
A.Satheesh, D.Kumar, A.Vincent Jeyakumar 

International Journal of Computer Networks (IJCN) Volume (2): Issue (1)                                   
 

16 

Run-Time Adaptive Processor Allocation of Self-Configurable 
Intel IXP2400 Network Processor 

 
 

A.Satheesh               vbsatheesh@yahoo.com 
Department of Computer Science and Engineering 
Periyar Maniammai University 
Thanjavur-613 403, Tamil Nadu, India 
 
Dr.D.Kumar               kumar_durai@yahoo.com 
Department of Electronics and Communication Engineering 
Periyar Maniammai University 
Thanjavur-613 403, Tamil Nadu, India 

 
Dr.A.Vincent Jeyakumar        avjeyakumar2004@yahoo.com 
Department of Mathematics 
Periyar Maniammai University 
Thanjavur-613 403, Tamil Nadu, India 

 
Abstract 

An ideal Network Processor, that is, a programmable multi-processor device 
must be capable of offering both the flexibility and speed required for packet 
processing. But current Network Processor systems generally fall short of the 
above benchmarks due to traffic fluctuations inherent in packet networks, and the 
resulting workload variation on individual pipeline stage over a period of time 
ultimately affects the overall performance of even an otherwise sound system. 
One potential solution would be to change the code running at these stages so 
as to adapt to the fluctuations; a near robust system with standing traffic 
fluctuations is the dynamic adaptive processor, reconfiguring the entire system, 
which we introduce and study to some extent in this paper. We achieve this by 
using a crucial decision making model, transferring the binary code to the 
processor through the SOAP protocol. 
 
 
Keywords: Network Processor, Reconfiguration, Runtime adaptation, dynamically adapting processor, 

Active Network, Self-Configurable, SOAP, IXP2400 

 
 

1. INTRODUCTION 

Traditionally most of the network core components have been implemented using Application 
Specific Integrated Chips (ASICs). We first recapitulate some of the earlier related works. Kevin 
Lee and Geoffrey Coulson in [ 14 ]  analyse the exact position that runtime reconfiguration 
occupies in Network Processor (NP), such as dynamically extendable services, network resource 
management, configurable network based encryption , offload processing etc. Dynamic 
deployment of resources to different flows in NPs has been known to Kind, Pletka and Waldvogel 
(see [ 1 ]). Implementations of NPs as system-on-a chip multiprocessor, involving multiple 
multithreaded processing engines and on-and-off chip memory, was the contribution of Tilman 
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Wolf [ 18 ], [ 19 ]. However, these devices lack flexibility and speed and also consume more 
energy. They therefore require replacement of physical components in the network core 
whenever there is a protocol change or update. These replacements still need some fine tuning 
which we provide by the use of programmable processors in the reconfigurable environment. 
These Neo Network Processors are multiprocessor devices designed for the efficient data-plane 
and control-plane by processing in networking applications. They are programmed to offer the 
required flexibility in packet processing and at the same time they appropriately provide the 
necessary computing resources to meet the speed requirement constraints of the network 
protocols. Intel’s IXA architecture provides the basis of a family of such NPs, of which the 
IXP2400 Network Processor is being used in this paper for the implementation of run-time 
adaptive processor allocation of self-configurable systems.  An adaptive processor allocation to 
pipeline stages of a packet processing application at run-time can improve robustness of the 
system to traffic fluctuations, can reduce processor provisioning requirement of the system and 
can conserve energy.  

 

2. THE SYSTEM ARCHITECTURE 

The Intel IXP2400 scores over many other processors due to its high programming flexibility, 
code reuse, and faster deployment capabilities and many other advantages like supporting a wide 
variety of LAN and WAN applications. We therefore choose this Network Processor for our study. 

