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Abstract 

 
Endoscopic images do not contain sharp edges to segment using the traditional 
segmentation methods for obtaining edges. Therefore, the active contours or 
‘snakes’ using level set method with the energy minimization algorithm is 
adopted here to segment these images. The results obtained from the above 
segmentation process will be number of segmented regions. The boundary of 
each region is considered as a curve for further processing. The curvature for 
each point of this curve is computed considering the support region of each point. 
The possible presence of abnormality is identified, when curvature of the contour 
segment between two zero crossings has the opposite curvature signs to those 
of such neighboring contour segments on the same edge contours. The K-
nearest neighbor classifier is used to classify the images as normal or abnormal. 
The experiment based on the proposed method is carried out on 50 normal and 
50 abnormal endoscopic images and the results are encouraging. 
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1. INTRODUCTION 

Endoscopy provides images better than that of the other tests, and in many cases endoscopy is 
superior to the other imaging techniques such as traditional x-rays. A physician may use an 
endoscopy as a tool for diagnosing the possible disorders in the digestive tract. Symptoms that 
may indicate the need for an endoscopy include swallowing difficulties, nausea, vomiting, reflux, 
bleeding, indigestion, abdominal pain, chest pain and a change in bowel habits. In the 
conventional approach for the diagnosis of endoscopic images the visual interpretation by the 
physician is employed. The process of computerized visualization, interpretation and analysis of 
endoscopic images will assist the physician for fast identification of the abnormality in the images 
[1]. In this direction research works are being carried out for classifying the abnormal endoscopic 
images based on their properties like color, texture, structural relationships between the image 
pixels, etc. The method proposed by P.Wang et.al.[2] classifies the endoscopic images based on 
texture and neural network, where as the analysis of curvature for the edges obtained from the 
endoscopic images is proposed by Krishnan et.al.[3]. Hiremath et.al.[4] proposed a method to 
detect the possible presence of abnormality using color segmentation of the images based on 3σ-
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interval [5] for obtaining edges followed by curvature analysis. The watershed segmentation 
approach for classifying abnormal endoscopic images is proposed by Dhandra et.al.[6]. In this 
paper the active contours using the level set method with energy minimization approach, which is 
also known as active contours without edges proposed by chan et.al [7] is adopted for the 
segmentation of the endoscopic images followed by the curvature computation of the boundary of 
each obtained region. The zero crossings of the curvature plot for each edge are obtained for 
further analysis. In the following section we shall discuss the mathematical formulation for level 
set method and active contours without edges. In Section 3 the curvature analysis is discussed. 
In Section 4 the K nearest neighborhood classification is discussed. The experimental results are 
analyzed in Section 5. 
 

2. METHODS 

2.1 Mathematical formulations for Level Set Method 
Let Ω be a bounded open subset of R

2
, with ∂Ω as its boundary. Then a two dimensional image 

u0 can be defined as u0 : Ω → R. In this case Ω is just a fixed rectangular grid. Now consider the 

evolving curve C in Ω, as the boundary of an open subset ω of Ω. In other words, Ω⊆ω  , and C 

is the boundary of ω (C =∂ω). The main idea is to embed this propagating curve as the zero level 

set of a higher dimensional functionφ . We define the function as follows: 

 

  d)φ(x,y,t ±== 0                       (1) 

 
where d is the distance from (x, y) to ∂ω at t = 0, and the plus (minus) sign is chosen if the point 
(x, y) is outside (inside) the subset ω.  
 
Now, the goal is to obtain an equation for the evolution of the curve. Evolving the curve in the 
direction of its normal amounts to solving the partial differential equation [8]: 
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where the set }0),(),{ 0 =yx(x,y φ  defines the initial contour, and F is the speed of propagation. 

