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Abstract 

 
The inertia weight of particle swarm optimization (PSO) is a mechanism to 
control the exploration and exploitation abilities of the swarm and as mechanism 
to eliminate the need for velocity clamping. The present paper proposes a new 
PSO optimizer with sigmoid increasing inertia weight. Four standard non-linear 
benchmark functions are used to confirm its validity. The comparison has been 
simulated with sigmoid decreasing and linearly increasing inertia weight. From 
experiments, it shows that PSO with increasing inertia weight gives better 
performance with quick convergence capability and aggressive movement 
narrowing towards the solution region.  
 
Keywords: Particle Swarm Optimization, Inertia Weight, Linearly Increasing Inertia Weight, Sigmoid 
Decreasing Inertia Weight, Sigmoid Increasing Inertia Weight. 

 
 

1. Introduction 
Particle Swarm Optimization (PSO) is population based stochastic optimization technique 
inspired by social behavior of bird flocking and fish schooling [1]. The PSO algorithm was first 
introduced by Erberhart and Kennedy in 1995 [1, 2]. A PSO algorithm maintains a swarm of 
particles, where each represents a potential solution. In analogy with evolutionary computation 
paradigms, a swarm is similar to a population, while a particle is similar to an individual. Each 
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particle adjusts its trajectory towards the best its previous position attained by any member of its 
neighborhood or globally, the whole swarm. The particles are flown through multidimensional 
search space, where the position of each particle adjusted according to its own experience and 
that of its neighbors. The movement of each particle in search space with adaptive velocity and 
store the best position of the search space it has ever visited. The particles search for best 
position until a relatively unchanging state has been encountered or until computational limitation 
exceeded. 
 
Since its introduction, PSO has seen many improvements and applications. Most modifications to 
the basic PSO are directed towards improving convergence of the PSO and increasing the 
diversity of the swarm [3].  The modification in PSO consists of three categories: extension of field 
searching space [4], adjustment the parameters [5], and hybrid with another technique [6]. A 
number of parameters modification include inertia weight, velocity clamping, velocity constriction, 
cognitive and social coefficient, different ways of determining the personal best (pbest) and global 
best (gbest) positions, and different velocity models. The modification of basic PSO was reported 
in [7 - 9] that introduced new methods of inertia weight which tuned based on trial and error. 
Suitable selection of the inertia weight provides a balance between global and local searching. In 
these concepts proposed a linearly decreasing, linearly increasing and sigmoid decreasing inertia 
weight to get better PSO performance. There are advantages between three methods which is 
sigmoid decreasing inertia has near optimum solution better than the others and linearly 
increasing weight has quick convergence ability better than the others.  For Linear decreasing 
has near optimum solution better than linear increasing inertia weight (LIIW).  
 
The efficiency of PSO is expressed as the number of iterations or generations to find optimum 
solution with specified accuracy. With less generation, the near optimum solution can be reach 
with quick convergence ability from swarm. This paper presents alternative solution for quick 
convergence and maximum near optimum solution. The method will be combination between 
sigmoid decreasing and linear increasing to fulfill the objective of this paper. The method of 
sigmoid increasing inertia weight (SIIW) will have quick convergence ability and aggressive 
movement narrowing down towards the solution region. The schema attempted to increase inertia 
weight by means of sigmoid function. In this work some empirical studies are investigated. In 
Section 2, philosophy and procedure of original PSO are explained and then the standard PSO 
with a decreasing and increasing inertia weight and sigmoid decreasing inertia weight (SDIW) in 
short presented. In Section 3, a new PSO model with a sigmoid increasing inertia weight is 
suggested. To prove the validity of such methods, several standard benchmark functions are 
tested in Section 4. The empirical data resulted will be emphasized and discussed in Section 5. 
Finally Section 6 concludes this paper.  
         

