
Hamad Al Salem & Jia Song

International Journal of Computer Science and Security (IJCSS), Volume (15) : Issue (5) : 2021 146
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

Using Grammar Extracted from Sample Inputs to Generate
Effective Fuzzing Files

Hamad Al Salem alsa5294@vandals.uidaho.edu
Computer Science Department
University of Idaho
Moscow, ID, 83844, USA
Najran University, Najran, SA

Jia Song jsong@uidaho.edu
Computer Science Department
University of Idaho
Moscow, ID, 83844, USA

Abstract

Software testing is an important step in the software development life cycle. It focuses on testing
software functionalities, finding vulnerabilities, and assuring the software is executing as
expected. Fuzzing is one of the software testing techniques which feeds random input to
programs and monitors for abnormal behaviors such as a program crash. One of the limitations of
fuzzing is that most of the fuzzers require highly structured input or certain input pattern;
otherwise, the fuzz testing may be terminated at the early stage of the program execution
because of not meeting the input format requirements. Some fuzzers resolve this problem by
manually creating program specific input grammars to help guide fuzzing, which is tedious, error
prone, and time consuming. In addition, this solution cannot work efficiently when testing multiple
programs which require different input patterns. To solve this problem, a general grammar-based
fuzzing technique is proposed and developed in this paper. The new fuzzer can extract grammar
from the sample input files of a program, and then generate effective fuzzing files based on the
grammar. This fuzzing tool is able to work with different programs by extracting grammar from
them automatically and hence generate program specific fuzzing files. The fuzzing tool is fast and
can find a crash in a short time. From the experiments, it successfully crashed 79 (out of 235)
programs of the DARPA CGC dataset.

Keywords: Software Testing, Fuzzing, Grammar Analysis, Security Testing.

1. INTRODUCTION
Recently, software security testing has been widely used to reduce the number of bugs in the
software. Researchers have proposed different approaches to support automated software
security testing. Fuzzing is one of the approaches. Fuzzing was first attempted by Barton Miller in
1988 to fuzz Unix utilities (Miller, Fredriksen, & So, 1990). Since that time, fuzzing became an
interesting topic.

Fuzzing is an automated technique that supports discovering vulnerabilities and weaknesses in a
target program by using random generated malformed input data (Oehlert, 2005). Fuzzing can be
automated and does not require access to the source code compared to manually reviewing the
source code, which requires a huge amount of time and cost. It can trigger vulnerabilities that the
programmers overlooked while programming, such as buffer overflow, off by one error, etc. In
general, a fuzz testing consists of user inputs (seeds), a target program, fuzzing techniques that
use the seeds to generate new malformed inputs, and abnormal behavior monitor (Liang, Pei, Jia,
Shen, & Zhang, Sept. 2018). First, an important component in fuzzing process is user input,
which is the route in discovery of bugs or flaws in a software/system. Second, the target program

Hamad Al Salem & Jia Song

International Journal of Computer Science and Security (IJCSS), Volume (15) : Issue (5) : 2021 147
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

is the software under test that is needed to conduct fuzzing process. Third, fuzzing technique is
the strategy of creating fuzzing inputs, which is a part of fuzzing process which creates
malformed inputs that could trigger vulnerabilities in the target program. In the end, an abnormal
behavior monitors for any exception after running the target program with the malformed fuzzing
inputs. Therefore, the idea behind fuzzing is generating a large number of invalid or bad inputs
and feeding them to the target program to cause a crash or trigger errors (Liang, Pei, Jia, Shen, &
Zhang, Sept. 2018).

In recent years, fuzzing has been an interesting topic in software testing. There are many fuzzing
tools that automatically generate malformed test inputs and feed them to the target program for
exploring any bugs; the most known fuzzing tools are AFL (Zalewski, 2014), Peach (Fuzzer,
2016), LibFuzzer (Serebryany, 2015), and RADAMSA (Helin, 2006). There are different types of
fuzzers, such as black-box fuzzing, coverage-guided fuzzing, symbolic execution-guided fuzzing,
dynamic taint analysis-guided fuzzing, grammar-based fuzzing, etc. Black-box fuzzing randomly
generates a stream of test cases and fuzzes a program without any knowledge of the program
(Godefroid, Fuzzing: Hack, art, and science, Jan, 2020). Coverage-guided fuzzing uses trivial
program coverage feedback to follow how the running path of the program switches via given
fuzzed input (Blazytko, et al., 2019). The fuzzer employs the collected instrumentation data to
choose which inputs could be ignored or kept in the corpus queue (Blazytko, et al., 2019).
Fuzzers that use symbolic execution technique employ input values as symbolic values rather
than using actual values and use symbolic presentation to express the values of program
variables (Noller, Sept. 2018). Dynamic taint analysis is a type of data flow analysis method which
is used in many domains like software engineering, and computer security (Gan, et al., Aug.
2020). It can be used in fuzzing to track the generation of some kind of inputs to collect useful
data to fuzz programs with different inputs (Gan, et al., Aug. 2020). Grammar-based fuzzing takes
grammars for a certain input file structure such as HTML, XML, C language, etc. to generate valid
input fuzzing files that are accepted by the grammars (Al Salem & Song, June 2019). A detailed
literature review on the existing grammar-based fuzzers can be found in Section 3.

2. MOTIVATION AND CONTRIBUTIONS
2.1 Motivation
Generally, fuzzing is a prevalent and effective way to reveal bugs in applications. Fuzzing tools
work by providing a huge amount of fuzzing inputs which can be used to test the target program.
By looking closely at the execution of these fuzzing inputs, fuzzing tools can identify inputs which
can trigger an exception. In high-level view, one can take into consideration that fuzzing is a
random method to discover flaws of a software; however, most of the randomly generated inputs
are rejected in the early stage by the target software without visiting interesting locations in the
target code. There are many studies conducted on this approach to explore new effective ways to
generate interesting fuzzing inputs which are able to trigger a vulnerability deeply in a program
(Wang, Chen , Wei, & Liu, 2017). Although great progress has been accomplished in fuzzing,
there is still human intervention in the fuzzing process (Blazytko, et al., 2019). It is an important
goal for fuzzing developers to reduce the human interaction and domain knowledge of the target
program.

A very important aspect of fuzzing is input generation which affects the effectiveness of fuzzing
input data. Without the source code and knowledge about the program, the performance of a
fuzzer will be limited because most of the programs require highly structured input. To help
improve it, some fuzzers require valid sample input to at least have a good start point, but they
cannot guarantee that a generated fuzzing input meets the program requirement and can be
accepted by the program. Some fuzzers limit the format of the target program to be a certain type
of program, such as pdf, png, html. Some researchers focus on generating fuzzing inputs based
on one or more input formats (Wang, Chen , Wei, & Liu, 2017), (Fuzzer, 2016), (Guo, Zhang,
Wang, & Wei, 2013), (Veggalam, Rawat, Haller, & Bos, 2016). For example, fuzzer GramFuzz
(Guo, Zhang, Wang, & Wei, 2013) deals with JavaScript, HTML, and CSS formats, so the fuzzer
understands how to generate fuzzing input that satisfies the format requirement for those three

Hamad Al Salem & Jia Song

International Journal of Computer Science and Security (IJCSS), Volume (15) : Issue (5) : 2021 148
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

formats. Several fuzzers require users to manually create grammars to help generate fuzzing
input (Aschermann, et al., 2019), (Koroglu & Wotawa, 2019), (Fuzzer, 2016), (Amini, 2013), but
they require the users to have knowledge about the input format and be able to provide the
proper grammar to the fuzzer correctly. Therefore, it is still an open question to automatically
generate fuzzing inputs which are good for general inputs' format specification (often called
“grammars”).

