
Yan Li, Li Lao & Jun-Hong Cui

International Journal of Computer Networks, (IJCN), Volume (2): Issue (6) 205

SDC: A Distributed Clustering Protocol

Yan Li yan.li@engr.uconn.edu
Computer Science and Engineering
University of Connecticut
Storrs, CT 06269, USA

Li Lao llao@google.com
Google Santa Monica
Santa Monica, CA 90401, USA

Jun-Hong Cui jcui@engr.uconn.edu
Computer Science and Engineering
University of Connecticut
Storrs, CT 06269, USA

Abstract

Network clustering is an important technique used in many large-scale distributed
systems. Given good design and implementation, network clustering can
significantly enhance the system's scalability and efficiency. However, it is very
challenging to design a good clustering protocol for networks that scale fast and
change continuously. In this paper, we propose a distributed network clustering
protocol SDC targeting large-scale decentralized systems. In SDC, clusters are
dynamically formed and adjusted based on SCM, a practical clustering accuracy
measure. Based on SCM, each node can join or leave a cluster such that the
clustering accuracy of the whole network can be improved. One big advantage of
SDC is it can recover accurate clusters from node dynamics with very low
message overhead. Through extensive simulations, we conclude that SDC is
able to discover good quality clusters very efficiently.

Keywords: network clustering, distributed algorithm, Scaled Coverage Measure, SDC, dynamic network

1. INTRODUCTION
Clustering is an important technique studied in various areas, such as biology, chemistry,
linguistics, physics, and sociology. The basic goal of clustering is to group data in such a way that
data in the same cluster shares certain similarity. In this paper, we study one interesting type of
clustering: network clustering, which partitions a network topology into clusters so that nodes in
the same clusters are highly connected and between clusters are sparsely connected.

Network clustering has become an important technique in different networking research areas.
With a good network clustering algorithm, we can design scalable and efficient routing protocols
[13] [3] [1] [23], enhance scalability and efficiency of large-scale distributed systems [16] [2] [21]
[9], and resolve many critical networking issues such as virus spreading [26] [15] [32], QoS [19]
[18], network robustness [6] [4] [12] [25], to name a few. In [22], network clustering is used to
study the clustering features of the AS-level Internet topology and a realistic topology model is
designed based on the observed clustering features.

Yan Li, Li Lao & Jun-Hong Cui

International Journal of Computer Networks, (IJCN), Volume (2): Issue (6) 206

Network clustering can be performed in both centralized and distributed ways. Centralized
network clustering is an off-line procedure, in which complete network topology information is
required. Thus, centralized clustering is usually used for small networks or off-line data analysis.
In our work, we focus on distributed clustering techniques, which are designed for large-scale
distributed systems.

To design a good network clustering protocol, we must consider the following design criteria. First
of all, as a natural requirement of network clustering, nodes in the same clusters should be highly
connected, and less connected between clusters. Secondly, a good clustering protocol should
control cluster size (or cluster diameter) well. Thirdly, the number of “orphan” nodes should be
minimized. Lastly, a good distributed clustering protocol should take node dynamics into account,
especially when the clustering targets are highly dynamic with frequent node entry and exit. We
provide a detailed discussion on clustering criteria in Section 2.

In the literature, there has been considerable research effort addressing the problem of network
clustering, but very few of them studied the problem in the scenario of large-scale distributed
networks. Among the existing approaches, MCL [28] is well accepted as an efficient and accurate
network clustering algorithm. However, this approach assumes that complete network topology is
available at one central point, which makes it difficult to apply MCL into distributed systems. CDC
[27], on the other hand, is a distributed algorithm. It forms clusters based on node connectivity.
The main issue with this algorithm is that it can not handle node dynamics in a decent way: a
large number of messages must be exchanged to keep accurate clusters.

With these problems in mind, we design a novel network clustering protocol: SCM-based
Distributed Clustering (SDC), which satisfies all the design criteria mentioned above. In SDC,
clusters are dynamically formed and adjusted based on a practical clustering accuracy metric,
Scaled Coverage Measure (SCM) [29]. In SDC, each network node makes its own decision to
join or leave a cluster whenever clustering accuracy can be improved. To control cluster size, TTL
(Time-To-Live) is piggybacked in exchanged messages to guarantee cluster diameter does not
exceed a predefined threshold. SDC is a fully decentralized protocol which requires only neighbor
information, and it can handle node dynamics with small message overhead while keeping good
quality of clusters. Besides the basic protocol design, we also address some difficulties in
scenarios of distributed networks. A common and critical issue addressed in this paper is
deadlock, which is caused by simultaneous node actions. We provide some strategies to avoid
and resolve deadlock conditions and analyze their effects on the performance of the protocol.
Through extensive simulations, we can conclude that our proposed protocol, SDC, is able to
discover high quality clusters in a very efficient way.

The rest of this paper is structured as follows. In Section 2, we introduce the background of
network clustering and review some related work. In Section 3, we discuss an important concept,
SCM which is the basis of our design. Then in Section 4, we present our clustering protocol SDC
in detail. We show the performance of SDC by extensive simulations in Section 5. At the end of
this paper, we conclude our work in Section 6.

2. BACKGROUND AND RELATED WORK
In this section, we formulate the network clustering problem and introduce a set of criteria for
desired clustering approach. Then we review several existing clustering methods.

2.1 Network Model

A targeting network to be clustered can be presented as a connected, undirected graph = (,
), where is the set of nodes and is the set of edges connecting network nodes. Let | | = n

and |E| = m. Then a partition of is named as a clustering of graph , and
represents the cluster. Each cluster must be a non-empty subset of . Clearly, .

