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Abstract 

 
In computer networks messages are transmitted through switches in order to 
reach destinations. Cross point switches are the simplest technique which 
requires one-to-one connection between input and output. The limitation of a 
cross bar switch technology is that if numbers of lines are large then cross point 
increases in huge amount consequently increasing the dimension of the switch. 
Space division switches are used to route the calls, which implies betterment 
over the cross bar technology. Actually it is built up of several smaller rectangular 
crossbars. This takes the advantage over the crossbar switches that less cross 
points are needed in the space division switches. The limitations of space 
division switches are that if more the number of cross points then there is 
increase the outgoing reaching probabilities of messages but the cost and 
overheads is also high with lesser cross points the congestion increases. In this 
paper we considered the architecture of a three crossbar space-division switch 
and assumed a Markov chain model for the transitional analysis of message flow. 
With the help of simulation study it is concluded that the impact of reaching 
probabilities for the different values of parameters must be kept in mind while 
designing  this switch by designers. 
 
Keywords: Space-division switch, Cross-Bar Technology, Markov chain model, Reaching probabilities, 
Transition Probability matrix, Simulation study, Message flow .  
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1. REVIEW OF LITERATURE 
Ko and Davis [3] proposed a protocol known as space-division multiple access (SDMA) which is 
useful for a satellite switched communication network. Abott [1] discussed a new technique for 
switching system using digital Space-Division concept for dealing with high-speed data signals. 
Yamada et al. [16] derived the high-speed digital switching technology with the help of space-
division switches. Karol et al. [8] presented an input versus output analysis of queuing on a 
space-division packet switching. In a contribution Li [5] performed analysis for non-uniform traffic 
in the setup of Space-Division switches. Yamanka et al. [17] expanded space-division (SD) switch 
architecture and suggested a bipolar circuit design for gigabit-per-second cross-point switch LSIs. 
Lee and Li [4] have studied the performance of a non blocking space-division packet switch using 
finite-state Markov chain model, given the traffic intensities changes as a function of time. Li  [6] 
derived the performance of a non blocking space-division packet switch in a correlated input 
traffic environment. Wang and Tobagi [14] suggested a self-routing space-division fast packet 
switch architecture achieving output queuing with a reduced number of internal path. Cao [2] 
derived a discrete-time queuing network model for space-division packet switches. Pao and 
Leung [10] used space-division approach to implement a shared buffer in an ATM switch which 
does not require scaling up the bandwidth of the shared memory. Shukla, Singhai & Gadewar 
[12] presented Markov Chain analysis for reaching probabilities of message flow in space division 
switches. 
 
 

  
FIGURE 1: Three cross bar space division switch 

 

2. MOTIVATION 
 
Shukla and Gadewar [11] have suggested a Markov chain model for the transitional analysis of 
message flow in a two crossbar space division switches. We extend this model, in this paper, 
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from two-crossbars to three crossbar setup and with the help of a simulation study, the impact on 
reaching probabilities of message is analyzed. 
 

3. INTRODUCTION AND ASSUMPTIONS 
 
In what follows, we consider a space-division switch [11],[12] with parameters 3,4,16  tnN  
shown in fig. 1 and assume the followings:  
a) The left side of switches is input and the flow of information is from left to right. 
b) Each input line, on left side, is attached with a computer having different initial probabilities 

of selection by users. This level is the stage 1.  
c) The middle crossbars are stage 2 containing three crossbars with each having four inputs 

and four output lines. 
d) The third stage contains four crossbars, each with three inputs and four output lines. At this, 

three output lines are with computers and the fourth one, in each crossbar, is a loss state. 
e) The term I(M,K,L) denotes an input state at Mth  stage in Kth crossbar and at Lth  input line 

where M=1,2,3;K=1,2,3,4;L=1,2,3,4. For example, in fig. 1 the term 1a  is input state I(1,1,1), 
a2  is state I(1,1,2), c1 is I(1,2,1),e1  is I(2,1,1), g1  is I(2,2,1), and i1  is I(3,1,1). 

f) The term O(M,K,L) denotes output state at Mth  stage, in Kth  crossbar and Lth  output line 
like the term b1  is output state O(1,1,1), b2 is O(1,1,2), b3  is O(1,1,3), d1  is O(1,2,1), f1 is 
O(2,1,1), h1 is O(2,2,1) and j1 is O(3,1,1). 

As special, the output states O(3,1,4), O(3,2,4), O(3,3,4) and O(3,4,4) are loss states and when a 
message reaches to them, it is assumed lost or reached to the known destinations. 
 

