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Abstract 

 
In this paper, we present a probabilistic admission control algorithm over 
switched Ethernet to support soft real-time control applications with 
heterogeneous periodic flows. Our approach is purely end host based, and it 
enables real-time application-to-application QoS management over switched 
Ethernet without sophisticated packet scheduling or resource reservation 
mechanisms in Ethernet switches or middleware on end hosts. In designing the 
probabilistic admission control algorithm, we employ both measurement and 
analytical techniques. In particular, we provide a new and efficient method to 
identify and estimate the queueing delay probability inside Ethernet switches for 
heterogeneous periodic flows with variable message sizes and periods. We 
implemented the probabilistic admission control algorithm on the Windows 
operating system, and validated its efficacy through extensive experiments. 
 
Keywords: soft real-time, probabilistic admission control, periodic flows. 

 
 

1. INTRODUCTION 

A typical mission-critical real-time control system consists of sensors, actuators, controllers, data-
intensive devices, and instrumentation devices. It works with the combination of periodic closed 
control loops. Controllers receive inputs from various sensors and data-intensive devices and 
perform control logic that determines how actuators and instrumentation devices should be 
operated. Each control loop has its Quality-of-Service (QoS) requirements, in particular, timing 
requirements including delay, jitter, and loss for a certain size message transmission. 
Traditionally, the mission-critical real-time control systems are designed to support the hard 
guarantee of their QoS requirements. However, for many practical real-time control systems 
found in industrial process controls, real-time signal processing, and telecommunications, a hard 
guarantee could be considered overly stringent by requiring excessive system resources. The 
statistical or soft guarantee accepts the performance as long as the violation probability of QoS 
requirements is below the pre-specified level. It is desirable to be designed and utilized for many 
real-time control applications to allow an efficient resource usage. In this paper, we focus on real-
time control systems with soft QoS requirements, more specifically, soft delay guarantees. 
 
Various real-time control networks have been developed with proprietary hardware and protocol 
solutions to provide deterministic controls for the specific applications. However, recent trends in 
the mission-critical control system industry replace proprietary networks with commercial-off-the-
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shelf (COTS) or open networks so as to reduce product development cycle time and cost as well 
as to achieve system interoperability. Moreover, high-bandwidth sensors (e.g., infrared video, 
acoustic, and color sensors) are becoming increasingly common in control networks. Due to its 
ubiquity, simplicity and low cost, Ethernet has become a de facto choice for developing open 
mission-critical network strategies [2], [20], [13]. However, as the traditional Ethernet is a shared 
communication network using the CSMA/CD (Carrier Sense Media Access/Collision Detect) MAC 
protocol, packets to be transmitted may be held back arbitrarily long due to the random 
exponential back-off algorithm used to avoid collision. In other words, packet transmission delay 
over the traditional Ethernet is unpredictable, which makes it difficult to build a real-time control 
network over the traditional Ethernet. A better way to build real-time control systems over a local 
area network (LAN) is to use the switched Ethernet technology. Because of its switching capacity, 
an Ethernet switch not only enables fast packet transmission, but also reduces the chance of 
packet collision. Furthermore, with its internal buffer, a switched Ethernet can temporarily buffer 
packets that are competing for the same output port, further reducing the chance of an inside 
switch packet collision. However, a shared buffer inside of Ethernet switches introduces variable 
queueing delays of the packet transmission [16]. To build real-time control systems over switched 
Ethernet, it needs additional mechanisms to orchestrate competing resources according to the 
QoS requirements. However, QoS aware reservations or admission mechanisms are not 
available at Ethernet switches, unlike IP based solutions on more sophisticated IP routers. 
 
In this paper, we propose a novel probabilistic admission control approach on the switched 
Ethernet environments to enable soft real-time guarantees for the mission-critical control 
applications. The proposed approach is designed for the typical control applications, which have 
various periodic packet flows with different packet sizes. It performs an admission control on the 
end control host, that starts a periodic real-time control flow, to determine whether a new 
connection (or a flow) between two control end hosts can be established. This admissibility check 
ensures that the application-to-application delay requirements of the new and existing flows can 
be guaranteed within a pre-specified probabilistic delay bound. The probabilistic admission 
control algorithm on the end control host works as follows. It first measures the baseline delay 
distribution when there are no competing flows in the switched Ethernet control network. This 
initial measurement of the baseline delay distribution captures the “fixed” delay components, 
including propagation delay, packet transmission time, and operating system overhead. 
According to the baseline delay distribution and the information regarding flow requests, it then 
estimates the probability of a queueing delay at the Ethernet switches when there are multiple 
competing flows for the same output port. It provides an efficient method to estimate the 
probability of a queueing delay for heterogeneous periodic flows in order to obtain a probabilistic 
delay bound. 
 