Some researchers focused on user inputs which studied how to generate effective fuzzing inputs
(Godefroid, Jan, 2020). Others concentrated on fuzzing techniques that exercised fewer
resources and reduced the space of potential inputs (Aschermann, et al., 2019). The scope of this
research is about learning grammar from the sample input file and generating effective fuzzing
inputs from grammars. In the research, the sample input files will be studied and grammars will
be extracted from the input automatically. The grammar is later used to help generate effective
fuzzing input which has correct format that can be accepted by the program and can go deeper
into the program.

2.2 Contributions
Most previous research studies centered on generating fuzzing files on a specific input language
and use public grammar rules to generate fuzzing input files. The proposed tool can analyze
sample input files, obtain the grammar rules, and use them to generate fuzzing inputs
automatically. The proposed work is a grammar-based fuzzing tool that analyzes sample input
files of a program and uses fuzzing techniques to generate effective fuzzing inputs.

The proposed tool will be designed and implemented based on grammars and effective fuzzing
techniques that will improve the efficiency of vulnerabilities detection. without any human
interaction, by using input files, the tool can automatically learn the grammar and generate
effective fuzzing inputs which can trigger vulnerabilities in a target program. This will provide
software developers a hand to test their software, discover vulnerabilities, and make sure their
software is safe and secure. The extracted grammar will guide the fuzzer to generate fuzzing files
which can explore bugs deeply in the target program. Therefore, the tool will support software
developers and industry to find bugs in a system. Since the tool is automated, it will save time
and energy of the developers and testers.

3. RELATED WORK
Grammar-based fuzzing is a fuzzing technique that takes a particular input format to get the
correct grammars structure. Then, it uses the grammars to generate fuzzing input that passes the
parsing stage of a program. The vast majority of the grammar-guided fuzzing techniques take
unique file format for specific input structure. A fuzzing tool will have difficulties and problems if it
does not have a valid user input format known before. Therefore, it is critical for grammar-based
fuzzing tool to have grammar specification which will support the generation of valid fuzzing
inputs that meet the program testing and assist in exploring interesting bugs. Moreover, grammar-
based fuzzing tool that uses grammar guided method is able to increase code coverage and
reach deeper locations in a target application (Kim, Cha, & Bae, 2013). Most of the techniques
that use grammar-based fuzzing are utilizing grammar with user inputs in the beginning of fuzzing
process to generate test. By using grammars, the fuzzing tool can generate new user inputs and
then apply them to generate new fuzzing inputs. Many studies have been performed on fuzzing
techniques that use grammar to guide fuzzer. Moreover, they combine grammar-based fuzzers
with techniques such as mutation, machine learning (e.g., neural networks), evolutionary
computing (e.g., genetic algorithm), or coverage feedback to guide fuzzing and improve the ability
of revealing bugs in a program under test.

Mutation-based fuzzing takes sample inputs and chooses them in particular order, then
mutates/changes them in different ways, and examines target programs with the newly generated
test input. Mutation is the most common technique used for fuzzing guidance because it has an
efficient way to get fuzzing user input that supports finding deep bugs while using it with

Hamad Al Salem & Jia Song

International Journal of Computer Science and Security (IJCSS), Volume (15) : Issue (5) : 2021 149
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

grammar-guided fuzzing (Guo, Zhang, Wang, & Wei, 2013). Machine learning fuzzing is another
method that a fuzzer can use to find bugs in the target programs. It is a learning algorithm which
learns or trains model to do certain operations with some probabilities, and it can be used with
fuzzing to generate intelligent or organized fuzzing files. Evolutionary computing fuzzing is
inspired by evolution theory and generates new individuals in the eco-system with reproduction
and combination of good features of individuals by using fitness function. Therefore, the tool can
generate effective fuzzing inputs. Coverage-guided fuzzing is a technique in which a fuzzer can
get coverage feedback information so the fuzzer uses it to test unvisited locations in the program
under test.

3.1 Grammar-based Fuzzers based on Mutation
Some studies used mutation technique in a grammar-based fuzzing such as GramFuzz (Guo,
Zhang, Wang, & Wei, 2013), SD-Gen (Sargsyan, et al., 2018), BlendFuzz (Yang, Zhang, & Liu,
2012), QuickFuzz (Grieco, Ceresa, & Buiras, 2016), LangFuzz (Holler, Herzig, & Zeller, 2012),
and mutated grammar fuzzer (MGF) (Koroglu & Wotawa, 2019). When a fuzzing tool combines
grammars with mutation the generated test cases will be more effective (Guo, Zhang, Wang, &
Wei, 2013). Mutation has different ways to mutate and alter the user input. GramFuzz (Guo,
Zhang, Wang, & Wei, 2013), BlendFuzz (Yang, Zhang, & Liu, 2012), SD-Gen (Sargsyan, et al.,
2018), and LangFuzz (Holler, Herzig, & Zeller, 2012) are similar that after extracting the
grammars from user/sample inputs, they mutate some parts of the user inputs based on the user
input type to get fuzzing input that may find a vulnerability in the tested program. QuickFuzz
(Grieco, Ceresa, & Buiras, 2016) combines bit-level fuzzers with the fuzzing tool to support

mutate user input in certain locations. However, Koroglu et al. (2019) stated that a grammar is

provided to the fuzzer; then the tool mutated it to generate the fuzzing inputs.

Fuzzing tools GramFuzz (Guo, Zhang, Wang, & Wei, 2013), QuickFuzz (Grieco, Ceresa, &
Buiras, 2016), and LangFuzz (Holler, Herzig, & Zeller, 2012) are focusing on generating fuzzing
files for web browsers engines like Mozilla, IE, and Firefox. They use user input format XML,
CSS, HTML, PHP, and JavaScript particularly to extract the grammars from those languages.
Then, they used them to mutate the generated user inputs. Moreover QuickFuzz (Grieco, Ceresa,
& Buiras, 2016), in addition to web browser engines, it focuses on generating fuzzing files for
image processing utilities and file achievers. Sargsyan et al. (2018) stated that SD-Gen focuses
on generating fuzzing user inputs on programming languages such as C, C++, Python, Java, etc.