The diameter of a cluster is defined as the maximum length of the shortest paths between all

Yan Li, Li Lao & Jun-Hong Cui

International Journal of Computer Networks, (IJCN), Volume (2): Issue (6) 207

pairs of nodes in . Accordingly, if a cluster has one node, its diameter is 0. We call the clusters
with diameter equal to 0 as orphan nodes.

Another metric associated with a cluster is cluster size that is defined as the number of nodes in a
cluster. Cluster size and cluster diameter are closely related. In most scenarios, “control cluster
size” is equivalent to “control cluster diameter”. We only differentiate these two metrics in the
protocol description.

2.2 Criteria of Clustering

The network clustering problem can be formulated as finding a “good” clustering in such that
 can accurately describe the natural clustering features in the topology. More specifically, in a

“good” partition , the intra-cluster node connectivity should be maximized and the inter-cluster
node connectivity should be minimized. Therefore, node connectivity is a basic criterion to be
considered in network clustering design. In addition to node connectivity, cluster size is another
important metric. In large-scale distributed networks, due to the lack of knowledge about network
structure, it is expensive to maintain expanded clusters. In other words, cluster diameters should
be carefully controlled. A good network clustering algorithm should also take the number of
orphan nodes into consideration. In most scenarios, orphan nodes are not preferred as they
violate the goal of clustering and should be eliminated.

As discussed above, node connectivity, cluster diameter, and orphan nodes are important criteria
for good network clustering algorithms. However, more issues need to be addressed when we
cluster large-scale distributed systems. In such networks, a node only has the knowledge about
its neighbors and may join or leave the network at any moment. To obtain a complete view of the
network structure, a huge number of messages need to be exchanged to collect the topology
information. Moreover, the obtained topology may expire very soon due to node dynamics. Re-
collecting topology information on each node-entry and node-exit will overload the network with a
huge amount of exchanged messages. Therefore, it is not feasible to maintain a complete and
up-to-date topology in such networks. Given these concerns, a good clustering protocol for large-
scale distributed systems should form clusters in a fully distributed fashion, i.e., nodes should
form clusters automatically without the requirement of complete network topology, and it should
be able to recover accurate clusters from node dynamics with small overhead in term of the
number of exchanged messages.

2.3 Related Work
Significant research efforts have been devoted into design of network clustering methods [5] [10]
[14] [17] [28] [27]. However, many existing clustering algorithms assume that the complete
network topology is available at a central point. One typical research line tries to solve the
MINIMUM k-CLUSTERING problem which is formulated as follows: Given a network topology
and an integer , find a partition of into a smallest number of subsets so that the diameter of
each subset is at most . The MINIMUM k-CLUSTERING is proved to be NP-Complete in simple
and undirected graphs [10], so most of research efforts are focused on special types of
topologies. One representative work is presented in [10], which proposes a polynomial time
approximation algorithm, DDP, for graphs with dominating diametral path. DDP does not form
clusters based on node connectivity, so it can not guarantee accurate clustering.

The Markov Cluster (MCL) [28] is a connectivity-based centralized network clustering algorithm.
The basic idea behind this algorithm is flow simulation. In this algorithm, an input graph is
mapped in a generic way onto a Markov matrix. Then the set of transition probabilities are
iteratively recomputed via matrix expansion and inflation. An infinite sequence consisting of
repeated alternation of expansion and inflation constitutes a new algebraic process called the
Markov Cluster (MCL) process. The heuristic behind this algorithm is that a flow between
sparsely connected dense regions evaporates after MCL process. Therefore, it is easy to detect
dense regions in the original graph which are the output clusters. MCL algorithm can achieve high
clustering accuracy. However, due to its centralized feature, it can not be used in distributed
systems.

Yan Li, Li Lao & Jun-Hong Cui

International Journal of Computer Networks, (IJCN), Volume (2): Issue (6) 208

There have been many proposals for network clustering in large-scale decentralized systems [8,
11, 20, 30, 31]. Among existing decentralized clustering algorithms, one representative work is
[27], a connectivity based distributed network clustering algorithm, CDC, which is designed for
p2p networks. In CDC, a set of peers are selected as “originators” and clusters are discovered
around these peers by TTL-controlled message flooding. If the “originators” are well distributed in
the network, clusters with good quality can be formed. The CDC scheme is a fully distributed
approach and the cluster size can be effectively controlled by TTL. The main issue of CDC is the
selection of “originators” which can affect the accuracy of clustering significantly. So far, there is
no good solution to well distribute “originators”. Thus, the clustering accuracy can not be
guaranteed. Another issue with CDC is it can not efficiently handle node dynamics. To maintain
good clustering quality, the whole network has to be re-clustered at each node join or leave,
which introduces a huge amount of message overhead.

In summary, there is no existing clustering method which can satisfy all the criteria for network
clustering in large-scale distributed systems. In this paper, we propose a novel network clustering
protocol, SDC. It is fully distributed and can form high quality clusters in highly dynamic systems
with small message overhead.

3. SCALED COVERAGE MEASURE
Before introducing our protocol, we first discuss Scaled Coverage Measure (SCM), a practical
metric to evaluate the accuracy of connectivity-based clustering algorithms proposed by S.Van
Dangon [28].

We assume is a clustering on network = (,). Given a node , we have
the following notations:

• Nbr() is the set of neighbors of node ;

• Clust() is the set of nodes in the same cluster as node (excluding);

• FalsePos(,) is the set of nodes in the same cluster as but not neighbors of ;

• FalseNeg(,) is the set of neighbors of but not in the same cluster as ;

Then the Scaled Coverage Measure of node , , is defined as:

For graph , the SCM value, , is defined as the average of the SCM values of all the
nodes, that is, , which lies in [0, 1].

