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Abstract 
 
As extensive new software projects are becoming more costly with increased development 
complexity and risks, the use of existing, already developed software projects are now spanning 
multiple years or decades. Software maintenance durations are increasing along with periodic 
periods of intense software upgrades due to these lengthy extensions of the life of the software. 
While the software architecture is set during the project's initial design phase, over the life of the 
project, architecture erosion can take place due to intentional and unintentional changes, 
resulting in deviations from the intended architecture.  These deviations can manifest themselves 
in a wide variety of performance, maintenance, and software quality problems ranging from minor 
annoyances to product failure or unmaintainable software.  This paper explores the causes and 
impacts of software erosion, and recovery approaches to addressing software erosion, laying the 
framework for future work towards the definition of an Architectural Maturity Model Integration 
process to assess the architectural maturity of an organization. 
 
Keywords: Software Architecture, Architecture Erosion, Software Maintenance, Software 
Quality, Software Erosion, Legacy Code, Architectural Maturity Model. 

 
 
1. INTRODUCTION 

Recent trends show that new software projects are increasing in complexity, size, and overall 
development infrastructure. Examples include increases in lines of code in modern automobiles 
(10-100 million lines of code) to the estimated 2 billion lines of code within the Google 
infrastructure [1].   Correspondingly, software development costs have increased along with 
project duration, staffing, capital resources, and organizational overhead. Along with these 
factors, the risks associated with cost and schedule overruns, not meeting customer 
requirements, late to market, or outright project failure has increased. A direct result of increased 
development costs and associated risks is a desire to extend the life of existing production 
software through continual maintenance and periodic enhancements resulting in software 
lifecycles spanning several decades. Typical software upgrades include updates to meet 
changing technology, new user interfaces, increase capabilities, and increased security needs. 
 
However, software that has long life cycles can experience erosion of the implemented 
architecture from the intended architecture. This erosion can affect the performance of the 
software, development activities, routine maintenance, and software quality factors. Extreme 
cases of erosion can result in brittle software or failure of the software to meet its main objectives 
with severe consequences, including extensive rewrite activities or an inability to maintain the 
software. 
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In its basic definition, software erosion is the difference between the intended software 
architecture and the existing architecture. Creation of the software architecture takes place within 
the design phase of this life cycle. Within an architecture design, fundamental properties of a 
system are embodied within the architectural elements, and the relationships between these 
elements are defined [2]. The architecture design of the system strives to capture a focused 
organization of elements to support a defined functionality and solve a specific problem.  Good 
architectures can reduce the overall complexity of the project by separating the design into 
manageable areas and maintaining separate areas of concern [3].  
 
All software has an architecture, either explicitly or implicitly defined. Architectures reflect a 
significant decision point in the overall software project.  Flexible architecture designs consider 
requirements that are not defined, and that may change over the project's life. The architecture 
should be derived from the customer's needs, the environment in which the software will operate, 
project-specific concerns, and project quality requirements. The project's software is developed 
within the architecture structure.  While the architecture is set to meet the specific requirements 
and goals, as the software progresses through its lifecycle, due to a variety of reasons, the 
implemented architecture deviates from the intended architecture [5], [6]. Typically, this deviation 
is unintentional and, in many cases, not detected until acute systemic conditions arise. Such 
deviations are called erosions. Corrections for software erosion are often in response to observed 
system bugs/failures well after erosion has been ingrained into the software. Preventative 
measures are typically process-oriented [4]. 

 
2. SOFTWARE EROSION 

Some of the main assumptions surrounding erosion are that erosion occurs during the 
maintenance phase, where the software spends a majority of its lifecycle, that the erosion is 
gradual, and that the erosion is unintentional [5]. Certainly, during the maintenance phase, the 
software can undergo many small changes that can degrade the architecture over time.  
However, erosion can occur as soon as the architecture is chosen, and before detailed design 
and implementation begin [6]. Another typical assumption is that erosion is a slow, gradual effect 
over a long time. That small deviations to the architecture can build up over time and result in 
ever-increasing levels of erosion [5]. While this is a significant cause of erosion, rapid erosion can 
also occur during sprint periods where significant changes such as upgrades, platform changes, 
or user interface changes are taking place in a short time interval.  During these sprint periods, 
numerous changes across the architecture are occurring at the same time and, typically, for a 
system that must maintain continuous production, time constraints exist, exacerbating typical 
maintenance phase activities, creating rapid erosion. 
 
