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Abstract 

Computer vision (CV) -based techniques are being deployed to solve the problem of Crack 
Detection in metallic and concrete surfaces. This is because the Human-oriented inspections 
being used have drawbacks in the area of cost and manpower. One of the deployed CV 
techniques is the Deep Convolutional Neural Network (DCNN). Existing DCNN based crack 
detection models have a challenge of performing poorly when tested on images taken at a 
different location from the training images, hence crack localization is required. Thus, this 
research develops a location invariant crack detection and localization (LICDAL) model in 
unconstrained oil pipeline images using DCNN. LICDAL is developed by applying transfer 
learning on the Faster Region based - CNN (Faster R-CNN). The model is made location 
invariant by gathering images of cracked oil pipeline from various locations. The collected images 
are split into a 70%:30% ratio for training and testing set. LICDAL is evaluated using the mean 
Average Precision (mAP). The results on testing LICDAL shows the detected and localised 
cracks with a mAP of 97.3% on a set of 10 new test images taken from different locations; the 
highest Average Precision at 99% and the lowest Average Precision at 86%. The performance of 
LICDAL is compared to an existing crack detection model which detects cracks alone. LICDAL 
adequately localizes the detected cracks, thus improving crack identification. Secondly, there is 
no drastic reduction in performance for the test images taken at different locations from the 
training images, thus making LICDAL location invariant.  

Keywords:   Deep Learning, Convolutional Neural Network, Transfer Learning, Crack Detection. 

1. INTRODUCTION 

The utilization of oil pipelines for the transportation of oil products is of no little significance in Oil 
production. Though this method is more effective and efficient for oil product transportation, it still 
has its dangerous disadvantages in the form of “oil spills”. [1] defines Oil spill as an unintentional 
release of liquid petroleum hydrocarbon into the environment as a result of human activities which 
are usually caused by accidents involving pipelines, refineries, among others. As [2] notes, the 
environmental consequences of oil pollution on inhabitants are numerous; oil spills over time 
have turned productive land mass into badlands. Not only does it affect land, but as pointed out 
by [3], the total spillage of petroleum in seas, rivers and oceans through human activities is 
estimated 0.7 -1.7 million [3]. He also pointed out that oil spills could lead to the total destruction 
of ecosystems. A couple of Computer Vison and Image Processing techniques have been 
adopted in automatic detection of defects in structures, including cracks. [4] opined that, 
Computer vision and Image processing techniques are being utilized to visually inspect structures 
surface defects, including cracks, and the importance of image processing for visual inspection 
has been on the increase in various fields. Since visual inspection can examine a wide range of 
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structure surfaces in one shot by taking a picture of the desired areas, it will be of a high 
advantage as cost and manpower could be greatly reduced while inspecting. An aspect of 
Machine Learning that has seen more research in recent times is Deep Neural Network also 
known as Deep Learning, which seeks to learn a hierarchy of features at different levels from an 
input dataset. The edge Deep learning has over other algorithms is its ability to automatically 
learn a hierarchy of features from a set of unprocessed input data without the need for feature 
engineering as is the norm with most Machine Learning algorithms; it does this by employing 
deep Neural Network architectures [5]. Unlike shallow Neural Networks with few hidden layers 
(say 1 or 2 layers), Deep Learning methods utilize Neural Networks with many hidden layers or 
Deep architectures which allows for automatic learning of features on multiple levels. This is why 
Deep Learning is used in Computer Vision and Image processing tasks, and has proven to be 
more efficient than the traditional computer vision and image processing techniques. 