 
2.1 Intel IXP2400 Network Processor   

 
The IXP2400 is an integrated Network Processor, comprised of a single X-Scale Core processor, 
eight Micro engines, standard memory interfaces, and high-speed bus interfaces. It is targeted at 
networking applications requiring a high degree of flexibility, programmability, scalability, 
performance, and low power consumption.  The unique architecture of the IXP2400 affords the 
user a highly concurrent packet processing model, while keeping the programming model simple. 
This is accomplished by providing many features in hardware that simplify the programming 
model. It allows the designer to implement the software, what was previously implemented in 
custom ASICs. This flexible, reprogrammable approach makes development time faster, 
facilitates easy bug-fixing, adds features to products after deployment in the field while 
conforming to standards that are not yet finalized. The micro engines are custom processors 
implemented specifically for networking applications. They are especially well suited to high-
speed data manipulation and movement. The micro engines being fully programmable 
processors are able to examine packet contents at all levels of the networking stack. This makes 
them suitable not only for layer 2 and 3 switching/forwarding, but also for applications that require 
deeper inspection and manipulation of packet contents. The key features of IXP2400 NP are 
scrupulously discussed in [ 7 ], [ 15 ], [17] whose standard block diagram of Intel IXP2400 NP 
architecture as shown in Figure.1. This shows the six functional units, which are traditionally 
known as Intel X-Scale Core [  3 ], Micro-engines [ 5 ], control store, contexts, Data path 
Registers [ 9 ], local memory, SRAM and DRAM controller [ 10 ] , [ 11 ],  Media and switch Fabric 
Interface, PCI controller, X-Scale core Peripheral, Performance monitor [ 8 ], Scratchpad memory 
and Hash unit.  
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FIGURE 1: Simplified block diagram of the IXP2400 

 
2.2 Workload Model 
 
Network processing in Intel IXA is essentially a series of tasks that are applied to a constant 
stream of packet or cell data. With the multi-processor/multi-threaded architecture of the IXP 
2400 network processor, these tasks are distributed over several micro-engines, each of which is 
programmed to perform specific tasks. When a micro-engine completes its tasks, it passes the 
context to the next micro-engine so that it can continue processing the data. 

 
2.3 Performance Metrics 
 
In our analysis, we focus on the following performance metrics, which are key indicators of the 
performance of a runtime system: 

• Processor utilization (ρ): This metric is defined as the fraction of time that the processor 
is busy. Processor utilization indicates the efficiency at which the system operates. 

• Packets in the system K. This metric indicates the extent to which the queues and 
processors are utilized in the system. A large value indicates that many packets are 
queued and that packets experience a large delay when traversing the system. 
 

2.4 Organization of the paper 
 
The remainder of this paper is organized as follows: Section 3 discusses related works.  The 
overall methodology is described in Section 4. In Section 5 we draw the state diagram of the 
proposed system. In Section 6 we describe the model which we propose to introduce. The 
implementation details will be discussed in section 7. The results will be analyzed in Section 8. 
We conclude the paper in section 9. 
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3. RELATED WORK 
 
Recently, several studies have been initiated in reconfiguration of network processors. We 

