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Abstract 
 
With data encryption, access control, and monitoring technology, high profile data breaches still 
occur. To address this issue, this work focused on securing data at rest and data in motion by 
utilizing current distributed network technology in conjunction with a data fragmenting and 
defragmenting algorithm. Software prototyping was used to exhaustively test this new paradigm 
within the confines of the Defense Technology Experimental Research (DETER) virtual testbed. 
The virtual testbed was used to control all aspects within the testing network including: node 
population, topology, file size, and number of fragments. In each topology, and for each 
population size, different sized files were fragmented, distributed to nodes on the network, 
recovered, and defragmented. All of these tests were recorded and documented. The results 
produced by this prototype showed, with the max wait time removed, an average wait time of 
.0287 s/fragment and by increasing the number of fragments, N, the complexity, X, would 
increase as demonstrated in the formula: X = (.00287N!). 
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1. INTRODUCTION 

There has been an increase in high profile data theft over the past few years. Both commercial 
enterprises and government entities appear to be vulnerable to data loss. Karen Kroll writes that 
data theft was the number one fear for corporate executives in 2013 [1] (p. 52). A review done by 
Scott Mace showed that some current software claiming to provide Data Loss Prevention (DLP) 
only provided Data Loss Detection (DLD) [2] (p. 48). Data security has several problems currently 
including: human susceptibility to social engineering, data must travel across the network, and 
every node on the network is a potential single point of failure. Despite these issues, there is little 
research in the field of DLP. The need for a secure method of storing and distributing data within 
a network that will thwart the majority of data theft techniques is the motivation behind this paper. 
 
The inspiration for this paper came by equating a single piece of data to a royal family being 
attacked. When under attack, the royal family is capable of splitting up and sheltering in castles 
they believe are loyal. Even if some of the royal family members take shelter in a compromised 
location, the rest would be safe. In order for an attacker to succeed in usurping a royal family, the 
entire royal family must be accounted for. If even one member of the royal family escapes the 
attacker, there is a legitimate claim to the throne, and the attacker has only left a trail of evidence 
and wasted resources and has nothing to show for it. This “Royal Split” provides them with the 
best opportunity to preserve the royal family.  
 
If a single piece of data is the royal family, the nodes on a network would be the loyal castles. 
Important data could split into fragments and reside on separate nodes, requiring an attacker to 
obtain all of the pieces before any whole data is risked. This paper develops, tests, and analyzes 
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this idea as a new paradigm for DLP. The purpose of this paper is to find a solution to the 
problems inherent in the current DLP paradigm. This paper is an attempt to provide a solution 
that addresses idea as a new paradigm for DLP. The purpose of this paper is to find a solution to 
the problems inherent in the current DLP paradigm. This paper is an attempt to provide a solution 
that addresses the current paradigm’s security issues in a scalable manner, has limited human 
interaction, and can operate in real-time. This paper proposes a new paradigm for the storage 
and transfer of data, within an established network, with a focus on that data’s security. The 
scope of this paradigm is limited to securing data-at-rest (DAR) and data-in-motion (DIM). The 
paradigm should be designed to have as small an attack surface as possible. This paradigm 
solution should incorporate data encryption, data fragmentation, and distributed technology, so 
that a single, fully intact, sensitive file does not exist on any single storage space. The objective of 
this paper is to provide a new paradigm for DLP that will provide a real-time solution that protects 
DAR and DIM. 
 
This security paradigm adds layers of security on top of already established security measures, 
such as Advanced Encryption Standard (AES). A data file that is encrypted using AES 256 has a 
1 in 9532 chance of being brute forced if the key is generated using an 8-bit character set. 
However, the complexity of an AES 256 encryption drops to a 1 in 1 chance of being broken if the 
encryption key is discovered. To add another layer of security, data files are fragmented and the 
fragments are distributed to nodes on a network. This layer of security can split the file between 
two fragments to as many fragment as there are bits in the file. If the file is not in plain text, or 
formatted in such a way that even while fragmented it is still vulnerable to breaches of 
confidentiality, the fragment must be put back in the correct order to be readable. For availability 
purposes the fragments will need to be duplicated and stored on separate nodes. This layer alone 
adds a minimum of a factorial complexity, assuming an attacker can differentiate one files 
fragments from another. The maximum number of fragments, of a single file, a node is allowed to 
have is all but one fragment. This is to prevent any single node from ever containing the complete 
set of fragments. As Table 1 below shows, the strength of this method grows rapidly with even a 
single node increase. 