SCM well reflects the significance of clustering features in a given network topology. First of all, it
is easy to see that the higher the SCM, the smaller the connectivity between clusters and the
higher the connectivity within clusters. For graphs containing only isolated clusters/subgraphs that
are themselves fully connected, the SCM value is 1. Secondly, for any graph, there exists a
highest SCM value which is determined solely by the network structure. If the network does not
contain significant clustering substructures, this highest “available” SCM value can be very small.
However, if we evaluate two clustering techniques on the same network, the one which results in
a higher SCM value discovers more accurate clustering substructures than the one with smaller
SCM value, although both resultant SCM values could be very small. Lastly, the SCM value of an
orphan node is 0, which matches our goal of minimizing the number of orphan nodes.

Based on the definition of SCM, the network clustering problem can be simplified as partitioning a
network topology so that its SCM is maximized. Our proposed SDC protocol exactly follows this
idea, adaptively forming clusters in an aggressive manner.

Yan Li, Li Lao & Jun-Hong Cui

International Journal of Computer Networks, (IJCN), Volume (2): Issue (6) 209

Simplified Notations To simplify the computation in SDC, we can re-express SCM at node as
follows:

Thus,

and

.

If node is an orphan node, , where is the degree of node . These

two parameters and can be easily updated based on neighbor information upon node

joining and leaving the cluster.

In the next section, we show how SCM is utilized in the SDC protocol to form clusters in a
distributed fashion.

4. SCM-BASED DISTRIBUTED CLUSTERING: SDC
SDC is a fully distributed clustering protocol. A node in the network maintains only its own state
information: 1) the cluster it currently belongs to, identified by a unique id , 2) the current
number of nodes in its cluster , 3) the two parameters for SCM computation and .

To cluster a network from scratch, every node is initialized as an orphan node with its own

(any unique identifier) and that is equal to 1. For any node , the two
parameters for SCM computation, and , are initialized as . Then every node starts

its own clustering procedure independently at a random time by sending requests to its
neighbors. If the requests are accepted by the neighbors, the clustering procedure continues with
a few rounds of message exchange until the node joins a cluster. Otherwise, the node can select
to serve its neighbor’s requests or start a new round of clustering. Clustering of individual node is
an independent and local procedure. The clustering of the whole network ends when no message
is exchanged. Next, we describe the protocol in detail.

4.1 Protocol Description
In SDC, nodes form clusters in a greedy manner based on SCM. Each node tries to cluster with a
subset of neighbors which leads to a higher SCM value than cluster with the other neighbors.
When a node is actively involved in a clustering procedure, it is either in “Clustering” mode, i.e. it
starts the clustering procedure, or in “Serving” mode as it is serving another node’s clustering, but
not both. The clustering procedure of any node, , involves the exchange of a set of messages
elaborated as follows.

• . A node starts its own clustering procedure by broadcast
message to all the neighbors. Once the message is sent out, is in the

“Clustering” mode and waits for the response from its neighbors. A timer is set up to
control the waiting time. During this waiting period, can not accept and serve the
clustering requests from other nodes. It buffers all the received requests and handles
them after the current clustering. If all the neighbors response before timer expires,
confirms all the replies and the clustering procedure continues. If the timer expires and no
response is received, checks the buffered requests and selects one to serve. If the
buffer is empty, restarts its clustering procedure after a small random time period.

• . Upon receiving from the neighbor , node sends back a

 message if it is not actively involved in any clustering procedure. Otherwise,
it refuses the clustering request by sending a message back to as
explained next. By sending out a , claims its willingness to serve the

clustering request of and waits for confirmation from . The message

Yan Li, Li Lao & Jun-Hong Cui

International Journal of Computer Networks, (IJCN), Volume (2): Issue (6) 210

carries the current cluster information of such as , and that

shows the gain in assuming node joins the cluster of if it is not in

or leaves otherwise. The computation of only requires the knowledge

of whether and are directed connected. Specifically, let us consider the case that

is in a different cluster from . If is a neighbor of ,

On the other hand, if is not directly connected with ,

The gain in SCM for nodes in the same cluster of is computed in a slightly different
way and can be easily derived.

• . After receives replies from its neighbors, a requesting node needs to
confirm the acceptance of the service provided by the neighbors. A is
sent back to the neighbor for this purpose. Once receives , a node can
not serve others or request clustering for itself.

• . A node that decides to serve a neighbor’s clustering may receive
 from its neighbors for its previous requests. This situation happens if a node

requests for clustering service but none of it’s neighbors are available to serve it at the
moment. Those neighbors will buffer the request as mentioned above. After a while,
some of the neighbors may become available again and try to serve the buffered
requests. When a node that is in the serving mode receives a for its previous
requests, it replies with a message which indicates it is serving others and
can not accept the service offer.

• . If a node is in either “Clustering” or ”Serving” mode when it receives a
 message, it informs the requester its unavailability for the request by

sending a message. If a node is refused by all the neighbors, it either
serves one buffered request if there is any or re-starts a new round of clustering
procedure after a small random time interval.

• . If node receives a from neighbor during the waiting

period after it broadcasts a request, it confirms the service offer by sending back a

 message and starts waiting for more messages from the
other nodes in . When node receives the , it enters the

“Serving” mode and forwards the request message to all the other nodes in its current
cluster through flooding. When another node in receives the request, it

sends a with its own back to the request node .

• . To control the cluster granularity and the number of exchanged messages,
every message carries a TTL field. Based on the value of TTL, a node can
determine whether the cluster diameter will exceed a predefined threshold after joins. If
the TTL expires, stops forwarding and sends a message

to . Once receiving , does not take as a potential cluster to

join.