For certain forms of the speed function, F, the above equation reduces to a standard Hamilton-
Jacobi equation. There are several major advantages to this formulation. The first one is that 

)(x,y,tφ  always remains a function as long as F is smooth. As the surface φ  evolves, the curve 

C may break, merge, and change topology. Second advantage is that geometric properties of the 

curve are easily determined from a particular level set of the surfaceφ . For example, the normal 

vector for any point on the curve C is given by:  
 

φ∇=n
ρ

  

 
and curvature K is obtained from the divergence of the gradient of unit normal vector to the front: 
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The third advantage is that we are able to evolve curves in more than two dimensions. The above 
formulae can easily be extended for higher dimensions. This is useful in propagating a curve to 
segment large volume of data. 
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2.2 Active Contours using level set method without edges 
The curve C can be considered as the boundary of the ω and the region ω can be denoted by 

inside(C) and the region ω\Ω   by outside(C). The energy minimization approach proposed by 

Chan et.al.[7] is adopted for segmentation is as follows: 
 

  
 
 
 
Consider a simple case where the image u0 is formed by two regions of piecewise constant 

intensity. Denote the intensity values by 
0

0u and
1

0u . Further, assume that the object to be 

detected has a region whose boundary is C0 and intensity
1

0u . Then inside(C0), the intensity of u0 

is approximately 
1

0u , whereas outside(C0) the intensity of u0 is approximately 
0

0u . Then consider 

the fitting term:  
 

dxdycyxudxdycyxuCFCF
coutsidecinside

2

)( 20

2

)( 1021 ),(),()()( ∫ −+∫ −=+       

                   
where the constants c1 and c2 are the averages of u0 inside and outside the curve C respectively. 
 

Consider Fig. 1. If the curve C is outside the object, then 0)(,0)( 21 ≈> CFCF . If the curve is 

inside the object, then 0)(,0)( 21 >≈ CFCF . If the curve is both inside and outside the object, 

then 0)(,0)( 21 >> CFCF . However, if the curve C is exactly on our object boundary C0, then 

0)(,0)( 21 ≈≈ CFCF , and our fitting term is minimized.  

 
Some additional regularization terms of Mumford-Shah segmentation model [9] are considered 
for effective energy minimization. Therefore we will also try to minimize the length of the curve 
and the area of the region inside the curve. So we introduce the energy function E:  
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FIGURE 1: All possible cases in position of the curve 
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 where 0,0,0,0 21 >>≥≥ λλνµ  are fixed parameters. Thus, the objective is to find C, c1, c2 

such that E(C, c1, c2) is minimized. Mathematically, solve:  
 

  ),,(
,,

inf 21

21

ccCE
ccC

 

 
This problem can be formulated using level set method as follows. The evolving curve C can be 

represented by the zero level set of the signed distance function φ  as in (1). So we replace the 

unknown variable C byφ . Now consider the Heaviside function H and  Dirac measure δ:  
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We can rewrite the length of φ  = 0 and the area of the region inside(φ = 0) using these functions. 

The Heaviside function is positive inside our curve and zero elsewhere, so the area of the region 

is just the integral of the Heaviside function ofφ . The gradient of the Heaviside function defines 

our curve, so integrating over this region gives the length of the curve. Mathematically:  
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Similarly, we can rewrite the previous energy equations so that they are defined over the entire 

domain Ω rather than separated into inside(C) =φ > 0 and outside(C) = φ < 0:  
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Therefore our energy function E(C,c1,φ ) can be written as:  
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The constants c1, c2 are the averages of u0 in 0≥φ and 0<φ respectively. So they are easily 

computed as:  
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Now we can deduce the Euler-Lagrange partial differential equation from (2). We parameterize 

the descent direction by 0≥t , so the equation ),,( tyxφ  is:  
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In order to solve this partial differential equation, we first need to regularize H(z) and δ(z). Chan 
and Vese [7] propose:  
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Implying that δ(z) regularizes to:   
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It is easy to see that as 0→ε , )(zH ε  converges to H(z) and  )(zεδ converges to )(zδ . 

Authors claim that with these regularizations, the algorithm has the tendency to compute a global 
minimizer. Chan and Vese [7] give the following discretization and linearization of (5):  
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where the forward differences of
n

ji ,φ are calculated as: 
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This linear system also depends on the forward differences of 
1

,

+n

jiφ , which is an unknown. 