A lot of research on pavement and concrete crack detection using Deep Convolutional Neural 
Network has been carried out, however some areas still remain quite challenging. To the best of 
our knowledge there are hardly literature which has dealt with localizing the detected crack using 
DCNNs, that is, creating a bounding box around the region of the crack for easier detection. We 
propose the use of Deep Convolutional Neural Networks (DCNNs) and Transfer learning in 
detecting and localising cracks in unconstrained images of oil pipelines. Localisation of an object 
in an image means to draw a bounding box around that object once detected in the image. 
Unconstrained images refers to images obtained under diverse uncontrolled imaging condition 
including different lighting, texture, rotation, shadow changes etc. Transfer learning implies using 
a working deep learning model pre-trained on image datasets with lots of images, and transfer its 
learnt weights to new classification problems. On the other hand, painstakingly building and 
training a DCNN from scratch can be time and resource consuming, that is if the resources, in 
terms of training images, are sufficient. Proper fine-tuning of these pre-trained DCNN models 
have been seen to outperform DCCNs trained from scratch as was stated by [6] when tested on 
medical images.  

The rest of the paper is arranged as follows: section 2 gives a review of the crack detection 
techniques in use, ranging from Human-based techniques to Computer-vision based techniques; 
the latter part of this section gives a quick introduction on DCNN, Object detection, and the idea 
of transfer learning on DCNNs. Section 3 explains the proposed methodology adapted in this 
paper. In section 4, we discuss the Data collection and implementation. In section 5, the training 
and test result of the model are discussed and a comparative analysis with a DCNN-based 
method is made. The article concludes with a summary and recommendations for future work in 
section 6. 

 
2. RELATED WORKS 
Generally, cracks are detected on surfaces via an all-encompassing method called 
Nondestructive testing (NDT), which is the branch of engineering concerned with non- contact 
methods of detecting and evaluating defects in [7]. The reason NDT is mostly used is because it 
is non-destructive on the material or structure being tested. NDT ranges from simple techniques 
such as visual examination of surfaces, through the well- established methods of radiography, 
ultrasonic testing, magnetic particle crack detection, to new and very specialized methods [8]. 
NDT is classified into two categories as mentioned [8]: Non-visual and Visual NDT methods. The 
Non-visual NDT methods involves the travelling of waves (sound, current, etc.) into the object and 
the feedback from these waves determine the state of the object. Some techniques under the 
Non-visual NDT methods are: Ultrasonic inspection, Eddy current testing and Acoustic emission 
monitoring, etc. The visual NDT methods involves visual inspection and are much easier to 
perform, inexpensive and does not require the use of special equipment. Some techniques under 
this method are: Closed circuit television (CCTV) inspection, Pipe scanner and evaluation 
technology (PSET) and Laser-based scanning systems. Although these aforementioned 
techniques are effective, a number of Computer Vison and Image Processing techniques have 
been adopted in automatically detecting defects in structures, including cracks. These techniques 
basically involve automatically recovering useful information about a scene from its two-
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dimensional projections [8]. Since visual inspection can examine a wide range of structure 
surfaces (in some cases, remotely) in one shot by taking a picture of the desired areas, it will be 
of a high advantage as cost and man power can be greatly reduced while inspecting [4]. 

As reported in literature, the use of Image processing and Computer vision techniques in 
automatic crack detection has been progressive and impressive over the years. [9] adapted and 
implemented an efficient algorithm for detecting crack patterns in pipeline images. The automated 
method is divided into three steps, namely, contrast enhancement, morphological treatment and 
curvature evaluation in the cross- direction and finally the alternating filters that produce the final 
segmented binary crack map. Their proposed evaluation scheme adequately estimated the 
performance of this algorithm in an absolute way and results showed that 91% of cracks were 
detected. [4] proposed the use of Percolation model and Edge information for crack detection on 
concrete surfaces. They were able to detect connected cracks adequately and this method 
outperformed a previous method where Wavelet transforms were used, which detected more 
noise alongside the cracks.  Gabor filters were used by [10] to detect pavement cracks; they were 
able to detect diverse types of cracks with up to 95% precision. In [11], a method to automatically 
detect cracks in images of concrete through segmentation using fuzzy c-means clustering and 
multiple noise reduction was proposed. They used a 3 stage model to first perform image 
segmentation using fuzzy c-means, then mask filters of different sizes were used to remove noise 
leaving only the cracks. This method outperformed the Sobel detection segmentation, however, it 
still contains lots of noise.  