2. PSO Algorithm 
2.1   Simple PSO 
The PSO concept consists of changing the velocity each particle toward its pbest and gbest 
positions at each time step. Velocity is weighted by a random term, with separate random 
numbers generated for velocity toward pbest and gbest positions. The process of PSO can be 
described as follows: 

1. Initialize a population (array) of particles with random positions and velocities on d 
dimensions in the problem space. 

2. For each particle, evaluate the desired optimization fitness function in d variables. 
3. Compare particle’s fitness evaluation with particle’s pbest. If current value is better than 

pbest, then set pbest position equal to current position in D dimensional space. 
4. Compare fitness evaluation with the population’s overall previous best. If current value is 

better than gbest, then reset gbest to the current particle’s array index and value. 
5. Change the velocity and position of the particle according to equations (1) and (2) 

respectively: 
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where ,, 1k
i

k
i vv and k

ix are velocity vector, modified velocity and positioning vector of 
particle i at generation k, respectively. The c1 and c2 are cognitive and social coefficients 
that influence particle velocity. 

6. Loop to step 2 until a criterion is met, usually a sufficiently good fitness or a maximum 
number of iterations (generations). 

The maximum velocity Vmax serves as a constraint to control the global exploration ability of a 
particle swarm. Exploration is the ability to test various regions in the problem space in order to 
locate a good optimum. If Vmax is too high particles might fly past good solutions and facilitate 
global exploration. If Vmax is too small particles may not explore sufficiently beyond locally good 
regions and encourage local exploitation.  Exploitation is the ability to concentrate the search 
around a promising candidate solution in order to locate the optimum precisely. When local 
exploitation happens, they could trap in local optima, unable to move far enough to reach a better 
position in the problem space.  
Generally, balancing between exploration and exploitation searching process will improve PSO 
performance. This exploration and exploitation tradeoff is influenced by modifying and tuning 
some parameter, namely current motion, inertia weight, cognitive and social coefficients.  
 
2.2 Inertia Weight 
The concept of an inertia weight was developed to better control exploration and exploitation. The 
aim of inertia weight was to be able to control the exploration and exploitation mechanism and 
eliminate the need for Vmax. The inclusion of an inertia weight in the PSO algorithm was first 
published in 1998 [5]. The inertia weight was successful in addressing first aim but could not 
completely eliminate the need of velocity clamping. The inertia weight (w) controls the momentum 
of the particle by weighting the contribution of the previous velocity. Equation (3) and (4) describe 
the velocity and position update equations with an inertia weight included. It can be seen that 
these equations are identical to equations (1) and (2) with the addition of the inertia weight w as a 
multiplying factor of k

iv in equation (3).  
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In previous works, implementation of the inertia weight used a constant [5] and dynamic [7 – 12] 
value for entire search duration and for all particles for each dimension. For constant value, the 
velocity constants cognitive (c1) and social (c2) coefficient in equation (3) represent the weighting 
of the velocity. There are two different approaches for dynamic value which is decreasing and 
increasing. For decreasing, an initially large value of inertia weight decrease linearly or 
nonlinearly to a small value. A large inertia weight facilitates a global search while a small inertia 
weight facilitates a local search. For increasing, a small inertia weight increase linearly or 
nonlinearly to a larger value in linearly increasing. A large inertia weight has more possibility to 
converge, which implicates a larger inertia weight in the end of search will foster the convergence 
ability. In [5, 7], There are many methods in nonlinear approaches such as sigmoid function [9], 
tracking and dynamic system [11] and constriction factor [12]. Shi suggested that an inertia 
weight value starting from 0.9 linearly decreasing to 0.4. In [8], Y. Zheng, et. al. suggested that an 
inertia weight value starting from 0.4 linearly increasing to 0.4.  The value proposed by Y. Zheng, 
et. al. adopted in experiment to give the PSO a better performance. 