 
 
 
 

TABLE 1: Number of combinations made possible by number of fragments. 

The paradigm proposed in this paper focuses on securing DAR and DIM with as little human 
interaction as possible. This new paradigm contributes, to the fields of Cyber Security and 
Distributed Database (DDB), an innovative use of the fragmentation and defragmentation of data 
to be used in conjunction with DDB technology that provides a real-time solution for DLP 
problems occurring in the current paradigm. Furthermore, this paradigm offers a layer of security 
that offers a factorial security complexity and will be able to improve with the advancement of 
hardware 

 
2. LITERATURE REVIEW 
In pursuit of a new paradigm a review of the current research was done to establish what new, if 
any, techniques or methodologies could be leveraged to produce a more secure network for data. 
A review of the current tools and techniques used in network forensics that can validate the 
destination claiming to access the information is the actual location satisfies both the 
confidentiality and integrity of the network. An Input Debugging method requires an attack be 
detected before generating an attack signature to send to upstream routers, and the process is 
repeated upstream until the source is found or the search reaches the bounds of the Internet 
Service Provider (ISP) [4] ( p. 18). This method may be suitable for tracking internal attacks, but 
has an expensive overhead cost of increase network traffic and specialized switches and routers. 
The input debugging method also requires an attack and this not acceptable in all environments. 
The controlled flooding method discussed, although it is cited as being “ingenious and pragmatic”, 
is a self-inflicted denial-of-service (DOS) attack to find the location of a breach, so this method is 

Fragments 2 3 4 5 6 7 8 
Combinations 12 120 1,680 30,240 665,280 17,297,280 5.19E+8 
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disregarded for that very reason [4] ( p. 18). The internet control message protocol (ICMP) 
traceback, packet marking, and source path isolation engine (SPIE) methods all require that the 
entire path between the attacker and the victim have routers that are specifically setup to handle 
marking and requests for information [4] ( p. 19-22). This requirement makes these methods fall 
outside the scope of most users, making them unlikely to be helpful in a scalable DLP paradigm. 
This research revealed a need for a solution that is less dependent on expensive equipment and 
utilizing what is available in as efficient a way as possible. 
 
The commentary cited a paper submitted at a USENIX Symposium that called the scheme a 
phalanx and recommended using a good botnet to counter DOS attacks [5] (p. 53). A similar 
paper had theorized a way to use a botnet to buffer a DOS attack as well [6] (p. 45-48). Botnets 
are light weight programs that receive and send communication to a command node. The authors 
describe the botnets are capable of amplifying a small amount of data into a massive amount of 
data, but they are also able to condense. Condensed data can theoretically travel quicker through 
a network. A new paradigm in security could benefit from faster speeds, allowing more time for 
layers of security. 
 
One paper points out that security policies fall short because sensitive information is not always 
declared under the right policy and keeping track of data requires significant overhead [7] (p. 53). 
The tracking of data is also overlooked when it comes to proper disposal policies for data [7] (p. 
53). There is research being done to identify sensitive information, one group of researchers 
developed a way of identifying, with a 97% success rate, any document that contains sensitive 
data [8] (p. 20). The results of this research are successful enough that the scope of the new 
paradigm will be narrowed to only securing sensitive data. Their paper identified “3 types of data 
in an enterprise: data-at-rest, data-in-motion, and data-in-use” [8] (p. 21). As stated in the 
objective, the new paradigm will focus on securing DAR and DIM. The hope is that data-in-use 
(DIU) will be secure by focusing on securing DAR and DIM, in conjunction with whatever DIU 
security measures available.  
 
The security requirements of confidentiality, integrity, and availability (CIA) are found in most 
security doctrine, but some also included authorization and authentication [9] (p 31). 
Confidentiality ensures data is only seen by those with the authority to see it. Integrity ensures 
data is not manipulated while in transit or without the authors knowledge or consent. Availability 
ensures data is always available to those who have permission to access it. Authentication 
“ensures the system knows the identities of all the entities interacting with it” [9] (p. 31). The 
proposed paradigm will support CIA completely, as well as Authentication, within the predefined 
scope.   
 