• . After node receives from all the nodes in its current cluster

and the neighbor cluster (in the case that no is received from), it
computes the overall gain based on the received information. We use
and for the gain in SCM as if leaves its original cluster and joins . Then the

overall is computed as:

Yan Li, Li Lao & Jun-Hong Cui

International Journal of Computer Networks, (IJCN), Volume (2): Issue (6) 211

where is the sum of the gain in SCM received from all the nodes in current

cluster and is the sum of the received gain in SCM from all the nodes in the
neighbor cluster . If , should join . There might be multiple clusters for
which are positive, should join the one corresponding to the maximum .
Once determines which cluster to join, a message containing ’s node
id and its original is flooded in its original cluster and the new cluster it is joining.
Then, and every node receiving need to update the clustering
information.

After joins the new cluster, its neighbors in the other clusters are affected. These nodes will
check whether they should move to ’s cluster for a higher SCM in the same way as node
does. The whole clustering procedure ends if there is no exchanged message.

4.2 Handling Deadlocks
A critical issue that distributed network protocols must handle is how to detect and resolve
deadlocks. In SDC, nodes may enter deadlock conditions if they start the clustering request
simultaneous as their neighbors. When deadlock occurs, none of them can get served as they
are all waiting for each other’s replies. Deadlocks can cause the involved nodes to be in a busy
waiting state infinitely, so those nodes will never get clustered.

We using the following two methods to avoid and resolve deadlocks.

• State Reset: If a node is in a waiting state which can be waiting for clustering reply,
service confirm, etc., it will enter the next state automatically after a certain amount of
time whether or not it receives replies from its neighbors. For example, a node sends

 to its neighbors. It starts a timer right after the requests are sent. When
the timer times out, the node enters the corresponding next state based on whether or
not it receives any . The length of the timer can be estimated based on RTT
and the predefined TTL.

• Randomization: A direct reason for the deadlock scenario is the simultaneous node
actions. Therefore, we introduce a randomized delay for each node before it takes
actions. This randomization can affect the performance of SDC significantly. A short
randomized delay may not be effective to resolve the deadlock condition while long
delays are more effective but can slow down the whole clustering procedure. To analyze
the effects, we provide simulation evaluations in the next section.

4.3 An Example
A simple example is shown in Fig. 1 to illustrate the SDC clustering procedure. In this example,
TTL is set to 2, so the diameter of any cluster will not exceed 2. In Fig. 1a, node 0 wants to be
clustered with other nodes. It first sends messages to all of its neighbors. Each
neighbor node upon receiving the sends its , and SCM gain back
to node 0 as shown in Fig. 1b. After receiving replies from all the neighbor, node 0 sends

 to accept the service offer so that its requests are forwarded to every node in the
clusters of A and B via flooding, as shown in Fig. 1c. At the same time, node 7 also starts its
clustering procedure by sending a to its neighbor 2. Since node 2 is in the
“Serving” mode, the request from node 7 is refused. Thus node 7 waits for a small period of time
before the next clustering attempt. In clusters A and B, every node which receives
computes its SCM gain and sends back to 0 (Fig. 1d). Node 0 then computes

 based on the received information and joins Cluster A at the end (Fig. 1e). Since node
4 is affected by node 0’s clustering, it starts its own clustering procedure in the way as node 0
does (Fig. 1f).

4.4 Handling Node Dynamics
In large-scale distributed systems, node entry and exit can occur at arbitrary time and the network
structure may change continuously. Node dynamics can degrade the existing clusters and must

Yan Li, Li Lao & Jun-Hong Cui

International Journal of Computer Networks, (IJCN), Volume (2): Issue (6) 212

be handled by the clustering protocol. Re-do the whole clustering procedure may recover good
clustering accuracy. However, it is very inefficient and the procedure may never stabilize if node
entry and exit happens frequently. Therefore, designing an effective and efficient scheme to
handle node dynamics is a critical demand for distributed clustering.

Our SDC protocol can naturally handle node dynamics in a decent way. Whenever a new node
joins the system, it is first initialized as an orphan node and gets its own and
(which is 1). Since the network structure between node and its neighbors is changed, a Join
message carrying ’s is issued by to all of the neighbors so that they can update their
SCM. As ’s joining changes its neighbors’ connectivity, the affected neighbor nodes should
perform a new round of clustering procedure. When a node wants to leave, it sends a Leave
message to each of its neighbors as well as every other node in its cluster through flooding so
that the and SCM values of the affected nodes can be updated. This will also activate a
new round of clustering procedures at these affected nodes. The logic behind this scheme comes
from the fact that node entry and exit are localized events and only a few nodes are affected and
need to be re-clustered.

Some overhead is introduced when SDC handles node dynamics. Nevertheless, this overhead is
very small since only neighbors and/or the nodes in the same cluster are directly affected. In next
section, we will show that SDC can achieve good clustering accuracy with low overhead in the
presence of node dynamics. In contrast, CDC has to re-do the complete clustering procedure for
any node join or leave in order to maintain good clustering accuracy, which introduces a lot of
overhead.

5. SIMULATION EVALUATIONS
In this section, we conduct simulations to evaluate the performance of SDC, comparing it with the
decentralized clustering scheme, CDC.

Yan Li, Li Lao & Jun-Hong Cui

International Journal of Computer Networks, (IJCN), Volume (2): Issue (6) 213

Figure 1: A simple example of SDC protocol (TTL = 2).

5.1 Experiment Settings
To test the applicability of our clustering protocol to different network structures, we use two types
of topologies: Waxman topologies from GT-ITM topology generator [7] and power-law topologies
from the BRITE generator [24].

We implement both the SDC and CDC algorithms and evaluate their performance on different
types of topologies. There are several configurable parameters for the CDC scheme: Vicinity,
TwoHopThreshold, WeightThreshold and MinWeight. These parameters affect the performance
of CDC significantly: increasing the values of these parameters reduces the number of
discovered clusters and causes more orphan nodes. We tune these parameters carefully towards
the best clustering accuracy of CDC. Specifically, we set the values of Vicinity, TwoHopThreshold,
WeightThreshold, MinWeight as: 1, 0.1, 0.0001, 0.0001 respectively. Besides these parameters,
TTL is also critical to CDC as it affects the clustering accuracy by controlling he granularity of
discovered clusters. Based on [27] and our observations, higher TTL values correspond to more
accurate clusters with the tradeoff of increased number of messages. A TTL of 2 is used as the
accuracy of CDC is not affected significantly by higher TTL values while the message overhead is
much smaller than the overhead caused by higher TTL values.