3. PSO with Sigmoid Increasing Inertia Weight 
This work proposes a new inertia weight modulated with sigmoid function for improving the 
performance of PSO.  Based on the detail observation and analysis, this work has been inspired 
by the excellence performance show by linearly increasing and sigmoid decreasing inertia weight 
which one state and discuss a little bit hence providing sigmoid increasing inertia weight (SIIW) 
approach. The forms of sigmoid function either in the form of sigmoid decreasing and sigmoid 
increasing are present in figure 1.   
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FIGURE 1: Sigmoid Decreasing and Increasing Inertia Weight 

 
The basic of sigmoid function is given as: 

te
tf




1
1)(           (5) 

 
The equation (5) utilized in equation (6) used by SDIW and SIIW in equation (7) as following 
equations: 
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where: 
wk is inertia weight at k, wstart and wend are inertia weight at the start and inertia weight at the end 
of a given run, respectively.  Furthermore, u is the constant to adjust sharpness of the function, 
gen is the maximum number of generations to run and n is the constant to set partition of sigmoid 
function.  
 
The figure (5) utilized in equation (6) based on PSO process. Using the equation (6), the inertia 
weight will implement in sigmoid curve. In [9], the sigmoid curve as shown in figure 1 for equation 
(6) as known as sigmoid decreasing inertia weight. The sigmoid shape in sigmoid decreasing 
inertia weight same with the basic sigmoid function. In sigmoid decreasing inertia weight, a large 
inertia weight is maintained in first part of PSO process to assure the global search. Afterwards, a 
small inertia weight is retained to facilitate a local search in final part of PSO process.  
 
The equation (7) is opposite from equation (6) and known as sigmoid decreasing. In sigmoid 
increasing weight, a small inertia weight is maintained in first part of PSO process to local search. 
This process to beginning facilitate the PSO to avoid been attracted to local optima, explore the 
whole solution space and makes out the correct direction [7]. Afterwards, a large inertia weight is 
retained to facilitate global optima more efficiently in the end of PSO process. There is gradation 
between small and large value for local and global search. However, such alteration improves the 
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quick convergence ability and maximum optimum solution prominently. The experiment results 
are shown in the next section. 

4. Validating New PSO Optimizer  

For comparison, four non-linear functions used in [7] are used as benchmark functions for 
observing the performance of the proposed optimizer, compared to others.  The main objectives 
are to achieve faster convergence ability and near optimum solution, the experiment results were 
presented in graphs and tables.   

The first function is the Sphere function described by equation (9):  
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where x = [x1, x2, …, xn] is an n-dimensional real-valued vector.  Then, the second function is the 
Rosenbrock function given as (10): 
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The third function is the generalized Rastrigrin function described by equation (11): 
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The last function is the generalized Griewank function described by equation (12): 
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For the purpose of evaluation, the asymmetric initialization method [6] was adopted here for 
population initialization. Table 1 lists the initialization ranges of the four functions: 
 

Function Asymmetric Initialization Range 

f0 (50 , 100)n 

f1 (15 , 30)n 

f2 (2.56 , 5.12)n 

f3 (300 , 600)n 

     
TABLE 1: Asymmetric initialization ranges.  

 
For each function, three different dimension sizes are tested. They are population sizes: 20, 40 
and 80. The maximum number of generations is set as 1000 and 2000 corresponding to the 
dimensions 20, 40 and 80, respectively. In order to investigate whether the PSO algorithm scales 
well or not, different population sizes are used for each function with different dimensions. A 
sigmoid decreasing or increasing inertia weight is used at 0.4 until 0.9, which c1 = 2 and c2 = 2. 
When objective to find the best partition of sigmoid function, different sigmoid constants, n, are 
used; they are 0.25, 0.5 and 0.75. The best function value (minimum) will be observed in these 
experiments. 

5. Results and Discussions 
As the objective of searching methods was to achieve faster convergence ability and aggressive 
movement narrowing down towards the solution region, the experiment results will be shown in 
table and graphs. Linear Decreasing Inertia Weight (LDIW), Linear Increasing Inertia Weight 
(LIIW) and Sigmoid Decreasing Inertia Weight (SDIW) used as comparison to proposed method. 
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In all figures show that x-axis and y-axis represent number of generation (iteration) and value of 
calculation fitness function, which characterizes the optimization problem.   
 