To some “security is expensive and inconvenient” and because of this belief, and in some cases 
truth, it is often difficult to implement security measures that will be followed [10] (p. 655). Any 
new security measure that puts requirements on the user is unlikely to succeed due to users 
bypassing these requirements. If that security measure can operate without the user aware of its 
use then the user will not attempt, nor have the desire, to circumvent it. There is a scenario where 
there are multiple users on a network that are the “bosses” and “outrank” any IT worker 
attempting to enforce security requirements [10] (p. 656). This scenario is only problematic if the 
security measures in place causes the user to believe they are undergoing an unreasonable 
burden, real or imagined [10] (p. 656). However, this too can be resolved by incorporating an 
unobtrusive security method [10] (p. 656). Any paradigm created for the purpose of preventing 
data loss should be unobtrusive to the users on the network; i.e. it should be fast, and require 
little to no effort on the user to implement. 
 
One paper’s definition of DLP lists the responsibilities as being able to “manage” “incident 
response” and should “enable corrective actions that remediate violations [11] (p. 12). A DLP 
should also be able to “discover” sensitive data anywhere on the network and “monitor” the data 
in all three states [11] (p. 12). A DLP should be able to “protect” that data, preventing it from being 
used in any way that could cause a security breach; e.g., printing, print screen, copy, etc. [11] (p. 
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12). The paper concludes that there is no “single effective solution” as of yet, revealing the need 
for such a solution to be designed [11] (p. 12). Although this paper purport that a solution should 
monitor all three states, the proposed solution will only focus on two as a layered approach may 
be the only way of developing a paradigm that is fully capable of meeting all of these 
responsibilities [11] (p.12). 

 
3. RESULTS 
The results showed a linear rate of growth in wait time as the number of fragments increased. 
The time to store data was always greater than the time to recover. With this information, the 
paradigm can be further enhanced by allowing the paradigm to determine the number of 
fragments based on the level of security and/or wait time that that is required and/or acceptable in 
the environment, with as little user interaction as possible.  
 
The results contained some consistent outliers, where all the tests run for a particular split size of 
a file within a topology, as well as some inconsistent outliers, one or two wait times with more 
than a 1.5 times the standard deviation from the rest of the data for that sample set. The 
inconsistent outliers may have been bleed over from the rapid prototype developed services, 
program and test script, but this was not fully confirmed. The results were normalized by 
removing the max time from each set was removed from the analysis. The raw data results have 
been preserved, but unless it is expressly stated all data referred to in the results and conclusion 
are based on the adjusted results. 
 
3.1 Five Node Topology 

 

 
  

FIGURE 1: This figure shows the average retrieval wait time for a 10 MB pdf file, in a 5 node population 
topology. 

 
Topologies appeared to play a nominal role in the efficiency of the paradigm. Although the Star 
topology appears to be faster in Figure 1, 5 node 10MB Retrieve above, the slope of this trial is 
only 32.2 ms/fragment compared to the Ring’s 32.8 ms/fragment slope, and the Bus’s 34.9 
ms/slice. This trend carries over to the related store trial, as shown in Figure 2 below. The rate of 
growth for the Star topology was 35.4 ms/slice, the Ring’s 39.9 ms/slice, and the Bus’s 35.6 
ms/slice. The results show that the store time is slower than the retrieve time. The results from 
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the test show a linear growth of wait time between 30 ms and 40 ms per number of fragments, 
regardless of the file size and node population. 
  

 
 

FIGURE 2: This figure shows the average storage time for a 10 MB pdf file, in a 5 node population topology. 

 
3.2 Node Population 
The same experiments were run in the same topologies, but with an increased population size 
from 5 nodes to 10. Population size reduced the wait time for storage and retrieval from the 
results of the 5 node related tests for the Bus and Ring topologies, but increased it for the Star 
topology. Although the Ring topology appears to be faster in Figure 3 below the slope of this trial 
is only 32.0 ms/fragment compared to the Bus’s 36.8 ms/fragment slope, and the Star’s 38.2 
ms/slice.  
  

 
 

FIGURE 3: This figure shows the average storage time for a 10 MB pdf file, in a 10 node population 
topology. 

