap for subnumerals valued between √x and
x

2
, for which

further unpacking criteria are needed.

Next, we add a classification for subnumerals that are supposed to be unpacked despite not
satisfying Unpacking Criterion 2:

Unpacking Criterion 3 (Auxiliary Criterion). Let 𝑋 be a numeral. Let 𝑆 be a subnumeral of 𝑋 that

does not contain 𝑋’s multiplier word 𝑀𝑈, but let 𝑠2 > 𝑥. Then, 𝑆 is 𝑆𝑈 or contained in 𝑆𝑈.

Proof. By Axiom 2, 𝑆 must be equal or contained in either 𝐹𝐴 or 𝑆𝑈. If it is contained in 𝐹𝐴, then

𝑠 ≤ 𝑓𝑎, hence

𝑠2 ≤ 𝑓𝑎2 < 𝑓𝑎 ∗ 𝑚𝑢 ≤ 𝑓𝑎 ∗ 𝑚𝑢 + 𝑠𝑢 = 𝑥

Thus, 𝑆 must be contained in 𝑆𝑈. □

The criteria 1-3 can be summarized as:

𝑠 < √𝑛 ⇒ S is (contained in) FA or SU

√𝑛< s < n/2 ⇒ S can be (contained in) SU

n/2 < s⇒ S is not (contained in) FA or SU

Subnumerals valued between √n and 𝑛/2 remain undecidable up to this point. Examples for such
yet undecidable subnumerals are abundant. E.g., in English, 𝑁(26) = ’twenty-six’ has the

summand word 𝑆𝑈 = 𝑁(6), but 62 > 26. Hence, it is not yet decidable whether 𝑁(6) is a summand
or not. Without context, the algorithm cannot exclude that the numeral uses base 6 with 𝑥 = 4 ∗ 6 +
2, so 𝑁(6) would be the multiplier. The given counterexample is transferrable to any numeral 𝑛 in

which 𝑠𝑢2 > 𝑛 = 𝑓𝑎 ∗ 𝑚𝑢 + 𝑠𝑢. This affects every third numeral as the ratio of pairs (𝑓𝑎, 𝑠𝑢) ∊
{1, … , 𝑚𝑢– 1}2 satisfying 𝑠𝑢2 > 𝑛 is

https://www.cscjournals.org/journals/IJCL/description.php

Isidor Konrad Maier & Matthias Wolff

International Journal of Computational Linguistics (IJCL), Volume (15) : Issue (3) : 2025 43
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

#{(𝑓𝑎, 𝑠𝑢) ∊ {1, … , 𝑚𝑢 − 1}2 𝑠𝑢2 > 𝑛}

#{1, … , 𝑚𝑢 − 1}2
=

∑ #{𝑠𝑢 |√𝑓𝑎 ∗ 𝑚𝑢 + 𝑠𝑢 < 𝑠𝑢 < 𝑚𝑢}𝑚𝑢−1
𝑓𝑎=1

#{1, … , 𝑚𝑢 − 1}2

=
∑ ⌊𝑚𝑢 − √𝑓𝑎 ∗ 𝑚𝑢 + 𝑛𝑢⌋𝑚𝑢−1

𝑓𝑎=1

(𝑚𝑢 − 1)2
≈

∫ 𝑚𝑢 − √𝑓𝑎 ∗ 𝑚𝑢 𝑑(𝑓𝑎)
𝑚𝑢

1

𝑚𝑢2
≈

1

3

For a working decomposer, we should close the gap of decision. We were not able to find a
definitive solution. Instead, we use a leaky criterion based on the idea that 𝑠𝑢 is usually not a divisor

of 𝑥.

Unpacking Criterion 4 (Leaky Criterion). Let 𝑋 be a numeral to be interpreted as 𝑓𝑎 ∗ 𝑚𝑢 + 𝑠𝑢.

Let 𝑆 be a subnumeral of 𝑋, such that

• 𝑁(𝑓𝑎 ∗ 𝑚𝑢) is masked in 𝑋,

• 𝑥/2 > 𝑠 > √𝑥

• 𝑆 has no subnumerals.

Then we assume that 𝑆 is a subnumeral of 𝑆𝑈 if and only if 𝑠 ∤ 𝑓𝑎 ∗ 𝑚𝑢.

Justification. ⟸: Given that 𝑠2 > 𝑥, by Unpacking Criterion 3, 𝑆 cannot be contained in 𝐹𝐴. If 𝑠 ∤
𝑓𝑎 ∗ 𝑚𝑢, then 𝑆 cannot be 𝑀𝑈 either. 𝑆 can be 1)𝑁(𝑓𝑎′ ∗ 𝑚𝑢) with a subnumeral 𝐹𝐴′ of 𝐹𝐴 with
𝑓𝑎′ ∤ 𝑓𝑎, or 2)𝑁(𝑚𝑢 + 𝑠𝑢′) with a subnumeral 𝑆𝑈′ of 𝑆𝑈, or 3)𝑆𝑈. Any 𝑁(𝑓𝑎′ ∗ 𝑚𝑢) or 𝑁(𝑚𝑢 + 𝑠𝑢′)

is unlikely to be a subnumeral of 𝑋 given that 𝑁(𝑓𝑎 ∗ 𝑚𝑢) is masked. Also, they likely have

subnumerals unlike 𝑆 does. Hence, we assume that 𝑆 is a subnumeral of 𝑆𝑈. □

⟹: In this direction, we argue that there is no 𝑥 = 𝑓𝑎 ∗ 𝑚𝑢 + 𝑠𝑢 with 𝑁(𝑓𝑎 ∗ 𝑚𝑢) being masked, 𝑆𝑈

having no subnumerals, 𝑠𝑢2 > 𝑥 and 𝑠𝑢|𝑓𝑎 ∗ 𝑚𝑢. Although this claim is not generally true, we
explain why exceptions are rare and showcase which amount of coincidences they require.

First, it is rare to have 𝑁(𝑓𝑎 ∗ 𝑚𝑢) masked, especially at higher numbers with 3 digits4 or more.

And, even if a 3-digit numeral had 𝑁(𝑓𝑎 ∗ 𝑚𝑢) masked, it would still require 𝑁(𝑠𝑢) to have no

subnumerals, which often means that 𝑠𝑢 is small, so it is unlikely that 𝑠𝑢2 > 𝑥.

For 2-digit numbers, 𝑁(𝑠𝑢) is 1-digit, so there are few possibilities to construct an exception. In

base 10, the only pairs (𝑓𝑎, 𝑠𝑢)—that satisfy the arithmetic properties 𝑠𝑢|𝑓𝑎 ∗ 𝑚𝑢 and 𝑠𝑢2 > 𝑓𝑎 ∗
10 + 𝑠𝑢—are (1, 5) and (4, 8). So, if in English 𝑁(48) would be ’fortaj-eight’, while 𝑁(40) would still
be ’forty’, then ’eight’ can be suspected as a multiplier, because 8 | 48. Base 20 systems offer more

space for exceptions. Arithmetically, with 𝑚𝑢 = 20 they are possible if (𝑓𝑎, 𝑠𝑢) ∊

{(1,10), (2,10), (3,10), (4,10), (3,12), (6,12), (7,14), (3,15), (6,15), (9,15), (4,16), (8,16), (9,18)}.

Hence, whenever a vigesimal numeral has its subnumeral 𝑁(𝑓𝑎 ∗ 𝑚𝑢) masked, an exception could

occur. It actually occurs in French (fr) where the numerals 𝑁(4 ∗ 20 + 𝑘) for 𝑘 = 1, . . . , 19 are spelled

’quatre-vingt- ⋅ 𝑁(𝑘)’ and do not contain 𝑁(4 ∗ 20) = ’quatre-vingts’ letter-by-letter. The numerals
𝑁(4 ∗ 20 + 10) =’quatre-vingt-dix’ and 𝑁(4 ∗ 20 + 16) = ’quatre-vingt-seize’ also fulfill the

arithmetic requirements, and 𝑁(10) = ’dix’ and 𝑁(16) = ’seize’ also do not have subnumerals.

4 ’Digit’ does not necessarily refer to base-10 digits here, but more generally to the coefficients 𝑐𝑖

 in base-𝑏 representation 𝑐0 ∗ 𝑏0 + 𝑐1 ∗ 𝑏1 + . ..

https://www.cscjournals.org/journals/IJCL/description.php

Isidor Konrad Maier & Matthias Wolff

International Journal of Computational Linguistics (IJCL), Volume (15) : Issue (3) : 2025 44
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

Posing an exception to Unpacking Criterion 4 leeds to 𝑁(10) and 𝑁(16) being interpreted as

multipliers, as will be seen later. □

The use case for Unpacking Criterion 4 may not seem obvious, but in Section 5.3 we present a
situation for which it is tailor-made. The leakiness of Unpacking Criterion 4 is not very problematic,
as its failure can only cause a small lack in generalization (Objective 1) rather than a problematic
overgeneralization (Objective 2).

Comment on working assumption: Generally, it is possible that a numeral 𝑁 is smaller than its

subnumeral. Derzhanski and Veneva (2018) mention two possibilities, namely when 𝑁’s structure
involves overcounting (Dékány, 2025) or subtraction. These possibilities lead to logical violations
of the unpacking criteria. However, the unpacking criteria keep their present validity for the main
cases 𝑆 ∊ {𝐹𝐴, 𝑀𝑈, 𝑆𝑈} and since subtraction and overcounting only allow 𝑛′ to be slightly larger

than 𝑛, there are few possibilities for logical violation. Such violation did not practically harm our
grammar induction tests.

5. NUMERAL DECOMPOSER ALGORITHM
5.1 Basic Version
In our study, we had first discovered Unpacking Criterion 1, and we noticed that it alone can drive
a decent decomposition algorithm. Since it is just a necessary but not sufficient criterion, it may
unpack subnumerals larger than 𝐹𝐴 and 𝑆𝑈. Specifically, 𝑚𝑢 and 𝑚𝑢 + 𝑠𝑢 are often < 𝑛/2. In the

basic Algorithm 1, we circumvent this issue by setting a checkpoint so that 𝑁(𝑚𝑢) and 𝑁(𝑚𝑢 + 𝑠𝑢)
are never tested on the criterion in the first place.

Algorithm 1 Basic algorithm as pseudocode using Python syntax. 𝑐𝑝 stands for checkpoint.

Function isNumeral returns 𝑇𝑟𝑢𝑒 iff the input string is a grammatically correct numeral word based
on an available lexicon. 𝑛(𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔) is the number value of the numeral 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔. Instruction

’Unpack 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔’ adds 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔 to a list of unpacked subnumerals. A ’Repack...’ instruction
removes an entry from the list of unpacked subnumerals.

1: Decompose 𝑛𝑢𝑚𝑒𝑟𝑎𝑙
2: 𝑐𝑝 ← 0

3: for 𝑒𝑛𝑑 in range (length(𝑛𝑢𝑚𝑒𝑟𝑎𝑙)) do:

4: for 𝑠𝑡𝑎𝑟𝑡 in range(𝑐𝑝:𝑒𝑛𝑑) do:
5: 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔 ← 𝑛𝑢𝑚𝑒𝑟𝑎𝑙[𝑠𝑡𝑎𝑟𝑡:𝑒𝑛𝑑]

6: if 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔 isNumeral then:

7: if 2 ∗ 𝑛(𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔) < 𝑛(𝑛𝑢𝑚𝑒𝑟𝑎𝑙) then:
8: Unpack 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔

9: Repack sub-substrings of 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔 that were unpacked before
10: else:
11: 𝑐𝑝 ← 𝑒𝑛𝑑
12: end if
13: break 𝑠𝑡𝑎𝑟𝑡-loop
14: end if
15: end for
16: end for

For illustration, we describe the decomposition of the complex English numeral 𝑁(27001) =
’twenty seven thousand and one’.

The 𝑒𝑛𝑑- and 𝑠𝑡𝑎𝑟𝑡-loops (lines 3,4) make the code check substrings of ’twenty-seven thousand
and one’ in the order ’t’, ’tw’, ’w’, ’twe’, ’we’, ’e’, ’twen’, ’wen’... At [𝑠𝑡𝑎𝑟𝑡: 𝑒𝑛𝑑] = [0: 6], the

subnumeral 𝑁(20) = ’twenty’ is found (ln. 6). Since 20 < 27001/2 (ln. 7), it gets unpacked (ln. 8).

Then the 𝑠𝑡𝑎𝑟𝑡-loop breaks (ln. 13), so the next substring to check is ’twenty-’ at [𝑠𝑡𝑎𝑟𝑡: 𝑒𝑛𝑑] =
[0: 7] rather than ’wenty’ at [1: 6]. At [0: 12], 𝑁(27) = ’twenty-seven’ is found (ln. 6). Since 27 <

https://www.cscjournals.org/journals/IJCL/description.php

Isidor Konrad Maier & Matthias Wolff

International Journal of Computational Linguistics (IJCL), Volume (15) : Issue (3) : 2025 45
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

27001/2 (ln. 7), it is also unpacked (ln. 8) and its previously unpacked sub-subnumeral 𝑁(20) =
 ’twenty’ is repacked (ln. 9). Moreover, 𝑠𝑡𝑎𝑟𝑡-loop breaks (ln. 13), so the next substring to check is

’twenty seven ’ at [0: 13] and the algorithm will never see the 𝑁(7) = ’seven’ at [7: 12]. With lines 9

and 13 we make sure that the factor word 𝑁(27) is unpacked in one rather than having 𝑁(20) and

𝑁(7) being unpacked separately. At [0: 21], 𝑁(27000) = ’twenty-seven thousand’ is discovered.
Since 27000 ≮ 27001/2 (ln. 7,10), it is not unpacked, but the 𝑠𝑡𝑎𝑟𝑡-loop breaks (l. 13), so the

algorithm will continue at 𝑒𝑛𝑑 = 22. This way, it is avoided that the algorithm finds 𝑁(7000) at

[7: 21] or 𝑁(𝑚𝑢) = 𝑁(1000)5 at [13: 21]. If it would find 𝑁(7000) or 𝑁(1000), it would unpack it,

since it is < 27001/2. Also, the checkpoint 𝑐𝑝 is reset to 21 (ln. 11), which makes the 𝑠𝑡𝑎𝑟𝑡-loop no
longer check substrings with 𝑠𝑡𝑎𝑟𝑡 < 21 (ln. 4). This way, we avoid that 𝑁(7001) at [7: 29] or

𝑁(1001) at [13: 29] may be found and unpacked. Instead, it will find 𝑁(1) next at [26: 29] (ln. 6)
and unpack it (ln. 7). The algorithm terminates then (ln. 13) and—as intended—has unpacked the
subnumerals 𝐹𝐴 = 𝑁(27) and 𝑆𝑈 = 𝑁(1).