Yan Li, Li Lao & Jun-Hong Cui

International Journal of Computer Networks, (IJCN), Volume (2): Issue (6) 214

We simulate the fully distributed systems in which a node only knows its directly connected
neighbors. The one way 1-hop delay of any exchanged message is set to 1 simulated time.

The performance of SDC is evaluated in two network scenarios:

1. Static system where network nodes form a fixed topology throughout the whole simulation.
In the beginning, every node shows up as an orphan node and starts its own clustering
procedure independently at a random time . The simulation ends until every node
is clustered and no message is exchanged.

2. Dynamic system in which the topology is changed by adding X new nodes to or removing
X existing nodes from the system.

The main metrics used to evaluate the performance of the two algorithms are: SCM, Message
Overhead and Convergence Time. SCM is used to evaluate the accuracy of the algorithm.
Message Overhead is defined as the number of exchanged messages among nodes.
Convergence time is the amount of simulated time from the first clustering operation until the end
of the simulation. We also study the influence of node degree and TTL on the performance of
SDC.

5.2 Performance of SDC in Static Systems
We first simulate the performance of SDC in clustering static systems, i.e., no node enters or
exits the network. We are interested in the performance of SDC on different topology structures
and topology sizes.

5.2.1 Affect of Clustering Time Span T
In SDC, a node may receive multiple clustering requests simultaneously especially when all the
nodes start clustering in a short period of time, i.e. T is small. When receiving multiple requests, a
node randomly picks one to serve and rejects the others. The smaller the value of T, the more
rejected requests and control messages. Therefore, the value of T is a factor that can influence
the performance of SDC significantly. We conduct simulations for different value of T, starting
from 1 to 100 using a power law topology with 1000 nodes. The clustering accuracy, message
overhead and convergence time are shown in the Fig. 2 � 4.

As shown in Fig.2, increasing the value of T can improve SDC’s clustering accuracy. The reason
is straightforward. In the scenario of large T, a node can get service from more neighboring
clusters due to the less competitions and thus is more likely to choose the best cluster to join.
With the increase of T, the SCM keeps raising towards the maximum SCM value of the topology
with a slower rate.

Fig.3 shows the message overhead under different value of T. When T is small (less than 10 for
our simulation), the message overhead shows an increasing trend with the value of T. The reason
can be explained as follows: When T is small, there are a lot of simultaneous clustering requests
in the same area of the topology. Based on the SDC algorithm, only 1 request can be served at a
time and the others have to be rejected and served later. Therefore, when T is small, a lot of
clustering requests must be rejected which results in high control message overhead and many
requests must be re-sent which also increases the message overhead. With the increase of T,
the number of simultaneous requests in the same area is reduced, which contributes to the
decreased message overhead. We can also observe a point in the value of T after which the
message overhead shows an increasing trend. When T is large, although the overhead caused
by simultaneous requests in the same area is reduced, the clustering operations are less
aggregated. For example, a node may postpone its moving attempt to a cluster due to its

neighbor’s current clustering operation. If its neighbor also joins the cluster , node should

perform another moving attempt that can be aggregated with the previous postponed moving
operation. With the increase of T, clustering operations are less aggregated which increases the
exchanged messages. When T is large enough, the increased number of messages due to the

Yan Li, Li Lao & Jun-Hong Cui

International Journal of Computer Networks, (IJCN), Volume (2): Issue (6) 215

less clustering aggregation becomes more significant than the reduced number of messages due
to the less simultaneous clustering requests and the overall message overhead shows an
increasing trend.

The last metric we are interested in is the convergence time under different value of T. With the
increase of T, the convergence time grows slowly. When T is larger than 30, the convergence
time shows a rough linear correlation with the value of T. We can observe that the clustering
procedure is more time consuming when T is small. The reason is small T causes simultaneous
clustering attempt at more nodes, which further results in more time for handling the simultaneous
requests and re-clustering.

Figure 2: Clustering accuracy on power laws Figure 3: Message overhead on power law
topology of 1000 nodes topology of 1000 nodes

Figure 4: Convergence time on power law topology

 of 1000 nodes

Yan Li, Li Lao & Jun-Hong Cui

International Journal of Computer Networks, (IJCN), Volume (2): Issue (6) 216

5.2.2 Performance in Different Topology Size
In this set of simulations, we want to evaluate the performance of SDC in handling different size
of topologies. Two types of topologies are used: random topologies from the Waxman topology
model and power law topologies from the BA model. Both sets of topologies scale from 1000
nodes to 6000 nodes. We use the existing distributed clustering algorithm CDC as the reference
point of our evaluation.

We first evaluate the performance of SDC on Waxman topologies. In this type of topologies,
nodes are connected in a random way: only the distance information is considered. The average
node degree is controlled to around 4 for all topologies.

The performance of both algorithms are shown in the Fig.5 � 7. Since the topology structure is
unchanged with the topology size, both algorithms have very stable clustering accuracy as shown
in Fig.5. When compare the accuracy of the two algorithms, it is obvious that SDC performs a lot
better than CDC. Recall that the range T for SDC is set to 2, so we expect even better
performance of SDC in the scenario of larger T.

Fig.6 shows the message overhead of both algorithms. With the increase of topology size, the
message overhead of SDC and CDC has a linear growing trend. Compared with CDC, SDC
generates much lower message overhead which increases with topology size slowly. On the
other hand, the message overhead of CDC is very high and increases rapidly with topology size
as it is a flooding-based method.