According to Guo et al. GramFuzz (2013) has found 36 vulnerabilities that are believed to be
severe security issues in IE, Mozilla, and FireFox. MGF (Koroglu & Wotawa, 2019) has found to
have an increased code coverage by 8.5% than the mutated fuzzer without using grammars.
Also, the MGF found important bugs in the compiler under test (Koroglu & Wotawa, 2019). The
experiment results of the fuzzing tools SD-Gen (Sargsyan, et al., 2018), BlendFuzz (Yang,
Zhang, & Liu, 2012) and QuickFuzz (Grieco, Ceresa, & Buiras, 2016) showed increased code
coverage and more vulnerabilities has been discovered in the tested programs. In LangFuzz, it
has discovered 164 bugs in popular JavaScript engines and detected 20 bugs on PHP engine
(Holler, Herzig, & Zeller, 2012).

3.2 Grammar-based Fuzzers Guided by Machine Learning
Some other grammar-guided fuzzing tools employ machine learning techniques to produce well-
organized and well-formed user inputs which will be able to increase code coverage and discover
new bugs.

Learn&Fuzz (Godefroid, Peleg, & Singh, 2017), Skyfire (Wang, Chen , Wei, & Liu, 2017), and
GANFuzz (Hu, Shi, Huang, Xiong, & Bu, 2018) tools employ machine learning techniques to
generate user input grammars. Jitsunari et al. (2019) proposed a generative model to learn the
input token to generate new fuzzing inputs. Godefrois et al. (2017) stated that Learn&Fuzz learns
the input grammar and generates fuzzing inputs for fuzzing purposes. Jitsunari et al. (Jitsunari &
Arahori, 2019) stated that their study overcomes the problems in Learn&Fuzz (Godefroid, Peleg,
& Singh, 2017). Wang et al. (2017) stated that Skyfire use sample inputs and the provided

Hamad Al Salem & Jia Song

International Journal of Computer Science and Security (IJCSS), Volume (15) : Issue (5) : 2021 150
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

grammars to generate fuzzing inputs by learning PCSG (Probabilistic Context-Sensitive
Grammar) which is based on semantics and syntax. GANFuzz (Hu, Shi, Huang, Xiong, & Bu,
2018) utilizes machine learning (deep learning) to learn the input grammars for network protocol.

Learn&Fuzz (Godefroid, Peleg, & Singh, 2017) focused on PDF files to find grammar and use it
for fuzzing generations to test programs. Jitsunari et al. (2019) focused on using a generative
model that learns the sequence of tokens in PDF files and generate new fuzzing files. Moreover,
Skyfire (Wang, Chen , Wei, & Liu, 2017) focused on input files such as XML, XSLT, and
JavaScript to fuzz certain locations in the inputs based on its type that meets the grammar
context.

3.3 Grammar-based Fuzzers Guided by Evolutionary Computation
There are some grammar-guided fuzzing tools that employ evolutionary computation methods
such as genetic algorithm and genetic programming. These tools take advantage of the crossover
and mutation techniques to produce well-organized and well-formed test inputs based on
enhanced fitness function.

EvoGFuzz (Eberlein, Noller, Vogel, & Grunske, Sept. 2020), Grammarinator (Hodován, Kiss, &
Gyimóthy, 2018), and IFuzzer (Veggalam, Rawat, Haller, & Bos, 2016) utilize grammars in
generating fuzzing input files by using evolutionary computation techniques such as mutation and
recombination. EvoGFuzz (Eberlein, Noller, Vogel, & Grunske, Sept. 2020) focused on fuzzing
JSON parsers, CSS and JavaScript parsers. Grammarinator (Hodován, Kiss, & Gyimóthy, 2018)
and IFuzzer (Veggalam, Rawat, Haller, & Bos, 2016) focused on fuzzing JavaScript engines and
Grammarinator found over 100 issues in some of JavaScript projects (Hodován, Kiss, &
Gyimóthy, 2018). IFuzzer discovered 40 bugs in Mozilla (Veggalam, Rawat, Haller, & Bos, 2016).
EvoGFuzz (Eberlein, Noller, Vogel, & Grunske, Sept. 2020) found 11 exceptions more than
baseline that found only 6 exceptions. Moreover, EvoGFuzz (Eberlein, Noller, Vogel, & Grunske,
Sept. 2020) is significantly higher in code coverage than the baseline.

3.4 Grammar-based Fuzzers Guided by Coverage Feedback
Coverage-guided fuzzing tools are able to effectively create inputs for programs with structured
input languages. Coverage-guided grammar-based fuzzing tools can mutate inputs in a small
group by using the given grammar (Blazytko, et al., 2019). Moreover, the fuzzing tool has the
ability to reasonably merge inputs that lead to critical attributes with a high probability of
discovering more risky actions. However, the grammars need human labor, expert knowledge,
and hard work to be manually written to obtain correct input format. Also, it is error prone, which
makes it difficult to manually provide a correct specification (Blazytko, et al., 2019).

There are several tools that employ this technique; they are NAUTILUS (Aschermann, et al.,
2019), AFLSMART (Pham, Böhme, Santosa, Caciulescu, & Roychoudhury, 2019), Pythia
(Atlidakis, Geambasu, Godefroid, Polishchuk, & Ray, 2020), and Superion (Wang, Chen, Wei, &
Liu, 2018). They combine grammar and coverage feedback to guide fuzzing to explore bugs and
vulnerabilities deeply in the program under test. NAUTILUS (Aschermann, et al., 2019),
AFLSMART (Pham, Böhme, Santosa, Caciulescu, & Roychoudhury, 2019), and Superion (Wang,
Chen, Wei, & Liu, 2018) use the provided grammar to generate new fuzzing input files. Pythia
(Atlidakis, Geambasu, Godefroid, Polishchuk, & Ray, Pythia: Grammar-Based Fuzzing of REST
APIs with Coverage-guided Feedback and Learning-based Mutations, 2020) extract grammars
from sample input files to use the grammars for generating fuzzing input files. They use
grammars with coverage feedback to mutate interesting inputs and increase the chance to find
bugs located deep in the program under test.

NAUTILUS (Aschermann, et al., 2019) and Superion (Wang, Chen, Wei, & Liu, 2018) focus on
fuzzing web browser engines such as IE, PHP engine, and JavaScript programs by using XML
and JavaScript grammars. AFLSMART (Pham, Böhme, Santosa, Caciulescu, & Roychoudhury,
2019) focuses on AVI and WAV files. It uses their grammar to produce new fuzzing files to test

Hamad Al Salem & Jia Song

International Journal of Computer Science and Security (IJCSS), Volume (15) : Issue (5) : 2021 151
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

programs. Pythia focused on extracting grammars from web services like HTTP (Atlidakis,
Geambasu, Godefroid, Polishchuk, & Ray, 2020).