In order to describe such numeral decompositions systematically we use a format as in
Decomposition 1. It contains a numeral description with all relevant information about the numeral,
including the numeral’s language, number value, and desired decomposition and it visualizes all
subnumerals of the numeral. A zero-based index scale facilitates referencing between [𝑠𝑡𝑎𝑟𝑡: 𝑒𝑛𝑑]
values and substrings. The actual decomposition process is described by a table that explains the
algorithm’s behaviour at every time when a subnumeral is found (ln. 6).

Language: English Number: 27001 = (20+7)*1000+1

Index: 0 1 2 3 4 5 6 7 8 9 10 12 15 20 25 28

Numeral: t w e n t y - s e v e n t h o u s a n d a n d o n e

Subnumerals:|---N(20)---| |------------------N(7001)------------------|

 |--------N(27)----------| |------------N(1001)------------|

 |--N(7)---| |----N(1000)----| |-N(1)|

 |------------------N(27000)---------------|

 |---------N(7000)-----------|

Desired decomposition: _ thousand and _ (27,1)

[𝑠𝑡𝑎𝑟𝑡: 𝑒𝑛𝑑]: [0: 6] [0: 12] [0: 21] [26: 29]

Subnumeral: 𝑁(20) 𝑁(27) 𝑁(27000) 𝑁(1)

Criterion: < 27001/2 < 27001/2 ≮ 27001/2 < 27001/2

Checkpoint: 0 0 0 → 21 21

Unpacked: {20} {27} {27} {27,1}

References: ln. 7,8 ln. 7-9 ln. 10,11 ln. 7,8

⇒_thousand and _(27,1)

DECOMPOSITION 1: English ’twenty-seven thousand and one’ decomposed by basic Algorithm 1.

The example of decomposing ’twenty-seven thousand and one’ showcases that the basic algorithm
unpacks exactly 𝐹𝐴 and 𝑆𝑈 when all of the following 4 conditions are true.

1. The subwords 𝐹𝐴, 𝑀𝑈 and 𝑆𝑈 are arranged in the order 𝐹𝐴 ⋅ 𝑀𝑈 ⋅ 𝑆𝑈.

2. 𝑁(𝑓𝑎 ∗ 𝑚𝑢) is not masked. (Otherwise, the checkpoint is not reset properly, so

𝑁(𝑚𝑢 + 𝑠𝑢) may be unpacked instead of 𝑁(𝑠𝑢).)

5 Officially, 𝑁(1000) is ’one thousand’ in English. However, we show that it even works if it was just spelled

’thousand’. Same holds for ’thousand and one.

https://www.cscjournals.org/journals/IJCL/description.php

Isidor Konrad Maier & Matthias Wolff

International Journal of Computational Linguistics (IJCL), Volume (15) : Issue (3) : 2025 46
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

3. 𝑁(𝑚𝑢) ends at the same letter as 𝑁(𝑓𝑎 ∗ 𝑚𝑢) or is masked. (Otherwise, 𝑁(𝑚𝑢) may
be unpacked.)

4. 𝑁(𝑓𝑎) and 𝑁(𝑠𝑢) are not masked. (Otherwise, they cannot be found and unpacked.)

Under these conditions, the algorithm perfectly reverses Hurford’s Packing Strategy.
Decomposition 2 showcases that the basic version works fine with non-base-10 numerals.

 Language: Tsez Number: 86 = 4*20+6

Index: 0 4 8 9 13

Numeral: u y n o q u n o i ł n o

Subnumerals:|-N(4)--|-N(20)-| |-N(6)--|

 |----N(80)------|

 |-----N(26)-------|

Desired decomposition: _ quno _ (4,6)

⇒_ quno _(4,6)

DECOMPOSITION 2: Tsez ’uynoquno iłno’ decomposed by basic Algorithm 1.

The resulting template ’_quno _’ is obtained analogously when parsing any other Tsez numeral
𝑁(𝑎 ∗ 20 + 𝑏) for (𝑎, 𝑏) ∊ {2,3,4} ⨯ {1, … ,19}. It constitutes a proper functional equation (𝑥1, 𝑥2) ↦
20𝑥1 + 𝑥2.

In I. Maier and Wolff, 2022 we already published the present basic decomposition algorithm and
showed that it is surprisingly well-rounded. However, it still has systematic errors, which we show
in the following subsection.

5.2 Problems of the Basic Algorithm
In the last subsection we showed that errors do not appear if the parsed numeral has a generic
𝐹𝐴 ⋅ 𝑀𝑈 ⋅ 𝑆𝑈 order, 𝑀𝑈 terminates exactly with 𝑀𝑈, and no subnumerals are masked. In this
section, we show what errors can occur otherwise and what issues they can cause with respect to
the objectives stated in Section 3. This is not a complete analysis of what errors could theoretically
appear, but only a summary of what errors we found in our database of 257 languages, see Section
6.1.

Masked subnumerals: As stated in Section 3, masked subnumerals cannot be unpacked and they
are not supposed to be unpacked. However, masked subnumerals can also cause a factor or
summand not to be unpacked, even if the factor or summand itself is not masked, as the example
of Spanish (es) 𝑁(25) = ’veinticinco’ shows (Decomposition 3). Here, since 𝐹𝐴 ⋅ 𝑀𝑈 = 𝑁(20) =
 ’veinte’ is masked, the checkpoint 𝑐𝑝 is not moved early enough. The algorithm only enters the if-

clause in line 6 for the first time at [0: 11] with the total numeral 𝑁(25) = ’veinticinco’. Nothing is

unpacked because 25 > 25/2 (ln. 7) and the 𝑠𝑡𝑎𝑟𝑡-loop breaks (ln. 13), causing the algorithm not

to find 𝑁(5) = ’cinco’ at all.

 Language: Spanish Number: 25 = 20+5

 Index: 0 6 10

 Numeral: v e i n t i c i n c o

 Subnumerals: |---N(5)--|

 Desired decomposition: veinti_(5)

[𝑠𝑡𝑎𝑟𝑡: 𝑒𝑛𝑑]: [0: 4] [0: 8] [9: 13]

Subnumeral: 𝑁(4) 𝑁(80) 𝑁(6)

Criterion: < 86/2 ≥ 86/2 < 86/2

Checkpoint: 0 0 → 8 8

Unpacked: {4} {4} {4,6}

References: ln. 7,8 ln. 10,11 ln. 7,8

https://www.cscjournals.org/journals/IJCL/description.php

Isidor Konrad Maier & Matthias Wolff

International Journal of Computational Linguistics (IJCL), Volume (15) : Issue (3) : 2025 47
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

⇒veinticinco()

DECOMPOSITION 3: Spanish ’veinticinco’ decomposed by basic Algorithm 1.

The same issue concerns all Spanish numerals from 𝑁(21) to 𝑁(29).

We state: An error can be caused by 𝑁(𝑓𝑎 ∗ 𝑚𝑢) being masked.

Order of subnumerals: According to Hurford, the subnumerals 𝐹𝐴, 𝑀𝑈 and 𝑆𝑈 can be in a
different order, since the rules in Fig. 1 only represent a hierarchy.

Order 𝑆𝑈 ⋅ 𝐹𝐴 ⋅ 𝑀𝑈: This order of subnumerals does not generally cause an undue decomposition,
as Decomposition 4 showcases.

Language: Upper-Sorbian Number: 61 = 1+6*10

Index: 0 5 6 10 15

Numeral: j ě d y n a š ě s ć d ź e s a t

Subnumerals:|---N(1)--| |--N(6)-|

 |-------N(60)-------|

Desired decomposition: _a_ dźesat(1,6)

⇒_a_dźesat(1,6)

DECOMPOSITION 4: Upper-Sorbian ’jedynašěsćdźesat’ decomposed by basic Algorithm 1.

Similar cases occur in Somali, Lower-Sorbian, Slovene, and many Germanic languages. The order
𝐹𝐴 ⋅ 𝑆𝑈 ⋅ 𝑀𝑈 would be decomposed in the same way, but we have not found any real examples for
it in our database.

Order 𝑀𝑈 ⋅ 𝐹𝐴 ⋅ 𝑆𝑈: This order of subnumerals can cause 𝑀𝑈 instead of 𝐹𝐴 to be unpacked as
Decomposition 5 showcases.

 Language: Nyungwe Number: 34 = 10*3+4

 Index: 0 2 7 10 14 20 22

 Numeral: m a k ´ u m i m a t a t u n a z i n a i

 Subnumerals: |--N(10)--| |--N(3)-| |-N(4)|

|-----------N(30)-----------|

Desired decomposition: mak´umi ma_ na zi_(3,4)

[𝑠𝑡𝑎𝑟𝑡: 𝑒𝑛𝑑]: [0: 11]

Subnumeral: 𝑁(25)

Criterion: ≮ 25/2

Checkpoint: 0 → 9

Unpacked: {}

References: ln. 10,11,13

[𝑠𝑡𝑎𝑟𝑡: 𝑒𝑛𝑑]: [0: 5] [6: 10] [0: 16]

Subnumeral: 𝑁(1) 𝑁(6) 𝑁(61)

Criterion: < 61/2 < 61/2 ≮ 61/2

Checkpoint: 0 0 0 → 16

Unpacked: {1} {1,6} {1,6}

References: ln. 7,8 ln. 7,8 ln. 10,13

https://www.cscjournals.org/journals/IJCL/description.php

Isidor Konrad Maier & Matthias Wolff

International Journal of Computational Linguistics (IJCL), Volume (15) : Issue (3) : 2025 48
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

 ⇒ma_ matatu na zi_(10,4)

DECOMPOSITION 5: Nyungwe ’mak´umi matatu na zinai’ decomposed by basic Algorithm 1.

The problem is that subnumeral 𝑁(𝑓𝑎 ∗ 𝑚𝑢)—that usually is the first to be ≥ 𝑛/2—is not finished

by 𝑁(𝑚𝑢) but by 𝑁(𝑓𝑎), which lets the basic algorithm confuse 𝐹𝐴 with 𝑀𝑈.

If 𝐹𝐴 is a compound numeral, the algorithm may only interpret an initial part of 𝐹𝐴 as 𝑀𝑈 as
Decomposition 6 showcases.

Language: Makhuwa Number: 60 = 10*(5+1)

 Index: 0 9 14 18 21

Numeral: m i l o k o m i t h a n u n a m o s a

Subnumerals:|-----------N(50)-----------| |--N(1)-|

 |---N(5)--|

 |-----------N(6)----------|

Desired decomposition: miloko mi_(6)

⇒miloko mithanu na_(1)

DECOMPOSITION 6: Makhuwa ’miloko mithanu na mosa’ decomposed by basic Algorithm 1.

The same issue would arise whenever 𝑀𝑈 stands before 𝐹𝐴, also in orders 𝑀𝑈 ⋅ 𝑆𝑈 ⋅ 𝐹𝐴 and

𝑆𝑈 ⋅ 𝑀𝑈 ⋅ 𝐹𝐴. However, we did not find any numerals arranged like this.

We state: An error can be caused if 𝑁(𝑚𝑢) appears before 𝑁(𝑓𝑎).

We can generalize the statement to: An error can be caused if 𝑁(𝑚𝑢) ends before 𝑁(𝑓𝑎 ∗ 𝑚𝑢).
An example is found in Suomi (Finnish, fi) (Decomposition 7).

 Language: Suomi Number: 201 = 2*100+1

 Index: 0 5 9 10 13

 Numeral: k a k s i s a t a a y k s i

Subnumerals:|---N(2)--|-N(100)| |--N(1)-|

 |-------N(200)------|

Desired decomposition: _sataa_(2,1)

[𝑠𝑡𝑎𝑟𝑡: 𝑒𝑛𝑑]: [2: 7] [0: 13] [19: 22]

Subnumeral: 𝑁(10) 𝑁(30) 𝑁(4)

Criterion: < 34/2 ≮ 34/2 < 34/2

Checkpoint: 0 0 → 13 13

Unpacked: {10} {10} {10,4}

References: ln. 7,8 ln. 7,8,9,13 ln. 7,8

[𝑠𝑡𝑎𝑟𝑡: 𝑒𝑛𝑑]: [0: 14] [18: 22]

Subnumeral: 𝑁(50) 𝑁(1)

Criterion: ≮ 60/2 < 60/2

Checkpoint: 0 → 14 14

Unpacked: {} {1}

References: ln. 10,11,13 ln. 7,8

https://www.cscjournals.org/journals/IJCL/description.php

Isidor Konrad Maier & Matthias Wolff

International Journal of Computational Linguistics (IJCL), Volume (15) : Issue (3) : 2025 49
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

⇒__a_(2,100,1)

DECOMPOSITION 7: Suomi ’kaksisataayksi’ decomposed by basic Algorithm 1.

In this case, both 𝑁(𝑓𝑎) and 𝑁(𝑚𝑢) get unpacked, as neither is right at the end of 𝑁(𝑓𝑎 ∗ 𝑚𝑢).

Overall, we have identified two causes of error:

• Cause 1: Masked 𝐹𝐴 ⋅ 𝑀𝑈 (𝑁(𝑓𝑎 ∗ 𝑚𝑢) is no subnumeral).