Another common assumption is that erosion is an unintended effect associated with 
maintenance. However, erosion can be intentional and even planned. Some erosion takes place 
as incurring "technical debt," where short term erosion is accepted with the intent of "fixing" the 
architecture later, generally when the team will have more time [7]. Technical debt can occur as 
early as the Requirements phase of the project [8]. Technical debt is generally used to meet 
schedule pressures by trying to get the product to the customer on-time. However, if the technical 
debt is not resolved promptly, then the technical debt can increase, resulting in increased 
unplanned erosion. The costs associated with fixing deferred work can increase the longer the 
repairs/recovery are deferred.  Intentional erosion can also occur as an attempt to fix or repair 
real or perceived deficiencies in the original architecture. If the architecture does not meet the 
emergent requirements flowing from the customer's needs, then the design team may try to 
resolve the discrepancy by intentionally deviating from the intended architecture. However, if an 
architecture evolution plan is not in place and communicated across the development team, the 
result may be more erosional than helpful. In practice, it can be difficult to adequately classify the 
precise cause of the erosion as the overall impact to the architecture can be very gradual and can 
be the result of multiple effects [5], [7]. 
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2.1 Software Erosion - Impacts 
Software erosion may not have noticeable effects in the short-term, but over the long life of the 
project, erosion can manifest itself in an extensive set of symptoms ranging from minor 
annoyances and bugs to the customers, operators, and developers, to full failures of the software 
to meet customer requirements, expectations, and mission goals. The effects of software erosion 
can affect multiple areas of software development activities (development, test, management, 
scheduling, finance, etc.) as well as the final integrated product. The observed impacts may 
present themselves as fairly benign in the early stages of erosion, but the long term erosion can 
have a range of effects on performance and maintenance. Performance effects can range from 
relatively minor annoyances to decreased performance, to lost capability, and maximally to full 
failure, while effects on maintainability can range from minor refactoring needs to increases in 
code inconsistencies, escalating bug fixes, and maximally reaching an unmaintainable state. 
 
As erosion builds up over the lifecycle of the software project, the impacts of the erosion can 
manifest in the following ways: 

a) Inability to meet requirements  
Features may not work correctly as a result of broken or buggy code. The number of 
software bugs may increase during attempted repair leading to frustration and/or the 
inability to meet user goals.  

b) Reduced product performance 
Products may still be able to meet the original requirements and goals, but the overall 
performance of the product may be impacted as the erosion may result in the product 
performing slowly. Efforts to fix performance issues can erode the system even further.   

c) Increased time for updates 
The time required to maintain or update the software may increase, resulting in increased 
schedule risks and increased time-to-market.  All areas of the development process can 
be affected as code updates must also repair architecture areas that have become 
corroded by erosion requiring increased levels of refactoring and testing. 

d) Increased costs 
Associated with the increased time required for updates, is the related direct costs. 
Software can become increasingly more expensive to maintain and upgrade. Indirect 
costs such as missed delivery times, reduced functionality, customer dissatisfaction, loss 
of business/customers due to the poor performance of the product, and reputation 
damage can result from the effects of erosion. 

e) Degradation of quality attributes 
Quality attributes associated with the software tend to deteriorate with increased erosion. 
The code becomes more difficult to maintain, modify, test, and deploy. Increased levels 
of erosion tend to cause erosive effects to accelerate.  As erosion levels increase, there 
is typically a steady degradation of the well-known design principles associated with 
higher quality architectures and quality code such as separation of concerns, Law of 
Demeter, Principle of Least Privilege, information-hiding and encapsulation. 

f) Brittle code 
As erosion increases, the resulting required repairs can easily degrade the architecture's 
code elements resulting in less maintainable, brittle software. Brittle code reflects a 
system in which even small changes to the software can result in increased bugs, loss of 
functionality, and failure of the software. 