Figure 2 shows the results for the Sphere function, figure 3 the Rosenbrock function, figure 4 the 
Rastrigrin function, and figure 5 the Griewank function with three different population sizes, 
respectively. In figure 2 shows that, SIIW and LIIW have quick convergence better than SDIW. 
This convergence ability for both methods to reach minimum fitness function has been achieved 
at 200th generation. For SDIW, the minimum fitness function can be achieve start at 600th (n = 
0.25), 1,000th (n=0.5) and 1,600th (n=0.75) generation.  

 
(a) 

 
(b) 

 
(c) 
 
 

FIGURE 2: Curve of Sphere Function with population size: (a) 20, (b) 40, and (c) 80. 
 

Mean Best Function Value 

SIIW  SDIW 
Pop 
Size Gen 

0.25 0.5 0.75 0.25 0.5 0.75 

Linear 
Increasing 

1000 1.9549E-07 3.6991E-07 2.2936E-09 5.9805E-11 2.7347E-07 2.6000E-03 1.0293E+00 20 
2000 3.9212E-10 2.4862E-14 3.4405E-17 3.5240E-20 1.9234E-13 7.3342E-07 9.0548E-06 
1000 6.6276E-12 6.2689E-10 1.7541E-11 2.9253E-13 3.6077E-09 3.6963E-04 1.1940E-01 40 2000 3.2614E-19 2.0522E-22 1.4664E-24 6.4662E-27 1.3518E-17 2.5005E-08 6.8401E-18 
1000 7.0224E-14 5.9036E-14 1.4806E-14 1.5966E-15 1.7712E-10 2.2310E-05 1.2780E-15 80 
2000 3.7240E-30 3.0725E-30 5.5822E-29 1.0025E-30 3.6792E-20 5.3844E-10 3.8843E-29 

 
TABLE 2: The mean fitness values for the Sphere function.  

Table 2 shows that, the SIIW and SDIW share some similar convergent characteristic with each 
other. With a given population size, SIIW has the best value at n = 0.75 (5.5822E-29) and SDIW 
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at n = 0.25 (1.0025E-30). The SIIW, SDIW and LIIW find more precise result on large population 
size.  
 
In figure 3 shows that, SIIW and LIIW have quick convergence better than SDIW. This 
convergence ability for both methods to reach minimum fitness function has been achieved at 
200th generation. For SDIW, the minimum fitness function can be achieve start at 600th (n = 0.25), 
1,000th (n=0.5) and 1,600th (n=0.75) generation.  

 
(a) 

 
(b) 

 
(c) 

 
FIGURE 3: Curve of Rosenbrock Function with population size: (a) 20, (b) 40, and (c) 80. 

 
Mean Best Function Value 

SIIW  SDIW Pop Size Gen 

0.25 0.5 0.75 0.25 0.5 0.75 

Linear 
Increasing 

1000 0.7048 0.1490 0.0100 0.0010 0.0742 5.1095 1.7283 20 
2000 0.0438 0.0384 0.0264 0.0023 0.0002 0.2413 1.7419 
1000 0.2463 0.0410 0.0223 0.0200 0.0143 0.7881 0.4300 40 2000 0.0221 0.0028 0.0478 0.0038 0.0043 0.0360 0.2362 
1000 0.0969 1.4994E-04 0.0286 0.0091 0.0480 0.1654 0.0164 80 
2000 0.0408 0.0154 0.0062 0.0041 0.0067 0.0026 0.1064 

 
TABLE 3: The mean fitness values for the Rosenbrock function. 