The proposed approach is a pure end-host based solution that does not require any software or 
hardware modification to the Ethernet switches. For easy deployment, it is designed in the 
application layer that does not require any sophisticated middleware installation in the end host 
Operating System kernel. We implement the admission control algorithm on the COTS OS based 
end-hosts and conduct extensive experiments over the switched Ethernet environments. Through 
the experiments, we validate the effectiveness of the proposed probabilistic admission control 
approach. 
 
The remainder of the paper is organized as follows. We first discuss the related work on real-time 
scheduling and admission control in a LAN control network environment in Section 2. In Section 
3, we describe the problem setting, the queueing analysis and the proposed admission control 
algorithm in detail. The software design and implementation is presented in Section 4. In Section 
5, we describe the experiment design and results. The paper is concluded with a summary of the 
work and future research directions in Section 6. 
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2. RELATED WORK 

In the area of real-time research, a lot of efforts have been made to provide hard deadline 
guarantees over Ethernet with the expense of resource utilization and average performance. 
Most of the earlier work [21], [17], [7] modified the Ethernet MAC sub-layer to achieve a bounded 
channel access time. These proprietary approaches are quite costly compared to using the well-
established and widely-used current Ethernet standard. Both [24], [6], [15] proposed a virtual non-
collision token ring implementation over the collision-based Ethernet. Since the token 
management protocol is executed by the higher-layer (OS kernel of the hosts) rather than the 
MAC, the approach does not need to modify the network hardware architecture. The major 
shortcomings of this approach are the overhead of heavy token management including the token 
relay among the hosts and the restoration of the lost token and the performance limitation due to 
the overly conservative network usage. Recent studies try to achieve the hard real-time 
guarantee without modifying network hardware architecture. [12] proposed a traffic shaping 
software on the Ethernet switch to achieve hard guarantees with bounded delays and reserved 
bandwidths. The proposed solution in [8] designed on standard Ethernet switches with Layer 2 
QoS/CoS protocol for traffic prioritization (IEEE 802.1p). It requires a separate queue for each 
priority class on the switch, but it cannot be smoothly deployed with currently widespread 
Ethernet switches that have a common buffer to share all priority classes. It may lead to the miss 
of QoS guarantees for high priority packets; for example, if the common buffer is already packed 
by the lower priority packets. [9] tried to resolve the problem of the shared buffer by using 
additional traffic shaping mechanisms available in other higher layer network elements such as 
routers. 
 
While there is a lot of research on designing, validating, and facilitating traditional hard real-time 
systems, only few such techniques exist on soft real-time systems in spite of the recent 
proliferation of soft real-time applications. The existing soft real-time research mostly is focused 
on schedulability analysis techniques. Probabilistic Time Demand Analysis (PTDA) [23] and 
Statistical Rate Monotonic Scheduling (SRMS) [3] are the algorithms about the statistical 
behavior of periodic tasks to facilitate better design of soft real-time systems. 
 
PTDA attempts to provide a lower bound of the missing deadline probability that is determined by 
the time supply that equals or exceeds the time demand at the deadline of the task. The time 
demand is computed by convolving the probability density functions of the execution times. It 
assumes that the relative deadline of all tasks are less than or equal to their period. SRMS 
attempts to schedule tasks with highly variable execution times in such a way that the portion of 
the processor time allocated to each task is met on the average. Variable execution times are 
smoothed by aggregating the executions of several jobs in a task and allocating an execution 
time budget for the aggregate. A job is released only if its task contains a sufficient budget to 
complete it in time and if higher priority jobs will not prevent its timely completion. 
 