• Cause 2: Early 𝑀𝑈 (𝑁(𝑚𝑢) ends before 𝑁(𝑓𝑎 ∗ 𝑚𝑢) ends)

These causes can lead to two different types of problems:

• Type 1: 𝐹𝐴 or 𝑆𝑈 not getting unpacked, despite not being masked.

• Type 2: 𝑀𝑈 getting unpacked.

Either cause can lead to either type of problem. For each combination, an example numeral word
is given in the following table. Each example has been explained in this subsection.

Problems of type 1 lead to issues with lexicon size (Objective 1). Whenever a 𝐹𝐴 or 𝑆𝑈 is not
unpacked in a numeral 𝑋 = 𝑁(𝑓𝑎 ∗ 𝑚𝑢 + 𝑠𝑢), the numeral 𝑋 cannot be identified with similar

numerals like 𝑁(𝑓𝑎′ ∗ 𝑚𝑢 + 𝑠𝑢) or 𝑁(𝑓𝑎 ∗ 𝑚𝑢 + 𝑠𝑢′), so 𝑋 would need its own template.

Problems of type 2 can cause wrong functional equations (Objective 2) because of undue
generalization. As mentioned in Section 3, if in English 𝑁(21) − 𝑁(29) got generalized with

𝑁(27000) to a single function twenty-_ with input set {1, . . . , 9, 7000}, a correct affine linear
functional equation would not exist.

5.3 Advanced Algorithm
In this subsection, we explain how Algorithm 2 solves issues of the basic algorithm. In the following
subsections, we show how the added lines 12-32 enhance lexicon size reduction and how the
added lines 38-60 avoid overgeneralization.

5.3.1 Dealing with lexicon reduction
In this section we explain lines 1-37 in the advanced Algorithm 2. These code lines are built out of
Algorithm 1 and the added lines 12-32. The added lines deal with errors of Algorithm 1 where 𝐹𝐴

or 𝑆𝐴 did not get unpacked despite not being masked, such as in the cases of ’veinticinco’ and
’mak´umi matatu na zinai’. Fixing these errors enhances desired generalizations of words, whereby
𝐹𝐴 or 𝑆𝑈 can be replaced by other factor or summand words. In this way, the lexicon size can be
reduced. We present use cases in the following examples.

[𝑠𝑡𝑎𝑟𝑡: 𝑒𝑛𝑑]: [0: 5] [5: 9] [0: 10] [10: 14]

Subnumeral: 𝑁(2) 𝑁(100) 𝑁(200) 𝑁(201)

Criterion: < 201/2 < 201/2 ≮ 34/2 < 34/2

Checkpoint: 0 0 0 → 10 10

Unpacked: {2} {2,100} {2,100} {2,100,1}

References: ln. 7,8 ln. 7,8 ln. 10,11 ln. 7,8

 𝐹𝐴 or 𝑆𝑈 not unpacked 𝑀𝑈 unpacked

Masked 𝐹𝐴 ⋅ 𝑀𝑈 ’veinticinco’ ’quatre-vingt-seize’

Early 𝑀𝑈 ’mak´umi matatu na zinai’ ’kaksisataayksi’

https://www.cscjournals.org/journals/IJCL/description.php

Isidor Konrad Maier & Matthias Wolff

International Journal of Computational Linguistics (IJCL), Volume (15) : Issue (3) : 2025 50
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

Algorithm 2 Advanced numeral decomposition algorithm. In the new lines 12-32, further criteria are added under
which subnumerals can get unpacked. The new lines 38-60 are tests based on which unpacked multipliers are
detected and repacked.

1: Decompose 𝑛𝑢𝑚𝑒𝑟𝑎𝑙
2: 𝑐𝑝 ← 0
3: for 𝑒𝑛𝑑 in range(length(𝑛𝑢𝑚𝑒𝑟𝑎𝑙)) do:
4: for 𝑠𝑡𝑎𝑟𝑡1 in range(𝑐𝑝: 𝑒𝑛𝑑) do:
5: 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔 ← 𝑛𝑢𝑚𝑒𝑟𝑎𝑙[𝑠𝑡𝑎𝑟𝑡1: 𝑒𝑛𝑑]
6: if 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔 isNumeral then:
7: if 2 ∗ 𝑛(𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔) < 𝑛(𝑛𝑢𝑚𝑒𝑟𝑎𝑙) then:
8: Unpack 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔
9: Repack sub-substrings of 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔 that were unpacked before
10: else:
11: 𝑐𝑝 ← 𝑒𝑛𝑑
12: for 𝑠𝑡𝑎𝑟𝑡2 in range(𝑠𝑡𝑎𝑟𝑡1 + 1, 𝑒𝑛𝑑) do:
13: 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔2 ← 𝑛𝑢𝑚𝑒𝑟𝑎𝑙[𝑠𝑡𝑎𝑟𝑡2: 𝑒𝑛𝑑]
14: if 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔2 isNumeral then:

15: if 𝑛(𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔2)2 ≤ 𝑛(𝑛𝑢𝑚𝑒𝑟𝑎𝑙) then:
16: Unpack 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔2
17: Repack sub-substrings of 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔2
18: 𝑐𝑝 ← 𝑠𝑡𝑎𝑟𝑡2
19: 𝑚𝑎𝑦𝑏𝑒𝑈𝑛𝑝𝑎𝑐𝑘 ← 𝑁𝑜𝑛𝑒
20: break 𝑠𝑡𝑎𝑟𝑡2-loop
21: else if 𝑛(𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔2) ∤ 𝑛(𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔) and 𝑛(𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔2) ∗ 2 < 𝑛(𝑛𝑢𝑚𝑒𝑟𝑎𝑙) then:
22: 𝑚𝑎𝑦𝑏𝑒𝑈𝑛𝑝𝑎𝑐𝑘 ← 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔2
23: 𝑚𝑎𝑦𝑏𝑒𝐶𝑃 ← 𝑠𝑡𝑎𝑟𝑡2
24: else:
25: 𝑚𝑎𝑦𝑏𝑒𝑈𝑛𝑝𝑎𝑐𝑘 ← 𝑁𝑜𝑛𝑒
26: end if
27: end if
28: end for
29: if 𝑚𝑎𝑦𝑏𝑒𝑈𝑛𝑝𝑎𝑐𝑘 ≠ 𝑁𝑜𝑛𝑒 then:
30: Unpack 𝑚𝑎𝑦𝑏𝑒𝑈𝑛𝑝𝑎𝑐𝑘
31: 𝑐𝑝 ← 𝑚𝑎𝑦𝑏𝑒𝐶𝑃
32: end if
33: end if
34: break 𝑠𝑡𝑎𝑟𝑡1-loop
35: end if
36: end for
37: end for
38: 𝑚𝑎𝑦𝑏𝑒𝑀𝑈 ← value-largest unpacked subnumeral
39: 𝑜𝑡ℎ𝑒𝑟𝑈𝑛𝑝𝑎𝑐 ← {unpacked subnumerals} \ {𝑚𝑎𝑦𝑏𝑒𝑀𝑈}
40: if length(𝑜𝑡ℎ𝑒𝑟𝑈𝑛𝑝𝑎𝑐) = 1 then:
41: if 𝑛(𝑚𝑎𝑦𝑏𝑒𝑀𝑈) + 𝑛(𝑜𝑡ℎ𝑒𝑟𝑈𝑛𝑝𝑎𝑐) = 𝑛(𝑛𝑢𝑚𝑒𝑟𝑎𝑙) then:
42: Repack 𝑚𝑎𝑦𝑏𝑒𝑀𝑈
43: else if 𝑛(𝑚𝑎𝑦𝑏𝑒𝑀𝑈) ∗ 𝑛(𝑜𝑡ℎ𝑒𝑟𝑈𝑛𝑝𝑎𝑐) = 𝑛(𝑛𝑢𝑚𝑒𝑟𝑎𝑙) then:
44: Repack 𝑚𝑎𝑦𝑏𝑒𝑀𝑈
45: end if
46: else if length(𝑜𝑡ℎ𝑒𝑟𝑈𝑛𝑝𝑎𝑐) = 2 then:
47: if 𝑛(𝑜𝑡ℎ𝑒𝑟𝑈𝑛𝑝𝑎𝑐[0]) ∗ 𝑛(𝑚𝑎𝑦𝑏𝑒𝑀𝑈) + 𝑛(𝑜𝑡ℎ𝑒𝑟𝑈𝑛𝑝𝑎𝑐[1]) = 𝑛(𝑛𝑢𝑚𝑒𝑟𝑎𝑙) then:
48: Repack 𝑚𝑎𝑦𝑏𝑒𝑀𝑈
49: else if 𝑛(𝑜𝑡ℎ𝑒𝑟𝑈𝑛𝑝𝑎𝑐[1]) ∗ 𝑛(𝑚𝑎𝑦𝑏𝑒𝑀𝑈) + 𝑛(𝑜𝑡ℎ𝑒𝑟𝑈𝑛𝑝𝑎𝑐[0]) = 𝑛(𝑛𝑢𝑚𝑒𝑟𝑎𝑙) then:

50: Repack 𝑚𝑎𝑦𝑏𝑒𝑀𝑈
51: end if
52: else if length(𝑜𝑡ℎ𝑒𝑟𝑈𝑛𝑝𝑎𝑐) > 2 then:
53: for 𝑢𝑛𝑝𝑎𝑐𝑘𝑒𝑑 in 𝑜𝑡ℎ𝑒𝑟𝑈𝑛𝑝𝑎𝑐 do:
54: 𝑚𝑎𝑦𝑏𝑒𝐹𝐴 ← 𝑢𝑛𝑝𝑎𝑐𝑘𝑒𝑑
55: 𝑚𝑎𝑦𝑏𝑒𝑆𝑈𝑠 ← 𝑜𝑡ℎ𝑒𝑟𝑈𝑛𝑝𝑎𝑐 \ {𝑚𝑎𝑦𝑏𝑒𝐹𝐴}
56: if 𝑚𝑎𝑦𝑏𝑒𝐹𝐴 ∗ 𝑚𝑎𝑦𝑏𝑒𝑀𝑈 + 𝛴(𝑚𝑎𝑦𝑏𝑒𝑆𝑈𝑠) = 𝑛(𝑛𝑢𝑚𝑒𝑟𝑎𝑙) then:
57: Repack 𝑚𝑎𝑦𝑏𝑒𝑀𝑈
58: end if
59: end for
60: end if

https://www.cscjournals.org/journals/IJCL/description.php

Isidor Konrad Maier & Matthias Wolff

International Journal of Computational Linguistics (IJCL), Volume (15) : Issue (3) : 2025 51
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

Recall Decomposition 5. The factor ’tatu’ did not get unpacked due to early 𝑀𝑈 (Cause 2). In order
to resolve the issue, in line 12, we open a second 𝑠𝑡𝑎𝑟𝑡2-loop that looks for more substrings

𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔2 that end at the current 𝑒𝑛𝑑 (ln. 13), so that the factor ’tatu’ can be found at all. In line

15, we check 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔2 for Unpacking Criterion 2. Since 32 ≤ 34, the if clause is entered and
𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔2 = 𝑁(3) = ’tatu’ is unpacked in line 16. In detail, lines 1-37 of Algorithm 2 yield
Decomposition 8 for ’mak´umi matatu na zinai’.

⇒ma_ ma_ na zi_(10,3,4)

DECOMPOSITION 8: Nyungwe ’mak´umi matatu na zinai’ decomposed by lines 1-37 of advanced Alg. 2.

We will show in Subsection 5.3.2 that 𝑁(10) = ’k´umi’ will still get repacked by algorithm lines 38-

60. In this way the desired decomposition 34 = mak´umi ma_ na zi_(3, 4) will be obtained finally.
Note the following details:

1. In line 15, we use the sufficient Unpacking Criterion 2 rather than the necessary Unpacking
Criterion 1 to avoid unpacking multiplier words. If we used Criterion 1 instead, errors would appear
frequently in basic cases, like in English ’two hundred and one’. When 𝑁(100) = ’hundred’6 is

found, Criterion 1 would unpack it, while Criterion 2 does not, since √201 < 100 < 201/2.
2. In line 18, the checkpoint is reset from the current 𝑒𝑛𝑑 to the current 𝑠𝑡𝑎𝑟𝑡2. This becomes

important in cases such as the following in which the order is 𝑀𝑈 ⋅ 𝐹𝐴 ⋅ 𝑆𝑈 and 𝐹𝐴 is a composed
numeral. For a detailed understanding, compare Decomposition 6 with Decomposition 9.

 ⇒miloko mi_(6)

DECOMPOSITION 9: Makhuwa ’miloko mithanu na mosa’ decomposed by advanced Algorithm 2.

Cause 1 (Masked 𝑁(𝑓𝑎 ∗ 𝑚𝑢)) has also caused summand words not to get unpacked by Algorithm
1, such as in ’veinticinco’. In the case of ’veinticinco’, this issue is already resolved with lines 15-20
of Algorithm 2 (see Decomposition 10).

 ⇒veinti_(5)

DECOMPOSITION 10: Spanish ’veinticinco’ decomposed by advanced Algorithm 2.

6 Here we assume that 𝑁(100) = ’hundred’ rather than ’one hundred’. Otherwise, the example works similar

with 𝑁(201) in Deutsch or various other languages.