NAUTILUS (Aschermann, et al., 2019), AFLSMART (Pham, Böhme, Santosa, Caciulescu, &
Roychoudhury, 2019), and Superion (Wang, Chen, Wei, & Liu, 2018) discover bugs in the
programs that they tested. NAUTILUS (Aschermann, et al., 2019) has found 13 new bugs in 4
targets mRuby, Lua, PHP, and ChakraCore. AFLSMART (Pham, Böhme, Santosa, Caciulescu, &
Roychoudhury, 2019) has found 42 bugs in multimedia open-source programs and 22 of them
assigned CVEs. Pythia (Atlidakis, Geambasu, Godefroid, Polishchuk, & Ray, 2020) tested web
services APIs GitLab and Mastodon programs for 24 hours and found 29 bugs in them. Superion
(Wang, Chen, Wei, & Liu, 2018) found 34 new bugs in Jerryscript, XML engine, 3 JavaScript
engines, and ChakraCore. Also, it discovered 22 new vulnerabilities with 19 CVEs identifier
assigned. In comparison with AFL and JsFunFuzz (Ruderman, 2007), AFL found only 6 bugs of
34 and JsFunFuzz did not discovered anything (Wang, Chen, Wei, & Liu, Superion: Grammar-
Aware Greybox Fuzzing, 2018).

4. DARPA CGC DATASET
DARPA Cyber Grand Challenge (CGC) is a competition developed to spur the research on
automated vulnerability discovery and patching. CGC representatives created a dataset
containing vulnerable programs with details of explaining a program process. DARPA designed
the DARPA Experimental Cyber Research Environment (DECREE) which is a simple operating
system and an open-source Linux extension made for managed software security trails. DECREE
OS contains 7 system calls: transmit to send data, receive to receive data, waitfd to wait

for data over file descriptors, random to generate random data, allocate, deallocate for

memory control and terminate to stop the server communication (Shoshitaishvili, et al., 2016).

There are about 250 programs in the DARPA CGC dataset. Each program has at least one
vulnerability in it. The programs are written in C or C++ programming languages. Despite the
simplicity of the CGC environment model, the programs given by DARPA have a large scope of
complexity (Shoshitaishvili, et al., 2016).

Although source code for each of the programs is not given during the competition, most of the
programs came with network traffic files saved in pcap (Package CAPture) files. These pcap files
record the interactions with the programs, what was sent to the program and what the program
responded to. The network traffic can be extracted from the pcap files.

5. INPUT FILES GRAMMARS ANALYSIS
After examining the programs in the DARPA CGC dataset, it was determined that each program
is a standalone program and there is no similarity among the programs. For example, there are
ship game, palindrome test, picture analysis, file reading and searching programs in the dataset.
Each program has its own way to interact with the program, such as using specific commands
and special strings. To be able to conduct effective fuzzing, the formats of how to interact with the
programs have to be learned. Since most of the vulnerable programs come with network traffic
data, the interactions between the user and program can be extracted. These network traffic data
can be treated as valid sample input files, and a grammar can be learned from these files and be
used in the later process.

This section discusses how to analyze input files from the DARPA CGC dataset to extract
grammars. After extracting grammar from the sample input, the grammar can be fed to the fuzzer
to generate effective fuzzing input files.

This stage begins by collecting data from the DARPA CGC dataset which then starts analyzing
for grammars. After investigating the input files/network traffic files in the DARPA CGC dataset,
we found that most of the programs require input that are command-like. One example can be
found in Listing 1 it shows all the messages sent from the user to the program. By taking a closer
look, we can find the messages are in the format of command and one or more parameters,

Hamad Al Salem & Jia Song

International Journal of Computer Science and Security (IJCSS), Volume (15) : Issue (5) : 2021 152
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

copy README.txt lcggfldeuausqsrx
list
show README.txt
erase authentication.db
make gtims
last README.txt 10
show lcggfldeuausqsrx
show README.txt
list
write authentication.db
show README.txt
last README.txt 10
last README.txt 10
first README.txt 10
last lcggfldeuausqsrx 10
first authentication.db 10
list
logout
evjfrtm 58932
xboskhi 18012
ahpoyva 1614
last authentication.db 10
make flxzzofveqexsfje
make kzoycqeppd
write flxzzofveqexsfje
chwvsfnnspychdjfrbyfjunhvlbypwibjeiuixgoipvxr
write authentication.db
erase README.txt
first lcggfldeuausqsrx 10
perms authentication.db 2
list

command only, or some random strings. Therefore, when analyzing the input, we treat the first
word as command and the later part as parameters. For example in Listing 1, commands are the

first word of each line such as copy, list, show, erase, make, last, write, etc..

Parameters are the items that come after a command. Using the first line in Listing 1 as an

example, copy is a command and the parameters are README.txt, and lcggfldeuausqsrx.

On the second line, list is a command and no parameter after it. The grammar analysis step is

to go through each sample input files for a program and analyze them to extract the commands
with their parameters and use them for generating fuzzing files in the next stage. This step can be
further divided into four smaller tasks: 1) read in sample input files, 2) analyze real commands, 3)
analyze common parameters, and 4) analyze numbers.

5.1 Reading Input Files
The tool starts by reading all the sample input files and saving all of the strings from the input files

into an input list because it has to be easy and flexibles, that the tool can find repeated or

common items in all the input files. Then it scans through the input list and counts the numbers of
each possible delimiter (, / | : ; = - ` space). The reason for this is the tool needs to determine
which character should be treated as the delimiter to split the words on each line. From the
manual examination of the programs, most programs use white space as the delimiter; however,
some programs use hyphen, semicolon, or equal sign to separate command and parameters.
Therefore, a possible delimiter list is maintained and the tool first scans and counts the
occurrence of each possible delimiter and uses the top one as the delimiter to separate words in
the input files. For example, the delimiter for Listing 1 is ``space" after the tool counts all the
possible delimiters in all input files. Then the delimiter is used to split the input strings, so that the
first word before the first space is treated as command and the later part of the line is treated as
parameters of the specific command.

Hamad Al Salem & Jia Song

International Journal of Computer Science and Security (IJCSS), Volume (15) : Issue (5) : 2021 153
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

make zmhvbqsjmzo
perms README.txt 2
last authentication.db 10
first flxzzofveqexsfje 10
perms authentication.db 1
erase flxzzofveqexsfje
last zmhvbqsjmzo 10
perms zmhvbqsjmzo 1
perms README.txt 3
erase gtims
perms authentication.db 4
write authentication.db
exit

5.2 Analyzing Real Commands
This stage is for extracting and analyzing real commands. After determining the delimiter, each

string in the input list is split. Then, each of the first words after splitting the lines will be

treated as a possible command. The possible commands are kept in a command list.

Because of the large amount of input strings, we cannot treat each first word as a command.
Instead, only the commands which have higher occurrences should be treated as commands. For
example, some commands showed more than 500 times, but some other commands only
occurred for 2 or 3 times. Then the low-occurrence commands are less likely to be the real
command, and they should be ignored. Otherwise, the number of real commands will be too high
and it takes much longer time to analyze them. In addition, many of the low-occurrence
commands are random strings and they are not real commands.