In a statistical real-time guarantee work [10], they analyzed the Ethernet MAC protocol using a 
semi-Markov process model and derived a network-wide input limit for achieving a target 
transmission success ratio. The network-wide input limit is kept by enforcing each component 
station to control its instantaneous traffic arrival rate under its station-wide input limit. To this end, 
they implemented a traffic smoothing middleware between the transport layer and the Ethernet 
data link layer at each station. The middleware keeps the traffic arrival rate under the station-wide 
input limit by smoothing a busty packet stream. An enhancement on the traffic smoother is made 
by [5]. They used the overall throughput in tandem with the number of collisions as network load 
indicators to feed into their fuzzy traffic smoother to give the flexibility on the sporadic traffic 
process. Unlike our approach based on switched Ethernet, these studies focused on designing a 
traffic smoother using an ordinary shared Ethernet hub. 
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Queueing system studies on multiplexing periodic flows have been limited to flows with the same 

packet size [14] (N ∗ D/D/1, ∑ Di /D/1 queue) in the past. A relevant work in the switch can be 

found in Raha et al.’s work on real-time ATM [19], [18]. Their research focuses on the worst case 
queuing analysis. They devised Gamma functions to represent the flows’ worst-case bandwidth 
requirements across different time scales. These gamma functions can be used to compute the 
worst-case queueing delay in an ATM switch buffer. Since ATM cells are of fixed size, the 
switch’s processing rate is constant. Therefore, the worst-case delay on each node can be 
computed. Since the exact gamma functions are too complex to compute, they designed three 
approximation methods. However, their analysis based on gamma functions only works for fixed 
packet size such as ATM cells. It is therefore not applicable for switched Ethernet with variable 
packet size. 
 

3. PROBABILISTIC ADMISSION CONTROL APPROACH 

 
3.1 Problem Setting 
Although the proposed probabilistic admission control approach can be implemented in either a 
distributed or a centralized fashion, figure 1 illustrates a distributed approach based control 
network environment. The control network environment has several control application hosts 
connected by a typical Ethernet switch with simple FIFO port buffers. The probabilistic admission 
control software is distributed to each control host running on the application layer. Each control 
host also maintains the control flow information database that is synchronized over the entire 
control network. Flow is used to refer to a connection between two control applications to transmit 
periodic messages. When a flow is requested on a control host, the host performs an admissibility 
test to check whether its delay requirement can be satisfied within the pre-specified probabilistic 
delay bound. If the flow request is admitted, a broadcast message of flow addition is sent to other 
control hosts in order to update their flow information database. When a flow is terminated, a 
broadcast message of flow deletion is sent to remove the flow from the distributed hosts’ flow 
information database. In general, since a distributed approach has multiple admission control 
points (on each control host) over the control system network, the concurrent flow requests on the 
distributed control hosts can potentially lead to unexpected QoS violations. To deal with this 
issue, there is a proposal [11] to utilize a safety margin in order to absorb the potential impact of 
concurrency. 

 
 

FIGURE 1: Network System Architecture. 
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The admission control algorithm is designed to perform an efficient on-line admissibility test by 
simplifying the calculation formula of the delay probability estimation. We consider the periodic 
flow characteristics with various periods and different message sizes. As summarized in Table I, 
a flow with its QoS requirements is defined by Si (Li, Pi, Di, DPi) where Li is the (maximum) 
message size (bytes), Pi is the period of the flow (ms), Di is the maximum acceptable delay (µs), 
and DPi is the bound on the probability that the actual message delay d exceeds Di (i.e., P r(d ≥ 
Di ) ≤ DPi). We assume that all flows are independent of each other. 
 
Notation Explanation 

Si (Li, Pi, Di, DPi) a flow with: 

Li  message size (bytes) 

Pi period (ms) 

Di  maximum acceptable delay (µs) 

DPi  minimum acceptable probability that the actual delay is less than Di   

( i.e., Pr(d ≤ Di) ≥ DPi ) 
 

TABLE 1: Flow Specification. 

 

 
FIGURE 2: Network Delay Model. 