[𝑠𝑡𝑎𝑟𝑡: 𝑒𝑛𝑑]: [2: 6] [0: 13] [9: 13] [19: 22]

Subnumeral: 𝑁(10) 𝑁(30) 𝑁(3) 𝑁(4)

Criterion: < 34/2 ≮ 34/2 ≤ √34 < 34/2

Checkpoint: 0 0 → 13 13 → 9 9

Unpacked: {10} {10} {10,3} {10,3,4}

References: ln. 7,8 ln.10,11 ln.15,16 ln. 7,8

[𝑠𝑡𝑎𝑟𝑡: 𝑒𝑛𝑑]: [0: 14] [9: 14] [9: 22]

Subnumeral: 𝑁(50) 𝑁(5) 𝑁(6)

Criterion: ≮ 60/2 ≤ √60 < 60/2

Checkpoint: 0 → 14 14 → 9 9

Unpacked: {} {5} {6}

References: ln. 10 ln. 15,16,18 ln. 7,8,9

[𝑠𝑡𝑎𝑟𝑡: 𝑒𝑛𝑑]: [0: 11] [6: 11]

Subnumeral: 𝑁(25) 𝑁(5)

Criterion: ≮ 25/2 ≤ √25

Checkpoint: 0 → 11 11 → 6

Unpacked: {} {5}

References: ln. 10 ln. 15,16

https://www.cscjournals.org/journals/IJCL/description.php

Isidor Konrad Maier & Matthias Wolff

International Journal of Computational Linguistics (IJCL), Volume (15) : Issue (3) : 2025 52
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

Correct decompositions of 𝑁(21) = ’veintiuno’, ..., 𝑁(24) = ’veintiquatro’ are obtained

analogously. However, for 𝑁(20 + 𝑥) with 𝑥 > 5, the summand 𝑥 is larger than √20 + 𝑥, so it does
not satisfy Criterion 2. So, when processing ’veintiseis’ with Algorithm 2, lines 15-20 do not cause
𝑁(6) = ’seis’ to be unpacked. Therefore, we added the else-if clause in line 21, to deal with
numerals of order 𝐹𝐴 ⋅ 𝑀𝑈 ⋅ 𝑆𝑈 with masked 𝑁(𝑓𝑎 ∗ 𝑚𝑢).

Usually, 𝑁(𝑓𝑎 ∗ 𝑚𝑢) is the substring that enters the else-clause in line 10, since it is > 𝑛/2.

However, when 𝑁(𝑓𝑎 ∗ 𝑚𝑢) is masked, it never becomes 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔. Instead, another substring, at

latest the total 𝑁 = 𝑁(𝑓𝑎 ∗ 𝑚𝑢 + 𝑠𝑢) itself, will eventually be > 𝑛/2. Precisely, it will be 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔 =
𝐹𝐴 ⋅ 𝑀𝑈 ⋅ 𝑆𝑈′, in which 𝑆𝑈′ is the minimal suffix of 𝑆𝑈 that makes 𝐹𝐴 ⋅ 𝑀𝑈 ⋅ 𝑆𝑈′ = 𝑁(𝑓𝑎 ∗ 𝑚𝑢 + 𝑠𝑢′)
a proper numeral word. Then, after 𝐹𝐴 ⋅ 𝑀𝑈 ⋅ 𝑆𝑈′ has been processed (ln. 6,7,10), a 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔2 is
browsed for. While the if-clause in line 15 checks Unpacking Criterion 2, the else-if-clause in line
21 checks the remaining arithmetic requirements of Criterion 4 for 𝑆 = 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔2. Note that the
requirement 𝑛(𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔2)|𝑓𝑎 ∗ 𝑚𝑢 is equivalent to 𝑛(𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔2)|𝑛(𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔), since

𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔 = 𝑁(𝑓𝑎 ∗ 𝑚𝑢 + 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔2). In order to use Unpacking Criterion 4, it is still required that

𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔2 has no subnumerals. Therefore, 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔2 is not immediately unpacked after passing

line 21. Instead, it is saved as 𝑚𝑎𝑦𝑏𝑒𝑈𝑛𝑝𝑎𝑐𝑘 (ln. 22). If and only if another 𝑠𝑢𝑏𝑛𝑢𝑚𝑒𝑟𝑎𝑙2 is found
inside 𝑚𝑎𝑦𝑏𝑒𝑈𝑛𝑝𝑎𝑐𝑘 at a later 𝑠𝑡𝑎𝑟𝑡2 (ln. 14), 𝑚𝑎𝑦𝑏𝑒𝑈𝑛𝑝𝑎𝑐𝑘 is reset again (ln. 19, ln. 22 or ln. 25).

If not, then we assume that 𝑚𝑎𝑦𝑏𝑒𝑈𝑛𝑝𝑎𝑐𝑘 = 𝑆𝑈′ has no subnumerals and unpack it in line 30, as

it fulfills the requirements of Criterion 4. In this way, the Spanish numeral 𝑁(26) = ’veintiseis’ gets
decomposed properly by Algorithm 2 (Decomposition 11).

 Language: Spanish Number: 26 = 20+6

 Index: 0 6 9

 Numeral: v e i n t i s e i s

 Subnumerals: |--N(6)-|

 Desired decomposition: veinti_ (6)

⇒veinti_(6)

DECOMPOSITION 11: Spanish ’veintiseis’ decomposed by advanced Algorithm 2.

It works the same for 𝑁(27) − 𝑁(29). Also, for most French numerals of the shape ’quatre-vingt-

’⋅ 𝑋, the summand 𝑋 now gets unpacked properly (see Decomposition 12).

However, since Criterion 4 is leaky, X can still remain packed in rare cases like Decomposition 13
in which 𝑛(𝑋) ∣ 𝑛(’quatre-vingt-’⋅ 𝑋).

The same issue also appears for ’quatre-vingt-dix’, which is decomposed _-_-dix(4, 20). A related

issue appears in Decomposition 14 with the numerals 𝑁(97), 𝑁(98) and 𝑁(99), as their summand

begins with the sub-subnumeral 𝑆𝑈′ = ’dix’ = 𝑁(10) and 𝑛(𝑆𝑈′)|𝑛(’quatre-vingt-’⋅ 𝑆𝑈′).

This far we have attained proper unpacking of summand words. In the few cases in French in which
summands are not unpacked, some lexicon efficiency is lost due to the leakiness of Unpacking
Criterion 4. Specifically, the five numerals 𝑁(90) and 𝑁(96) − 𝑁(99) cannot be covered by the
function _-vingt-_, but need their own separate lexicon entries.

[𝑠𝑡𝑎𝑟𝑡: 𝑒𝑛𝑑]: [0: 10] [6: 10]

Subnumeral: 𝑁(26) 𝑁(6)

Criterion: < 26/2 < 26/2 ∧ | 26 ∧ 𝑖𝑠 𝑎𝑡𝑜𝑚

Checkpoint: 0 → 10 10 → 6

Unpacked: {} {6}

References: ln. 10 ln. 21,22,29,30

https://www.cscjournals.org/journals/IJCL/description.php

Isidor Konrad Maier & Matthias Wolff

International Journal of Computational Linguistics (IJCL), Volume (15) : Issue (3) : 2025 53
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

 Language: French Number: 91 = 4*20+11

 Index: 0 6 12 16

 Numeral: q u a t r e - v i n g t - o n z e

Subnumerals:|----N(4)---| |--N(20)--| |-N(16)-|

Desired decomposition: _ -vingt-_ (4,11)

 ⇒_-_-_(4,20,11)

DECOMPOSITION 12: French ’quatre-vingt-onze’ decomposed by ln. 1-37 of advanced Alg. 2.

 Language: French Number: 96 = 4*20+16

 Index: 0 6 12 17

 Numeral: q u a t r e - v i n g t - s e i z e

Subnumerals:|----N(4)---| |--N(20)--| |--N(16)--|

Desired decomposition: _- vingt-_ (4,16)

 ⇒_-_-seize(4,20)

DECOMPOSITION 13: French ’quatre-vingt-seize’ decomposed by advanced Algorithm 2.

 Language: French Number: 99 = 4*20+19

 Index: 0 6 12 16 20

 Numeral: q u a t r e - v i n g t - d i x - n e u f

Subnumerals:|----N(4)---| |--N(20)--| |-----N(19)-----|

|--------------N(90)------------| |--N(9)-|

 |N(10)|

Desired decomposition: _-vingt-_(4,19)

[𝑠𝑡𝑎𝑟𝑡: 𝑒𝑛𝑑]: [0: 6] [7: 12] [0: 16] [13: 16] [17: 21]

Subnumeral: 𝑁(4) 𝑁(20) 𝑁(90) 𝑁(10) 𝑁(9)

Criterion: < 99/2 < 99/2 ≮ 99/2 ≰ √99 and |90 < 99/2

Checkpoint: 0 0 0 → 16 16 16

Unpacked: {4} {4,20} {4,20} {4,20} {4,20,9}

References: ln. 7,8 ln. 7,8 ln. 10 ln. 24 ln. 7,8

⇒_-_-dix-_(4,20,9)

DECOMPOSITION 14: French ’quatre-vingt-dix-neuf’ decomposed by advanced Algorithm 2.

[𝑠𝑡𝑎𝑟𝑡: 𝑒𝑛𝑑]: [0: 6] [7: 12] [0: 17] [13: 17]

Subnumeral: 𝑁(4) 𝑁(20) 𝑁(91) 𝑁(11)

Criterion: < 91/2 < 91/2 ≮ 91/2 ≮ 91/2 ∧ | 91 ∧is atom

Checkpoint: 0 0 0 → 17 17 → 12

Unpacked: {4} {4,20} {4,20} {4,20,11}

References: ln. 7,8 ln. 7,8 ln. 10 ln. 21,22,29,30

[𝑠𝑡𝑎𝑟𝑡: 𝑒𝑛𝑑]: [0: 6] [7: 12] [0: 18] [13: 18]

Subnumeral: 𝑁(4) 𝑁(20) 𝑁(96) 𝑁(16)

Criterion: < 96/2 < 96/2 ≮ 96/2 ≮ √96 and |96

Checkpoint: 0 0 0 → 18 18

Unpacked: {4} {4,20} {4,20} {4,20}

References: ln. 7,8 ln. 7,8 ln. 10 ln. 24

https://www.cscjournals.org/journals/IJCL/description.php

Isidor Konrad Maier & Matthias Wolff

International Journal of Computational Linguistics (IJCL), Volume (15) : Issue (3) : 2025 54
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

5.3.2 Dealing with Overgeneralization
As can be seen in the examples of ’mak´umi matatu na zinai’, ’kaksisataayksi’ and ’quatre-vingtdix’,
whenever 𝑁(𝑚𝑢) ends before 𝑁(𝑓𝑎 ∗ 𝑚𝑢) (like ’k´umi’ in ’mak´umi matatu’, ’sata’ in ’kaksisataa’
and ’vingt’ in ’quatre-vingts’), then Algorithm 1 unpacks the multiplier despite our intention. This
leads to decompositions like 80 = _-_s(4,20) or 201 = _ _a_(2,100). Such functions are prone to

overgeneralization. Specifically, ’_ _a_’ cannot only generate Suomi numerals between 102 and

103, but also numerals between 106 and 1012 when the second input is 𝑁(106) =’miljoona’ or

𝑁(109) = ’miljardi’ instead of 𝑁(100) = ’sata’. This is an undue overgeneralization with respect to
Objective 2, since ’_ _a_’ cannot work with an affine linear function in this value range. Algorithm 2
overcomes this issue with the added lines 38-60. There, it looks for clues to detect an unpacked
𝑀𝑈 in order to repack it.

If a numeral 𝑋 has three unpacked subnumerals 𝑈1, 𝑈2, 𝑈3 that happen to satisfy 𝑢1 ∗ 𝑢2 + 𝑢3 = 𝑥

with 𝑢1 < 𝑢2, then we suspect 𝑀𝑈 = 𝑈2, 𝐹𝐴 = 𝑈1 and 𝑆𝑈 = 𝑈3, hence we would repack 𝑈2. Note

that first one would need to find the distribution of the unpacked subnumerals on the roles 𝐹𝐴, 𝑀𝑈

and 𝑆𝑈. In light of Axioms 2 and 3, 𝑀𝑈 would always have the largest value of all.

Thus, if we have three unpacked subnumerals, our strategy is: Set the value-largest unpacked
subnumeral 𝑈𝑚𝑎𝑥 to 𝑚𝑎𝑦𝑏𝑒𝑀𝑈 (ln. 38), as we suspect it may be 𝑀𝑈. If the other two 𝑈1, 𝑈2 satisfy

𝑢1 ∗ 𝑢𝑚𝑎𝑥 + 𝑢2 = 𝑥 (ln. 47) or 𝑢2 ∗ 𝑢𝑚𝑎𝑥 + 𝑢1 = 𝑥 (ln. 49), then we repack 𝑚𝑎𝑦𝑏𝑒𝑀𝑈 = 𝑈𝑚𝑎𝑥 (ln.

48,50), as the suspicion 𝑈𝑚𝑎𝑥 = 𝑀𝑈 has been strengthened.

If we have a number of unpacked subnumerals different from three, we use a similar strategy, as
can be seen in lines 40-45 and 52-59 of Algorithm 2.

With this fix, we were able to solve the errors of type 𝑀𝑈 unpacked on a large scale.

For example, it solved the issue in the decomposition of ’kaksisataayksi’ = 201 = _ _a_(2, 100, 1),
as the algorithm can find out that 2 ∗ 100 + 1 = 201 and detect 100 as a multiplier. By repacking

𝑁(100), the desired decomposition 201 = _ sataa_(2, 1) is obtained. Likewise, it works in the cases
of ’quatre-vingts’ and ’mak´umi matatu na zinai’.

If, in the processing of ’quatre-vingt-seize’, Algorithm 2 would have unpacked the summand
𝑁(16) = ’seize’ properly, then it would also repack the multiplier 𝑁(20) = ’vingt’ after noticing that
96 = 4 ∗ 20 + 16. This would have led to the desired decomposition 96 = _-vingt-_(4, 16). Since

’seize’ did not get unpacked, the algorithm only checks whether or not 96 = 4 ∗ 20 or 96 = 4 + 20

and does not notice that 96 = 4 ∗ 20 + 16. By lacking this clue, ’vingt’ remains unpacked despite
our intention. The same happened for ’quatre-vingt-dix’ and the ’quatre-vingt-dix’⋅ 𝑁(𝑦) for

𝑦 ∊ {7, 8, 9}. However, the French numerals 𝑁(81) − 𝑁(89) and 𝑁(91) − 𝑁(96) are properly

decomposed by Algorithm 2 as _-vingt-_(4, _).