brief a few here.  Xin Huang and Tilman Wolf [ 22 ],[ 23 ] in their work present a methodology for 
evaluating runtime systems for NPs by defining workload models, queuing discipline and 
improving existing mapping algorithm . In paper [ 12 ]  J. Allen et al  have used Hifn PowerNp, 
wherein they discussed the challenges and demands posed by next generation networks and 
have described how network processors can address these issues by performing highly 
sophisticated packet processing at line speed. Kevin Lee and Geoffrey Coulson [  13 ], [  14 ] in 
their work demonstrated the importance of the specialized software, to support runtime 
reconfiguration that exploits the potential of NPs. They have focused mainly on the generic 
mechanism that can be potentially applied in all areas. They have used Intel IXP 2400 as a 
representative of the state-of-the-art current generation of NPs. In fact, they discover new 
approaches that present a runtime component based approach to programming NPs. The 
approach promotes conceptual uniformity and design portability across a wide variety of NP types 
while simultaneously exploiting hardware assists that are specific to individual NPs. Troxel, et al [  
6 ] have demonstrated the superior performance of enhanced NP over baseline NP for prioritized 
traffic that is non uniform. In the baseline experiments, the ME pipelines were not reconfigurable. 
This type of system mimics the behavior of today’s NPs.  Ravi kokku, et al [ 16 ], [  17 ] have 
presented a new approach of delay-conscious processor allocation algorithm (PAL) for packet 
processing systems. And they analyzed the benefits and challenges of adapting allocations of 
processors to packet types in the above systems and also they demonstrated that, for all the 
applications and traces considered, run-time adaptation can reduce energy consumption and 
processor provisioning level.  On the other hand, Vinod Balakrishnan, et al [ 21 ] concentrate on 
balancing two requirements in packet-processing applications on multi-core processors.                           
Arun Raghunath, et al [ 2 ] present yet another approach to support network processor platforms, 
which are increasingly required to support a rich set of services. These multi-service systems are 
also subjected to widely varying and unpredictable traffic. According to them, current network 
processor systems do not simultaneously deal well with a variety of services and fluctuating 
workloads. They have implemented an adaptive system that automatically changes the mapping 
of services to processors, and handles migration of services between different processor core 
types to match the current workload. 
 

4. THE INTEL IXP2400 NP CONFIGURABLE ENVIRONMENT  

This section gives the complete high level design details of the Intel IXP2400 NP that is needed in 
our work, by developing a self-configurable environment that would dynamically reconfigure its 
resources based on the results of monitoring traffic flows. For this, flow statistic is gathered by 
runtime-mapping-technique. In contrast, the unused hardware resources such as micro-engines 
are also quantified. These statistics will be used for choosing the appropriate resources for the 
services being offered, i.e., dynamic deployment reconfiguration. 
 
The proposed system and its architecture are depicted in Figure.2. This will provide the resources 
based on the network traffic for the purpose of reconfiguration. The network traffic is analyzed 
using the monitoring module. The monitoring module will scrutinize the number of packets coming 
in and getting out of packet processing system, using a counter. Based on the number of packets, 
the arrival rate and departure rate of the packets can be determined.  
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FIGURE 2: Functional block diagram of NP reconfiguration 

 
The result of this monitoring module will be used for decision making wherein the need for extra 
processor is decided. This is done using the decision table and service table (see Table.1 and 
Table 2) to be explained in section 4.2. 
 
We list below the salient functions of the above reconfigurable diagram, 
1. Monitoring module monitors the incoming and outgoing packets.  
2. Decision-making module decides whether to deploy the code or to stop the Micro-engine. 
3. Dynamic deployment module dynamically deploys the code in the Micro-engine. 
4. Active code transfer module parses the SOAP packet that comes from administrator. This 
packet contains the binary file for deployment. 
 

4.1 Monitoring Module 
 
The counter is set at the micro-engine level. The counters at ingress will keep track of the 
incoming packets to the queue. And the last counter, which is at egress, will keep track of the 
outgoing packets from the packet processing system that is to be processed by the egress. 
These two counters help to determine the number of packets in the intermediate stage. So, with 
the help of Arrival and Departure rate from and to the packet processing system, the traffic 
intensity is determined as shown in Figure 3. Since there is need for accessing the counter by 
both the processors, the counter values must be maintained in common to both the X-scale 
processor and Micro-engine for easy access to it.  
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FIGURE 3: Role of X scale and ME in the Monitoring Process 

 
 
In this module the following two functions are performed, 
 1: Counting of incoming packets to the ingress and 
 2: Counting of outgoing packets from the egress 
 
We calculate the service rate in this module using the following equation (1), 
                 
  Overall service rate   X (t) = N /t,                                                (1) 
  
where   N = Number of packets (packet count) transmitted 
   t = Time interval in seconds. 
 
We also generalize these ideas to k server by iteration process as shown below. 
 