 
2.2 Software Erosion – Technical Causes 
Software erosion causes can be split into two broad categories, technical and non-technical.  
Technical causes are those stemming from directly dealing with the design and implementation of 
the architecture, while non-technical causes are those stemming from organizational and staffing 
considerations. Below we list some of the known technical causes for software erosion and 
address the non-technical causes in section 2.3. 

a) Design decisions violate the architecture 
Detailed design decisions may conflict with the intended architecture. This is particularly 
true in agile-based development where only parts of a project are carefully designed at a 
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time. Even in plan-based development environments where designs are fully considered 
before implementation begins, design changes can be necessary due to arising 
implementation problems as well as changing requirements.   

b) Design not properly conveyed 
If the design is not properly conveyed to the development team, then it's almost certain 
that the architecture will not be implemented properly.  Poor design documentation, 
changing staff, and constantly changing requirements or emergent requirements all 
contribute to communication deficiencies between the design team and the development 
team, causing deviations from the intended architecture. 

c) Architectural style violation 
An architectural style violation is any software change that violates the style rules 
associated with the intended architecture. A typical example is one involving layered 
architecture interactions restricted to communication between adjacent layers only.  Style 
violations occur when the implementation or maintenance team writes codes that 
intentionally bypass adjacent layers to directly communicate with non-adjacent layers. 
Another example, though at a lower level of detailed design, would be the violation of the 
rule to only access a module implementing a stack through its top-of-stack method. 
Writing code to directly access the middle or any other location would violate this style 
rule [9]. 

d) Orphan elements 
Orphan elements are software elements that are no longer used but are still in the 
software build, such as can occur is with the use of the Swiss Army knife antipattern [8]. 
This pattern is reflective of the coding method in which non-working code is added to the 
software build to address all possible requests of the software, including those not called 
out in the requirements or customer needs. These elements can create confusion for the 
development team and add needless complexity. 

e) Duplicate Code or “Clone elements” 
Clone elements are software elements that provide nearly identical functionality or 
services. [5] Changes in one software element may not have the intended effect since the 
cloned element has duplicated the service. In this case, changes must be applied to all 
instances of duplication to ensure the change is propagated through the program. 

f) Incorporation of legacy or reusable software 
While the incorporation of reusable software is considered beneficial by using readily 
available software, many times, compromises must be made to fit two different 
architecture together.  Such piecemealed code can create trigger points for future 
erosional behavior as typically, this results in including clone and orphan elements. 

g) Increased coupling 
Increased coupling can be both a cause and an effect of increased erosion. Coupling 
across module and component boundaries can increase with increased levels of erosion. 
Architecture rule violations can directly lead to an increase in coupling, reflecting the fact 
that interactions across disallowed architecture element boundaries may increase.  This 
eroded architecture may no longer be an optimal or viable solution to the original 
problem.  With increase coupling, complexity increases along with a decreased 
understanding of the code by the development team. Also, testing becomes more 
difficult, leading to increases in the number of bugs.   

h) Decreased cohesion 
Like coupling, decreased cohesion can be a cause of erosion and an effect of on-going 
erosion. The architectural components (including architectural elements, modules) may 
develop co-incidental cohesions where modules of architectural elements are arbitrarily 
grouped together. An eroded architecture can result in decreased cohesion across the 
architecture.  Architecture elements that were developed to provide specific functionality 
may be compromised by the erosion.  As the software matures or during the 
maintenance phase, there may be an effort to limit the creation of new elements, which 
may result in less than ideal cohesion. 
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i) Increased inheritance hierarchies 
Architectures that exhibit deep inheritance hierarchies can lead to the fragile base class 
problem,  in which base classes are difficult to change due to the increased coupling and 
increased maintenance and testing issues stemming from deep inheritance [10]. While 
deeper inheritance trees can create a higher reuse potential, such may also present 
increased complexities of dependence [11]. Specific metrics for optimal inheritance 
depths are not available, but the upper limits of inheritance levels of 5-6 have been 
suggested [12]. 

j) Increased complexity 
As complexity within the architecture increases, understanding of the architecture 
becomes more challenging, resulting in potentially more architecture violations and 
erosion. 

k) Incorrect architecture for the project 
While not technically considered erosion, incorrect or bad architecture can cause later 
erosion. Changes erode the architecture as later design, implementation, and 
maintenance attempts to overcome the shortcomings of the original architecture. If these 
changes are not properly managed or repaired, or an architecture evolution is not 
planned properly, the resulting erosion could be far worse than just maintaining the 
original bad architecture. 