 
Table 3 shows that, the SDIW (n=0.25, 0.5) has better minimum function value than others. But 
for the best value in the Rosenbrock function is SIIW at n = 0.5 (1.4994E-04).  
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In figure 4 shows that, SIIW and LIIW have quick convergence better than SDIW. The SIIW has 
better minimum function better than others. This convergence ability for all methods can not be 
reach the lowest minimum fitness function compare with the result from Sphere and Rosenbrock 
functions. 

 

 
(a) 

 
(b) 

(c) 

 
(c) 

 
FIGURE 4: Curve of Rastrigrin Function with population size: (a) 20, (b) 40, and (c) 80. 

 
Mean Best Function Value 

SIIW  SDIW Pop Size Gen 

0.25 0.5 0.75 0.25 0.5 0.75 

Linear 
Increasing 

1000 34.7488 33.1415 35.8835 37.8084 34.9509 48.4652 39.0512 20 
2000 16.9194 36.8135 45.7681 37.8084 33.8286 23.9116 34.8263 
1000 24.0228 29.8547 24.8773 38.8034 30.8787 39.6623 34.8307 

40 
2000 16.9143 25.8745 33.8286 24.8739 22.8840 28.8540 19.0803 
1000 13.9377 21.9866 30.8449 31.8387 29.8509 33.5563 32.8748 80 
2000 7.9599 17.4373 26.8639 27.8588 28.8538 20.8963 23.8791 

 
TABLE 4: The mean fitness values for the Rastrigrin function. 

 
Table 4 shows that, the best value for the Rastrigrin in any scenarios is SIIW at n = 0.25 (7.9599).  
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In figure 5 has similarity conclusion with figures 2 and 3. The SIIW still the best quick 
convergence ability in these figures.    
 

 
(a) 

 
(b) 

 
(c)  
 
 

FIGURE 5: Curve of Griewank Function with population size: (a) 20, (b) 40, and (c) 80. 
 
 

Mean Best Function Value 

SIIW  SDIW Pop Size Gen 

0.25 0.5 0.75 0.25 0.5 0.75 

Linear 
Increasing 

1000 1.1265E-07 1.4556E-09 1.9950E-10 1.4892E-11 4.9864E-08 6.1981E-05 1.0100E-02 20 
2000 4.0649E-12 4.4409E-16 0 0 4.3299E-15 1.6194E-07 1.2000E-03 

1000 1.3895E-11 3.0220E-12 3.2052E-13 2.4425E-14 2.5046E-10 6.2352E-06 1.9661E-11 40 
2000 0 0 0 0 0 5.5402E-10 6.9356E-13 

1000 1.1102E-16 6.6613E-16 3.3307E-16 0 9.9489E-12 1.6527E-06 0 
80 

2000 0 0 0 0 0 2.2026E-11 0 
 

TABLE 5: The mean fitness values for the Griewank function. 
 
Table 5 shows that, the third PSO can reach minimum fitness function (0) but the SIIW and LIIW 
still has quick convergence ability better than SDIW (see figure 5). By looking at the shape of the 
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curves in all figures, PSO with SIIW and LIIW converge quickly under any cases. Compare to 
LIIW, the proposed PSO can be improved greatly and have better result. Tables and figures 
above all indicate that the new proposed method (SIIW) has improvement when increasing 
population size, generation and sigmoid constant (n).     

6. Conclusion and Future Work 
In this paper, the performance of the PSO algorithm with sigmoid increasing inertia weight has 
been investigated and extensively. The results are compared with the PSO with sigmoid 
decreasing and linearly inertia weight by experimenting on four non-linear benchmark functions 
well studied in the literature. The sigmoid function has contributed to getting minimum fitness 
function while linearly increasing inertia weight give contribution to quick convergence ability. The 
combination of sigmoid function and linear increasing inertia weight in SIIW has produced a great 
improvement in quick convergence ability and aggressive movement narrowing towards the 
solution region with different sigmoid constant (n). From the experiment results, it shows that the 
sigmoid constant (n) plays an important role in searching for optimal solution in SIIW.  
 
For future work, the proposed SIIW will be implemented and tested in real application to further 
verify the results.  
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