However these can be solved using the Jacobi method [10]. In practice, the number of iterations 
until convergence was found to be small. The segmentation algorithm is then given by: 
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1. Initialize 
0φ by 0φ , n=0 

2. For fixed number of iterations do 

2.1 Compute )(1

nc φ  and )(2

nc φ using (3) and (4) 

2.2 Estimate forward differences of 
1+nφ using Jacobi method 

2.3 Compute 
1+nφ  using (6) 

3. End. 
  

ALGORITHM 1: Energy minimization with Jacobi method. 
 

3. CURVATURE COMPUTATION 

The result of the method proposed in Section 2 will generate a number of regions. The boundary 
of each region is considered for the curvature computation. Due to the discrete boundary 
representation and quantization errors, false local concavities and convexities along a contour are 
formed. This noisy nature of binary contours must be taken into account to obtain reliable 
estimates of contour curvature. Hence, a Gaussian filter is used to smooth the contour points to 
reduce the noise effect [11]. However, the width of Gaussian filter, w, that controls the degree of 
smoothing has to be chosen suitably. A large value of w will remove all small details of the 
contour curvature, while a small value will permit false concavities and convexities to remain in 
the contour, thus enforcing an appropriate choice of w. To overcome this problem a support 
region is employed which will dynamically determine the parameter of the Gaussian filter.  
 
3.1 Determination of Support Region 

 
 
The support region concept can be explained using the Fig. 2. The support region for each point 
on the curve is the number of points obtained from the implementation of the Algorithm 2: 
 

1. Determine the length of the chord joining the points kiki PP +− ,  as  

   kikiki PPl +−=,        

 
2. Let di,k be the perpendicular distance from Pi, to the line joining 

kiki PP +− , start with k=1, compute li,k and di,k until one of the following 

conditions hold: 
 

a. 1,, +≥ kiki ll     

b. 

1,

1,

ki,

ki,

l

d

+

+
≥

ki

ki

l

d
 for 0, ≥kid            

3. Now, the region of support of Pi is the set of points satisfying either 
condition (a) or condition (b), that is, 

 
 

FIGURE 2: Representation of Support Region. 
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ALGORITHM 2: Determination of support region 

 

3.2 Gaussian Smoothing 

A planar curve can be defined in parametric form as (x(t), y(t)) ∈ R
2
, where t is the path length 

along the curve. Smoothing is performed by the convolution of x(t) and y(t) with the Gaussian 
filter. A one dimensional Gaussian filter is defined as 







−

=
2

2

2

2
2

1
),( w

t

e
w

wt
π

η  

 
where w is the width of the filter, which needs to be determined. The smoothed curve is denoted 
by set of points (X(t,w), Y(t,w)), where, 

 

),()(),( wttxwtx η⊗= ,   ),()(),( wttywty η⊗=  

where ⊗  denotes the convolution. 

 
The measurement of the curvature of the point is based on the local properties within its region of 
support, and the length of Gaussian smooth filter is proportional to the region of support [12]. This 
implies that the neighboring points closer to the point of interest should have higher weights than 
those points further away. This method is less sensitive to noise. The Gaussian filter applied here 
will have the following window length and width [3]: 

 
Window Len =2xSupp. Region D(Pi)+1, 
Width w =Support Region D(Pi) / 3 

 
Further, the curvature for each point on the curve is calculated in the following way. 
 
3.3 Curvature Computation 
For the continuous curve C, expressed by {x(s), y(s)}, where s is the arc length of the edge point, 
the curvature can be expressed as: 
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where dsdxx =& , ,
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For digital implementation, the coordinate functions x(s) and y(s) of the curvature are represented 
by a set of equally spaced Cartesian grid samples. The derivatives in the equation (7) are 
calculated by finite differences as: 
 

,1−−= iii xxx& ,2 11 +− +−= iiii xxxx&&                      (8) 

1−−= iii yyy& , 11 2 +− +−= iiii yyyy&&  

 
The algorithm for curvature computation is presented below. 
 