The above-mentioned methods utilize Image processing techniques to manipulate images and 
extract crack features. However, the challenge with these Image processing techniques is its 
inability to perform optimally under unconstrained imaging conditions like lighting and shadow 
change. In a bid to solve this challenge, Convolutional Neural Network (CNN), which is a 
Computer Vision based method, is used to automatically detect cracks without having to hand 
engineer the image features to look for. Hence, Crack detection using CNN has proven to be 
effective.  [12] used a 3 layer CNN to build a classifier to detect concrete cracks from 
unconstrained images. In order to properly train the network, a sliding window technique was 
used to scan through the Image to detect cracks. Images were cropped in to smaller images of 
size 256 x 256 pixels, which is the size of the sliding window; this was used for the training and 
validation of the network. This method yielded good results for the accuracies in training and 
validation of 98.22% at the 51st epoch and 97.95% at 49th epoch, respectively. The problem with 
this method is its heavy computation increasing the running time which took about 1-2 days on a 
CPU only system; with two GPUs it took about 90 minutes until the 60

th
 epoch.  [13] proposed a 4 

layer supervised deep convolutional network to classify image patches collected by a low cost 
smart phone. The CNN was trained on square image patches of size 5x5 pixels, and a patch 
whose centre is a crack pixel or is close to a crack pixel is classified as a crack. Though this 
method adequately detects cracks, it has a downside of classifying more pixels in the image as 
cracks than actually is in the original image. [14] presented a 4 layer convolutional network to 
detect cracks in pavements. The layers consisted of 4 convolutional layers, 4 max pooling layers, 
2 fully connected layers, an auxiliary dropout layer and a Softmax layer. They trained and tested 
images from a certain location with the 4 layer network and added a 5

th
 layer which was used to 

train and test images from another location. The 5 layer network performed better than the 4 layer 
network in terms of accuracy, precision and recall with a score of 91.3%, 90.7% and 92.0% 
respectively. However, the classifier performed poorly on test images that were taken from a 
different location from the training images with a score of 90.1%, 85.6% and 96.4% for the 
accuracy, precision and recall . [13] worked on a Convolutional neural Network which 
automatically detects pavement cracks in asphalt surfaces, the CNN was named CrackNet. 
Unlike regular CNNs, this method has no pooling layers to reduce the sizes of the images during 
training; the size of the input image is invariant through all the layers of the ConvNet achieving a 
pixel-perfect accuracy. CrackNet consists of one 1 x 1 convolutional layer, two fully connected 
layers and an output layer; it uses more than one million parameters. The results show a 90.13% 
precision. [15] proposed a method of using a pre-trained deep learning model and transfer 
learning to detect crack from pavement images. Using the Keras deep learning framework, they 
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used an open sourced implementation of the VGG-16 (a 16 layer Deep ConvNet) model which 
has already been trained on the ImageNet database. The fully connected layer of the VGG-16 is 
truncated and is used as a deep feature generator which produces semantic image vectors. 
These image vectors were trained and tested using different machine learning techniques, of 
which Neural Network outperformed the others with a balanced accuracy of 87%.  Also of note is 
the work done by [16] where they developed a dataset for road damage and trained and 
evaluated  a damage detection and localisation model through transfer learning based on a 
combination of some state-of-the-art convolutional Neural Networks. They used a mixture of SSD 
and MobileNet to build a model that can run on a smartphone and achieved recalls and 
precisions over 75% with an inference time of 1.5s on a smart phone. 

2.1 Deep Convolutional Neural Networks (DCNNs) 
DCNNs is an effective architecture in processing visual data such as images and videos. DCNNs 
accept raw input data at the lowest level and transforms them by processing them through a 
sequence of basic computational units to obtain representations that have intrinsic values for 
classification in the higher layers [17]. DCCN consists of three layer types: convolutional layers, 
subsampling layers and fully connected layers. The Convolution layer takes the convolution of the 
input image with the convolution matrix and generates the output image. A convolutional layer is 
parametrized by the number of channels, kernel size, stride factor, border mode, and the 
connection table. Multiple convolutional layers are used to take into consideration the spatial 
dependencies among image pixels. [15]. The subsampling layer is used to make the neural 
network more invariant and robust. This layer is mainly to reduce the input image size in order to 
give the neural network more invariance and robustness. The most used method for subsampling 
layer in image processing tasks is max pooling as it has shown to lead to faster convergence and 
better generalization. The subsampling layer is frequently called max pooling layer [15]. Full 
connection layers are similar to the traditional feed-forward neural layer. They make the neural 
network fed forward into vectors with a predefined length. We could fit the vector into certain 