 
As illustrated in figure 2, the performance metric (i.e., the message delay d) is the application-to-
application delay that consists of the processing delays on both hosts and a network transmission 
delay as shown below: 
 
                                              d = dsender + dnetwork + dreceiver.                                                (1) 
 
The delay in network dnetwork can be further decomposed into three components: 
 
                                            dnetwork = dpropagation + dtransmission  + dqueueing,                                 (2) 

 
where dpropagation is the propagation delay of a message across the network, dtransmission is the 
transmission time of a message, and dqueueing is the queueing delay experienced by a message at 
Ethernet switches. The main variability in application-to-application delay is contributed by dqueueing 
that varies with the network load and the number of competing flows in the network. The other 
delay components are independent of any competing flows in the network system. Hence, we 
group these delay components together and denote it as the baseline delay, dbaseline, i.e., 
 

                                                 dbaseline = dsender + dreceiver + dpropagation + dtransmission.                   (3) 
 
This baseline delay of a flow can be estimated by directly measuring application-to-application 
delay with no competing flows in switches along the transmission path. In general, the measured 
baseline delay of a flow demonstrates certain distribution patterns, rather than a single delay 
point, due to the inherent delay variations introduced by the host OS and possible measurement 
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errors. In figure 4, we illustrate a hypothetical probability density function, f(x), of the baseline 
delay dbaseline. 
 
Given the measured baseline delay distribution, in the remainder of this section we devise an 
efficient method to estimate the queueing delay probability when there are competing flows at a 
switch. In section 3.2, we consider the simple case of two competing flows. The general case with 
multiple competing flows is then analyzed in section 3.3. Based on the analysis, we devise an 
efficient probabilistic admission control algorithm that is presented in section 3.4. 
 
3.2 Simple Case: Two Competing Flows 
In this section we consider the simple case where there are only two flows competing for the 
same output port. Note that even when the network load is relatively light-loaded, packets may 
still be queued at a switch, due to the coincidental arrival of packets forwarded to the same output 
port. In the following, we analyze the probability that packets will be queued at a switch under the 
assumption that there are only two competing two flows. 

 
FIGURE 3: An Example of Competing Flows. 

 
Suppose two flows, flows S1 (L1, P1, D1, DP1) and S2 (L2, P2, D2, DP2) send periodic transmissions 
through the same switch output port and the queue is initially empty. As illustrated in figure 3, if a 
packet of S1 arrives before an S2 packet is transmitted, S1’s packet would be delayed by S2’s 
packet. We assume that only one S2 packet is in the queue when an S1 packet arrives. This 
assumption is reasonable in a practical system environment and we will discuss in detail later. 
The worst case queueing delay experienced by an S1 packet will be the time it takes the switch to 
transmit a whole S2 packet. Since it depends on the message size and the period of competing 
flow S2, we can calculate the queueing probability p of the flow S1 as follows: 
 

                                                       (4) 
 
We denote the corresponding queueing delay T2 that is the transmission time of L2, as dC for 
consistency with the next section. 
 
A packet of S1 will be delayed by dC with a probability of p. There will be no queueing delay for 
the packet with a probability of 1 − p. Hence, the estimated delay for flow S1 with the presence of 
competing flow S2 is 
 

                                      d = (dbaseline + dqueueing) ∗ p + dbaseline ∗ (1 − p)                              (5) 



Baek-Young Choi & Sejun Song 

International Journal of Computer Networks (IJCN), Volume (1): Issue (1) 72 

 
FIGURE 4: Probability Density Function for Baseline Delay. 

 
FIGURE 5: Partial Probability Density Function for No-Queuing Case. 

 
As we will see in section 5, dbaseline, the measured delay of a certain flow without interference from 
other flows, demonstrates certain distribution patterns rather than a single delay point, due to the 
variation of the delay factors. In figure 4, we illustrate a hypothetical probability density function, 
f(x), of the baseline distribution, dbaseline. The partial probability density function of the no-queuing 

case f(x) ∗ (1 − p) is illustrated in figure 5. The partial probability density function of the queuing 

case, f(x − dC) ∗ p is equivalent to shifting f(x) by dC and multiplying by p as shown in figure 6. As 

illustrated in figure 7, the estimated delay distribution density function f
f
(x) in the presence of the 

competing flow is derived by adding up partial delay distributions. 
 