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

T
im

e
 (

S
e

co
n

d
s)

Slices

5Star 5Ring 5Bus

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

T
im

e
 (

S
e

co
n

d
s)

Number of Splits

10Star 10Ring 10Bus



Jacob Matthew Hadden & Ahmed M. Mahdy 

International Journal of Computer Science and Security (IJCSS), Volume (10) : Issue (3) : 2016 112 

This trend carries over to the related retrieval trials, as shown in Figure 4. The results show that 
the store time continues to be less than the retrieval time. The topologies are within 3 ms of each 
other in the retrieval growth rate: Star 32.2 ms/slice, Ring 32.8 ms/slice, and Bus 35.0 ms/slice.  
 

 
  

FIGURE 4: This figure shows the average retrieval time for a 10 MB pdf file, in a 10 node population 
topology. 

 
3.3 File Size 
The same experiments were run in the same topologies, with both a 5 and 10 node population 
size, but with an 8 KB pdf file and a 1 MB pdf file as well. The size of the file had a significant 
effect on the wait time for storage and retrieval of files in this paradigm. The topologies are within 
3 ms of each other in the retrieval growth rate: Ring 28.8 ms/slice, Star 30.2 ms/slice, and Bus 
30.3 ms/slice. 
 

 
 

FIGURE 5: This figure shows the average storage time for a 1 MB pdf file, in a 10 node population topology. 

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

T
im

e
 (

S
e

co
n

d
s)

Fragments

5Star 5Ring 5Bus

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

T
im

e
 (

S
e

co
n

d
s)

Number of Splits

10Star 10Ring 10Bus



Jacob Matthew Hadden & Ahmed M. Mahdy 

International Journal of Computer Science and Security (IJCSS), Volume (10) : Issue (3) : 2016 113 

This trend carries over to the related retrieval trials, as shown in Figure 6. The results show that 
the store time continues to be less than the retrieval time. The topologies are within 2 ms of each 
other in the retrieval growth rate: Ring 26.5 ms/slice, Bus 27.2 ms/slice, and Star 27.6 ms/slice.  
  

 
 

FIGURE 6: This figure shows the average retrieval time for a 1 MB pdf file, in a 10 node population topology. 

 
The size of the file has the biggest impact on the base wait time, as demonstrated from the 1 
fragment line, which is the non-fragmented file store and retrieval time. The rate of growth is still 
less, as shown in Figures 5, 6, 7, and 8. In Figure 7 it shows the smallest file size tested, an 8 KB 
file. For storage the rate of growth was: Ring 28.9 ms/slice, Bus 29.7 ms/slice, and Star 30.2 
ms/slice. 
  

 
 

FIGURE 7: This figure shows the average storage time for an 8 KB pdf file, in a 10 node population 
topology. 
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In Figure 8 it shows the smallest file size tested, an 8 KB file. For storage the rate of growth was: 
Ring 26.9 ms/slice, Bus 27.0 ms/slice, and Star 27.5 ms/slice. The baseline storage and retrieval 
time for the file is less than that of the 1 MB or 10 MB file times.  
  

 
 

FIGURE 7: This figure shows the average retrieval time for an 8 KB pdf file, in a 10 node population 
topology. 

 
4. DISCUSSION 
This paradigm’s focus on securing DAR and DIM required a solution that was capable of being 
usable without providing a noticeable burden on users. A study done for web page retrieval by 
Nah found that the average person is willing to wait “about 2 s for simple information retrieval 
tasks on the web” [3] (p. 160). The maximum wait time recorded, including the discarded 
maximums, was 8.50 s and occurred during a 10 MB trial, in a 5 node Bus topology, where the 
file was fragmented 27 times. The maximum average wait time of any of the retrieves was 2.63 s 
in a 10 MB trial, in a 5 Ring topology, where the file was fragmented 31 times. The average 
additional wait time for all of the trials done was an extra 28.7 ms/slice. The prototype for this 
paradigm is capable of providing an extra N factorial complexity for an additional 28.7N ms of wait 
time, where N is the number of fragments. If an attacker had the exact fragments needed for a 
single file and was able to go through ten permutations a second, the cost-to-benefits ratio of an 
average case scenario can be calculated as:  
 

X = 28.7msN!/2, 
 

where X is the time, in ms, required to go through the combinations before finding the correct 
combination. If the file was also encrypted, then the file would still need to be decrypted after it 
was put back together. Table 2 shows the average additional wait time per fragmentation, as well 
as the security it would provide if an attacker attempted to put it back together, should they 
already have the correct pieces. 