categories or take it as a representation vector for further processing. Figure 1 gives a pictorial 
view of a CNN. 

2.2 Transfer Learning 
Training a DCNN is quite tedious, as the training dataset has to be of a sufficiently large number 
which will be trained within a certain period of time depending on the processing power of the 
machine used. For some cases, gathering of sufficient data is very tasking or impossible, and 
training a DCNN to generalize (and not overfit) will require lots of training dataset. Where this is 
the case, then it is possible to take an already trained DCNN model and use it to perform the 
given task; this is known as Transfer Learning or Fine-tuning. The intuition is that it is cheaper 
and easier to use state-of-the-art DCNN models already trained on very large data and transfer 
their learning ability to the classification task rather training one from scratch. As shown by [6] in 
his work, for medical applications, the use of a pre-trained Convolutional neural network (CNN) 
with adequate fine-tuning outperformed or, in the worst case, performed as well as a CNN trained 
from scratch.  
 
 

FIGURE 1: Schematic diagram of Convolutional neural network [15]. 

s 
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2.3 Object Detection 
Object detection is aimed at locating the different objects in an image and classifying them in their 
different categories; this is normally done by putting a bounding box around the image for easy 
identification and labelling. This is different from Image classification which seeks to classify an 
image into a category based in the most prominent object.  Object detection can be used to 
locate the different objects in an image, count the objects and also segment the objects from the 
image. DCNNs which have been widely used for Image classification are also used for Object 
detection. Essentially, there are three steps involved in an object detection framework: 
 
1. An algorithm to create a number of bounding boxes to capture the objects in the images. This 

is referred to as Region of Interest (RoI) or Region Proposals. 
2. Image classification of each of the objects selected in the region proposals based on visual 

features. This is where the DCNN is utilized. 
3. For the final stage, overlapping boxes are combined into one using certain algorithms. 

The Object detection model used for this paper is Faster R-CNN, which is discussed in the 
following section. 

 
3. METHODOLOGY 
This Section presents an overview of the general framework of the crack detection model. The 
framework consists of two major stages - the Pre-processing stage and the Crack detection 
model design stage. The first stage consists of processes that prepare the images for training and 
validation on the crack detection model while the second stage deals with designing the model.  
The Crack detection model design stage shall be discussed next. The pictorial view of the general 
framework is shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

The Faster Regional Convolutional Neural Network (Faster R-CNN) is the Object Detection model 
adapted for the Crack Detection and Localisation model. Proposed by [18], Faster R-CNN is used 
because of its ability to process images and videos in quasi real-time while giving a high 
performance. In order for us to use its already learned weights for our purpose, transfer learning 
was applied on the model by freezing some layers of the network and changing some layers (the 
final layers). The Faster R-CNN comprises of two components - the Region Proposal Network 
(RPN), for region proposals, and the Fast R-CNN, for classification. The peculiarity of this model 
is that both the RPN and the Fast R-CNN share the same CNN to extract features from images. 
The architecture of the Faster R-CNN is shown in Figure 3. 