While many errors got fixed by lines 38-60, a few new ones were caused, such as in Decomposition
15.

Numeral 𝑁(80) = quatre-vingt

⇓

𝑁(34) = mak´umi matatu na zinai
⇓

Alg. 2 dec. till l. 37 _-_s(4, 20)

⇓

ma_ ma_ na zi_(10, 3, 4)

⇓

Finding 80 = 4 ∗ 20

⇓

34 = 10 ∗ 3 + 4
⇓

Diagnosis 𝑁(20) is 𝑀𝑈

⇓

𝑁(10) is 𝑀𝑈
⇓

Alg. 2 final dec. _-vingts(4) mak´umi ma_ na zi_(3, 4)

https://www.cscjournals.org/journals/IJCL/description.php

Isidor Konrad Maier & Matthias Wolff

International Journal of Computational Linguistics (IJCL), Volume (15) : Issue (3) : 2025 55
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

Language: Sakha Number: 299 = 2*100+99

Index: 0 4 9 15 18 23

Numeral: и к к и с ү ү с т о ҕ у с у о н т о ҕ у с

Subnumerals:|--N(2)-| |-N(100)| |---N(9)--| |N(10)| |---N(9)--|

 |------N(200)-----| |------N(90)------| |N(3|

 |N(3| |N(3| |------N(19)------|

 |------------N(209)-----------|

 |-------N(109)------|

 |----------------N(290)---------------|

 |-----------N(190)----------|

 |------N(90)------|

 |---N(30)---|

 |-----------------N(199)----------------|

 |------------N(99)------------|

 |---------N(39)---------|

Desired decomposition: _ сүүс _(2,99)

[𝑠𝑡𝑎𝑟𝑡: 𝑒𝑛𝑑]: [0: 4] [0: 9] [5: 9] [7: 9] [10: 15] … [10: 25]

Subnumeral: 𝑁(2) 𝑁(200) 𝑁(100) 𝑁(3) 𝑁(9) 𝑁(99)

Criterion:
<

299

2
 ≮

299

2
 ≰ √299 ≤ √299 <

299

2

<

299

2

Checkpoint: 0 0 → 9 9 9 → 7 7 7 7

Unpacked: {2} {2} {2} {2,3} {2,3,9} … {2,3,99}

References: 7,8 10,11 24 15,16,18 7,8 7,8,9 7,8,9

⇒_ сү_ _(2,3,99)

⇒ Diagnosis: 299 = 3 ∗ 99 + 2

⇒ 𝑁(99) is 𝑀𝑈

⇒_ сү_тоҕус уон тоҕус(2,3)

DECOMPOSITION 15: Sakha ’икки сүүс тоҕус уон тоҕус’ decomposed by advanced Algorithm 2.

The Sakha (Yakut) numeral 𝑁(100) = ’сүүс’ accidentally contains 𝑁(3) = ’үс’, hence, in 𝑁(299), it

gets unpacked among 𝑁(2) and 𝑁(99) due to its small value. Since 3 ∗ 99 + 2 = 299, there is the
suspicion that 𝑁(99) is a multiplier, so it is repacked and the final decomposition is

299 = _ сү_ тоҕус уон тоҕус(2, 3). Similar errors happen in 4 other languages: Breton, Rapa-Nui,
Tok-Pisin, and Lachixio-Zapotec. Note that these errors do only minor damage, as they only require
one extra lexicon entry for the single incorrectly decomposed numeral.

6. EVALUATION
We evaluated Algorithm 2 by testing it on data sets of numerals and analyzing the produced output
lexica. The data sets are described in Subsection 6.1. The data set of English numerals < 1000
induced the following lexicon of template functions:

one: () ↦ 1 two: () ↦ 2 three: () ↦ 3

four: () ↦ 4 five: () ↦ 5 six: () ↦ 6

seven: () ↦ 7 eight: () ↦ 8 nine: () ↦ 9

ten: () ↦ 10 eleven: () ↦ 11 twelve: () ↦ 12

thirteen: () ↦ 13 _teen: (𝑥) ↦ 𝑥 + 10 fifteen: () ↦ 15

-een: () ↦ 18 twenty: () ↦ 20 twenty - _: (𝑥) ↦ 𝑥 + 20

thirty: () ↦ 30 forty: () ↦ 40 forty - _: (𝑥) ↦ 𝑥 + 40

thirty-_: (𝑥) ↦ 𝑥 + 30 _ty: (𝑥) ↦ 10 ∗ 𝑥 _ty -_: (𝑥, 𝑦) ↦ 10 ∗ 𝑥 + 𝑦

fifty: () ↦ 50 _y: (𝑥) ↦80 _y -_: (𝑥, 𝑦) ↦ 10 ∗ 𝑥 + 𝑦

fifty - _: (𝑥) ↦ 𝑥 + 50 _hundred: (𝑥) ↦ 100 ∗ 𝑥 _hundred and _: (𝑥, 𝑦) ↦ 100 ∗ 𝑥 + 𝑦

https://www.cscjournals.org/journals/IJCL/description.php

Isidor Konrad Maier & Matthias Wolff

International Journal of Computational Linguistics (IJCL), Volume (15) : Issue (3) : 2025 56
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

We have left out the domains of the functions to save space. All functional equations are correct
(Objective 2) and the lexicon comprises only 30 templates (Objective 1). It resembles expert-made
grammars, as it is morphologically plausible. A broader and more comparative evaluation follows
in the upcoming subsections. In Subsection 6.2 we compare three induced grammars with expert-
made gold standards. In Subsection 6.3 we analyze the correctness of all induced grammars
(Objective 2), and in Subsection 6.4 the compactness (Objective 1). In Subsection 6.5 we attempt
to present overall error statistics.

6.1 Data
From languagesandnumbers.com we obtained dictionaries of number-numeral pairs for numbers
up to 999 in 242 languages, unless a language does not deliver numerals up to 999.

From the Python package num2words, we got a dictionary of number-numeral pairs for numbers
up to 1000 and a sample of 4-digit and 5-digit numbers in 35 languages. The sample contains the

number 27206 and all 4- and 5-digit numbers that we could reasonably imagine to be contained in

𝑁(27206) as a subnumeral in a base-10 system, which are

 1002, 1006, 1100, 1200, 1206, 7000, 7002, 7006, 7100, 7200, 7206, 10000, 17000,

 17200, 17206, 20000, 27000, 27006 and 27200. (3)

In base 20 or other base X systems, other subnumerals would be conceivable, but all base-20
system languages that we have in our database either transition into base 10 when numbers
become bigger, or the database does not have numerals for numbers over 1000. 13 of the
languages from num2words are not obtained from languagesandnumbers.com.

Using the TeX code from Derzhanski and Veneva (2020), we generated Birom numerals till 120

and Yoruba numerals till 184. These 2 languages are not included in the other sources.

All data sets only contain the standard grammatical forms of the numerals, since we assume that
any challenge that an alternate form may pose on the performance of the numeral decomposer
comes up in an analogous form in another language. 7 In Appendix A, all data sets are listed.

6.2 Comparison with Expert-Made Grammars
In this subsection, we compare three expert-made grammars with their numeral-decomposer-
induced counterparts. Derzhanski and Veneva (2020) present TeX implementations of grammars
for Bulgarian numerals till 99, Birom numerals till 120 and Yoruba numerals till 184. The grammars
come from solutions of exercises of the International Linguistic Olympiad and other linguistic
contests. The authors chose Bulgarian, Birom, and Yoruba because their numeral systems offer a
great variety of features. In particular, Bulgarian uses a standard base-10 system with subnumeral
order factor-multiplier-summand, Birom uses a base-12 system involving backward counting and
order multiplier-factor-summand, and Yoruba uses a combination of base 20 and base 10 with even
more backward counting and order summand-multiplier-factor.

Table 1 shows a direct comparison of induced and expert-made grammar for Birom.

Comparisons for Bulgarian and Yoruba can be found in Appendix B. Notably, for Bulgarian both
numeral decomposer version induced the same grammar as the experts, so they worked perfectly.

In order to evaluate the other comparisons, we calculate the accuracy value that Hammarström
(2008) used. He interprets grammars as clusters, with each cluster representing the set of
expressions generated by a single rule. Accuracy is defined as

7 The interested reader may challenge this claim by testing the decomposer published on GitHub, see I. K.

Maier, 2023.

https://www.cscjournals.org/journals/IJCL/description.php

Isidor Konrad Maier & Matthias Wolff

International Journal of Computational Linguistics (IJCL), Volume (15) : Issue (3) : 2025 57
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

𝐴𝑐𝑐 =

1

|𝐼|
∑ 𝑝𝑟𝑒𝑐(𝑟, 𝐺) +

1

|𝐺|
∑ 𝑝𝑟𝑒𝑐(𝑟, 𝐼)𝑟∊𝐺𝑟∊𝐼

2
 with

𝑝𝑟𝑒𝑐(𝑟, 𝑋) =
|𝑟| − |{𝑟𝑥 ∊ 𝑋 | 𝑟 ∩ 𝑟𝑥 ≠ ∅}| + 1

|𝑟|
.

The formula is similar to cluster purity, see Manning et al., 2008, chapter 16.3. While purity
measures how much of one induced rule can be covered by one gold rule, accuracy measures how
many gold rules it takes to cover one induced rule completely.

Induced grammar Expert-made grammar

Rule/Function Values Rule/Function Values

ATOMS 1, . . . ,8,12 ATOMS 1, . . . ,8,12

Sāā_
(𝑥) ↦ −1𝑥 + 12

9,10,11 Sāā_
(𝑥) ↦ −1𝑥 + 12

9,10,11

bākūrū bı̄_
(𝑥) ↦ 12𝑥

12𝑥 for

𝑥 ∊ {2, … ,8}
bākūrū bı̄_
(𝑥) ↦ 12𝑥

12𝑥 for

𝑥 ∊ {2, … ,8}
bā_ Sāābı̄_
(𝑥, 𝑦) ↦ 12𝑥 − 12𝑦

180, 120 bā_ Sāābı̄_
(𝑥, 𝑦) ↦ 12𝑥 − 12𝑦

180, 120

kūrū na gwĒ _
(𝑥) ↦ 13

13 _ na gwĒ _
(𝑥, 𝑦) ↦ 𝑥 + 𝑦

12𝑥′ + 1 for

𝑥′ ∊ {1, . . . ,9}
bākūrū bı̄_ na gwĒ _
(𝑥, 𝑦) ↦ 12𝑥 + 𝑦

12𝑥 + 1 for

𝑥 ∊ {2, . . . ,8}
bā_ Sāābı̄_ na gwĒ _
(𝑥, 𝑦, 𝑧) ↦ 109

109

kūrū na vE_
(𝑥) ↦ 𝑥 + 12

14, . . . ,23 _ na vE_
(𝑥, 𝑦) ↦ 𝑥 + 𝑦

12𝑥′ + 𝑦 for

𝑥′ ∊ {1, . . . ,9}
𝑦 ∊ {2, . . . ,11}

bākūrū bı̄_ na vE_
(𝑥, 𝑦) ↦ 12𝑥 + 𝑦

12𝑥 + 𝑦 for

𝑥 ∊ {2, . . . ,8}
𝑦 ∊ {2, . . . ,11}

bā_ Sāābı̄_ na vE_
(𝑥, 𝑦, 𝑧) ↦ 8𝑥 + 4𝑦 + 𝑧

110, . . . ,119

TABLE 1: An advanced-numeral-decomposer induced grammar for Birom language in comparison with an
expert-made gold standard. The decomposer has about the same idea as the expert but it splits up

’_na gwĒ _’ and ’_ na vE_’ in three functions to avoid overgeneralization.

TABLE 2: Accuracy values (Hammarström, 2008) of grammars induced by basic and advanced numeral
decomposer in relation to Derzhanski and Veneva (2020)’s expert-made grammars. For Bulgarian, both

decomposer versions induced the same grammar as the experts made.

For the Birom induced grammar, we calculate an accuracy of 99.13 %. All induced rules can be

covered with one single expert-made rule, so 𝑝𝑟𝑒𝑐(𝑟, 𝐺) = 1 for all 𝑟 ∊ 𝐼. Out of the 𝑟 ∊ 𝐺, the 9
atoms and the 3 functions ’Sāā_’, ’bākūrū bı̄_’ and ’bā_ Sāābı̄_’ are covered by one single induced
rule each, while ’_ na gwĒ _’ and ’_ na vE_’ are covered by 3 rules. Thus

𝐴𝑐𝑐𝐵𝑖𝑟𝑜𝑚 =
1 +

1

14
(12.1 +

9−3+1

9
+

90−3+1

90
)

2
= 0.9913.

Accuracies Bulgarian Birom Yoruba

Advanced Numeral Decomposer 100% 99.13% 98.73%

Basic Numeral Decomposer 100% 89.28% 89.06%

https://www.cscjournals.org/journals/IJCL/description.php

Isidor Konrad Maier & Matthias Wolff

International Journal of Computational Linguistics (IJCL), Volume (15) : Issue (3) : 2025 58
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

The accuracies of the other induced grammars can be found in Table 2. For comparison, the
numeral grammars induced by Hammarström (2008) had an average accuracy of 71.56 % and

amedian accuracy of 90 %.

6.3 Regarding Correct Functional Equations
For the induced grammars, the functional equation of each template is calculated by affine linear
regression. A functional equation of a template is correct if it computes the correct number value
for each numeral generated by the template. This subsection reports on all incorrect functional
equations found in our data.

We note that apart from our data, which do not go beyond 106, big English numeral words like
’trillion’, ’quadrillion’, ’quintillion’ etc. are related to the Latin numerals ’tria’, ’quattuor’, ’quinque’,
while the impact of these implied subnumerals is not linear but exponential.