 
2.3 Software Erosion: Non-Technical Causes 
Non-technical causes for erosion can be attributed to the culture and processes adopted within 
an organization that creates a likely environment for software erosion to occur. 

a) Schedule pressures 
Schedule pressures to get the product out the door quickly may result in unintentional or 
intentional architecture erosion. 

b) High staff  turnover  
A continually changing staff leads to team members not understanding the architecture, 
the development process, or company expectations, thus making changes and 
improvements to the software without team members experienced with the system or the 
process in place to change the system which inherently leads to a higher chance for 
erosion. 

c) The software development process followed 
The organization may follow a development process that ignores or places no emphasis 
on architecture or design, e.g., a strict agile-based development process requires the 
development of a software product in successive small increments without the 
requirement for completion, or adherence to a product-wide software design or 
architecture. Such an agile design phase is not explicit but is embedded in code 
increments, so there exists no defined, documented system-wide architecture.  Rather, 
the architecture is embedded in the resulting project but not visible or documented which 
typically results in high levels of erosion [6].  

d) Organizational has no process  
Software development proceeds in an ad-hoc manner from employer to employee. 
Typically, in such an environment, no well-documented architecture would be produced, 
and code development and maintenance undertaken would be highly likely to result in 
erosion. 

e) Organizational culture 
Some organizations maintain a more rigorous approach to prevent or mitigate 
architecture erosion through business and software processes and company-wide best 
practices that lead to more quality-driven product development. One such culture takes 
place in the domain of critical software system development responsible for producing 
life-critical software. The more rigorous the organization's approach, the less likely 
erosion will occur. 

 



Sharon Andrews & Mark Sheppard 

International Journal of Computer Science and Security (IJCSS), Volume (14) : Issue (2) : 2020 87 

2.4 Types of Erosion Management Methods and Relative Cost 
There are three broad categories of approaches to address software erosion: prevention, 
minimization, and recovery [13].  The most common of these are recovery and minimization since 
prevention is itself a form of minimization. However, minimization methods themselves can be 
further categorized into two main types, those that are process-based and those that are formal 
methods based. Each of these approaches is associated with methods requiring varying levels of 
difficulty of application and costs to an organization. These approaches, costs, and methods are 
summarized in Table 1, along with a ranking of relative difficulty to implement as well as the 
general category of methods used. Certainly, with a no-action approach to minimize or prevent 
erosion, there is no cost or method as erosion is allowed to occur, and no effort is made to 
restore the architecture or repair erosion effects.  Such is applicable to projects that are small, 
non-critical or have no significant business value. For these projects, the organization or 
customers are not concerned about the impact on quality or performance factors as the project 
lifecycle is typically short, or the cost of minimization and recovery outweigh the cost of the 
project.  

 

Approach Description 
Goal of Approach 

General 
Method 

Relative 
Difficulty  

No-Action Erosion is allowed to occur; no efforts 
made to restore the architecture or repair 
architecture erosion 

None Low 

Recovery Repair erosion that has occurred Refactoring to 
various 
degrees 

Medium 

Process-
driven 
Minimization 

Minimize the effects of erosion or 
decrease erosion while reducing cost and 
time required 

Adherence to 
Established 
Process & 
Standards 

High 

Formal 
Minimization 

Minimize effects of erosion. There is very 
high cost, time and training involved with 
these methods relative to informal ones. 

ADLs, ACL, 
Doman 
language, 

Very High 

 

TABLE 1:  Approaches, Methods and Costs. 

 
Recovery approaches attempt to repair the erosion.  Recovery requires finding the elements of 
the software that have experienced erosion, then employs methods to repair those elements. 
Conventional recovery methods involve refactoring the software, component, or module. Process-
driven minimization methods are governed by reliance and adherence to a defined process 
definition that dictates how the software is designed, developed, and maintained. Such processes 
typically require architecture design documentation, and analysis and monitoring for compliance 
to all architectural constraints in an attempt to reduce erosion [14]. 
 
Other, less commonly used minimization methods are formal methods which rely on formal-
method-driven techniques such as Architecture Description Languages (ADLs), and domain 
constraint languages, domain definition languages [15], frameworks [16], patterns, and other 
formal techniques to help locate and suggest repairs to architectures [17], [18]. Such methods 
typically provide syntactic analysis of an architecture description, extracting rules and constraint 
violations found [19]. These methods are not as commonly used as they require extensive 
training to be effectively applied and, as such, are costly and time-consuming, though effective, if 
used properly. 
 