 3.1. Markov Chain Model 
  

Let {Xn , n = 0,1,2,3….} be a Markov chain with state space I(M,K,L) and O(M,K,L), M=1,2,3  and 
K,L = 1,2,3,4. The Xn  denotes the state of message at the nth step transition over states I(M,K,L)  
and O(M,K,L). The unit-step transition probabilities over states are:  
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The terms LiK, SiK ,PiK, QiK ,RiK  (i=1,2,3) are the probabilities of transition lying between 0 and 1 
and placed as elements of transition probability matrix given below. 
 
 
 

  1,,1 KI  2,,1 K   3,,1 KI   4,,1 KI   1,,1 KO   2,,1 KO   3,,1 KO  

 1,,1 KI  0 0 0 0 L1k L2k  )kLk(1 21  L  

 2,,1 KI  0 0 0 0 L1k L2k  )kLk(1 21  L  
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 3,,1 KO  P1k P2k P3k  )kPkPkP(1 321   0 0 0 
 

TABLE 1: Transition probability matrix (t. p. m.) for stage 1 
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TABLE 2: Transition probability matrix (t. p. m.) for stage 2 
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  1,,3 KI   2,,3 KI   3,,3 KI   1,,3 KO   2,,3 KO   3,,3 KO  4,,3 KO  
 1,,3 KI  0 0 0 R1k R2k R3k  )kRkRkR(1 321   
 2,,3 KI  0 0 0 R1k R2k R3k  )kRkRkR(1 321   
 3,,3 KI  0 0 0 R1k R2k R3k  )kRkRkR(1 321   
 1,,3 KO  S1k S2k  )kSkS(1 21   0 0 0 0 
 2,,3 KO  S1k S2k  )kSkS(1 21   0 0 0 0 
 3,,3 KO  S1k S2k  )kSkS(1 21   0 0 0 0 
 4,,3 KO  S1k S2k  )kSkS(1 21   0 0 0 0 

 
TABLE 3: Transition probability matrix (t. p. m.) for stage 3 

 
 
3.2. Model Classification 
 

The probabilities Li k , Pi k , Q i k , R i k and Si k  may be functions of M, K and L parameters and 
on this basis the classification of Markov chain models be as below: 
M-Dependent model- where probabilities Li k , Pi k ,  Q i k , R i k and Si k  are only functions of M. 
K-Dependent model- where probabilities Li k , Pi k ,  Q i k , R i k and Si k  are only functions of K  
L-Dependent model- where probabilities are functions of K and L parameters both.  
 
 

4. CALCULATION OF REACHING (INITIAL) PROBABILITIES 
 

Let Pik ( I = 1,2,3 ) be the probability of choosing the ith input line in Kth switching element of the 
space division switch configuration given in fig. 1of the section 1.0. For 4i , the probability is 
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4.1. Outgoing Probabilities At Stage 1, 2 and 3 
 

The O(1,K,L) over varying K  and L are the outgoing states, for the stage 1, where the message is 
ready to route into for the next stage. 
P [ X 1  =  O(1,K,L) ] 
=P[ message reaches to the state O(1,K,L) at the first step] 
The general form for M = 1(stage-1) is  
P [x = O (1, k, L)]  = L1 k  
when L = 1;K = 1, 2, 3, 4 
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  = L1`k  when L = 2  
 = {1 – L1 k  + L2 k } when L = 3  
The general form for M = 2 (stage-2) is  
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The general form for m = 3(stage-3) is  
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5. K-Dependent Model and Simulation Study 
 
Consider the following K-dependent Markov chain model with unit-step transition probabilities 
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Where a,b,c,d and e are constants having values in between 0.00 to 0.5. These transition 

probabilities are not by the variation in L. Because of being K-dependent model, the idea for this 
form of probability is to consider probabilities in power function of K. 

5.1 Reaching Probabilities Over Stages The Fig. 5.1 to fig. 5.4 shows the variation of 
reaching probabilities P[M,K,1] over K according the values of constants  a=0.1, c=0.1, 
0.1<=d<=0.5.  
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In light of assumed unit-step transition probability model, for the constant value of k=1, 

the connecting probability P[M,K,1] decreases at second stage (M=2) with respect to first stage 
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(M=2), but increases for(M=3). At K=2 and K=3 the similar pattern has observed with relatively 
closer probability difference.  