 
Fragments Average Case Worst Case Incurred Wait Time 

2 2.87E-03 s 5.74E-03 s 28.7 ms 

3 8.61E-03 s 1.72E-02 s 57.4 ms 
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5 .172 s .344 s 114.8 ms 

6 1.03 s 2.07 s 143.5 ms 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

T
im

e
 (

S
e

co
n

d
s)

Number of Splits

10Star 10Ring 10Bus



Jacob Matthew Hadden & Ahmed M. Mahdy 

International Journal of Computer Science and Security (IJCSS), Volume (10) : Issue (3) : 2016 115 

7 4 s 8 s 172.2 ms 

8 33.5 s 67 s 200.9 ms 

9 5 m 10 m 229.6 ms 

10 50 m 100 m 258.3 ms 

11 9 hrs 18 hrs 287.0 ms 

12 4.5 days 9days 315.7 ms 

13 60 days 120 days 344.4 ms 

14 2 years 4 years 373.1 ms 

15 3 decades 6 decades 401.8 ms 

16 5.5 centuries 11 centuries 430.5 ms 

17 9 millennia 18 millennia 459.2 ms 

18 169.5 millennia 339 millennia 487.9 ms 

19 3223 millennia 6446 millennia 516.6 ms 

20 6.45E+04 millennia 1.29E+05 millennia 545.3 ms 

21 1.35E+06 millennia 2.71E+06 millennia 574.0 ms 

22 2.98E+07 millennia 5.96E+07 millennia 602.7 ms 

23 6.85E+08 millennia 1.37E+09 millennia 631.4 ms 

24 1.64E+10 millennia 3.29E+10 millennia 660.1 ms 

25 4.11E+11 millennia 8.22E+11 millennia 688.8 ms 

26 1.07E+13 millennia 2.14E+13 millennia 717.5 ms 

27 2.89E+14 millennia 5.77E+14 millennia 746.2 ms 

28 8.08E+15 millennia 1.62E+16 millennia 774.9 ms 

29 2.34E+17 millennia 4.69E+17 millennia 803.6 ms 

30 7.03E+18 millennia 1.41E+19 millennia 832.3 ms 

31 2.18E+20 millennia 4.36E+20 millennia 861.0 ms 
 

TABLE 2: Additional wait time per fragmentation, and the time it takes to brute-force putting the file back 
together at 10 permutations/s. 

 
As shown in Table 2, this paradigm is capable of providing a significant amount of security 
without imposing a noticeable burden to the users. Layered security is capable in this paradigm, 
as it does not care what the file type is, encrypted files can be stored in this fashion and retrieved. 
This paradigm is also capable of improving with technology. These tests were done with current 
processors and ram speeds, along with virtual network speeds. As these devices increase in 
speed and efficiency, so too will the paradigm. 

 
5. MATERIALS AND METHODS 
The following sections describes the testing environment, program design, and implementation. 
 
5.1 The Design 
The design phase of this paper sets the scope and expectations this new paradigm will operate 
under. The minimum requirements expected for the testing phase to succeed are chosen for a 
reasonable starting point. Based on the success or failure of experimentation, the final minimum 
requirements proposed in the conclusion will be adjusted. The theoretical setup for the 
environment used to create test scenarios will be used for proof of concept, as well as for fine 
tuning the minimum requirements. 
 