The only metric in which CDC outperforms SDC is the convergence time. For CDC, clusters are
formed right after message flooding. Therefore, the convergence time of CDC is determined only
by the TTL of flooding and is unchanged with topology size. For SDC, since a node can serve
only 1 clustering request at a time, the convergence time increases with the number of nodes. As
multiple clustering requests at different areas of the topology can be served simultaneously,
SDC’s convergence time has a sublinear correlation with topology size.

Fig.8 � 10 shows the performance of both algorithms on power law topologies. This type of
topologies have very skewed degree distributions. For a BA topology with 5000 nodes, the
highest degree is more than 100 while the average degree is only 4. The clustering accuracy of
SDC on the power law topologies is slightly lower than on the Waxman topologies. The reason is
the power law topologies have less significant clustering features that result in lower SCM values.
Compared to CDC, the performance of SDC is consistently better in terms of clustering accuracy
and message overhead. The convergence time is reduced on power law topologies but still
higher than CDC.

Yan Li, Li Lao & Jun-Hong Cui

International Journal of Computer Networks, (IJCN), Volume (2): Issue (6) 217

 Figure 5: Clustering accuracy on Waxman topolo- Figure 6: Message overhead on Waxman topolo-
 gies gies

Figure 7: Convergence time on Waxman topologies

Yan Li, Li Lao & Jun-Hong Cui

International Journal of Computer Networks, (IJCN), Volume (2): Issue (6) 218

 Figure 8: Clustering accuracy on BA topologies Figure 9: Message overhead on BA topologies

Figure 10: Convergence time on BA topologies

5.3 Performance of SDC in Dynamic Systems
This set of simulations are conducted to evaluate the performance of SDC in handling node
dynamics. The topologies used in this section are power law and Waxman topologies with 1000
nodes. To simulate the Join event, we first cluster the initial topology using the SDC algorithm
and then we add X new nodes simultaneously to the network. Each of the new nodes connects
with the existing nodes independently based on the topology model so that the topology structure
can be maintained. For the Leave event, we randomly remove X existing nodes simultaneously
from the topology. The simulations end when there is no message exchanged. We change the
value of X from 1 to 50 and measure the clustering accuracy after node dynamics, message
overhead and convergence time since the first Join/Leave event takes place.

Fig.11 � 16 show the performance of SDC on handling node dynamics in a power law topology.
The clustering accuracy after the simultaneous Join/Leave events is slightly changed, which

Yan Li, Li Lao & Jun-Hong Cui

International Journal of Computer Networks, (IJCN), Volume (2): Issue (6) 219

indicates SDC is able to maintain accurate clustering from simultaneous node dynamics. The
logic is that the topology structure is not changed significantly and therefore, accurate clustering
must result in an SCM value that is close to the initial SCM before node dynamics. We also
observe the SCM value after the Leave events increases slightly with the number of removed
nodes. This performance is reasonable because removing a few existing edges makes the
clustering features of the topology clearer. Since SDC can accurately form clusters, an increased
SCM value that is consistent with the more significant clustering features can be observed.
Following the same logic, when adding new nodes to the topology, the clustering features
become less significant, which results in the slightly reduced SCM value.

Fig.12 shows the message overhead for node dynamics in the power law topology. For both Join
and Leave events, the message overhead shows a linear correlation with the number of dynamic
nodes. Moreover, the Leave events cause more exchanged messages than the Join events. This
is because more nodes are affected and need to re-cluster after a Leave event than after a Join
event. After a node leaves, all of its previous neighbors and all the nodes in its original cluster
should re-cluster but after a new node joins the topology, only its neighbors are affected and re-
cluster.

Fig.13 shows the convergence time of SDC for node dynamics. With the increase of Join/Leave
events, the convergence time increases slowly. We can also observe that Leave events take
longer to converge than Join events because more nodes are affected by a Leave event and
need to re-cluster.

The performance on the Waxman topology is consistent with the performance on the BA topology.
We can see the advantage of SDC in handling dynamic systems: With low message overhead,
accurate clusters can be maintained after a different number of simultaneous Join and Leave
events. This performance is especially suitable for a system with continuous node entry and exit.
To maintain an acceptable clustering accuracy, the existing algorithm CDC must re-cluster the
whole network after a certain number of node entry and exit, which causes a high message
overhead and is not scalable for large networks.

Yan Li, Li Lao & Jun-Hong Cui

International Journal of Computer Networks, (IJCN), Volume (2): Issue (6) 220

 Figure 11: Clustering accuracy for node dynamics Figure 12: Message overhead for node dynamics
 on BA topology with 1000 nodes on BA topology with 1000 nodes

 Figure 13: Convergence time for node dynamics on BA
 topology with 1000 nodes

Yan Li, Li Lao & Jun-Hong Cui

International Journal of Computer Networks, (IJCN), Volume (2): Issue (6) 221

Figure 14: Clustering accuracy for node dynamics Figure 15: Message overhead for node dynamics on
on Waxman topology with 1000 nodes Waxman topology with 1000 nodes

 Figure 16: Convergence time for node dynamics on
 Waxman topology with 1000 nodes

Yan Li, Li Lao & Jun-Hong Cui

International Journal of Computer Networks, (IJCN), Volume (2): Issue (6) 222

Figure 17: Effect of node degree on clustering ac- Figure 18: Effect of node degree on message over-
curacy head

Figure 19: Effect of node degree on convergence time

5.4 Influence of Node Degree
Node degree is an important factor to the performance of SDC since the clustering procedure is
based on node connectivity. In this set of simulations, we study how different average node
degree can affect the performance of the algorithm.