With the small values of d i.e. for d = 0.1 or d = 0.2, a sudden increase of probability 
P[M,K,1] has observed at K=4 for M=3  than compare to M=1. The outgoing probability at first 
stage (M=1)  is highest, followed by third stage M=3 but congestion occurs at intermediate 
crossbar M=3. It is because of the fact that several output lines reaches to the middle crossbars. 
For fixed value of M, the increase in value of  K  has the most significant impact in reducing the 
probability P[M,K,1]. But, exceptionally at K=4, a sudden increase has observed for large value of 
d say d>=0.4 . One more thing is observed that the reaching probability P[M,K,1] increases for 
M=3 With respect to increase value of d.  

According to fig.5.5 to 5.9 we observe that the variation over parameter c along with 
d also produces a change in the probability level. The third stage has constantly high probability 
than others. At K=1, the third stage probability p[3,1,1] is higher than others. But on K=2, we have 
P=1,2,1]=p[2,2,1] and a decreasing pattern for M=3  . The decrease over K continues up to K=3, 
but a sudden increase has found thereafter which is drastic when d is large. As shown in fig. 5.10 
to 5.12, the pattern of probability distribution differs much at the third stage for large values of c 
and d. 
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At the third stage, the probability P[M,K,1] becomes high and decreases gradually over 

increasing value of K. As shown in fig. 1.15, the higher value of parameters c and d both has a 
significant effect on reaching probabilities at the third stage.  

In light of fig. 5.13 to 5.16, it is observe that these parameters drastically changes the 
probability pattern more than the variation of c and d. At a = 0.3, the first stage has observed the 
higher probability than the others. The increase in values primarily changes the  outgoing 
probability.  
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While looking in fig. 5.17 to 5.18, it is found that for higher value of a and c both with respect to 
different values of d, a sudden variation arises at the  third stage of probability and the reaching 
probability reduces constantly over the increases in K. But at this stage, the entire pattern of 
variation seems to get stabilize over the variation of K and probabilities are nearly  parallel to the 
X-Axis. 
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The reaching probabilities at stage 2 increases than other stages when a is higher than c & d 
both. But with increasing values of c and d, when a=0.5 creates a decreasing pattern of 
probability over increasing values of K. However, the probability M=3 reduces than M=1 and M=2 
at many occasions for large values of a. The uppermost element of third stage has highest 
chance of outgoing probability as shown in fig. 5.18, when a=c=d=0.5. 

6. CONSLUSION 
 
Some interesting highlights of the simulation study are concluded bellow. 

(i) Under the assumed transition probability model the outgoing probabilities from   crossbars 
reduces at the intermediate links(crossbar at M=2)for small values of d(d=0.1 or d=0.2). 
The higher values of d increases the reaching probabilities P[M,K,1] for M=3. This seems 
at stage 3, the higher choice of value d i.e. d € (0.3,0.5) is recommended for better 
chances connectivity (when a=0.1 and c=0.1)). 

(ii) The simultaneous increase in c and d values i.e. c,d € (0.3,0.5) also increases the 
outgoing chances of passing the message at the third stage. The unequal probability 
distributions between switching elements at the second and third stage increases the 
outgoing probability at the last stage. It means that unequal probability of outgoing  
message through three pins of crossbar plays a significant role. The unequal probability 
allocation to switching pins improves the message passing chances. 

(iii) The increment in values of a, produces high outgoing probabilities at the first stage but 
relatively low outgoing at the third stage P[3,1,1]. Therefore, smaller values of a, a € 
(0.1,0.2) is recommended in order to get high outgoing probabilities at the third stage. 
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The unequal transition probabilities over K and M definitely affects the outgoing 
probabilities at the third stage. However, for k>2, a slight downfall in the message 
passing probability is observed. 

(iv) As a special case, when a=0.5,c=0.5 and d=0.5, the outgoing probability becomes 
independent of K for K=1 and K=2 and depends for K>2. Further, this reveals a special 
feature that outgoing probability at the third stage is constantly higher than any other 
stages. Equal values of parameters a,c,d generates higher chance of passing the 
message through the third stage. 

(v) While looking into the variation of d, the probability P[3,K,1] increases as d increases for 
K=4 only up to the stage where Ɛ (0.1,0.3). When c>0.3 the outgoing probability P[3,K,1] 
becomes high for K=1. This seems if message is to pass from the first element of the 
third stage (M=3,K=1) the higher values of c and d are suitable (e.g. c=0.5,d=0.5) and if 
the same is to pass through fourth element of third stage (M=3,K=4) the small c  and 
large d(e.g. c=0.1,d=0.5) is required. This reveals that the choice of c and d highly affect 
the outgoing probabilities but parameter a  does not have so. 