FIGURE 2:  General Framework of the Crack detection model. 
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3.1 Region Proposal Network (RPN) 
The RPN proposes object proposals along with their probability score for the Fast R-CNN to work 
with. It takes an image as input and outputs a set of rectangular object proposals, that is, it puts a 
rectangular bounding box around the detected images so that the Fast R-CNN can classify the 
objects in the boxes. A CNN is the first component of the RPN, and its role is to automatically 
extract visual features from the image by passing it through its different layers; the CNN outputs a 
feature map. After this, a number of Convolutional layers with different spatial window sizes slides 
over the feature map in order to generate object proposal; each of these spatial windows are 
associated with nine rectangular boxes called anchors. In introducing Faster R-CNN, [18] 
recommends nine anchors which are composed of three different widths and heights. Figure 4 
shows the schematic architecture of the RPN. An anchor either passes as a proposed region or 
part of the background depending on its closeness to the ground truth. This is determined by the 
Intersection-over-Union (IoU), an anchor is labelled as positive if its IoU score is higher than a 
threshold of 0.7 or in the case of multiple ground truth, if the IoU score is the highest [18]. Boxes 
with IoU ration lower than 0.3 are labelled as background and the other anchors are not used for 
training. Given a ground truth, the IoU is the ratio of the area of overlap between the proposed 
region and the ground truth to the area of union; this is pictorially shown in Figure 5. 

 

 

 

 

FIGURE 3: Overview of the adapted Faster R-CNN architecture [12]. 

FIGURE 4: Adapted schematic architecture of the RPN. [12]. 
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The convolutional layer of different sizes is followed by a ReLU as an activation function before 
being fed into the Fully Connected layer, or the Feature vector. The softmax layer uses the 
feature vector to calculate for each of the nine generated boxes at each sliding window of the 
convolutional layer, the probability of being an object in the box or the probability of having no 
object, being part of the background; the probability is between zero and one. The regression 
layer, which also feeds off from the feature vector, predicts the center coordinates, width, and 
height of a bounding box, and is trained to map the predicted box to a ground truth box. 

3.2 Fast R-CNN 
The Fast R-CNN is a previous version of the Faster R-CNN proposed by [20]. Fast R-CNN first 
extracts visual features of the image using a CNN. Region proposals are generated using any 
external region proposal method, such as selective search, and are combined with the feature 
map from the CNN to form rectangular boxes for object detection. These Regions of Interest (RoI) 
are warped to a fixed size vectors through the ROI pooling layer by applying max pooling on the 
RoIs. These vectors are then fed to the fully connected layers followed by two regression and 
softmax layers for localization and classification. Figure 6 describes the architecture of a Fast R-
CNN.  

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 5: Intersection-over-Union (IoU). 
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FIGURE 6: The Schematic architecture of Fast R-CNN [12]. 
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3.3 Faster R-CNN 
Having discussed the architecture of the RPN and the Fast R-CNN, how they both work together 
to form the Faster R-CNN shall be discussed next. In this model, computations of the CNN for 
feature extraction are shared by both the RPN and Fast R-CNN. The training process for this 
model is of four steps. The RPN is initialized with an ImageNet pre-trained model and object 
proposals are prepared for Fast R-CNN. In the second step, the Fast R-CNN is initialized with the 
trained weights of step one; in the next step, RPN is initialized with the final weights of the last 
step and trained again. For the last step, Fast R-CNN takes the object proposals generated in 
step three and is trained with the initial parameters trained in step three. In a situation where the 
RPN produces more than 2000 object proposals, the first 300 proposals with the highest scores 
are used in order to increase detection speed [18]. The Faster R-CNN is described in Figure 7. 
The base CNN network used is the Inception V2 [19].  
 

 
 
 
In order for this already developed Object detection model to be able to detect cracks in oil 
pipelines, transfer learning was applied to the model. Transfer learning makes it possible to use 
the weights from the layers of an already pre-trained network for a task that the network was not 
originally designed to do. The first step is to divide the layers into two: Early layers and Last 
layers. The Early layers are the layers that learn low level features from images, such as edges, 
colors, blobs, etc. while the Last layers learn, on a higher level, the object specific features; these 
are the layers that use information from the earlier layers to make out different objects. After the 
separation, we replace the Last layers with new layers that are able to learn the features specific 
to cracks in order to detect it. Following this, we combine all the layers and train the network with 
the training images, then we test and evaluate the network. Our transfer learning workflow is 
described in Figure 8. 