The percentage number is for comparisons to decide whether a word is a real command or not. If
the occurrence number of a command is larger or equal to the percentage number, then it will be
treated as a real command; otherwise, it will be dropped. The tool currently uses 10% of the
number of input files as the percentage number, but the number can be changed easily if needed.
For example, if input files count 1000, then the percentage is 100. After counting an item, if the
counting number is larger than or equal to 100, the tool considers it as a real command. The
reason for doing that is to not include unnecessary items as commands. We set the maximum
number of real commands to be 20. So, the tool will not get too many real commands. Therefore,
the tool will be able to speed up the process of analyzing larger input files with huge data input
and support generating effective fuzzing input files by focusing only on the found items.

FIGURE 1: Sorting commands.

Using the input in Listing 1 as an example, after the commands are collected, the command list
are taken and sorted as shown in Figure 1. Then, for each real command in the list, the number

LISTING 1: Filesystem_Command_Shell Program User Input Example.

Hamad Al Salem & Jia Song

International Journal of Computer Science and Security (IJCSS), Volume (15) : Issue (5) : 2021 154
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

LISTING 3: Real commands and their real parameters.

of occurrences is counted (see Figure 2). After that, it is compared with the percentage number;
therefore, the tool keeps the ones that equal or exceed the percentage number. For example, the
real commands list for Listing 1 is shown in Listing 2.

FIGURE 2: Real commands.

In the command list, an extra digit is added after each command. Because the tool needs to
distinguish for each command how many parameters it has, a digit is added after each command.
By having this digit, the tool knows how many parameters that come after a command and collect

them for finding common parameters (next step). As shown in Listing 1, using first line copy

README.txt lcggfldeuausqsrx as an example, the number of the split words on this line is

3, which means there are 2 parameters following the command. Then it will show a copy2 on the

real command list if it exceeds the percentage number so the tool knows that the command copy

has 2 parameters. However, if the command does not have a parameter, a digit 0 is appended to

the command to indicate no parameter follows the command, such as list0 in the example. To

lower the amount of generated fuzzing files, the max parameter number is set for 3. This means if
a line has more than 4 split words, it will be excluded from the analyzing.

5.2 Analyzing Real Parameter
The goal for the third step is to find common and most available parameters for each command
by analyzing all the parameters for that command. The tool manages all the parameters and
identifies the parameters that appear mostly with a command if the counted number equals to or
exceeds a calculated percentage.

Similar to the percentage number used for determining real command, another percentage
number (10%) is used. This percentage can be changed if necessary. The reason for using the
percentage number is to limit the number of real parameters and avoid treating random strings as
real parameters. If the possible parameter occurs more than or equal to the calculated
percentage, it is considered as a real parameter for that command. For example, if a real
command number occurrence is 200, the tool multiplies it by 10%, which will give a calculated
percentage of 20. Therefore, if the possible first parameter occurs 20 times or more, it will be
considered as a first real parameter for that command.

[‘erase1’, ‘first2’, ‘last2’, ‘list0’, ‘make1’ , ‘perms2’ , ‘show1’, ‘write1’]

LISTING 2: Real commands

{'copy2': [['README.txt'], ['authentication.db']],
'erase1': [['README.txt'], ['authentication.db']],
'exit0': [],
'first2': [['README.txt', '10'], ['authentication.db', '10']],
'last2': [['README.txt', '10'], ['authentication.db', '10']],
'list0': [],
'logout0': [],
'make1': [],
'perms2':[['README.txt'],['authentication.db'],
['README.txt', '[0-9]'], ['authentication.db', '[0-9]']],
'show1': [['README.txt'],['authentication.db']],
'write1': [['README.txt'],['authentication.db']]}

Hamad Al Salem & Jia Song

International Journal of Computer Science and Security (IJCSS), Volume (15) : Issue (5) : 2021 155
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

{'copy2': [['README.txt'], ['authentication.db']],
'erase1': [['README.txt'], ['authentication.db']],
'exit0': [],
'first2': [['README.txt', '10'], ['authentication.db', '10']],
'last2': [['README.txt', '10'], ['authentication.db', '10']],
'list0': [],
'logout0': [],
'make1': [],
'perms2':[['README.txt'],['authentication.db']],
'show1': [['README.txt'],['authentication.db']],
'write1': [['README.txt'],['authentication.db']]}

If a real parameter was found, the same process will be done for the second and third
parameters. However, if there is no common first parameter, there is no need to find common
parameters for the second and third parameters. Similarly, if there is a common first parameter
but there is no second common parameter, the tool will not find the third common parameter.

After that, the new findings for real commands with their real parameters are kept for further

processing. The final findings from Listing 1 are shown in Listing 3. On lines 2 and 4, ‘erase1’

and ‘first2' are commands. The digit in the end of each command tells how many parameters

that follow the command. Also, line 2 shows the real first

parameters[[‘README.txt’],[‘authentication’]] for command ‘erase1’ which is a

one-parameter command type. The command ‘first2’ is a two-parameter command type that

has[[‘README.txt’, ‘10’], [‘authentication.db’,’10’]]}} which has two first

parameters, ‘README.txt' and ‘authentication.db'. Each one is followed by a second

parameter, which is ‘10' for each one.

5.3 Analyzing Numbers and Change to [0-9]
While manually examining the sample input files of DARPA CGC dataset, it was noticed that
some input files such as “move r1, move r4, move r7, move r10”, have different numbers in

parameters. The first parameters for the move command are r1, r4, r7, r10. If we compare the

occurrence number of each one with the percentage number, then all of them will be dropped.
However, they should be treated as a common parameter r[0-9]. Therefore, to be able to detect

parameters like this, the numerical parts in parameters are modified and changed to [0-9] to make

it easy to detect these parameters. So the first parameters for the move command (r1, r4, r7, r10)

will be changed to r[0-9], r[0-9], r[0-9], r[0-9], and they will be counted for an occurrence of 4 and
saved in the common parameter list.

After this stage, a final grammar shown in Listing 4 will be obtained. The only changes from
previous listing (Listing 3) are on line 10 in Listing 4. The changes can be seen for command
perms2 because the second parameters are different numbers for this command. So, all

numbers in the second parameters were changed and modified to “[0-9]”. Therefore, it was easy
and helpful for them to be discovered. “[0-9]” was included with the parameters in the parameters'
list. Another reason to change numbers in parameters is that the fuzzing tool will substitute the
“[0-9]” to generate random numbers in a hope to discover any vulnerability caused by using
invalid numbers in the program. Some input files have numbers in them, which means there could
be a chance of one of those numbers triggering a buffer overflow, integer overflow, or other
vulnerabilities.

6. GENERATING FUZZING FILES
After finishing the sample input files analysis, grammars are extracted, which will support
generating fuzzing files. This section discusses how the new fuzzing tool creates and generates

LISTING 4: Real commands and their real parameters after changing numbers to [0-9].

Hamad Al Salem & Jia Song

International Journal of Computer Science and Security (IJCSS), Volume (15) : Issue (5) : 2021 156
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

fuzz data by using the extracted grammar. To be able to test the deeper code in the program, the
sample input files are used and modified because we need to keep the orders of commands as
shown in the valid sample input files. Also, they were used to help generate effective fuzzing files
which can interact with the program correctly. Therefore, the strategies of generating fuzzing files
in this step are to make substitution and replacement on the valid sample input files. In this step,
a random string generator is developed. The new fuzzer gets a sample input file and figures out
which part to substitute with the help of the extracted grammars. Then it uses the random string
generator to generate a random string to be used to substitute a particular part of the sample
input. This new fuzzing file will be saved and later will be fed into the target program for testing.