At the initial level, we are assuming the traffic level is low. In this situation the system is used in 
single micro-engine for packet processing. So the service rate is  
 

            .         (2) 

 
We are assuming in the second level that the system is in moderate traffic, so that it can be 
provisioned by additional resources. The service rate of the second processor is, 
 

  .       (3) 

 
And when the system is in heavy traffic, more number of processors can be provisioned. The 
service rate of additional resource is, 
 

  .      (4) 

 
We can generalize the service rate of the j

th 
server as 

 

            (   ).      (5) 

where, 
 
E = total count of egress value.  
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4.2   Decision making module 
 

Before we go into the various parameters of this module, we must explain the most important 
aspect of this module, which is perhaps the most important concept of this paper itself. The basic 
idea is to optimize the resources and avoid the packet loss when the activated micro-engines are 

at full throttle. We fix two parameters  and , for the queue lengths where . 

 
The decision making module decides whether to dynamically deploy the code in a Micro-engine 
or relieve the load on a currently utilized Micro-engine, based on the packet arrival rate ( λ ) and 

the lagging packets in the intermediate queue (k). When the arrival rate is less, we call the 

minimum threshold (Tmin) and when the arrival rate is at its peak, we call the maximum 

threshold (Tmax) and these threshold values are fixed based on the network trace obtained by 
monitoring module. This module employs the decision table (Table. 1) and the service table 
(Table. 2) for dynamic deployment.  

 
 

Traffic Threshold Processor 

Low 
 

P1 

Medium 
 

P2 

High 
 

P3 

 
TABLE 1: Decision Table 

 
 

Processor Process Flag Service 

ME0 SRAM1.uof 8107 Ingress 

ME1 x.uof 8107 Dynamic deployment 

ME2 SRAM2.uof 8107 Egress 

ME3 x.uof 8107 Dynamic deployment 

ME4 - 8106 inactive 

ME5 - 8106 inactive 

ME6 - 8106 inactive 

ME7 - 8106 inactive 

 
TABLE 2: An example of Service and Resource table (Moderate Traffic) 

 
 
where, 
  Flag value 8106 and 8107 indicate that the micro-engine is inactive and active, 
  Service – is the functionality of the instance. 
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The pseudo code for the rules adopted by the decision-making module is given below Algorithm.1 
and 2. 

 
 

    Algorithm: 1. Allocation Rule 

 
1. int i � Tmin 
2. int j � Tmax 

3. int q1 �  

4. int q2 �  

5. if ( λ > i) and (k >q1) then 
6.            deploy_code_for_moderate_traffic 
7. if ( λ> j) and (k >q2) then 
8.            deploy_code_for_maximum_traffic 

    
 
   Algorithm: 2. Deallocation Rules 

 
1. int i � Tmin 
2. int j � Tmax 
3. if  ( λ < i) and current_code == moderate_traffic then 
4.   stop_code_for_moderate_traffic 
5. if ( λ< j) and current_code == maximum_traffic then 
6.   stop_code_for_maximum_traffic 

 

 In case the traffic is low, the threshold value  = Tmin will be fixed in such a way that the arrival 

rate is less than Tmin. , the system will activate the first micro-engine S1 (see State diagram S1). 

 is fixed in such way that arrival rate is above 70% of the service rate of the micro-engine. 

Incidentally our blanket assumption is that all micro-engines in the system have equal capacity of 
service rate. 
 
The application code for the moderate traffic occupies four micro-engines (moderate resource 
provisioned) while that for heavy traffic uses all available resources in order to tolerate the 
maximum traffic. 
 