Inside our data, we have summarized a report regarding Objective 2 in the following table. Not all
errors are caused by bad decomposition. Some occurred due to unintuitive context sensitivity,
which we will explain later.

In 243 out of 257 languages, the advanced numeral decomposer did not do any undue

generalizations. So, for each template function in these 243 languages, an affine linear equation
was found that interprets all its output numerals with the correct number value.

In the 14 remaining languages, undue generalizations led to inexact functional equations and thus
incorrect interpretations of numerals.

In 11 out of the 14 failed languages, we consider the wrong interpretation reasonable enough that
humans could misinterpret them as well.

In many of these cases, we suspect that the data from languagesandnumbers.com have errors: In
6 languages, Purepecha, Susu, Dogrib, Tunica, Yao, and Yupik, we found pairs of numbers with
exact same numeral. It is also concievable that these pairs actually differ in intonation or something,
and the differences are just not visible in the delivered written form. We also suspect wrong data in
Haida, which we explain later.

In the other 5 languages out of the 11, context sensitivities led to errors, i.e., there are compound

numerals 𝑋 ⋅ 𝑌 and 𝑋′ ⋅ 𝑌′, in which (𝑋, 𝑋′) and (𝑌, 𝑌′) are pairs of intuitively similar numerals but
the calculation of 𝑛(𝑋 ⋅ 𝑌) out of 𝑥 and 𝑦 is fundamentally different from the calculation of 𝑛(𝑋′ ⋅ 𝑌′)

out of 𝑥′ and 𝑦′:

Choapan-Zapotec: While 𝑁(1) = ’tu’, 𝑁(2) = ’chopa’ and 𝑁(3) = ’tzona’, and ’chopa galo’ and

’tzona galo’ mean 2 ∗ 20 and 3 ∗ 20, respectively, the numeral ’tu galo’ means 20 − 1 instead of

1 ∗ 20.

Nume: When a 1-digit numeral 𝑆 (in base 10) is affixed to ’muweldul ’, then it means 100 ∗ 𝑠, but if

𝑆 is a 2-digit numeral, then is means 100 + 𝑠.

Farsi (Persian): In the Latin-transcripted form, we have 𝑁(600) =’sheshsad’, composed as

𝑁(6) ⋅’sad’. The numeral 𝑁(300) is similarly composed, but 𝑁(3) =’se’ gets inflected to ’si’, which

Error causes Languages

Bad decomposition 3: Tongan, Kiribati, Nyungwe

Context sensitivity 4: Choapan-Zapotec, Nume, Farsi (Persian), Hebrew (he)

Incorrect input data(?) 7: Haida, Purepecha, Susu, Dogrib, Tunica, Yao, Yupi

No errors 243: the rest

https://www.cscjournals.org/journals/IJCL/description.php

Isidor Konrad Maier & Matthias Wolff

International Journal of Computational Linguistics (IJCL), Volume (15) : Issue (3) : 2025 59
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

accidentally is 𝑁(30), so we have a template _sad mapping 6 to 600 and 30 to 300. Actually, an

affine linear equation 𝑥 ↦ 600 +
300−600

30−6
∗ (𝑥 − 6) is still construable, but for code efficiency reasons

we have only allowed integer coefficients for the functional equations.

Haida: While 𝑁(2) = ’sdáng’, 𝑁(3) = ’hlgúnahl’ and 𝑁(8) = ’sdáansaangaa’, and ’lagwa uu sdáng’

and ’lagwa uu hlgúnahl’ mean 2 ∗ 20 and 3 ∗ 20, respectively, according to languages and
numbers.com the numeral ’lagwa uu sdáansaangaa’ means 80 instead of 8 ∗ 20. We suspect that

this is wrong information, since according to omniglot.com, 80 means ’lagwa uu stánsang’, which

is logical since ’stánsang’ = 𝑁(4).

Hebrew: While 𝑁(3) 𝑁(4) ,’שלוש’ = and 𝑁(10) ’ארבע’ = and 3 ,’עשר’ = ∗ 10 and 4 ∗ 10 are
written ’שלושים’ and ’ארבעים’, respectively, the numeral ’עשרים’ means 10 + 10 instead of 10 ∗ 10.

In the 3 remaining languages, undue generalizations were made due to bad decompositions:

In Tongan-Telephone-Style, numbers are—with some minor inflections—simply called by the
sequence of their decimal digits. The total lack of multiplier words leads to various words being
identified with the template _ _. This template can sometimes mean (𝑥0, 𝑥1) ↦ 10 ∗ 𝑥0 + 𝑥1 for 2-

digit numerals and sometimes (𝑥0, 𝑥1) ↦ 100 ∗ 𝑥0 + 𝑥1. The fact that the rough value size of a
numeral cannot be instantaneously estimated during reading—as any further number of digits could
still be added— also makes it impossible to make proper use of the separated 𝑠𝑡𝑎𝑟𝑡2-loop in the
algorithm. One could argue that this language does not really follow Hurford’s Theory of Numerals.
This can be justified by an argument that the development of this numeral language is more
influenced by telecommunication technology than by nature, so those numerals may not be
considered a natural part of a language.

In Gilbertese (Kiribati), the numerals 𝑁(90) and 𝑁(900) can accidentally be presented as ru ⋅ 𝑁(40)

and ru ⋅ 𝑁(400). This causes the numerals 𝑁(90 + 𝑠) and 𝑁(900 + 𝑠) to be decomposed ru_(40 +
𝑠) and ru_(400 + 𝑠), respectively. A unification of these templates ru_ has no proper affine linear

equation, since the points (41, 91), (42, 92), (401, 901) do not lie on a straight line.

In Nyungwe, again multipliers got unpacked and generalized. The numerals 𝑁(31), 𝑁(41), 𝑁(301),
and 𝑁(401) got all identified with the template ma_ ma_ na ibodzi with the inputs

(10, 3), (10, 4), (100, 3), and (100, 4), respectively. As these input-output combinations do not lie on
a straight surface, an affine linear functional equation for the template ma_ ma_ na ibodzi does not
exist.

6.4 Regarding Lexicon Sizes
In this subsection, we discuss the lexicon sizes of numeral-decomposer induced grammars, which
according to Objective 1 should be as small as possible. Lexicons containing undue generalization,
as reported in Subsection 5.2, are not excluded. Some data sets have been removed from the
analysis to avoid having two data sets for one language.

Fig. 3 shows how many different template functions the two numeral decomposer versions induce
to cover the numerals from 1 to 1000 plus the sample of 4 to 5-digit numbers (Eq. 3) in 34
languages. The languages are sorted by the y values of the advanced version, so one can conclude
that, e.g., in 24 of the 34 languages, the advanced numeral decomposer covers the numerals in 50

templates or less. Fig. 4 shows the number of induced templates for numerals up to 999 and 399,

respectively. For these ranges of values, we have data from over 200 languages. Therefore, the x
axis does not show the names of the languages, but it represents their ordinal positions with respect
to the number of advanced-numeral-decomposer induced template functions. The plots imply that
the advanced numeral decomposer induces compact numeral grammars in most languages. In 168

out of 202 languages, it maps the numerals till 999 to 50 templates or less. In only 8 languages, it

produces over 100 different templates, which are Bavarian, Makhuwa, Hayastani (Armenian),
Kartvelian (Georgian), Zulu, Timbisha, Xhosa and Kannada (kn). These languages have in
common that most subnumerals of compound numerals are masked due to dropping or inflecting
their last or first letter(s).

https://www.cscjournals.org/journals/IJCL/description.php

Isidor Konrad Maier & Matthias Wolff

International Journal of Computational Linguistics (IJCL), Volume (15) : Issue (3) : 2025 60
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

FIGURE 3: Sizes of grammars induced by numeral decomposer versions for numerals of numbers 1 − 1000

and the numbers in Equation 3.

FIGURE 4: The black data points show in how many languages the advanced numeral decomposer induced

less than 100, 50 or 25 different template functions to cover numerals till 999 (top) or till 399 (bottom). Only

about a sixth of the languages got more than 50 templates to get their numerals till 999 covered. The grey

data points show that the basic decomposer induces much larger grammars in some languages.

https://www.cscjournals.org/journals/IJCL/description.php

Isidor Konrad Maier & Matthias Wolff

International Journal of Computational Linguistics (IJCL), Volume (15) : Issue (3) : 2025 61
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

FIGURE 5: Context-free-grammar induction by numeral decomposers and by GITTA. In about two thirds of

the languages the advanced numeral decomposer induces exact CFGs for numerals till 99 with less than 50

rules. GITTA’s CFGs are mostly larger.

FIGURE 6: In about two thirds of languages the CFGs induced by the advanced decomposer are smaller

than GITTA’s CFGs. In about a third of the languages they are smaller than half of GITTA’s size.

The scattered grey data points above the black curves in Figures 3 and 4 show that the templates
induced by the basic numeral decomposer are occasionally less generalizing than the advanced
numeral decomposer’s induced templates.

In order to give a comparison, we conducted grammar induction for numerals till 99 not only with
the numeral decomposer versions but also with GITTA (Winters & Raedt, 2020). GITTA is a general
tool that induces context-free grammars for natural language input. We assist GITTA by adding
spaces into the numerals at any position where a subnumeral begins or ends.

To make the comparison fair, we have to convert the numeral template grammars into CFGs.
Therefore, each template function 𝑓 becomes the right-hand side of a context-free rule 𝑆 → 𝑓, in
which each input slot ’_’ of 𝑓 is replaced by a unique nonterminal 𝑁, which yields a production rule

𝑁 → 𝑔 for each function 𝑔 that can be applied on the input slot. Nonterminals that produce the same
set of right-hand sides are merged.

Example: The English function _ty-_:{6, 7, 9} ⨯ {1, . . . , 9} is modeled using 13 context-free rules

𝑆 → 𝐴ty-𝐵, 𝐴 → six, seven, nine and 𝐵 → one, ..., nine. The function twenty-_:{1, . . . , 9} is modeled

https://www.cscjournals.org/journals/IJCL/description.php

Isidor Konrad Maier & Matthias Wolff

International Journal of Computational Linguistics (IJCL), Volume (15) : Issue (3) : 2025 62
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

as 𝑆 → twenty-𝐶 with 𝐶 → one, ..., nine. Since 𝐵 and 𝐶 produce the same words, they merge, so all

rules of 𝐶 are removed and twenty-𝐶 is renamed to twenty-𝐵.

Using the described conversion, the numeral-decomposer-induced CFGs do not overgenerate.
Therefore, we set GITTA’s parameter 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑—that controls which

nonterminals can merge—to 1 to also prevent GITTA from overgeneralizing.

Fig. 5 shows the number of context-free rules induced for numerals till 99 by GITTA and the two
numeral decomposer versions. Both decomposer versions outperform GITTA on average and on
median, as we show in Fig. 6 and in the following table.

#(Context-free rules) GITTA Alg. 2 Alg. 1

Average 65.95 46.20 47.77
Median 61 44 44

In addition, GITTA does not deliver arithmetical attributes to the rules.

However, in some languages, the numeral decomposer does significantly worse than GITTA. This
is because GITTA is not asked for arithmetic attributes, so it uses generalizations that the numeral
decomposer considers too risky as they might cause generalizations that cannot be covered by
affine linear equations. E.g., in Bavarian, the decomposers induce 101 rules, while GITTA only
induces 49. Bavarian 2-digit numerals usually have masked factors and summands, so the numeral
decomposer cannot unpack them. However, GITTA can still generalize
𝑁(𝑓𝑎 ∗ 𝑚𝑢) then, whereas the unpacking criteria forbid the numeral decomposers to do the same

as 𝑓𝑎 ∗ 𝑚𝑢 > (𝑓𝑎 ∗ 𝑚𝑢 + 𝑠𝑢)/2. GITTA also profits from generalizing empty strings, which the
numeral decomposer does not dare.

6.5 Overall Statistics of Decomposition Errors
In this subsection, we attempt to determine the decomposition error rate of the numeral
decomposer. A decomposition error rate is not to be confused with the word error rate of the
induced grammars. While the word error rate only covers word errors, a decomposition error rate
shall cover both, undergeneralization errors (Objective 1, compactness) that harm lexicon
efficiency, and overgeneralization errors (Objective 2, correctness) that cause word errors.

The most straightforward measure to quantify an error rate regarding Objective 2 (correctness) is
the relative frequency of numeral word with wrong number values in the induced grammars. This
corresponds to the word error rate. Across all 257 languages in our dataset, the this rate is 0.775 %.
However, the word error rate of our induced grammars is not very expressive regarding
decomposer performance. As mentioned in Subsection 5.2, in Choapan-Zapotec, a template
’_ galo’ is induced that maps 𝑥 ∊ {2, 3, . . . } to 20 ∗ 𝑥, but it maps 1 to 19. If the affine linear functional

equation is deduced from the value pairs (1, 19) and (2, 40), then it is 𝑥 ↦ 21 ∗ 𝑥 − 2. In this case,
all numerals generated by ’_ galo’ get wrong number values, except for 𝑁(1) ⋅ ’galo’ and 𝑁(2) ⋅
 ’galo’. On the other hand, if the equation 𝑥 ↦ 20 ∗ 𝑥 is deduced from the pairs (2, 40) and (3, 60),

then only one error occurs for the numeral 𝑁(1) ⋅ ’galo’.

A consistent error statistic regarding Objective 2 (correctness) is the rate of templates with wrong
functional equations among all templates. Across all languages, this rate is 0.325 %.

An error rate for Objective 1 (compactness) is hard to determine, as it requires understanding the
numeral systems of 257 languages in order to assess which templates could possibly be covered
by others.