(vi) In K-dependent model, the increase in parameter a, has very important role in deciding 
about the probability pattern of outgoing message. 

(vii) One interesting observation in three pin case found as for L= 4. The reaching probability 
is much higher. Moreover, on more specific observation is that at K= 1, a linear trend is 
found for increasing values of d when a, c are fixed. 

In all, in space-division switches, the outgoing probability at the third stage under K-dependent 
Markov chain model is highly dependent on the appropriate choice of parameters a, c and d. If 
the transition inside the switching elements are preset as per model probability then the passing 
of message through certain connecting lines shall be easy in terms of chances. This recommends 
to the switch designers to construct space-division switches with unequal transition probabilities 
within elements and between elements. So we can conclude that the hardware designers of 
space division switches must keep in mind the recommended values of different parameter 
respectively for getting better chance of connectivity. 
 

7. REFERENCES 
 

1. Abott, g.f. “digital space division –a technique for switching high-speed data signals”, IEEE 
communications magazine, vol. 22, no. 4, pp. 32-38 (1984). 

2. Cao, X.-R. “The maximum throughput of a nonblocking space-division packet switch with 
correlated destinations”, IEEE Transactions on Communications, Vol. 43, No.5,pp.1898-
1901, 1995. 

3. K.-T. Ko and B.R. Davis, “A space-division multiple-access protocol for spot-beam antenna 
and satellite switched communication network” IEEE Journal on Selected Areas in 
Communication 1(1), 126–132,1983.  

4. Lee, M.J. and Li, S.-Q. “Performance of a nonblocking space-division packet switch in a time 
variant nonuniform traffic environment”, IEEE Transactions on Communications, Vol. 39, No. 
10, pp. 1515-1524,1991. 

5. Li, S.-Q “Nonuniform traffic analysis on a nonblocking space-division packet switch”, IEEE 
Transactions on Communications, vol. 38, no.7, pp. 1085-1096,1990. 

6. Li, S.-Q “Performance of a nonblocking space-division packet switch with correlated input 
traffic”, IEEE Transactions on Communications, vol. 40, no.1, pp. 97-108,1992. 

7. M.J. Karol, M.G. Hluchyi and S.P. Morgan, “Input versus output queuing on a space-division 
packet switch”, IEEE Transaction on Communications 35  (12), 1347–1356,1987. 

8. Medhi, J. “Stochastic Processes”, Ed 4, Wiley Eastern Limited (Fourth reprint), New Delhi, 
(1991). 

9. Naldi, M. “Internet access traffic sharing in a multi operator environment”, Computer Network, 
vol. 38, pp. 809-824, 2002. 

10. Pao, D.C.W. and Leug, S.C. “Space division-approach to implement a shared buffer in an 
ATM switch”, Computer Communications, vol. 20, Issue 1, pp. 29-37, 1997. 



D. Shukla, Rahul Singhai,  Surendra Gadewar, Saurabh jain, Shewta Ojha, P.P. Mishra 
 

International Journal of Computer Networks (IJCN), Volume (2): Issue (2) 151 

11. Shukla, D., Gadewar, S. and Pathak, R.K. “A Stochastic model for space-division switches in 
computer networks”, Applied Mathematics and Computation (Elsevier Journal), Vol. 184, 
Issue 2, pp.. 235-269, 2007.  

12. Shukla, D., Singhai R. and Gadewar S.K., “Markov Chain Analysis for Reaching Probabilities 
of Message Flow In Space-Division Switches”, In  electronic proceedings of ICMCS-
08,Loyola College, Chennai, India , 2008.   

13. Tanenbaum, A.S. “Computer Network”, 3rd Ed., Prentice-Hall, Inc., USA(25th Indian reprint), 
(1996). 

14. Wang. W. and Tobagi, F. A. “The Christmas-tree switch: an output queuing space-division 
fast packet switch based on interleaving distribution and concentration functions”, Computer 
Networks and ISDN Systems, vol. 25, Issue 6, pp. 631-644,1993. 

15. Yamada, H., Kataoka, H., Sampei, T. and Yano, T. “High-speed digital switching technology 
using space-division switch LSI’S”, IEEE Selected Areas in Communications, vol. 4, no. 4, 
pp. 529-535, 1986. 

16. Yamanka, N, Kikuchi, S., Suzuki, M. and Yoshioka, Y. “A 2 Gb/s expandable space-division 
switching LSI network architecture for gigabit-rate broad-band circuit switching”, IEEE 
Selected Areas in Communications, vol. 18, no. 8, pp. 1543-1550,1990. 