4.3 Active code Transfer module 
 
In Figure.4, shows the working principle of Active code transfer module. All the packet processing 
would be carried out in data plane (micro-engine level).Hence when the packet comes in; the 
packet is classified based on the destination IP and Port by classifier. The active code will be 
passed on to the active code handler and the other traffic to normal packet handler. The active 
code handler will check for more flag bit set and fragmentation ID, then extract the packet content 
and copy an image to SRAM. Later the X-scale will monitor the SRAM for active code and get the 
content to form a binary file. 
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FIGURE 4: Functional Block Diagram 

 
 
The algorithm for identifying and extracting the active packet from the rest of the traffic is shown 
below, 
 

 
Algorithm : 3. Identifying and Extracting the Active packet 
 
1.  If (Destination_IP = NP_IP && Destination_port=port) 

 //Classifier 
 { 
  //Active code Handler 
2.     Check for More Flag bit set; 
3.  Extract Fragmentation ID; 
  Extract Total length of the packet; 
4. Set the flag in SRAM with the offset of packet content; 
5.  Move the packet content from DRAM to SRAM; 
6. Next SRAM_LOC; 
 } 

 
4.4 Active code Parser module 
 
The XML Code which comes by SOAP as active code will be parsed in this module. SRAM 
location is monitored in order to check whether the flag is set. If the flag is set, from the offset 
detail, the packet content is parsed. The header and the binary image are separated from the 
packet content. The Micro-engine number and file name of the active code can be identified by 
parsing the content header between the XML tag <ME></ME> and <IMAGE></IMAGE>.b The 
Binary UOF file will be extracted by parsing the active code between –MIME-BOUNDARY. The 
Figure 5. shows the X-Scale module function. 
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X-Scale Module 
 
 
 
 
 
 
 
 
 

FIGURE 5: X Scale module 

 
 

4.5 The SOAP Format for Active code  
 
Simple Object Access Protocol (SOAP) is a way to structure data so that any computer program 
in any language can read SOAP and send messages in SOAP. SOAP provides the answer to two 
main requirements. More precisely, XML provides a standard way to represent data, and SOAP 
provides an extensible message format (“extensible” essentially means you can make up your 
own tags; for example, HTML is not extensible). So this helps to create an active packet with 
information of the code by extensible message format (see Figure.6), where the binary file can be 
carried by the attachment part. 
 

 
                      FIGURE 6: Format for Active packet 
 

 
 
 
 
 
 
 
 

--MIME_boundary 

Content-Type: text/xml; charset=UTF-8 

Content-Transfer-Encoding: 8bit 

Content-ID: networkprocessor.xml@annauniv.com 

 

<?xml version='1.0'?> 

<SOAP-ENV:Envelope xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/"> 

<SOAP-ENV:Body> 

<ME> 

<MENO>17</MENO> 

<IMAGE>packet5</IMAGE> 

 <theAttachment href="cid:packet5.uof@annauniv.com"/> 

</ME> 

</SOAP-ENV: Body> 

</SOAP-ENV: Envelope> 

 

--MIME_boundary 

Content-Type: text/plain 

Content-Transfer-Encoding:binary 

Content-ID: packet5.uof@annauniv.com 

Binary Code………………………………………. 

--MIME_boundary 
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5. THE STATE-DIAGRAM 
 

At this stage, we introduce queuing theory as the primary systematic network analysis network 
delay. The conventional method of taking transmission delay L/C has been improved in the 
present day contexts to Little’s Law N = λT and its infinitesimal modification Nt = λt Tt, which we 
follow in our situation ( for details see [ 4 ] ). 
 
Let, 
 N(t) = Number of packets in the queue at time t 
 α(t) = Number of arrival  in the interval (0,t) 
 β(t) = Number of departure in the interval (0,t) 
So that, 
 N (t) = α(t) - β(t)       (6) 
 
Let ti and Ti be the time of arrival and the time spent in the system respectively, by the i

th
  

customer. Using elementary integration theory as a limit of summation, we obtained the following 
identity: 
 

         (7) 

 
Dividing throughout by t , we obtained the modified Little’s Law 

Nt = λt Tt , 
where, 

Nt  =   = Time average of the number of customers in the system in the interval (0,t) 

λt  =  = Time average of the customer arrival rate in the interval (0,t). 