The topologies used in this section are Waxman topologies with 1000 nodes and different
average degree ranging from 4 to 24. The range T is set to 100. Again, we use CDC as the
reference point of the evaluation.

Yan Li, Li Lao & Jun-Hong Cui

International Journal of Computer Networks, (IJCN), Volume (2): Issue (6) 223

Fig. 17 shows the clustering accuracy of the two algorithms against different average node
degrees. Clearly, the SCM values of both SDC and CDC drop with the increase of average
degree. This decline of SCM is mainly caused by the decrease in clustering features of the
topology other than the clustering algorithms. Since a connection is determined in a random
manner by the Waxman model, increasing the average degree adds more randomness to the
topology as translated to less clustering features. However, SDC can capture the clustering
features better than CDC as shown by the higher SCM values, especially when the clustering
features are more significant.

Fig.18 shows the message overhead of both algorithms when clustering topologies with different
average degrees. It is shown that the increase in average degree leads to higher message
overhead for SDC. This fact is under our expectation. In SDC, after a node finishes its current
clustering operation, its neighbors need to start a new round of clustering procedures. If a
topology has higher average degree, more nodes are involved in each clustering procedure and
need to take actions after the current clustering, which leads to more message overhead. When
compare the two algorithms, we claim a better performance of SDC as the generated messages
in SDC are much less than in CDC. A quick drop in the message overhead of CDC can be
observed when the average degree exceeds 16, which is caused by the parameter setting. The
convergence time of SDC also inclines with the increase of average node degree due to the
same reason.

As a summary, SDC is able to detect accurate clusters in both sparse and dense topologies. The
message overhead and convergence time do increase with average node degree due to
increased number of nodes involved by each clustering operation.

5.5 Influence of TTL
In SDC, a node’s clustering request is rejected if the TTL of the request message expires.
Therefore, clustering results are affected by the value of TTL. Intuitively, large TTL values do not
influence clustering accuracy because nodes can always join a cluster that leads to the highest
SCM value without being rejected due to the expire of TTL. The questions studied in this section
are how large the TTL should be to guarantee accurate clustering and how the other performance
metrics are affected by different TTL values. We cluster a 1000 node Waxman topology using
SDC with TTL varied from 1 to 5 and measure the performance metrics.

Fig.20 shows the clustering accuracy of SDC against different TTL. It is under our expectation
that the SCM is improved with the increase of TTL. The most significant SCM improvement
happens when TTL changes from 1 to 2. Obviously, for the Waxman topology in our simulation,
clusters with 1-hop diameter are not accurate at all. When we further increase TTL, the SCM
value does not benefit from higher TTLs. Based on the definition of SCM, accurate clusters do not
have large diameters because the number of non-neighbor nodes should be minimized. Thus,
clusters do not grow further when their diameter reaches 2, which leads to the stable SCM values
at TTL of 2 and higher.

When we examine the message overhead, we observe positive effect of increasing TTL as
shown in Fig.21. The steady decrease of message overhead is a result of reduced
messages due to higher TTL values. Similar to SCM, the most significant reduction happens
when TTL increases from 1 to 2 and the message overhead stabilizes when TTL is further
increased. These results can be explained as follows: When TTL is 1, many clustering requests
are rejected due to TTL expiration, which results in high message overhead. When we increase
TTL from 1 to 2, the messages are reduced significantly and the clusters are able to
grow towards the highest accuracy, which results in the significant drop in message overhead.
Further increase in TTL has little effect on message overhead because most clusters stop
growing when diameter reaches 2 and TTL no longer expires. The convergence time under
different TTL values is shown in Fig.22 that can be explained in the same way as we do for
message overhead.

Yan Li, Li Lao & Jun-Hong Cui

International Journal of Computer Networks, (IJCN), Volume (2): Issue (6) 224

Figure 20: Effect of TTL on clustering accuracy Figure 21: Effect of TTL on message overhead

Figure 22: Effect of TTL on convergence time

6. CONCLUSIONS
In this paper, we target the challenging problem of clustering large-scale distributed systems such
as P2P networks. We identify the main issues in the existing clustering algorithms: First, many
existing algorithms are centralized methods and therefore they are not scalable and efficient in
handling large-scale distributed systems. Second, although several distributed clustering
algorithms have been proposed, they can not guarantee accurate clustering and low message
overhead especially when handling dynamic systems. Therefore, we propose a novel distributed
clustering protocol SDC for large-scale distributed systems. We conduct extensive simulations to
evaluate the performance of SDC under various scenarios. The simulation results show the
promising performance of SDC: it is a scalable and accurate clustering approach with small

Yan Li, Li Lao & Jun-Hong Cui

International Journal of Computer Networks, (IJCN), Volume (2): Issue (6) 225

message overhead on various topologies. The most attractive feature of SDC is that it can
reserve high clustering accuracy from multiple simultaneous node entry and exit with small
message overhead.

7. REFERENCES
[1] A. A. Abbasi and M. Younis. A survey on clustering algorithms for wireless sensor networks.
Computer Communications, 30:2826–2841, June 2007.

[2] J. Ahuja and J.-H. Cui. A scalable peer-to-peer file sharing system supporting complex
queries. UCONN CSE Technical Report, UbiNet TR05-01, January 2005.

[3] J. N. Al-Karaki and A. E. Kamal. Routing techniques in wireless sensor networks: a survey.
IEEE Wireless Communications, 11(6):6–28, December 2004.

[4] R. Albert, H. Jeong, and A.-L. Barabasi. Error and attack tolerance of complex networks.
Discrete Applied Mathematics, 406:378–382, August 2000.
[5] A. Barbu and S.-C. Zhu. Graph partition by swendsen-wang cuts. Ninth IEEE International
Conference on Computer Vision Volume 1, 10 13 - 10 2003, Nice, France.