The step can be divided into two major steps: 1) Read in sample input file and identify the
location in the sample input file where it needs to be substituted, and then construct a new line to
substitute the original line, and 2) Generate a random string and substitute the identified part in
the sample input file with newly constructed line and save it as a new fuzzing file.

6.1 Lines Replacements
The purpose of this step is to replace a line of an input file each time with new random string
because most of programs require keeping the order of the commands in user inputs so the
programs run and execute correctly. After having the input file, the tool can use it to create
multiple fuzzing files from it by substituting different lines.

6.1.1 Constructing Fuzzing Files
In the beginning, the tool starts to generate fuzzing files by opening a sample input file, then all
the data from that file will be copied to the new text file because the aim is to create many input
fuzzing files from one input file so the tool will have a higher chance in triggering a vulnerability in
a program. Second, it takes a line from the input file and creates a target line to recognize the line
that needs to be replaced with a random string. Third, it starts replacing lines from first line and
then goes to the next line by increasing the target line by 1 and continues until it reaches the last
line. After replacing a line, it copies the lines before the target line and the following lines that
come after it. By keeping the order of commands in the testing file, the programs can be executed
correctly and the tool will have a higher chance in discovering a vulnerability deeper in the
program. Fourth, the tool works by taking the first line and taking the first word of it which is
considered a command. Then, the length of the command is calculated by knowing the number of
its parameters because the tool will use this number and concatenate it with the command to
check with the grammars and to make the replacement based on the number of parameters.
Based on the number of parameters, the tool will be able to recognize the type of a command; the
command types are a command only, one-parameter command, two-parameter command, and
three-parameter command. After that, when the tool knows the format of the line, it is compared
with the extracted grammars, if it is one of the commands then it continues to the parameters
checking. However, if the first word does not match any command in the command list, then the
tool will generate a random string for that line. So, this will support testing programs that do not
have real commands and may discover a vulnerability from them.

6.1.2 Creating Fuzzing Line
In a line, the tool will have different number of parameters that come with a command. There are
commands with no parameters and one, two, or three parameters. For each one, the line is taken
based on if it is a command with one, two, or three parameters. Then, any number that is found in
a parameter is changed to “[0-9]” for each parameter. After that, it is compared with the grammar
extracted before. If there is a match, the numeric parameter will be recognized and it is going to
be substituted by a random number with a different length. However, if there is no match, the tool
will consider these parameters as strings. So, for a command with no parameter, the tool can
substitute the command and replace it by a random string with different length or keep it with no
replacement. For a command with one, two, or three parameters, the tool will replace either the
command or any one of the parameters with a random string with a different length.
Nevertheless, in case there is no command match, there will not be parameter match. So, the

Hamad Al Salem & Jia Song

International Journal of Computer Science and Security (IJCSS), Volume (15) : Issue (5) : 2021 157
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

target line will be substituted or will be added a random string to it with a random length. The idea
is to generate a fuzzing line that could lead to revealing a bug in a program under test.

For example, if a line contains a command and two parameters and the command matches one
of the commands in the grammar, the tool will analyze each parameter and change any number
in it to ``[0-9]". Therefore, those parameters are compared with the parameters in the grammars.
If there is a match, then the tool considers the parameters are numeric. After that, they are
changed to random numbers with different length. For example, in Listing 1, after the line “perms
README.txt 2” is split, the tool will get [‘perms’, ‘README.txt’, ‘2’]. The tool will go to first and
second parameters. If there is any number in them the tool will change it to “[0-9]” so in the end
the tool will have the parameters look like [‘README.txt’, ‘[0-9]’], and then it will have a match
with one in Listing 4. Thus, the tool will be able to change the “[0-9]” with a random number. On
the other hand, if there is no numeric parameter and no match, they will be considered as string
parameters and will be substituted with a random string. For example, if there is a two-parameter
command on a line, the tool can make one of the following replacements:

 Replace the command with a random string and keep the two parameters with no
change.

 Keep the command and second parameter with no change and replace the first
parameter with a random string.

 Keep the command and first parameter with no change and replace the second
parameter with random string.

Since the grammar of the input was extracted, the tool is able to use it to generate more effective

fuzzing files by substituting only part of a line. For example, the line move r3, r2 may be

changed to move r12348579204756380801, r2 or move r3,

r385972939754098840242 or even move r3, r-328495723975892. Helped with the

grammar, the string can be substituted precisely. In addition, it is more likely to trigger a bug in a
program compare to substituting the whole line with a random string which may not meet the
format requirement and hence will be rejected by the program.

6.2 Generating Random String
After finding a target line and matching with the grammars, the tool is going to generate a random
string or random number for the selected element from the split line.

6.2.1 Random Test Numbers
In the beginning, random test numbers list is created for each command that is found in the
grammar. Each random test number is a three-digit number between 000 and 999. Each of the
digits is used for different things in generating a random string. The first digit is for selecting an
element that is going to be replaced with a random string; the second digit is for the type of string
that is going to be generated; and the third digit is for the length of the generated string. For
example, if a random test number is 234, 4 is the first digit which is for selecting an element to be
replaced, 3 is the second digit that is type of string to be generated, and 2 is the third digit which
is for the length of generated random string. The goal of the random test number list is to get a
better coverage of string types, substitution types, and lengths so the random test number will
have the information of string types, substitution types, and lengths which will be passed to the
random string generator to generate different combinations of strings. Moreover, these numbers
can be positive or negative, with the negative numbers representing the generation of negative
numbers for only numeric parameters.

After completing the generating process from one of the picked random test number, it will be
removed from the list. Then, the generating process will continue for every command until all of
the random test number list is empty. If the random test number list for a command is empty, one
more random test number list will be created for that command to keep generating new random
strings for it if the command is found in coming lines until the last line in the last sample input file.
Therefore, the tool will have large combination of different random strings with different length

Hamad Al Salem & Jia Song

International Journal of Computer Science and Security (IJCSS), Volume (15) : Issue (5) : 2021 158
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

that will be generated for fuzzing files, so that the fuzzer will generate adequate amount of fuzzing
files to get a higher probability of finding bugs or vulnerability in a program.

6.2.2 Digit 1: Selecting and Replacing Part of a Line
For selecting and replacing a string, random test numbers list for a command are obtained. Then,
when there is a command match with a command from the target line, a random test number
from the list is picked. As mentioned previously, the first digit is for selecting the element that is
going to be replaced with a random string. The choices are going to be 5 options based on the
line format (command only or command with parameter(s)) ranging from 0 to 4. These options as
follows:

 0 means replace the command.

 1 means replace the first parameter.

 2 means replace the second parameter.

 means replace the third parameter.

 means select one of the four locations and insert a random string in the selected position.