In all approaches to erosion management, effective minimization and recovery approaches 
require high levels of architecture analysis and documentation along with communication and 
coordination across the development team and constant and consistent monitoring of software 



Sharon Andrews & Mark Sheppard 

International Journal of Computer Science and Security (IJCSS), Volume (14) : Issue (2) : 2020 88 

changes to be effective. Such requires an organization to devote resources in the form of cost 
and time to address erosional concerns.  Additionally, escalating degrees of rigor must be 
incorporated into the software development process to be able to address increasingly higher 
levels of minimization.  

 
3. RELATED WORK 
A great deal of work has taken place with respect to the detection, prevention and reduction of 
architecture erosion. All such work hinges on the fact that the process of changing the code can 
easily result in design violations of well-known and established design principles [20] leading to 
erosion and drift. Finding and tracking such violations is key to controlling erosion. Previous work 
can be segregated into methods that center around visualization of the erosion, methods that 
center on the development of architectural models that embody design constraint rules, and 
methods that rely on the use of dependency structures and query-based languages to define 
module dependency constraint rules. 
 

Many visualization methods center on the use of specific types of antipatterns. One such work 
relies on the notion of circular dependencies and subtype knowledge [21] which forms the basis 
for finding and visualizing antipatterns [22] relating directly to violations of design principles that 
relate specifically to object oriented design such as the Acylic Dependencies Principle [23] and 
the Dependency Inversion Principle [24], [25]. Antipatterns such as these can be generically 
described as code segments which display atomic violations of known and accepted design 
principles. Visualizations of these violations are one classification of methods of discovery of 
instances of design rule violations within code, allowing code to be monitored for the emergence 
and growth of these patterns [26]. Such visualization assists software engineers and architects in 
assessing, tracing and therefore combating design erosion. Other work that targets the 
visualization of structural code changes in order to detect design principle violations have been 
reported within [27], [28], [29], [30], [31].  
 

Approaches within the domain of Model Driven Development depend on the development of 
appropriate architectural models, as well as a set design rules that form a set of constraints on 
the design realization. One such approach, described by Harold and Rausch [32], is based on a 
set of consistency constraints expressed as architectural rules specified as formulas within a 
defined ontology with models mapped to specific ontologies such that a knowledge 
representation and reasoning system can be used to check for architectural rule conformance for 
a given set of models. 
 
Query and relational calculus based methods typically support only a limited set of design 
artifacts to be checked as well as the inability to support the integration of an architectural 
description. In one such approach, Dependency Structure Matrices (DSM) [33] are used to 
capture the dependencies between the modules of systems where lines and row represent 
modules of a system and matrices indicate dependencies as binary values or weighted numerical 
values. A similar approach, Lattix LDM [34], provides for the definition of constraints that restrict 
the values the entities may the assigned. Other approaches rely upon relational calculus 
approaches for use with object oriented source code like CQL, QL or JQuery [35], [36], [37].  
 
Model-Driven reverse engineering models [38] and Reflexion models [39] are another more 
sophisticated approach to checking architectural conformance. Such models rely on the architect 
to manually create an abstract architectural model which defines the architectural components 
and the dependencies between the architecture components, as well their mappings to the 
realization source code models.  Some examples of this approach are ConQAT and Bauhaus 
[41], [42].  
 
The choice of which approach, or set of approaches, an organization should adopt as the 
underlying tool and method support for the detection, prevention and reduction of architecture 
erosion and drift is a complicated one and certainly would be organization-specific depending on 
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the products being developed, the skill of the development team and the architectural maturity of 
the organization as is discussed in the remainder of this paper.  

 
4. CONSIDERATIONS OF AN ORGANIZATIONS ARCHITECTURAL 

MATURITY  
The software process in place within an organization governs how an organization recognizes 
and deals with the development and maintenance of an architecture. This process is a direct 
reflection of what the authors describe herein as the Architectural Maturity Level of an 
organization. Architecturally-aware [43] and architecture-centric organizations are by default more 
mature with regard to controlling and managing erosion and drift. However, such organizations 
need to meet at least one or more of the requirements presented in Table 2 to be more formally 
considered architecturally aware and architecture centric. The more of these requirements that 
are met the more architecturally mature. These requirements form the basis for process steps the 
organization must establish, require, and support to begin to control erosion and drift of essential 
critical software. 
 

 Organizational Requirements Effect on the organization 

1. Organization must be architecturally aware  Organization understands the importance of 
architecture and has an explicitly well-defined 
process for architecture design and modification 
in place that employees are expected to follow. 

2. Architecture requirements must be made 
explicit, documented and traceable to quality 
requirements and major functional 
requirements. 