[6] D. S. Callaway, M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Network robustness and
fragility: Percolation on random graphs. Physical Review Letters, 85(25):5468–5471, Dec 2000.

[7] K. Calvert and E. Zegura. Gt-itm: Georgia tech internetwork topology models.
http://www.cc.gatech.edu/fac/Ellen.Zegura/gt-itm/gt-itm.tar.gz, 1996.

[8] M. Chatterjee, S. K. Das, and D. Turgut. Wca: A weighted clustering algorithm for mobile ad
hoc networks. Cluster Computing, 5:193–204, April 2002.

[9] A. Crespo and H. Garcia-Molina. Semantic overlay networks for p2p systems, 2002.

[10] J. S. Deogun, D. Kratsch, and G. Steiner. An approximation algorithm for clustering graphs
with dominating diametral path. Inf. Process. Lett., 61(3):121–127, 1997.

[11] N. Dimokas, D. Katsaros, and Y. Manolopoulos. Node clustering in wireless sensor networks
by considering structural characteristics of the network graph. International Conference on
Information Technology, 00:122–127, 2007.

[12] D. Doleva, S. Jaminb, O. Mokrync, and Y. Shavittc. Internet resiliency to attacks and failures
under bgp policy routing. Computer Networks, 50:3183–3196, November 2005.

[13] D. Estrin, Y. Rekhter, and S. Hotz. Scalable inter-domain routing architecture. In SIGCOMM
’92: Conference proceedings on Communications architectures & protocols, pages 40–52, 1992.

[14] Y. Fernandess and D. Malkhi. K-clustering in wireless ad hoc networks. POMC ’02:
Proceedings of the second ACM international workshop on Principles of mobile computing, pages
31–37, 2002.

[15] A. Ganesh, L. Massoulie, and D. Towsley. The effect of network topology on the spread of
epidemics. In IEEE INFOCOM, volume 2, pages 1455–1466, March 2005.

[16] L. Garces-Erice, E. W. Biersack, K. W. Ross, P. A. Felber, and G. Urvoy-Keller. Hierarchical
p2p systems. In Proceedings of ACM/IFIP International Conference on Parallel and Distributed
Computing (Euro-Par), 2003.

Yan Li, Li Lao & Jun-Hong Cui

International Journal of Computer Networks, (IJCN), Volume (2): Issue (6) 226

[17] C. Gkantsidis, M. Mihail, , and E. Zegura. Spectral analysis of internet topologies. IEEE
INFOCOM, 2003.

[18] R. Hoes, T. Basten, W.-L. Yeow, C.-K. Tham, M. Geilen, and H. Corporaal. Qos
management for wireless sensor networks with a mobile sink. In EWSN ’09: Proceedings of the
6th European Conference on Wireless Sensor Networks, pages 53–68, Berlin, Heidelberg, 2009.
Springer-Verlag.

[19] J. Jin, J. Liang, J. Jin, and K. Nahrstedt. Large-scale qos-aware service-oriented networking
with a clustering-based approach. In 16th International Conference on Computer
Communications and Networks, pages 522–528, August 2007.

[20] V. Kantere, D. Tsoumakos, T. Sellis, and N. Roussopoulos. Groupeer: Dynamic clustering of
p2p databases. Information Systems, 34:62–86, March 2009.

[21] G. Kwon and K. D. Ryu. An efficient peer-to-peer file sharing exploiting hierarchy and
asymmetry. In SAINT, pages 226–233, 2003.
[22] Y. Li, J.-H. Cui, D. Maggiorini, and M. Faloutsos. Characterizing and modeling clustering
features in as-level internet topology. In Proceedings of IEEE INFOCOM, 2008.

[23] A. McDonald and T. Znati. A mobility-based framework for adaptive clustering in wireless ad
hoc networks. IEEE Journal on Selected Areas in Communication, Vol. 17, No. 8, August 1999.

[24] A. Medina, A. Lakhina, I. Matta, , and J. Byers. Brite: Universal topology generation from a
user’s perspective. In Proceedings of Workshop the International Workshop on Modeling,
Analysis and Simulation of Computer and Telecommunications Systems (MASCOTS ’01),
October 2001.

[25] D. Moore, J. Leonard, D. Rus, and S. Teller. Robust distributed network localization with
noisy range measurements. In SenSys ’04: Proceedings of the 2nd international conference on
Embedded networked sensor systems, pages 50–61, New York, NY, USA, 2004. ACM.

[26] R. Pastor-Satorras and A. Vespignani. Epidemic spreading in scale-free networks. Phys.
Rev. Lett., 86(14):3200–3203, Apr 2001.

[27] L. Ramaswamy, B. Gedik, and L. Liu. A distributed approach to node clustering in
decentralized peerto-peer networks. IEEE Transactions on Parallel and Distributed Systems,
16(9), Sept. 2005.

[28] S. van Dongen. A new cluster algorithm for graphs. Technical report INS-R9814, Centrum
voor Wiskunde en Informatica (CWI), ISSN 1386-3681, Dec. 1998.

[29] S. van Dongen. Performancde criteria for graph clustering and markov cluster experiments.
Technical report, National Research Institute for Mathematics and Computer Science in the
Netherlands, Amsterdam, 2000.

[30] O. Younis and S. Fahmy. Distributed clustering in ad-hoc sensor networks: A hybrid, energy-
efficient approach. In IEEE INFOCOM, 2004.

[31] W. Zheng, S. Zhang, Y. Ouyang, F. Makedon, and J. Ford. Node clustering based on link
delay in p2p networks. In SAC ’05: Proceedings of the 2005 ACM symposium on Applied
computing, pages 744–749, 2005.

[32] C. C. Zou, D. Towsley, and W. Gong. Modeling and simulation study of the propagation and
defense of internet email worm. IEEE Transactions on Dependable and Secure Computing,
4:105–118, 2007.