A heuristic approach is to count how many words have not been generalized, i.e., words that have
an exclusive template. Across all languages, 2.848 % of numeral words belong to an exclusive

template. However, the atomic digit words—which are usually 𝑁(1) − 𝑁(9)—as well as exceptions
obviously require their own template.

https://www.cscjournals.org/journals/IJCL/description.php

Isidor Konrad Maier & Matthias Wolff

International Journal of Computational Linguistics (IJCL), Volume (15) : Issue (3) : 2025 63
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

The number of unnecessary templates would be an accurate measure, but it is hard to determine
for abovementioned reasons. However, we may estimate it. Recall that the induced English
grammar for numerals till 999 presented at the start of Section 6 has 30 templates and appears
morphologically plausible. The English numeral system has many irregularities for 2-digit numerals,
but it becomes very regular for 3-digit numerals and higher. Therefore, we may assume that it has
a typical number of exceptions. Considering that a morphologically plausible grammar for numerals
till 999 in a language with average complexity has 30 templates, we may consider 30 as the

expected number of templates needed to cover numerals till 999 in an arbitrary language.

Grammars have been induced in 257 languages. For 168 languages, the grammars cover numerals

till 999, for 34 languages they cover more numerals, and for 55 languages less. Therefore, the

number of templates needed to morphologically plausibly cover the numerals from all 257
languages may be estimated as 257 ∗ 30 = 7710. As all the induced numeral grammars actually

have 9854 templates combined, we may estimate that (9854 − 7710)/(9854) = 21.758 % of the

templates are unnecessary. We acknowledge that this percentage can easily fluctuate by 10

percentage points if we misesitamate the complexity of the English numeral system by even 10 %.

Overall, 0.325 % of templates are overgeneralizing and about 21.8 % of templates are
undergeneralizing. They cause word errors and lexicon inefficiency, respectively. Combined, we
yield a per-template decomposition error rate—not to be confused with the word error rate—of
22 %. Note, that this number is not a classical per-input error rate, as it does not give the per-input
rate of inputs (words) that lead to a wrong output (template) but the per-output rate of erroneous
outputs. We expect the rate per input word to be lower because most of the erroneous output
templates are undergeneralizing. This implies that most erroneous templates account for a lower
number of words than the correct templates.

7. SUMMARY
We showed that an arithmetic-based numeral decomposer can work universally across language
and outperform more general state-of-the-art approaches in numeral grammar induction. We have
justified criteria with respect to Hurford’s Packing Strategy to detect the factor and the summand
word of a numeral word. Given 𝑆 is a subnumeral of 𝑁, we found that

if 𝑠 ≤ √𝑛, then 𝑆 must be (part of) 𝑁’s factor or summand word,

if √𝑛 < 𝑠 < 𝑛/2, then 𝑆 could be (part of) 𝑁’s summand word and

if 𝑛/2 < 𝑠, then 𝑆 cannot be part of 𝑁’s factor or summand word.

The criteria have been applied in two decomposition algorithms8 that were tested for incremental
grammar induction in 257 languages which are listed in Appendix A.

The advanced numeral decomposer induces plausible numeral grammars in a great variety of
natural languages. In 2 out of 3 cases, its induced CFGs are more compact than CFGs induced by
the state-of-the-art grammar induction algorithm GITTA (Winters & Raedt, 2020). The main
limitation of the numeral-decomposer induced grammars is that they only allow for generalization
of entire subnumerals. In languages like Kartvelian, Hayastani, or Bavarian, numerals often drop
or change letters when used as subnumerals, so they cannot be detected and generalized, which
significantly enlarges the numeral-decomposer induced grammars.

In Bulgarian, Birom, and Yoruba, we compared numeral-decomposer induced grammars to expert
made gold standard grammars (Derzhanski & Veneva, 2020). All three induced grammars are
similar or equal to the gold standards. Specifically, they yield higher accuracies than the grammars
that Hammarström’s k-cluster algorithm had deduced.

8 The source code of both algorithm versions is published in I. K. Maier (2023).

https://www.cscjournals.org/journals/IJCL/description.php

Isidor Konrad Maier & Matthias Wolff

International Journal of Computational Linguistics (IJCL), Volume (15) : Issue (3) : 2025 64
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

The numeral-decomposer induced grammars have the inherent advantage over general syntactic
grammar induction algorithms of parallelly induced arithmetical attributes. In 243 out of 257
languages, the induced arithmetical attributes were entirely correct. Incorrect arithmetic was mainly
induced in such numerals in which a misunderstanding is also conceivable for humans.

Another advantage of the numeral decomposer is that it can decompose numerals incrementally
in a learning process. Syntactic grammar induction requires comparisons of expressions, like
’twenty-one’, with other expressions of the same abstraction level, like ’twenty-two’, to find patterns
for generalization. In contrast, the numeral decomposer just needs to know the expressions of the
lower abstraction level, e.g., when it knows that ’one’ is the numeral of 1, then it understands that
’one’ is a generalizable part of ’twenty-one’ based on the unpacking criteria. Incrementality
facilitates the expansion of existing grammars. Most existing grammar induction methods are
nonincremental (Muralidaran et al., 2021).

8. OUTLOOK
The presented numeral decomposition algorithm produced correct numeral grammars in 243
languages and it can be used for any language. The numeral grammars can serve as valuable
assets for low-resource languages, as they can be integrated into NLP pipelines to enhance named
entity recognition, which supports data-driven language models. Further extensions of this work
can support NLP even more.

Two major limitations are that the tests have only been conducted on grammatical standard forms
of numerals and that the numeral decomposer cannot unpack and generalize subnumerals that
appear in a masked or inflected form. Both shortcomings could be dealt with by letting the numeral
decomposer learn several grammatical forms of each numeral. In this way, a stem of all forms
could be determined. In the process, the numeral decomposer could detect and evaluate not only
fully contained subnumerals, but also just stems of such subnumerals. Depending on the degree
of tolerance, it may therefore detect and unpack the ’thir’ in ’thirteen’ if it has learned before that
’third’ is a grammatical variant of 𝑁(3).

Such measures could greatly support generalizations. It could even prevent overgeneralizations in
cases where the tolerance helps detect 𝑁(𝑓𝑎 ∗ 𝑚𝑢). E.g., when ’quatre-vingts’ is detected in
’quatre-vingt-deux’, the problem dealt with in Subsection 5.3.2—which partly persists—does not
come up. On the other hand, it can cause that substrings are unintentionally detected as
subnumerals due to a random similarity, which may cause deeper problems.

The numeral decomposer may be tested on learning numerals in a random unchronological order.
The test poses the challenge of working with a limited lexicon. When the decomposer gets to learn
’sixteen’ before ’six’, it cannot detect and unpack ’six’, which leads to a shortcoming in
generalization. The shortcoming could be quantified by learning numerals in a random order that
uses a suitable probability distribution. Unchronological learning could also be dealt with by giving
up incrementality and decomposing ’sixteen’ again after ’six’ got learned.

The numeral-decomposer-based incremental learning algorithm could also involve reinforcement.
For a learned template like ’_ty-_’ the learning algorithm could think up words by inserting
alternative subnumerals into the slots. It just needs some sort of supervisor that accepts or rejects
generalizations of learned words. Such a reinforcement learning offers possibilities for
applicationrelated projects:

• If the supervisor is replaced by a human, the reinforcement learning algorithm can work
like a chatbot that can create generative grammars for number words in low-resource
languages with human support. The human would only need to answer questions like
’What is the numeral of number 𝑥?’ and ’Does numeral 𝑋 exist?’.

• If the learner is able to extract numerals out of text data, only answers to questions of the
form ’Does numeral 𝑋 exist?’ would be needed. And these questions could be answered

https://www.cscjournals.org/journals/IJCL/description.php

Isidor Konrad Maier & Matthias Wolff

International Journal of Computational Linguistics (IJCL), Volume (15) : Issue (3) : 2025 65
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

with a search engine and a statistical model, which—given a numeral 𝑋 and the number of

search results for 𝑋—could decide if 𝑋 is a correctly spelled numeral.

Given that our error report (Subsection 5.2) names context-sensitive numerals, their authenticity
and potential implications may be discussed further by linguists.

ACKNOWLEDGEMENTS
We would like to thank Professor Günther Wirsching from the Catholic University of Eichstätt, and
our colleagues Martin Behm and Johannes Kuhn, for their valuable advice and contributions.

REFERENCES
Akinadé, O. O., & Ọdẹ́jọbí, Ọ. A. (2014). Computational modelling of yorùbá numerals in a number
to-text conversion system. Journal of Language Modelling, 2(1), 167–211.

Alkhazi, I. S. B. (2019). Compression-based parts-of-speech tagger for the arabic language.
International Journal of Computational Linguistics (IJCL), 10, 1–15.
https://www.cscjournals.org/library/manuscriptinfo.php?mc=IJCL-95

Andersen, H. (2004). The plasticity of universal grammar. Convergence. Interdisciplinary
Communications,2005, 216.

Anderson, C. (2019). Numerical approximation using some. Proceedings of Sinn und Bedeutung,
19, 54–70. https://ojs.ub.uni-konstanz.de/sub/index.php/sub/article/view/221

Brainerd, B. (1966). Grammars for number names. Foundations of Language, 2(2), 109–133.
Retrieved March 14, 2025, from http://www.jstor.org/stable/25000213

Carroll, G., & Charniak, E. (1992). Two experiments on learning probabilistic dependency
grammars from corpora. Department of Computer Science, Univ. https : / / doi . org / 10 . 5555
/864689

Chorozoglou, Z., G., N. Z., E. C., Papakitsos, Galiotou, E., & Giovanis, A. (2021). Review of parsing
in modern greek - a new approach. International Journal of Computational Linguistics (IJCL), 12,
1–8. https://www.cscjournals.org/library/manuscriptinfo.php?mc=IJCL-119

Dékány, É. (2025). Anatomy of a complex numeral: Overcounting, with special attention to ch’ol.
https://doi.org/https://doi.org/10.7280/S9RV0KRH

Derzhanski, I. (2025). Fifty-eight. Proceedings of the Annual International Conference of the
Institute for Bulgarian Language. https://doi.org/10.7546/ConfIBL2025.16

Derzhanski, I., & Veneva, M. (2018). Linguistic problems on number names. Proceedings of the
Third International Conference on Computational Linguistics in Bulgaria (CLIB 2018), 169–176.
https://www.researchgate.net/publication/324362714_Linguistic_Problems_on_Number_Names

Derzhanski, I., & Veneva, M. (2020). Generating natural language numerals with TeX. Proceedings
of the Fourth International Conference on Computational Linguistics in Bulgaria (CLIB2020), 112–
120. https://aclanthology.org/2020.clib-1.12/

Drozdov, A., Verga, P., Yadav, M., Iyyer, M., & McCallum, A. (2019). Unsupervised latent tree
induction with deep inside-outside recursive autoencoders [ArXiv].
https://arxiv.org/abs/1904.02142

Dryer, M. S., & Haspelmath, M. (Eds.). (2013). Wals online (v2020.4). Zenodo.
https://doi.org/10.5281/zenodo.13950591

https://www.cscjournals.org/journals/IJCL/description.php

Isidor Konrad Maier & Matthias Wolff

International Journal of Computational Linguistics (IJCL), Volume (15) : Issue (3) : 2025 66
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

Flach, G., Holzapfel, M., Just, C., Wachtler, A., & Wolff, M. (2000). Automatic learning of numeral
grammars for multi-lingual speech synthesizers. 2000 IEEE International Conference on Acoustics,
Speech, and Signal Processing. Proceedings (Cat. No. 00CH37100), 3, 1291–1294.
https://doi.org/10.1109/ICASSP.2000.861814

Friedman, D., Wettig, A., & Chen, D. (2022). Finding dataset shortcuts with grammar induction.
Empirical Methods in Natural Language Processing (EMNLP).
https://doi.org/10.18653/v1/2022.emnlp-main.293

Gil, D. (2013a). Distributive numerals (v2020.4). In M. S. Dryer & M. Haspelmath (Eds.), The world
atlas of language structures online. Zenodo. https://doi.org/10.5281/zenodo.13950591

Gil, D. (2013b). Numeral classifiers (v2020.4). In M. S. Dryer & M. Haspelmath (Eds.), The world
atlas of language structures online. Zenodo. https://doi.org/10.5281/zenodo.13950591

Graben, P. b., Römer, R., Meyer, W., Huber, M., & Wolff, M. (2019). Reinforcement learning of
minimalist numeral grammars. 2019 10th IEEE International Conference on Cognitive Info
communications (CogInfoCom), 67–72. https://doi.org/10.1109/CogInfoCom47531.2019.9089924

Hammarström, H. (2008). Deduction of Numeral Grammars. https://www.academia.edu/3142323/
Deduction_of_Numeral_Grammars

Htut, P. M., Cho, K., & Bowman, S. R. (2018). Grammar induction with neural language models:
An unusual replication [ArXiv]. https://arxiv.org/abs/1808.10000

Hurford, J. (2007). A performed practice explains a linguistic universal: Counting gives the packing
strategy. Lingua, 117, 773–783. https://doi.org/10.1016/j.lingua.2006.03.002

Hurford, J. (2011). The linguistic theory of numerals (Vol. 16). Cambridge University Press.
https://doi.org/10.1017/S0022226700005776

Ionin, T., & Matushansky, O. (2006). The Composition of Complex Cardinals. Journal of Semantics,
23(4), 315–360. https://doi.org/10.1093/jos/ffl006

Ivani, J. K. (2017). The morpho syntax of number systems: A cross-linguistic study [Doctoral
dissertation, Università degli studi di Bergamo].