6.2.3 Digit 2: String Types To Be Generated
In the picked random test number, the second digit is for the type of string that is going to be
generated. The following are the types of strings that are going to be generated by the fuzzer:

 Numbers only.

 Characters only (upper and lower case).

 Symbols only.

 Numbers and characters.

 Numbers, characters, and symbols.

 0 with space.

 1 with space.

 %x.

 %n.

 %p.

 Multiple spaces ``\x20".

 Multiple ``\xff".

 Multiple of null character ``\x00".

 Hex control characters.

 Hex characters without the control characters.

The string type 1 with space and 0 with space are for programs that trigger an overflow
vulnerability in them. The string types %x, %n, and %p are for discovering format string
vulnerability. The hex characters “\x20”, “\x00”, and “\xff” are going to be used to fuzz the
programs for memory corruption. In addition, the hexadecimal control characters from “\x00” to
“\x20” and “\x7f” are bad characters that can cause memory corruption in programs under test by
giving mixed strings from these characters then inserting them into a program to trigger a buffer
overflow or a bug that leads to crash the program. Finally, the hexadecimal uncontrol characters
from “\x21” to “\x7e” will be used to fuzz the programs with different combinations of characters to
increase the chance of triggering a buffer overflow vulnerability in the fuzzed program.

The tool is able to generate any combination of strings for every generated line because of using
the random test numbers for each command in the fuzzer which will help the tool to create
different random string in each round.

6.2.3 Digit 3: Length of A Random String

After the tool has the type of replacement and the type of generated string, it has to determine the
length of the generated string. Therefore, the third digit in the picked random test number is for
the length of generated string. Because the random test number is three digits from 000 to 999,

Hamad Al Salem & Jia Song

International Journal of Computer Science and Security (IJCSS), Volume (15) : Issue (5) : 2021 159
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

the third digit in the random test number is in range 0 to 9. The tool will have different kinds of
lengths, and there are two lists each containing 10 different lengths. First list is
[4,6,8,16,32,64,128,256,512,1025] and the second list is
[1200,1500,1800,2000,2200,2500,2800,3000,3500,4001]. The tool is going to try with different
lengths in a hope to find a bug or vulnerability in the program. The tool works by choosing
between 0 and 1 randomly. If 0 is selected, the tool will use the first list; otherwise, if 1 is selected,
it will use the second list. Therefore, the probability to choose between the two list is 50%. The
purpose of having various lengths is to have a higher chance to trigger buffer overflow
vulnerabilities. Many programmers forget about checking length or size of a string or an array that
could be revealed by fuzzing, so, the tool will be helpful in finding these mistakes before the
production stage.

6.3 Fuzzing process Explanation with an Example
For more clarification, as an example, consider the picked number is 463 and the line is a
command with three parameters. So, the first digit 3 means replace the third parameter with a
random string. Second digit is 6, which is for the type of the generated string, and it is 1 with
space. Moreover, the third digit is 4, which is going to determine the length of the generated
string, so as stated above, if the selected item is 0 or 1, it taking the 4th element in either of the
two lists. If 0 is selected, the length of the random string will be 32 (from the first list). Otherwise, if
1 is selected the length of the random string will be 2200 (from the second list).

Once the random string is generated, it will be plugged in to the new line and the new fuzzing file
will be constructed. This step will be performed many times to generate a large number of fuzzing
files. After completing and generating fuzzing files, the tool will have thousands of fuzzing files
and use them to test the target program. Moreover, it will obtain different kinds of fuzzing data in
each generated fuzzing file because the random data covers different combination of numbers,
letters, and symbols, and for each combination, there will be different string lengths. In the end,
there should be a good amount of fuzzing files generated, and they can be fed to the target
program for testing.

7. EXPERIMENTS AND EVALUATION
7.1 Experiments
The research experiments begin with analyzing sample input files from DARPA CGC programs to
get grammars from them because the tool needs to get more knowledge on the format of the
sample input files. After that, the tool generates fuzzing input files to be used in testing process.
When testing the fuzzing input files, we look for segmentation fault or program crash.

A bash script has been written to loop through each fuzzing file and feed them to the target
program under test. In the meantime, the output of running the program is monitored for any “core
dumped” or “Segmentation fault”.

When a message “core dumped” or “Segmentation fault” is displayed in the output, it means a
crash in the program has happened; then the running program stops and terminates the running
process because it violates memory access. “Segmentation fault” message informs that the
program encounters a serious error and the program has a bug or vulnerability. As shown in
Figures 3 and 4, when a fuzzing input file crashed a program under test, it is displayed on the
terminal that the program has been “CORED” or crashed, and then continue testing next fuzzing
files.

Hamad Al Salem & Jia Song

International Journal of Computer Science and Security (IJCSS), Volume (15) : Issue (5) : 2021 160
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

FIGURE 3: Printer Program core dumped example.

FIGURE 4: Payroll Program core dumped example.

For instance, as shown in Figure 5 when testing the RRPN program with the generated fuzzing
inputs, the program crashed and displayed that the ``Segmentation fault" when the file
``127.0.0.144788-127.44.224.53.2457_3780.pov" and ``127.0.0.144788-
127.44.224.53.2457_3781.pov" fed to the program. While running other input files, there was no
crash or SIGSEGV message.

FIGURE 5: RRPN Program Crash.

7.2 Used Tools In Experiments
We compared our work with these four tools: the latest version of AFL (Zalewski, 2014), MOPT
(Lyu, et al., 2019), FairFuzz (Lemieux & Sen, 2018), and AFLFAST (Böhme, Pham, &
Roychoudhury, 2017).

Hamad Al Salem & Jia Song

International Journal of Computer Science and Security (IJCSS), Volume (15) : Issue (5) : 2021 161
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

AFL (American fuzzy lop) is a state-of-the-art greybox fuzzer (Zalewski, 2014). It uses trivial
instrumentation to get new path coverage information. Based on that, AFL can choose unique
identification of the path that is applied by an input. Then, it utilizes genetic algorithms to find
interesting test cases that are likely to reveal new internal states in the program under test. After
that, these test cases will be added to the sample inputs queue.

Lyu et al. introduced MOPT (Lyu, et al., 2019) a mutation-based fuzzing tool. MOPT uses a
customized Particle Swarm Optimization (PSO) algorithm to explore the possibility to give an
optimal selection probability of different kinds of mutation operations. The optimization enhances
the ability of a fuzzer to find the coverage information quickly.

Lemieux et al. stated that FairFuzz (Lemieux & Sen, 2018) is a mutation-based gray-box fuzzing
tool. The tool first looks for these branches that are rarely hit by fewer AFL inputs. Second, based
on new mutation operation techniques, it makes the tool lean to generate inputs hitting a provided
rare branch. This mutation is calculated dynamically during fuzzing and can be used to fuzz other
targets.