The new paradigm this paper proposes is narrow in scope and will be able to incorporate the 
positive aspects of the current paradigm, without including the negatives. This new way of 
thinking focuses on securing DAR and DIM, in real-time, using distributed networks, a central 
coordinating node, and the fragmentation of data, with limited human interaction. It is assumed 
that encryption and AC are used in the new paradigm. DAR is secured in this paradigm because 
it is fragmented into N-Number of “fragments” and each fragment is stored onto a node in a 
distributed network. DIM is secured in this paradigm because it travels in a fragmented form 
within a secure tunnel when distributed from the Central Data Controller (CDC) to a distributed 
node (DN). DIM is secured when travelling between the client node and the CDC by a secure 
tunnel using direct communication.  
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The paradigm acknowledges the CDC and direct communication with it is a single point of failure. 
This is mitigated by utilizing proper network security. All nodes on the network should be able to 
communicate to the CDC with direct point-to-point (PTP) communication. This is achievable with 
modern networking techniques and hardware, and therefore will not be focused on in this paper. 
The CDC’s attack surface is reduced to physical access and three ports, which can be reduced to 
two after the DN’s have been added to the CDC’s list. The first port is for initial node connection; 
this port can be disabled once all node have connected, preventing un-approved nodes from 
joining. When a node joins, it sends the size of the allocated space; this is added to the CDC’s list 
so that files are not sent to nodes that do not have space for them. The second port is for 
communication initiated by the controller to the DN’s. This communication will be limited to the 
commands “Store”, “Retrieve”, and “Delete”. The store command sends a fragment of data from 
the controller. The retrieve command sends the name of the file to retrieve. The delete command 
sends the name of the file to delete. The third port is for communication with the client program. 
The client program can store, retrieve, or delete a file. When the client program sends a file to be 
saved, it includes the split size. The retrieve command sends only the file name of the file to be 
retrieved.  
 
The known vulnerabilities for this new paradigm are as follows. DAR could potentially be stolen in 
this paradigm if all of the nodes that were part of the distributed network were compromised and 
the attacker was able to collect all the fragments of data. If all of the fragments were collected, the 
attacker would still need to sort the fragments into the correct files and, then, organize them in the 
correct order. Without adding duplication for redundancy, this would require M number of 
fragments be sorted into an unknown G number of groups, and then, the unknown N number of 
fragments within the groups be sorted in the correct order. If there were only 10 files distributed 
on the network and each only had 10 fragments, there would be 100 pieces and no way for an 
attacker of knowing how many files there were or how many pieces each file was split into. If the 
attacker did know the number of files and the number of splits there are: 
 

X = (10!)/[10!(100-10)!] 
 

or 17,310,309,456,440 different 10 fragment combinations would exist for the attacker to work 
through, and only 1 of those are valid.  
 
5.2 The Test Environment 
To reduce variability all nodes on the network will be created on the cyber Defense Technology 
Experimental Research (DETER) testbed. The DETER testbed is a remotely accessible virtual 
environment that allows for the rapid deployment of entire networks. This allows for tests to be 
done in a stable environment with tight variable control. The DETER testbed lives on two clusters 
that are tunneled together, one at USC Information Sciences Institute and the other at UC 
Berkley. Using the DETER technology, all virtual environment used in this paper will be use 10 
MB bandwidth for all connections. All nodes will have the Kali Linux distro available on the 
DETER testbed. Each node will have Python 2.7 installed and run the same version of RPyC. 
Simulations will be done with two different population sizes, five nodes and ten nodes, arranged 
in three different topologies: bus, ring, and star. All nodes, except for the CDC, will be a part of 
the DN Network. The Python random number generator will perform a modulus equation with the 
number of nodes in the distributed network to decide which node will receive the next split file. All 
tests will be assessed for time, the starting time begins after the client command is sent from the 
user and ends when the response that the task is complete is returned to the client program from 
the command server. All six environments will test the run times for storing and retrieving data. 
Three files will be used in these environments: a 7,945 byte (8KB) pdf sample file, a 1040920 
byte (1MB) pdf file, a 10,467,710 byte (10MB) pdf sample file, and a 1 GB zip file will be 
attempted. The three files will be stored and retrieved thirty-one times in all six environments at 
split sizes between one and thirty-one. 
 
After the tests are completed the results will be analyzed. The data will be checked to determine if 
the paradigm provides predictable save and retrieve times based on file size, the number of 



Jacob Matthew Hadden & Ahmed M. Mahdy 

International Journal of Computer Science and Security (IJCSS), Volume (10) : Issue (3) : 2016 117 

splits, topology, or the number of nodes. Analysis will also be done for determining a range of 
optimal split sizes given the size of the file, topology and number of nodes.  
 
5.3 The Implementation 
The following paragraphs detail the implementation of the services and programs used in the test 
environment. These services and programs were created using a rapid prototype methodology 
and were subsequently developed with a proof-of-concept design. The prototype results will be 
analyzed acknowledging that these results may be improved upon with better design. For testing 
purposes, the RPyC sockets and connections were hard coded into the Client Program and the 
CDC so that rapid testing could be implemented. The node services were programed with the 
CDC destination hard coded as well.  
 