                                               f
f
(x) = f(x − dC) ∗ p + f(x) ∗ (1 − p)                                            (6) 

 

 
FIGURE 6: Partial Probability Density Function for Queuing Case. 
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FIGURE 7: Probability Density Function for Output Delay. 

 
In short, if we know the baseline distribution of a new flow and the characteristics (message size 
and period) of the existing competing flows in the switch, we can estimate the output delay 
distribution. Finally, the calculated output delay distribution is converted to the cumulative density 
function F

f
(x) for the admission decision. A flow can be admitted, if F

f
(D) is greater than DP. For 

example, in figure 8, the flow S1 (L1, P1, D1, 0.9) is rejected for the delay requirement D1 but the 
flow S1 (L1, P1, D1, 0.8) is admitted. 

 
FIGURE 8: Cumulative Density Function for Admission Control. 

 
3.3 The General Case: Multiple Competing Flows 
In this section, we consider the generalized case where there are more than two competing flows 
at a switch. We first introduce a general method called the Benes˘ approach to express the 
queueing delay of a G/G/1 queue. We then derive the formula for system multiplexing periodic 
flows with variable message sizes and variable periods using the Benes˘ approach.  

 
FIGURE 9: A realization of the process X(t) with the last exit time T 

x
. 

 
1) Virtual Waiting Time:  The virtual waiting time, also referred to as queueing delay in a system 
can be obtained by a theorem due to Benes˘ for G/G/1 queue [4] that has general independent 
inter-arrival times and general service times. We review the approach here only to the extent that 
it is essential for our work. Consider a system where a constant rate server with unlimited buffer 
capacity is submitted work according to a random process. The server capacity is assumed to be 
1 unit of work per unit of time and the system is assumed stationary, so that 0 represents an 
arbitrary time instant. Let A(t), t ≥ 0, denote the amount of work arriving to the system in the 



Baek-Young Choi & Sejun Song 

International Journal of Computer Networks (IJCN), Volume (1): Issue (1) 74 

interval [−t, 0), and let Vt  be the amount of work still in the system at time −t. Define X(t) = A(t) – t 
to be the excess work arriving [−t, 0). Then Vt is given by Reich’s formula 

 
In particular,  

 
Let T

x
 denote the largest value of t such that X(t) = x (see figure 9), then the following 

equivalence can be deducted: 

 
The complementary distribution function of V0 can therefore be expressed by the generic Benes˘ 
principle 

 
Employing the definition of T

x
 from (9) we have 

 
Now, applying relation (7) at the point t = u yields 

 
Applying this to (11), it leads to the Benes˘ formula: 
 

 
2) Multiplexing periodic flows with variable message sizes and variable periods: We address the 
problem of periodic flows with variable message sizes and variable periods. We refer to this 
system as ∑ Di /∑ Di /1 queue. We derive bounds for the queue length distribution of ∑ Di /∑ Di /1 
queue by Benes˘ approach. Suppose M flows are sharing a switch port. Then there are 2

M
 

numbers of flow combinations. We denote the set of all flows as C2
M
 and a combination of the 

flows that is a subset flow of C2
M
, as Cm. In a system fed by periodic flows, work arrives 

discontinuously. Then the probability in the right-hand side of (14) is concentrated on the values 
of u such that x + u is an integer number of packet processing time. Let dCm denote the sum of 
the delays caused by the packets of the flow set Cm. 

 
We can thus replace the integral in (14) by a summation and give the virtual waiting time formula 
for ∑ Di /∑ Di /1 queue: 
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The first part of equation (17) is computed as follows: 

 
PrCm is the queueing probability where a combination of packets from flow set Cm  are queued 
among the all active flows in the switch and the packets from the rest of the flows (C2

M
   − Cm) are 

not queued. The actual corresponding queueing time is less than or equal to dCm, since the first 
packet in the queue may be already being served at the time of its arrival. The order of the 
packets does not affect its queueing time. The second part of equation (17) is replaced by (1 − ρc 
)
+
 where ρc is the conditional arrival intensity at time dCm − x : 

 
In practice, this quantity is a very close one, since for a high capacity link that multiplexes a large 
number of flows, the system behaves like a multi-server system for which the empty queue 
probability is very much closer to 1 than 1 − ρ. Omission of the condition {V0 = 0} in (14) yields an 
upper bound for Pr{ V0 > x}. The approximation has been shown to be reasonably accurate [22]. 
This approximation is assumed at the two competing flow cases studied in the earlier section. 
The notations are summarized in Table 2. 