 
4. DATA COLLECTION AND IMPLEMENTATION 
In order to meet the objective of making a location invariant model, our dataset needs to comprise 
of images from different locations and under various unconstrained conditions. Our database was 
formed by scraping various webpages owned by oil pipeline related companies situated at 
different locations, for images of cracked oil pipeline. Hence, images from diverse locations such 
as Nigeria, Aberdeen, Canada, China, Singapore, were collected. A total of 52 images were 
collected and were divided in a 70%:30% proportion for training and testing. According to Figure 

FIGURE 7: Adapted Schematic architecture of Faster R-CNN [12]. 
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2, we see that the pre-processing stage has two phases, being Image augmentation and Image 
annotation.  
 
4.1 Image Augmentation 
This is the first phase of the Pre-processing stage. Data augmentation is a way to increase the 
number of data in a small dataset in order to aid the CNN to learn better by generalizing rather 
than overfitting, which is a danger in training a model with a small dataset. Making a CNN more 
robust means training it to recognize an object in different unconstrained conditions, so that if the 
object appears in any altered form, the model will still be able to detect it. Data augmentation 
entails altering and distorting the original image  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
in a number of ways; this includes: Horizontal and vertical flipping, Scaling and Translating, 
Rotation and Shearing. This augmented data is used in training the model in order to enable it 
detect the image irrespective of any unconstrained conditions, making the model more robust. 
The Images were augmented using Keras, which is a neural network library written in python. 
Each of the images in the training dataset were augmented by generating 10 randomly altered 
images from them. That is, each of the images were either flipped, scaled, translated, rotated or 
sheared to produce about 10 augmented images which totaled 256 training images. 
 
4.2 Image Annotation 
For the crack detection and localisation model to know where an object (a crack in our case) is 
situated in an image, the objects in the images which will be used to train the image must first be 
manually labelled, by getting the coordinates bounding the object in the image; this information 
will then be attached to the image as a metadata when training the model. This process is also 
known as annotating the image. This annotation was done for all the training images (including 
the resulting augmented images). The coordinates are represented in an integer data format. The 
output of each image after annotation is of the form: 

Image, w, h, object, x1, y1, x2, y2 

FIGURE 8: Adapted Transfer Learning workflow [21]. 
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Where w is width, h is height, and x1, y1, x2, y2 represents the coordinates of the bounding box 
around the object. The Image annotation stage was done using LabelImg, which is a Graphical 
Image annotation tool written in python. It allows for a bounding box to be drawn around the 
desired object by the user and attaches the coordinates of the bounding box as a metadata to the 
image; it outputs this as an xml file. The different xml files are collated into one csv file which is 
used for training.  

4.3 Implementation Details 
Although there are a number of programming languages available for use, the language adopted 
is Python. The reason Python was adopted is because of the numerous Packages, Libraries and 
support provided for various Machine Learning and Deep Learning tasks. The Model was 
developed using Tensorflow, which is a computational framework for building machine learning 
models; it is able to utilize the Graphic Processing Unit (GPU) of a machine to speed up large 
computations, making this framework suitable for Deep Learning tasks, which are involved with 
large computations. We are able to use this framework through its Python API. An 
implementation of the Faster R-CNN based on the paper by [18] was done on Tensorflow by 
Google, called the Tensorflow Object Detection API. This was done as an open source 
framework that makes it easy to construct, train and deploy object detection models. The reason 
this is used is because we are applying transfer learning on the already learned weights of the 
implemented Faster R-CNN model. The implemented model was trained on the Common Objects 
in Context (COCO) dataset, which is a large-scale, object detection, and captioning dataset with 
about 80 different object classes; this dataset doesn’t contain the object we desire to detect. The 
layers of the Faster R-CNN were separated into Low level layers and High level layers, before 
replacing the high level layers with new layers and combining all the layers; the model is now 
ready for training. 