1. Determine edge contours in the input image using active contours 
without edges. 

2. Select a large edge contour for further processing. 
3. Determine the support region for each contour point. 
4. Smooth the contour by a Gaussian filter with the width proportional to 

the support region. 
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5. Compute the curvature for each point on the Gaussian smoothed 
curve using equation (7) and (8). 

 
ALGORITHM 3: Curvature computation 

 
In the process of curvature computation we come across with two special conditions for which the 
alternate solutions need to be given. They are: 
 

1. When the edge point is on a straight line, the curvature for that point is assigned to zero. 
2. When the support region for an edge point is 1, this point will not be smoothed. So, the 

smoothing on this point is performed using the following equation: 
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where, ( )
ii yx

))
,  is the smoothed point of ( )ii yx , . 

 

4. K-NEAREST NEIGHBOR CLASSIFIER 

The nearest neighbor and K-nearest neighbor classifiers are applied on two parameters namely 
the number of regions obtained from the segmentation process and the total number of zero 
crossings of curvature plot of every region edge to classify the images as either normal or 
abnormal. Basically this classifier finds the closest training point to the unknown point and 
predicts the category of that training point for this unknown point. The experiment is carried out by 
varying the number of neighbors (K=3, 5, 7). Performance of the algorithm is optimal when K=3. 
 

5. EXPERIMENTAL RESULTS 

For the experimentation 50 normal and 50 abnormal endoscopic color images of size 128X128 

pixels are chosen. The parameters are set to the values as: 121 == λλ , h =1, and 1.0=∆t . 

Varying the value of ν  generally had little or no effect on the segmentation results. The ε  

parameter for the regularized Heaviside and Dirac functions was set to 1 as suggested by Chan 

and Vese [7]. The length parameter µ is fixed to a small value (i.e. )2550001.0
2⋅≈µ .The 

detection of possible presence of abnormality is performed by analyzing the curvature change 
along boundary of each region, which is considered as a edge contour. The curvature of each 
edge point on the edge contour is computed using the Algorithm 3. Two thresholds, cth and nth, 

are used in the analysis. cth is the curvature threshold value, and nth is number of edge points in a 
segment. Along the edge contour, if the absolute curvature of the point is bigger than cth, the point 
counting starts until the absolute curvature value of the point is less than cth. If the point count is 
bigger than nth, an edge segment is formed. The possible presence of abnormality in the image is 
detected when the curvature of a segment has opposite sign to those of such neighboring 
segments on the same edge contour. Also such a segment is bounded by two significant zero 
crossings. The stages in the proposed method for the abnormal images and normal images are 
shown in the Fig. 3 and 4 respectively. In these figures image [A] is abnormal endoscopic color 
image, [B] shows regions obtained after the segmentation of images using active contours 
without edges. Its binary image is shown in image [C]. A largest edge contour obtained is shown 
in image [D]. Its curvature profile is shown in image [E]. In the abnormal image shown in Fig. 3, 
the number of regions formed is 12, and the number of zero crossings obtained for a large edge 
contour is 137, where as for the normal image shown in Fig. 4, the number of regions formed is 5, 
and the number of zero crossings obtained for a large edge contour is 24. Fig. 5 and Fig. 6 show 
the endoscopic images with their curvature plot for their largest edges. The original abnormal and 
normal endoscopic images are shown in the first column and the corresponding curvature profile 
for the largest edge segment is shown in the second column. From these figures, considerably 
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less number of zero crossings for the normal image edge curvatures can be observed as 
opposed to the number of zero crossings of edge curvatures in the abnormal images. 
 

 
 
 

 
 

 
 

FIGURE 4: The proposed method for Normal Images. 

 

 
 

FIGURE 3: The proposed method for Abnormal Image. 
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FIGURE 5: Curvature profile for Abnormal Images. 
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FIGURE 6: Curvature profile for Normal Images. 



B.V.Dhandra, Ravindra Hegadi 

International Journal of Computer Science and Security, Volume (1): Issue (1) 30 

 
TABLE 1: Number of Regions and Zero Crossings for Normal and Abnormal Images. 