 
TABLE 2: Notations for Analysis. 

 
The estimated distribution gives an approximation of a worst case delay distribution, since it 
counts the whole packet processing time of all the packets in the queue, even though the first 
packet in the queue is already being served. Queueing system studies on multiplexing periodic 

flows have been limited to flows with the same packet size [14] (N ∗ D/D/1, ∑ Di /D/1 queue) in 

the past. Equation (17) together with Equations (18) and (19) provides a new method for 
estimating the queueing delay probability for periodic flows with variable message sizes and 
variable periods, and for obtaining a probabilistic delay bound. 
 
3.4 The Admission Control Algorithm 
The admission control algorithm running on hosts makes a decision if QoS requirements of flows 
on the host would be violated or not. In this section, we present the admission control algorithm 
using the queueing analysis described in the previous section. Since measured delay dbaseline 
shows a distribution rather than a point, we cannot directly apply the complementary distribution 
Pr{V0  > x} to the admissibility test. Instead, the partial probability density function f ‘(x) is obtained 
in equation (20), using its queueing probability PrCm  and the corresponding delay dCm for each 
queueing flow set Cm,. 
  

                                                   f
f’(x)

 = PrCm f(x − dCm)                                                     (20) 
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The partial probability density functions are summed up to be the output delay distribution f
f
(x). 

The output delay distribution is converted to the cumulative density function F
f
(D) to see if the 

deadline is satisfied with the required probability. The probability that the delay is less than the 
deadline D is evaluated from the final cumulative density function F

f
 as below (equation 22): 

 

 
 
The algorithm is particularly complex to evaluate, since the number of possible queueing 
combinations grows exponentially with the number of competing flows. For each possible 
competing flow combination, the algorithm needs computation process and memory usage to 
modify the partial probability density function (to be shifted and to be multiplied) and to convert it 
to the cumulative density function.  
 

 
To make this approach practical, we made a couple of improvements to the algorithm. First, we 
observed that the packet queuing probability, due to a large number of other competing flows is 
very small when the stable network condition is satisfied. In most of the experiment settings, the 
packet queuing probability due to more than five competing flows was less than 10

−10
. Therefore, 

the computation of those combinations can be waived. More importantly, we found a derivation 
that enables us to make the admission decision without handling partial probability density 
function modifications and the cumulative density function conversion. In the following derivation 
(equation (23)), the admission decision is made by using the cumulative density function of the 
baseline distribution. Only one point (D − dC) of the baseline distribution needs to be evaluated for 
each modification of the competing flow combinations.  
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For a requested flow to be admitted, the same admission decision process should also be made 
by all hosts that have existing flows competing for the same switch output port. 

4. SOFTWARE DESIGN AND IMPLEMENTATION 

We have implemented the probabilistic admission control software on the Windows operating 
system. As shown in figure 10, the proposed admission control software is implemented in the 
application layer and the packet classifier and the token bucket regulation-based packet controller 
in the Windows operating system kernel are used to maintain the flow period. 
 

 
FIGURE 10: Windows Based soft real-time system Architecture. 

 
The admission control software comprises the admission manager, the admission controller, the 
traffic controller, and the flow information database. The admission manager provides a 
registration and deregistration method to the traffic controller as well as an interface to the 
admission controller. If a new flow request is admitted, the admission manager registers the flow 
to the traffic controller. The traffic controller is responsible to relay flows to the packet scheduler in 
the kernel through the traffic.DLL calls. The flow informs the packet control method to be used for 
the packet scheduler. It also creates a filter as specified by the specification to instruct the packet 
classifier to filter the list of packets. The flows are controlled according to the flow specification 
described by the admission manager. The admission controller performs admissibility test for a 
new flow request based upon the flow specification and the existing flow information from the flow 
information database. If the flow request is admissible, the admission controller creates a flow 
and adds the new flow to the flow information database. The flow information database maintains 
a consistent image of the network topology and the existing flow information of the entire network 
control system. It also interfaces to the broadcast socket to send a broadcast message of flow 
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addition to other control hosts in order to update their flow information database. The admission 
control software is used by the real-time applications via Wrapper Socket API calls that are the 
Java-based wrapper APIs implemented above Winsock 2. The Wrapper Sockets pass the flow 
specification to the admission manager along with the source and destination IP addresses, 
destination port, and QoS enable indication. It relays the application flows to the Winsock 2 
according to the admission decision. 