Jon-And, A., & Michaud, J. (2024). Usage-based grammar induction from minimal cognitive
principles. Computational Linguistics, 50(4), 1375–1414. https://doi.org/10.1162/coli_a_00528

Khamdamov, U., Mukhiddinov, M., Akmuradov, B., & Zarmasov, E. (2020). A novel algorithm of
numbers to text conversion for uzbek language tts synthesizer. 2020 International Conference on
Information Science and Communications Technologies (ICISCT), 1–5.
https://doi.org/10.1109/ICISCT50599.2020.9351434

Kim, Y., Dyer, C., & Rush, A. (2019, July). Compound probabilistic context-free grammars for
grammar induction. In A. Korhonen, D. Traum, & L. Màrquez (Eds.), Proceedings of the57th annual
meeting of the association for computational linguistics (pp. 2369–2385). Association for
Computational Linguistics. https://doi.org/10.18653/v1/P19-1228

Klein, D., & Manning, C. D. (2001). Natural language grammar induction using a constituent context
model. In T. Dietterich, S. Becker, & Z. Ghahramani (Eds.), Advances in neural information
processing systems (Vol. 14). MIT Press. https : / / proceedings . neurips cc
/paper_files/paper/2001/file/2d00f43f07911355d4151f13925ff292-Paper.pdf

Li, B., Corona, R., Mangalam, K., Chen, C., Flaherty, D., Belongie, S., Weinberger, K., Malik,J.,
Darrell, T., & Klein, D. (2024, June). Re-evaluating the need for visual signals in unsupervised
grammar induction. In K. Duh, H. Gomez, & S. Bethard (Eds.), Findings of the association for

https://www.cscjournals.org/journals/IJCL/description.php
https://www.academia.edu/3142323/

Isidor Konrad Maier & Matthias Wolff

International Journal of Computational Linguistics (IJCL), Volume (15) : Issue (3) : 2025 67
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

computational linguistics: Naacl 2024 (pp. 1113–1123). Association for Computational Linguistics.
https://doi.org/10.18653/v1/2024.findings-naacl.70

Maier, I., & Wolff, M. (2022). Poster: Decomposing numerals. EUNICE Science Dissemination:
Poster Competition. https://doi.org/10.5281/zenodo.7501698

Maier, I. K. (2023). Numeral Decomposer 1.1 [GitHub]. https://github.com/ikmMaierBTUCS
/Numeral-Decomposer-1.1/

Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to information retrieval.
Cambridge University Press.

Martí, L. (2020). Numerals and the theory of number. Semantics and Pragmatics, 13(3), 1–
57.https://doi.org/10.3765/sp.13.3

Mendia, J. A. (2018). Epistemic numbers. Proceedings of SALT, 28.
https://doi.org/10.3765/salt.v28i0.4433

Muralidaran, V., Spasic, I., & Knight, D. (2021). A systematic review of unsupervised approaches
to grammar induction. Natural Language Engineering, 27, 647–689.
https://doi.org/10.1017/S1351324920000327

Rhoda, İ. A. (2017). Computational analysis of igbo numerals in a number-to-text conversion
system. Journal of Computer and Education Research, 5(10), 241–254.
https://doi.org/10.18009/jcer.325804

Seginer, Y. (2007, June). Fast unsupervised incremental parsing. In A. Zaenen & A. van den
Bosch(Eds.), Proceedings of the 45th annual meeting of the association of computational
linguistics(pp. 384–391). Association for Computational Linguistics. https://aclanthology.org/P07-
1049/

Shen, Y., Tan, S., Sordoni, A., & Courville, A. (2019). Ordered neurons: Integrating tree structures
into recurrent neural networks [ArXiv]. https://doi.org/10.48550/arXiv.1810.09536

Sproat, R. (2022). Boring Problems Are Sometimes the Most Interesting. Computational
Linguistics,48(2), 483–490. https://doi.org/10.1162/coli_a_00439

Stolcke, A., & Omohundro, S. M. (1994). Inducing probabilistic grammars by bayesian model
merging[ArXiv]. https://api.semanticscholar.org/CorpusID:7324510

Stolz, T., & Veselinova, L. N. (2013). Ordinal numerals (v2020.4). In M. S. Dryer & M.
Haspelmath(Eds.), The world atlas of language structures online. Zenodo.
https://doi.org/10.5281/zenodo.13950591

Sumamo, J. S., & Teferra, S. (2018). Designing a rule based stemming algorithm for kambaata
language text. International Journal of Computational Linguistics (IJCL), 9, 41–54.
https://www.cscjournals.org/library/manuscriptinfo.php?mc=IJCL-93

Veselinova, L. N. (2020). Numerals in morphology. Oxford Research Encyclopedia of
Linguistics.https://doi.org/10.1093/acrefore/9780199384655.013.559

Wagner, R. A., & Fischer, M. J. (1974). The string-to-string correction problem. Journal of the
ACM,21(1), 168–173. https://doi.org/10.1145/321796.321811

Winters, T., & Raedt, L. D. (2020). Discovering textual structures: Generative grammar induction
using template trees [ArXiv]. https://arxiv.org/abs/2009.04530

https://www.cscjournals.org/journals/IJCL/description.php

Isidor Konrad Maier & Matthias Wolff

International Journal of Computational Linguistics (IJCL), Volume (15) : Issue (3) : 2025 68
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

Zabbal, Y. (2005). The syntax of numeral expressions. Ms., University of Massachusetts, Amherst.
https://api.semanticscholar.org/CorpusID:214631884

Zhao, Y., Fei, H., Wu, S., Zhang, M., Zhang, M., & Chua, T.-s. (2025). Grammar induction from
visual, speech and text [ArXiv]. https://arxiv.org/abs/2410.03739

Žoha, L., Wągiel, M., & Caha, P. (2022). The morphology of complex numerals: A cross-linguistic
study. LingBaW. Linguistics Beyond and Within, 8, 200–217.

https://www.cscjournals.org/journals/IJCL/description.php

Isidor Konrad Maier & Matthias Wolff

International Journal of Computational Linguistics (IJCL), Volume (15) : Issue (3) : 2025 69
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

A. LIST OF DATA SETS (LANGUAGES)
The languages of the data sets are written in parentheses when they are not obvious.

Acholi Adyghe Afrikaans Albanian (Shqiperian)
Aloapam-Zapotec Alsatian Alutiiq Amharic
Antillean-Creole-Of-Martinique Arabic ar (Arabic) Araki
Arberesh Arhuaco Arikara Armenian (Hayastani)
Assiniboine Asturian Aukan Awa-Pit
Aymara Azerbaijani Baka Bambara
Bashkir Basque Bavarian Belarusian
Bezhta Birom Breton Bulgarian
Burushaski Calo Cape-Verdean-Creole Carrier (Dakelh)
Catalan Central-Tarahumara Chavacano Cherokee
Choapan-Zapotec Chol Chuvash Cocama
Comox Copala-Triqui Cornish Corsican
Crimean-Tatar Czech cs (Czech) Dagbani
Danish da (Danish) Dogrib (Tłichǫ) Dzambazi-Romani
English en_GB (British English) en_IN (Indian English) Eonavian
Estonian Faroese Finnish (Suomi) fi (Suomi)
French fr (French) fr_BE (Belgian French) fr_CH (Swiss French)
fr_DZ (Algerian French) Friulian Ga Galician
Gallo Garifuna Georgian (Kartvelian) German (Deutsch)
de (Deutsch) Gilbertese (Kiribati) Gottscheerish Guarani
Gwere Haida Haitian-Creole Halkomelem
Hausa he (Hebrew) Hopi Hungarian (Magyar)
Hunsrik Hupa Icelandic Igbo
Inari-Sami Indonesian id (Indonesian) Ingrian
Ingush Innu Inupiaq Irish
Isthmus-Zapotec Italian it (Italian) Jakaltek
Japanese (Nihongo) ja (Nihongo) Jaqaru Jerriais
Kabiye Kalderash-Romani Kalina kn (Kannada)
Kaqchikel Karelian Kazakh Kiliwa
Kirmanjki Kituba Klallam Koasati
ko (Korean) Kristang Kutenai Kven
Kyrgyz Lachixio-Zapotec Ladin Lakota
Lango Latin Latvian lv (Latvian)
Laz Lezgian Lingala Lithuanian
lt (Lithuanian) Livonian Llanito Lombard-Milanese
Lower-Sorbian Lowland-Oaxaca-Chontal Lule-Sami Lushootseed
Luxembourgish Macedonian Makhuwa Maltese
Mandinka Manx-Gaelic Maori Mapudungun
Marshallese Mauritian-Creole Mazahua Menominee
Miami-Illinois Michif Micmac Minangkabau
Mohawk Mohegan-Pequot Moloko Mussau-Emira
Mwani Navajo Ndom Nelemwa
Nengone Nigerian-Fulfulde nl (Nederlands) North-Frisian
Northern-Kurdish Northern-Sami Northern-Yi Norwegian-Bokmal
no (Norwegian) Nume Nyungwe Occitan
Ojibwa Okanagan Oneida Oromo
Paici Pennsylvania-German Persian (Farsi) Picard
Pite-Sami Plautdietsch Polari Polish
pl (Polish) Portuguese-Brazil pt_BR (Brazilian Portuguese) Portuguese-Portugal
pt (Portuguese) Proto-Indo-European Punu Purepecha
Quetzaltepec-Mixe Rapa-Nui Rincon-Zapotec Romani
ro (Romanian) Romansh Russian ru (Russian)
Saanich Sango Santa-Ana-Yareni-Zapotec Sardinian
Saterland-Frisian Scots Scottish-Gaelic Serbian
sr (Serbian) Shona Shuswap Sierra-Otomi
Siletz-Dee-Ni Skolt-Sami Slovak Slovene
sl (Slovene) Soga Somali Soninke
South-Efate Southern-Quechua Southern-Sami Spanish
es (Spanish) es_CO (Columbian Spanish) es_VE (Venezuelan Spanish) Squamish
Sranan-Tongo Susu Swahili Swedish
Swiss-German Tahitian Tamazight Tetun-Dili
Tezoatlan-Mixtec th (Thai) Timbisha Tlingit
Tok-Pisin Tolowa Tongan-Telephone-Style Totontepec-Mixe
Tsez Tsonga Tswana Tukudede
Tunica Turkish tr (Turkish) Ukrainian
uk (Ukrainian) Ume-Sami Upper-Sorbian Uyghur
Venetian Veps vi (Vietnamese) Votic
Wayuu Welsh West-Frisian Wymysorys
Xhosa Yakut (Sakha) Yao Yiddish
Yoruba Yupik Zulu

https://www.cscjournals.org/journals/IJCL/description.php

Isidor Konrad Maier & Matthias Wolff

International Journal of Computational Linguistics (IJCL), Volume (15) : Issue (3) : 2025 70
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

B. YORUBA AND BULGARIAN INDUCED AND EXPERT-MADE GRAMMARS

Bulgarian induced grammar Expert-made grammar

Rule/Function Values Rule/Function Values

ATOMS 1, . . . ,12,20 ATOMS 1, . . . ,12,20

_nadeset
(𝑥) ↦ 𝑥 + 10

13, . . . ,19 _nadeset
(𝑥) ↦ 𝑥 + 10

13, . . . ,19

dvadeset i _
(𝑥) ↦ 𝑥 + 20

21, . . . ,29 dvadeset i _
(𝑥) ↦ 𝑥 + 20

21, . . . ,29

_deset
(𝑥) ↦ 10𝑥

10𝑥 for
𝑥 ∊ {3, . . . ,9}

_deset
(𝑥) ↦ 10𝑥

10𝑥 for
𝑥 ∊ {3, . . . ,9}

_deset i _
(𝑥, 𝑦) ↦ 10𝑥 + 𝑦

10𝑥 + 𝑦 for

𝑥 ∊ {3, … ,9},
𝑦 ∊ {1, … ,9}

_deset i _
(𝑥, 𝑦) ↦ 10𝑥 + 𝑦

10𝑥 + 𝑦 for

𝑥 ∊ {3, … ,9},
𝑦 ∊ {1, … ,9}

Yoruba induced grammar Expert-made grammar

Rule/Function Values Rule/Function Values

ATOMS 1, . . . ,10,20 ATOMS 1, . . . ,10,20

ogun _
(𝑥) ↦ 20𝑥

20𝑥 for

𝑥 ∊ {2, . . . ,9}
ogun _
(𝑥) ↦ 20𝑥

20𝑥 for

𝑥 ∊ {2, … ,9}
_ l-e.wa
(𝑥) ↦ 𝑥 + 10

11, . . . ,14 _ l-_
(𝑥, 𝑦) ↦ 𝑥 + 𝑦

𝑥 + 𝑦 for

𝑥 ∊ {10,20, … ,180}
𝑦 ∊ {1, … ,4} _ l-ogun

(𝑥) ↦ 𝑥 + 20
21, . . . ,24

_ l-ogun eji
(𝑥) ↦ 𝑥 + 40

41, . . . ,44

_ dinogun _
(𝑥, 𝑦) ↦ 𝑥 + 10𝑦

30, . . . ,34 e.wa din ogun _
(𝑥) ↦ 20𝑥 − 10

20𝑥 − 10 for

𝑥 ∊ {2, … ,9}
_ din_ _
(𝑥, 𝑦, 𝑧)
↦ 𝑥 − 𝑦 + 20𝑧

𝑥 − 20 + 20𝑧 for

𝑥 ∊ {10, … ,14}
𝑧 ∊ {3, … ,10}

_ din ogun
(𝑥) ↦ −1𝑥 + 20

15, . . . ,19 _ din _
(𝑥, 𝑦) ↦ 𝑥 − 𝑦

𝑥 − 𝑦 for

𝑥 ∊ {20, … ,180}
𝑦 ∊ {1, … ,5} _ din e.wa dinogun _

(𝑥, 𝑦) ↦ 25
25

_ din _ dinogun _
(𝑥, 𝑦, 𝑧) ↦ −𝑥 + 3𝑦

26, . . . ,29

_ din _ din_ _
(𝑥, 𝑦, 𝑧, 𝑎)
↦ −𝑥 − 𝑦 + 20𝑎

−𝑥 − 10 + 20𝑎 for
𝑥 ∊ {1, … ,5}
𝑎 ∊ {3, … ,10}

_ _
(𝑥, 𝑦) ↦ 𝑥 + 20𝑦 − 20

𝑥 + 20𝑦 − 20 for

𝑥 ∊ {15, … ,24} ∖ {20}
𝑦 ∊ {3, … ,10}

https://www.cscjournals.org/journals/IJCL/description.php