The organization's process must be explicit in 
how these requirements are expressed and 
maintained, including details such as format and 
all systems and models required for the 
expression and understanding of these 
requirements.  

3. Conformance checking must be performed on 
all architectures before implementation and 
during product evolution.   

Such conformance checking steps, and the output 
from each step, must be explicitly defined within 
the organization's software development process.  

4. Architecture must be updated to reflect new 
requirements before implementation may be 
changed   

Changes to the product must be controlled so that 
the architecture is changed to reflect any 
implementation change.   

5.  Any implementation increment must conform 
to the architecture. 

Before a product increment can be released, the 
code must pass a series of checks that it 
conforms to the architecture design. The exact 
steps and tools to effect this must be part of the 
organizations' adopted development process. 

 

TABLE 2: Organizational Requirements for Architectural Maturity. 

 
An organization that has a defined software development process in place that details exact 
support for each of these five requirements would certainly be deemed a more architecturally 
mature organization than those failing to meet one or more of the above requirements for the 
mature management of architectures. Certainly, the problems of architecture erosion and drift are 
directly and positively impacted by the adoption of these principles and the causes, impacts and 
management issues presented herein must be taken into account in an organization's specific 
process steps and output documents produced by such steps.   

 
5. CONCLUSIONS 
Software projects have become more costly to develop from the ground up due to increasing 
costs, shorter schedules, and increased complexity. Legacy software is exhibiting longer software 
lifecycles (spanning decades) and undergoes lengthy periods of maintenance and spurts of 
concentrated upgrades and enhancements. In essence, in many cases it's more cost-effective to 
reuse or modify legacy software than to go through the design/development process for a new 
software project. This legacy software requires continuous updates to address changing 
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technology, emergent customer requirements, evolutionary user interfaces, changing deployment 
strategies, and security concerns. However, bug fixes, enhancements, and upgrades can 
introduce erosion that gradually builds over the life of the project. Software with longer lifecycles 
typically suffer from erosional behaviors resulting in negative impacts on performance, 
maintainability, reliability, and quality.  Performance-affecting erosion can span the spectrum from 
minor annoyances to software that is unable to meet customer needs or that is operationally 
unstable or even unusable. Maintainability impacts can span from minor refactoring needs to 
unmaintainable and brittle code. While erosion is typically associated with gradual deviation from 
the intended architecture during the maintenance phase, erosion can start as soon as the 
architecture is defined and rapidly progress. Root causes that set the environment for erosion to 
occur include schedule pressure, incorrect architecture, poor processes in place, staff turnover, 
and even organizational culture. Organizations that wish to reduce architectural erosion need to 
plan the management of erosion by way of process for prevention, correction, and reduction. This 
requires that organizations put into place architecture-centric process steps that address and 
define how the architecture will be defined, maintained and updated taking into account the 
causes, impact, and requirements presented herein.  

 
6. FUTURE WORK: AN ARCHITECTURAL MATURITY MODEL IS NEEDED 
Organizations vary greatly in their competence in managing architecture design, not to mention 
erosion and drift. Indeed, for important life-critical software development work, an organization's 
architectural maturity could be the overriding factor in choosing among competing bids. It is 
typically accepted that an organization faced with choosing a software contractor for a large 
critical project would likely choose a contractor with a high level of architectural competence [44].  
Therefore, assessment of such an organization's maturity could provide organizations with a way 
to deem themselves as competent to a certain maturity level, much like the current and well know 
CMMI-DEV [45] model where an organization can be assessed as being at progressively 
competent maturity levels concerning their product development processes and methods. 
Capturing an organization's architectural competence within a multi-dimensional view of 
competence based on specific architecture processes, and steps within these processes, is 
needed.  Given such an "Architecture Maturity Model Integration (AMMI)" it could be possible to 
assess an organization to its architectural maturity.  The more reliable and higher quality are the 
products produced, the higher the maturity level. While software architecture is a small aspect of 
the CMMI it is not explicitly addressed in such a way that an effective AMMI assessment could be 
applied. Thus, future work is needed towards the definition of a specific architectural maturity 
model that can provide a means to assess organizations with respect to their architectural 
maturity and, at the same time, provide process guidance to organizations to develop their 
architectural maturity. Indeed, the authors have begun laying the foundation for such work with 
the work reported within which provides a framework of necessary foundational knowledge 
required for this model.  
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