5. EXPERIM ENTS AND RESULTS 

To validate the efficiency of the proposed probabilistic admission control approach, we have 
conducted extensive experiments on the real networks. In this section, we present the 
experimental settings design and results. As illustrated in figure 11, 9 PCs are connected to a 12 
port Intel express 520T fast Ethernet switch. A test flow generator generates a test message flow 
to a test flow receiver. Other 7 PCs are used to inject competing traffic flows. Competing flows 
are generated by seven other hosts and ten flows are generated per host. Competing flows are 
sent to the same receiving host as the test flow, ensuring that all competing flows use the same 
output port of a switch. A combined time delay of the hosts, network, and switch buffer is 
measured using time-stamps derived from the TrueTime

TM 
[1] clock synchronization tool that 

provides one microsecond time resolution. To capture variability of flows both in terms of 
message size and period, we utilize an extensive set of experimental parameters. The 
experimental parameters, such as system environment and flow specifications, are summarized 
in Table 3. Although the algorithm can be applied to the flows with various periods with different 
message sizes, we have conducted the experiments with the same message size and period to 
illustrate the behavior of the delay as a function of message size and period. For the experimental 
parameters, we choose the message size less than the maximum packet fragmentation size 
(1500 bytes) in order not to introduce additional unnecessary complexity. We also keep the 
period greater than 10 milliseconds due to host delay stability issues (the flow control resolution 
of Windows). In a practical control system, most control message sizes are less than the 
maximum packet fragmentation size and the periodicity constraints are greater than tens of 
milliseconds [2]. 

 
FIGURE 11: Testbed Configuration. 
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TABLE 3: Experiment Parameters. 

 
5.1 Baseline and Competing Flow Experiments 
We first generate the baseline delay probability distributions that characterize a single 
sender/receiver host pair without any other competing flows. This baseline distribution is used to 
estimate the theoretical distribution with competing flows. We then conduct experiments to 
measure delay distributions with competing flows to validate the theoretical distribution 
estimations. Each experiment is performed for 30 minutes with 5 minute warm-up interval. The 
delay distributions captured on the receiver are presented as PDF (Probability Density Function) 
and CDF (Cumulative Density Function).  

 
FIGURE 12: Baseline Distributions: PDFs and CDFs: Fixed Message Size (1400/500/50B from the top row), 

Variable Periods. 
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FIGURE 13: Baseline Distributions: PDFs and CDFs: Fixed Period (500/200/50 ms from the top row), 

Variable Message Sizes. 

 
Figures 12 and 13 present the distribution of baseline measurements. In Figure 12, PDFs and 
CDFs are plotted for message sizes of 1400, 500, and 50 bytes, respectively from the first row. 
Each plot is compared with variable periods of 500, 200, and 50 ms. The PDF results illustrate 
that there are multiple modes on the distribution. These distributions look different from any well-
known distributions that can be analytically tractable. Therefore, it seems infeasible to model this 
distribution parametrically. The distributions are, however, quite consistent with the entire 
experiment and are stable enough to use them as the basis of the estimated distributions with 
computing flows. Figure 13 shows the PDF and CDF results of various packet sizes (1400, 500, 
and 50 bytes) with a fixed message period per plot. Each plot illustrates message periods of 500, 
200, and 50 ms. The CDF results show that the larger message size has more processing delay 
on the host and switch due to the longer transmission time that causes larger application-to-
application delays. An observation from the experiment confirms that the CDF distribution shapes 
are consistent with the same period across the message sizes. Hence, if we have one baseline 
distribution for a flow, we can use the distribution for the same message size with different 
periods and we may further estimate the baseline distribution of the different message sizes 
without measurements. Using the same parameters as the baseline configuration for the test 
flow, we ran simultaneous competing flows to obtain a delay distribution that accounts for 
message queueing in the switch. The measured distribution is used to compare with the 
estimated distribution to assess its accuracy. 
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FIGURE 14: Competing Flows: PDFs and CDFs-Fixed Message Size (1400/800/50B from the top row), 

Variable Period. 