5.4 The CDC 
The CDC service needs to be setup prior to any other part of the system. The service requires 
Python 2.7 and RPyC to operate. It communicates using three different ports. One listens for 
requests to join the distributed network. One is used for communication to DN’s, this port is only 
activated when sending commands to the DN’s. The third port actively listens for requests from a 
client program to store or retrieve files. When a request to store a file is retrieved, it expects a 
split size.  
 
The CDC maintains a list of all nodes connected to the distributed network. When data is sent to 
the CDC to be stored, the file is divided, on the bit level, by the split size. This number is stored 
and is used in a for loop to read in only that number of bytes to a temporary file. This temporary 
file is then sent to a random node in the distributed network. Python’s Random Number 
Generator is used to select which node in the list will retrieve the data. The CDC names each 
fragment and stores it in a heap, these names are randomized to obfuscate the connection to the 
original file name. 
 
When the CDC is sent a request to retrieve a file, it is given the filename. If the filename matches 
one in the list of stored files, it finds the fragment names in the heap and sends the request to the 
corresponding DN’s that hold the data. As the fragments arrive the CDC appends them together 
in the correct order and returns it to the node that made the request with the Client program. 
 
5.5 The DN’s 
The DN’s must be setup after the CDC is setup, but before the Client Program can run. The DN’s 
prototype only joins the distributed network, it does not send the allocated space to the CDC. The 
DN’s waits for commands from the CDC only. It stores files sent to it with the names given to it, 
and returns files back to the CDC when the filename is sent to it with the retrieve request. The 
prototype DN Service can be found in Appendix D. 
 
5.6 The Client Program 
The Client Program is a program that takes in two commands: store and retrieve. The store 
command expects two arguments: the filename and the split size. For the prototype, the filename 
must correspond to a file in the same directory. The retrieve command expects one argument: the 
filename. Both commands are sent to the CDC and await a response. The store command 
receives an affirmative message from the CDC and displays the message back to the user. The 
file that was sent to the CDC is deleted on the Client computer. The retrieve command receives 
the file and an affirmative message from the CDC and displays the message for the user. 
 
5.7 The Tests 
The environments were tested individually on the DETER testbed. The services had to be setup 
manually, so that they were started in the correct order. Once the CDC and the DN’s were 
running and connected the client node was prepped for the tests. The tests were done within the 
TEMP directory of the Linux environment. All four of the test files were copied to the TEMP 
directory, so the results could be compared to the originals. A batch script was created to 
automate the testing. The batch script made a fresh copy of the original test file for each run, ran 
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31 trials for each split size between 1 and 31 for all 4 test files. The test script eventually had to 
be altered to exclude the testing of the 1GB file, because it would not complete before the virtual 
environment timed out. The test script outputted the run times for each trial to a CSV file sorted 
by topology, network size, and file size. These files were imported into an Excel spread sheet and 
were analyzed. The results of the data showed that there is a linear increase to the wait time for 
storing and retrieving data. 
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6. CONCLUSION AND FUTURE WORK 
The results from this work have laid the ground work for new research in the fields of DLP, 
Distributed Systems, and Cyber Security.  Specific to advancing the proposed paradigm, the 
development of an efficient CDC and DN service, as well as a Client program.  The code used is 
in the Appendix.  The CDC should include an algorithm to predict the optimal split size for any 
given file.  This would reduce the attack surface area by removing this option from the Client 
Program and the User’s input.  Research on how long the average person is willing to wait for 
vital data would be needed for a maximum wait time to be incorporated into the optimization 
algorithm. 
 
The rate of growth has an average of 28.75 ms, with a 2.5 ms standard deviation, to set a base 
line for the paradigm, the CDC could use down time to generate file of a specific size and test a 
“single” split.  The CDC could store this data for use in the optimization algorithm.  This test data 
could be used to systematically create dummy split files on the DN Network which would further 
enhance the security of the paradigm.  As processor speed, network speed, and read/write speed 
increase in the future an artificial intelligence (AI) algorithm to continually optimize the paradigm 
would allow the paradigm to update itself without the need of human interaction.   
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