5. TRAINING AND TESTING 
The model was trained and validated with the annotated images on an Acer Nitro 5 machine with 
Intel(R) Core(TM) i5-8300H CPU @ 2.30GHz (8 CPUs), 8 GB DDR4 SDRAM and 4 GB NVIDIA 
GeForce GTX 1050 Graphics processing Unit (GPU). The hyper-parameters used in training the 
model are:  a momentum of 0.9 and a learning rate of 0.0002. The time taken to train the model 
was about 4 hours; the training time was boosted because of the GPU mode used in training. For 
a CPU mode, it will approximately take over 4 days to train. A new set of 12 images taken from 
different locations were used for testing the model. Figure 9 shows the different results of some of 
the test images. Obviously, the model outputs a bounding box around the detected crack, 
including the Average Precision per test image.  
 

 
FIGURE 9: Results of the Crack detection and Localisation model. 
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5.1 Discussion 
The graph in Figure 10 shows the Average Precision (AP) for 10 of the new test image set with 
the highest AP at 99% and the lowest AP at 86%. The Mean Average Precision (mAP) is 97.3%. 
A major challenge of the model is that it falsely detect cracks in image portions that have no 
cracks as shown in Figure 11. This challenge can be tackled by providing the model with more 
training images so it can learn to distinguish crack features from similar features which are not 
cracks. Out of the 12 new test images, the ratio of correctly detected images to falsely detected 
images is 10:2. 
 
The Accuracy of the model based on the 12 test images is 83%, given by equation 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
5.2 Comparative Analysis 
Comparing this Faster R-CNN based crack detection and localisation model with the CNN based 
pavement crack detection model of [14], some similarities and differences are noticed. Although 
the crack detection model [14] has a high accuracy, as stated in the review of existing related 
works, there is no indicator to aid the identification of the crack location in the image; however, 
the model developed in this research puts a bounding box around the crack to aid easier 
detection. Another point of note is that the model by [14] was reported to perform less when the 
testing and training images were taken from a different location than how it performed when the 
testing and training images were from the same location. However, the performance of the model 
developed in this work is not affected by test images taken from different locations. 
 
 
 

Aver

age 

Prec

ision 

(%) 

Accuracy =   
Total number of predictions 

(1) 
Number of correct predictions 

FIGURE 10: Performance of the Crack detection and Localisation Model for testing set. 
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6. CONCLUSION AND RECOMMENDATION 
In summary, this work focuses on the building of a model for detecting and localizing cracks in 
unconstrained oil pipeline images using Deep Convolutional Neural Network. The model was first 
designed by applying Transfer learning to a state-of –the-art CNN based object detection model - 
Faster R-CNN. This was implemented on Python through the Google Object detection API. 
Subsequently, the model was trained and tested on images gotten from various locations by 
scraping the web after passing them through a pre-processing stage. Finally, the model was 
evaluated using the mean Average Precision (mAP). The results show a bounding box around 
the detected crack with a mAP of 97.3% on a set of 12 new test images; the highest AP at 99% 
and the lowest AP at 86%. Compared to the crack detection model by [14] which adequately 
detects crack alone, the model developed in this work is able to localize the detected cracks, thus 
improving crack identification. Secondly, there is no drastic reduction in performance for test 
images taken from different location, making the model location invariant. However, despite its 
high performance, there were few cases of falsely detected cracks identified. The scope of this 
work was limited only to unconstrained oil pipeline images, hence, the performance of the model 
on other surface and structure type is unknown as of this publication; it is recommended for 
further research. The experimental results of this work shows its potential in curbing the 
dangerous effects of oil spillage in the oil and gas sector by detecting cracks in oil pipelines. If 
adopted, this research can potentially aid in eliminating the drawbacks associated with current 
crack detection systems that are highly dependent on human input by reducing cost and man 
power (among others) while crack inspections are carried out. 
 
Further work on this research could address the false detection problem, in order to enhance the 
model’s detection accuracy. Also, the model could be improved for detection of more defects of 
oil pipeline such as, corrosion, punctures and dents. The model could also be trained to detect 
cracks in multiple surfaces and structures. 

 

FIGURE 11:   Falsely detected cracks detected the crack detection and Localisation model. 
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