 = Time average of the time a customer spends in the system in the 

              interval (0,t) 
 
We explain the situation in the state-diagram Figure.7. Here S1, S2,…,Sc denote the active servers 
and Sc+1 and Sc+2 denote respectively the ingress and egress. Since, the total number of servers = 
k, we have k = c + 2. Suppose, we use minimum resource (less number of micro-engines) with 
high traffic flow, we incur packets loss and this can be represented by dotted lines in the state 

diagram. The  and  are the position of minimum and maximum of queue length. The 

packets arrive in Poisson distribution and service of each server is exponential. The mean arrival 

rate is λ and mean service rate is . The incoming packets are distributed from the dispatcher in 

FCFS discipline. The queuing model is M/M/1/ or in M/M/c as a generalized version. 
 
It is surprising to note that the dotted line representing the ‘critical line’ where the packet loss 
occurs (before our innovation of resource optimization) resembles the ‘critical line’ Res = ½ , 

where the zeros of the classical Rieman-zeta function   in complex analysis are conjectured 

to fall. This emphasis the natural connection between classical mathematics, probability theory 
and modern computer analysis. 
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FIGURE.7: State-diagram 

 
We now enter into the actual methodology for the proposed system model. 

 
 

6. PROPOSED SYSTEM MODEL 
 

In this proposed system we adopt the principles of Adaptive load balancing model. This 
application is all about sharing the load directed upon a single server across multiple redundant 
severs thereby reducing the per head load. The per-head load is reduced by sharing the load 
equally by all the redundant servers. The scenario is as shown in Figure 8. 

 
6.1 Assumptions 
 
It is assumed that the system has only five replicated servers all the time and the service each 
provides is identified by the respective port number only. If two different redundant servers 
provide a service in the same port number it is assured that the two services are the same i.e. if a 
client requests for a service providing a port number all redundant servers        (if they have such 
a service) have the same service at that requested port number. All the packets that flow through 
the NP are assumed to be TCP packets running on IP. 
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FIGURE 8: Adaptive Load Sharing- Context diagram 

 
6.2 Runtime Mapping 

 
6.2.1 Mapping I:  Min_service_upon_less_traffic 

 
First, we consider the minimum traffic in the system. At that time, the system uses only single 
ALS instance. This is a basic pipeline consisting of Ingress, processing ALS operations (i.e., ALS 
instance) and egress as shown in Figure 9.  
 
 
    
                                   
 
 
 
 
 
                              FIGURE 9: Base line Configuration 

 
 
6.2.2 Mapping II: Min_service_upon_moderate_traffic 
 
Second, we consider the moderate traffic flow. A copy of the previous instance is replicated in 
order to accommodate the moderate traffic as shown in Figure 10.     
  
            
            
            
           
     
 
 
 
 
 
                                   FIGURE10. Replication of the same instance 
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6.2.3 Mapping III: Max_service_upon_high_traffic 

 
In order to overcome the heavy traffic, a new ‘substituted’ instance of the ALS application is 
deployed (Figure. 11). In the substituted new instance, the ALS function is split to different micro-
engines, whereas in the replicated instance all the functions are carried out in a single micro-
engine.  
 
            
            
            
            
            
       
                                        
 
 
 
 
 
 
 
 

FIGURE 11: Substituting new instances 

 
We use the following setup to evaluate the runtime systems 

 

7. IMPLEMENTATION - HARDWARE PLATFORM 
  
Our setup contains a PC hosting the Radisys ENP-2611 board with Intel® 600MHZ network 
processor. IXP2400 contains one XScale

TM
 core and eight micro-engines. Each micro-engine has 

an instruction store to hold 4K-40 bit instructions that are optimized for fast-path packet 
processing. In Intel IXP2400 Developers Workbench, Microcode Assembly language is used to 
implement the system and X-scale implementation incorporated Embedded C programming 
language for implementation. Intel IXP2400 Developers Workbench in a simulation tool which 
helps us to execute the micro engine code on it and give the performance measures for the 
application program. Later the same application is ported onto the hardware. The execution of the 
code can be traced on an instruction-by-instruction basis using the simulation tool. This helps in 
debugging the code as well as in providing means to validate the code. There are provisions to 
watch the runtime values getting stored in various memory storage units like SDRAM, SRAM, 
Scratch Pad Memory, Local Memory and     Micro -engine Registers. 
 