Normal Images 

Image ID Regions Zero Crossings 

Nor01 5 89 

Nor02 9 29 

Nor03 4 69 

Nor04 9 81 

Nor05 2 53 

Nor06 4 78 

Nor07 9 48 

Nor08 5 53 

Nor09 5 70 

Nor10 2 69 

Nor11 2 40 

Nor12 4 89 

Nor13 3 50 

Nor14 2 38 

Nor15 2 72 

Nor16 2 70 

Nor17 6 64 

Nor18 2 42 

Nor19 9 143 

Nor20 3 62 

Nor21 5 57 

Nor22 2 36 

Nor23 8 96 

Nor24 6 87 

Nor25 4 59 

Nor26 4 51 

Nor27 4 74 

Nor28 2 78 

Nor29 3 60 

Nor30 3 66 

Nor31 3 66 

Nor32 4 51 

Nor33 2 29 

Nor34 7 141 

Nor35 2 34 

Nor36 3 59 

Nor37 2 83 

Nor38 2 54 

Nor39 5 70 

Nor40 4 71 

Nor41 7 156 

Nor42 2 67 

Nor43 3 53 

Nor44 2 48 

Nor45 4 138 

Nor46 4 27 

Nor47 5 128 

Nor48 3 61 

Nor49 3 56 

Nor50 5 71 

Abnormal Images 

Image ID Regions Zero Crossings 

Abn01 31 164 

Abn02 29 105 

Abn03 14 106 

Abn04 18 160 

Abn05 8 122 

Abn06 29 155 

Abn07 25 156 

Abn08 26 157 

Abn09 14 111 

Abn10 10 115 

Abn11 9 91 

Abn12 17 161 

Abn13 12 145 

Abn14 38 136 

Abn15 11 107 

Abn16 11 118 

Abn17 14 94 

Abn18 13 100 

Abn19 11 124 

Abn20 11 202 

Abn21 18 176 

Abn22 20 178 

Abn23 18 99 

Abn24 14 148 

Abn25 29 168 

Abn26 16 131 

Abn27 16 139 

Abn28 10 108 

Abn29 28 252 

Abn30 24 206 

Abn31 19 131 

Abn32 18 97 

Abn33 21 148 

Abn34 27 117 

Abn35 40 153 

Abn36 20 130 

Abn37 10 158 

Abn38 10 109 

Abn39 16 159 

Abn40 13 147 

Abn41 26 151 

Abn42 11 142 

Abn43 22 168 

Abn44 17 213 

Abn45 11 151 

Abn46 15 167 

Abn47 14 117 

Abn48 33 150 

Abn49 27 138 

Abn50 31 141 
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Table 1 show the number of regions obtained after the segmentation by the active contours 
without edges and total number of zero crossings for all the edges obtained in the segmented 
image. The results are shown for the 50 normal and 50 abnormal test images. In the results it can 
be seen that the proposed segmentation for the abnormal images generate large number of 
regions when compared to the normal images. We can notice that few normal images have 
generated large number of segments and zero crossings. It is due to the presence of noise such 
as lumen regions and bright spots generated by the reflection of light sources. 
 
The following Table 2 shows the classification results using the nearest neighbor and K nearest 
neighbor classifiers. 
 

Image Type NN Classifier KNN Classifier 

Abnormal Images 96% 98% 

Normal Images 90% 90% 

TABLE 2: Classification Results. 
 

6. CONCLUSION 

The proposed segmentation method is based on the active contours without edges using 
Mumford-Shah [9] technique and it does not rely on the boundaries defined by the gradients. Also 
it starts with one initial curve and splits itself to detect the interior curves forming number of 
regions depending on the smoothness of the surface. The boundary curvature depends on the 
roughness of the image surface. It generates less number of zero crossings for the smooth 
normal images where as large number of zero crossings for relatively rough texture in abnormal 
images. Results obtained from the NN and KNN classifier are quite encouraging. The other 
features of endoscopic images such as color can be used in future to improve the classification 
results.  
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