 
FIGURE 15: Competing Flows: PDFs and CDFs-Fixed Period (500/200/50ms from the top row), Variable 

Message Size. 
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The delay distributions with competing flows are shown in figures 14 and 15. In figure 14, PDFs 
and CDFs are plotted for message sizes of 1400, 500, and 50 bytes, respectively, from the first 
row. Each plot is compared for variable periods of 500, 200, and 50 ms. figure 15 presents the 
results of various packet sizes (1400, 500, and 50 bytes) with a fixed message period per plot. 
Each plot illustrates with message periods of 500, 200, and 50 ms. The experiment uses 7 
competing flow generators and each host has 10 competing flows that makes 71 flows in total 
including the test flow. To ensure the flow independence and to reduce the effect of phase 
synchronization on the periodic flows, competing flows are generated with different start times 
that are made to be much bigger than the maximum period (if the start time difference is less than 
the maximum period, it may end up phase synchronization with the repeating experiments). To 
have solid statistical results, the experiments are performed repeatedly (more than 200 times). 
The experiments with competing flows clearly show that flows with longer messages and shorter 
periods experience longer delays with higher probability due to queueing events in the switch. In 
figure 14, shorter periods tend to result in a high probability of extreme delay for the fixed 
message sizes. i.e., PDFs are more widely distributed (compared to baselines) and in CDFs, it 
reaches to one slowly especially in high probability regions. In figure 15, the distributions of larger 
messages sit on the right-hand side of the smaller messages and the gaps are bigger than the 
case for baselines since that includes not only transmission delay of its message but also 
queueing delays. 
 
5.2 Algorithm Validation 
The measurements of various baseline distributions are used to estimate delay distributions that 
account for queueing in the switch for the same number and parameters of flows as in an earlier 
section. The estimated distributions are compared with the actual competing flow experiment 
distributions jointly with baselines in figure 16. The figures are shown for the high probability 
region (> 0.9) that aligns with the actual real-time requirements. The results show that the 
estimated distributions with competing flows approach to the experimental distributions especially 
in the higher probability regions. It is also observed that the estimated distributions are more 
conservative than the experiment distribution because it considers the worst case distribution. 
These experimental results in the real implementation validate the proposed approach. 

 
FIGURE 16: Delay CDFs from the Proposed Algorithm with Variable Periods. 
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FIGURE 17: Estimated distributions (a) Estimated output distribution for variable period, (b) Number of 

admitted flows. 

 
The trend of the estimated distributions for different parameters is shown in figure 17 (a). Figure 
17 (b) also shows the trend in the number of admitted flows in various QoS requirements by 
successively admitting flows to a system of existing flows. The experiment was performed with a 
message size of 1400 bytes and a period of 200 ms. Since the algorithm admits flows as long as 
the bandwidth sum is less than the switch capacity and the baseline gives enough probability for 
the longer delay requirements, we test for shorter delay requirements (700, 800, 900 µs) to show 
the accuracy. The result shows that the flow admissibility increases for the less requested 
probability or the longer delay requirements. This indicates that the utilization can be increased by 
relaxing QoS requirements. The utilization gain is linear rather than exponential since the flows 
are periodic. 

6. CONSLUSIONS 

We have presented a novel and efficient probabilistic admission control approach to support soft 
real-time control applications over switched Ethernet. Our approach enables real-time application-
to-application QoS management over switched Ethernet without sophisticated packet scheduling 
or resource reservation mechanisms in Ethernet switches or middleware on end hosts. 
Application-to-application delay is estimated based on the delay distribution of baseline 
measurements and queueing analysis with competing flow information. As part of our 
contributions, we have provided a new and efficient method to identify and estimate the queueing 
delay probability inside Ethernet switches for heterogeneous periodic control system applications 
with variable message size and period. This queueing analysis is interesting in itself. We have 
implemented the probabilistic admission control algorithm on the Windows operating system, and 
validated its efficiency through extensive experiments. 
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