8. RESULT ANALYSIS 
 

The following section details the manner in which the baseline configurations (a) and (b) are 
compared to the dynamic configuration (c) described by us so far. 

 
a. Traffic from outside Network: 

 
The Traffic trace taken from the network are classified into low (250 pkts/sec), moderate 

(450 pkts/sec) and high (950 pkts/sec) and the traffic mixture taken are low, moderate and high. 
In Figure.12, the traffic mixture with low traffic was maintained for the first 10 seconds and then 
the traffic was increased to moderate for the next 10 seconds and finally the traffic was 
increased to high profile. 
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FIGURE 12: Snapshot of Traffic from outside network    FIGURE 13: Arrival rate and lagging packet in  
                                                                                                                 Mapping I 

 
b. NP without Dynamic Reconfiguration: 

 
  Mapping I 
 

At the initial stage, the system uses minimum resources so that (3 micro-engines) have been 
provisioned for NP. And the monitoring interval is 0.5 second. In Figure 13., the traffic mixture 
taken is low, moderate and high. So, when the workload gets increased (moderate traffic), the 
micro engine will not be able to process all the incoming packets, hence the queue size increases 
abruptly and queue overflow takes place, because in this mapping-I, the system uses only three 
micro-engines, which are ingress and egress. Hence the system itself with a single micro-engine, 
so it will tolerate only moderate traffic. 
                       
Mapping II 

 
In the second level, the system is in moderate traffic.  The Figure.14 shows the mapping of 
second level. At this moderate traffic, four micro engines have been used. And the monitoring 
interval is 0.5 second. The traffic mixture taken is low, moderate and high. So when the workload 
is increased (high traffic), the micro engine will not be able to process all the incoming packets, 
hence the queue size increases abruptly and as before queue overflow takes place.  
 

Mapping III 
 
At the third level, the system is in high traffic; here all the eight micro engines have been 
provisioned for NP. And the monitoring interval is 0.5 second. The traffic mixture taken is low, 
moderate and high. So when the workload increases, the micro engine will be able to process all 
the incoming packets, hence the queue overflow will not take place  (see Figure. 15). So, in this 
mapping-III the system used, maximum capacity in high level traffic. 
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FIGURE 14: Arrival rate and lagging packet in Mapping II           FIGURE 15: Arrival rate and lagging packet  
                                                                                                                           in Mapping III 
 

c. NP with Dynamic Reconfiguration 
 
In this dynamic reconfiguration, at initial stage minimum resource will be provisioned for NP. 
When the traffic get increased from low to medium, the minimum resource will not be able to 
manage the workload, so the queue length get increases in time for example 10-12 sec and 20-
22 sec (see Figure.16) .In this stage, the system will balance this situation to activate additional 
resources. The monitoring module which monitors the packet rate from X-scale core, deploy the 
code using runtime environment module in order to tolerate the moderate workload. Once again 
the heavy traffic is injected into the NP and the maximum resource will be provisioned in order to 
overcome the network traffic.  

 
FIGURE 16: Arrival rate and lagging packet in Dynamic Reconfiguration 
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9. CONCLUSION AND FUTURE PLAN 
 

To summarize, we have described the design and implementation of a dynamic reconfigurable 
system for Intel IXP2400 NP that can perform resource allocation at runtime. This allows 
maximum utilization of resources whenever possible in the steady state. In the baseline 
experiments (using the three mappings), the Micro-engine pipelines were not reconfigurable. The 
comparison of the baseline configuration over dynamically reconfigurable NP as described in the 
earlier sections shows the superior performance of    Self-Configurable NPs over baseline NPs.  
Our future work is to develop an adaptive system for IPV6 services. We propose to implement an 
adaptive system that automatically changes the mapping of IPV6 services to processors, and 
handles migration of services between different processor core types to match the needs. 
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