According to Bohme et al., AFLFAST (Böhme, Pham, & Roychoudhury, 2017) is a graybox
fuzzing tool that uses Markov chain knowledge (Norris, 1998). It does not require a program
analysis. It generates new test inputs with few mutations of seed input samples. It employs
Markov chain model that specifies the probability of fuzzing the sample input that exercises path i,
which then provides an input that exercises path j. Instead of fuzzing highly visited locations, the
tool redirects to fuzz lower visited locations in the code.

7.3 Testing Results and Observations
The machine for generating fuzzing files and testing has environment: the CPU is AMD Ryzen
Threadripper 2920X 12-Core Processor, memory is 32 GB, Ubuntu 18.04.4 LTS, and OS type 64-
bit.

We use CB-multios dataset that is provided by TrailofBits team (Darpa challenge binaries on
multiple os systems, n.d.) who ported DARPA dataset from DEGREE system to Linux. There are
247 programs. We excluded 12 challenges because there are issues with compiling and running
those programs. 235 programs had been tested separately with different number of rounds for a
one-hour run. During the one hour, the testing will be stopped if a crash is found.

AFL (Zalewski, 2014), MOPT (Lyu, et al., 2019), FairFuzz (Lemieux & Sen, 2018), and AFLFAST
(Böhme, Pham, & Roychoudhury, 2017) fuzzing tools had been tested with 235 programs. Each
one took 1 hour of testing for each program. After tests were completed, the number of crahsed
programs was collected. Table 2 shows the number of crashes of each tool and the appromiated
time to crash most of programs. Therefore, AFL crashed 45 programs, which is 19.14%. AFLFast
crashed 44 programs, which is 18.71%. Moreover, MOPT and FairFuzz crashed 54 programs,
which is 22.98%. Our tool crashed 79 programs, which is 33.61% of the programs.

Tool Name Number of crashes
Approximated Time to crash

most programs (minutes)

AFL 45 20-30

AFLFast 44 10-15

MOPT 54 15-20

FairFuzz 54 25-30

Our tool 79 5

TABLE 1: Experimental Results.

Figure 6 shows our fuzzing tool discovered vulnerabilities more than other tools. In the help of
grammar, our tool found 34 more than AFL, 35 more than AFLFast, and 25 more than MOPT and
FairFuzz. Moreover, the fuzzing techniques have different kinds of options to create fuzzed inputs

Hamad Al Salem & Jia Song

International Journal of Computer Science and Security (IJCSS), Volume (15) : Issue (5) : 2021 162
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

OurTool(79)

that support revealing bugs and vulnerabilities. For example, it can use the grammar for
numerical parameters and replace it with a random number. Also, the grammar for string
parameters supports obtaining different types of strings with different lengths that can provide the
fuzzing tool with a higher possibility to trigger buffer overflow, off-by-one error, use after free
vulnerabilities, etc.

We observed that our tool crashed programs faster than others. For most of the crashed
programs, we noticed that AFL took 20 to 30 minutes to find a vulnerability. Moreover, AFLFast
found most vulnerabilities in 10 to 15 minutes. FairFuzz discovered vulnerabilities in most of
programs in 25 to 30 minutes. Also, MOPT needs an average of 15 to 20 minutes to crash a
program. However, our tool usually finds a crash in average of 5 minutes.

Our tool is able to get grammars form many different types of input file formats such as web
browser, photo analyzer, board game, etc. However, other studies in the related work are focused
on using a provided grammar for certain type of input formats such as GramFuzz (Guo, Zhang,
Wang, & Wei, 2013) and Learn&Fuzz (Godefroid, Peleg, & Singh, 2017). Moreover, our tool can
learn grammars from sample input files to generate fuzzing input files. However, other studies in
the related work are using manually provided grammars to the fuzzing tool such as Skyfire
(Wang, Chen , Wei, & Liu, 2017) and MGF (Koroglu & Wotawa, 2019).

Programs

AFL(45) AFLFast(44)

FairFuzz(45) MOPT(54)

FIGURE 6: Venn Diagram for discovered bugs.

Hamad Al Salem & Jia Song

International Journal of Computer Science and Security (IJCSS), Volume (15) : Issue (5) : 2021 163
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

Our tool showed that it is faster in triggering vulnerabilities in the tested program than others. By
using sample input files during testing, AFL, AFLFast, FairFuzz, and MOPT are not able to find
more crashes than our tool because they are not grammar-based and it is difficult for them to get
the correct file input structure to generate fuzzing inputs that can help them to trigger the
vulnerabilities in the programs. Grammar-based fuzzing support to get the correct format for a
program and use it to generate fuzzing inputs that leads to possibly crash a program.

Table 1 shows the crashed programs. The table has five columns. The first one is the program
names. The second column is generation time, which is the duration time for generating all of the
fuzzing files. It is based on minutes and seconds (m:n). The third column is showing the number
of sample input files for each program. The fourth column is showing the number of generated
fuzzing files, and the fifth column is testing time, which is the duration of time the program has
been tested by the generated fuzzing files until a vulnerability has been found by the tool, and it is
based on minutes and seconds (m:s).

Program name
Generation
time (m:s)

of
sample

input files

of
fuzzing

files

Testing
time
(m:s)

Azurad 3:44 1000 196782 1:45

Bloomy_Sunday 0:26 1000 30900 1:4

CGC_Planet_Markup_Language_Parser 4:43 1000 300018 42:8

Charter 0:2 1000 2458 4:43

Checkmate 0:5 1000 4995 18:46

CML 0:50 1000 48607 2:32

Cromulence_All_Service 6:43 1000 225262 34:6

CTTP 5:41 1000 89278 59:59

DFARS_Sample_Service 2:32 1000 36657 0:41

Diary_Parser 0:3 1000 3093 0:50

Diophantine_Password_Wallet 0:16 1000 19747 48:42

Divelogger2 1:28 1000 82757 5:53

Document_Rendering_Engine 3:37 1000 222070 0:30

Eddy 0:1 1000 1226 9:2

electronictrading 0:1 1000 1006 21:53

EternalPass 0:5 1000 6984 2:1

FablesReport 0:2 1000 1000 1:20

FileSys 0:15 1000 12929 0:50

Filesystem Command Shell 0:30 1000 36627 5:12

Finicky_File_Folder 0:14 1000 11366 0:43

Flash_File_System 0:4 1000 5164 1:36

Flight_Routes 0:52 1000 46971 0:53

Fortress 3:2 1000 151818 49:23

Game_Night 0:12 1000 14618 0:56

Grit 3:19 1000 147446 3:10

HackMan 2:16 1000 135426 1:4

HeartThrob 0:3 1000 2987 4:3

HighFrequencyTradingAlgo 0:1 1000 1012 0:57

Hug Game 0:25 1000 27058 6:29

Hamad Al Salem & Jia Song

International Journal of Computer Science and Security (IJCSS), Volume (15) : Issue (5) : 2021 164
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

Program name
Generation
time (m:s)

of
sample

input files

of
fuzzing

files

Testing
time
(m:s)

INSULATR 2:7 1000 38556 34:31

Kaprica_Script_Interpreter 5:37 1000 302474 0:47

KTY_Pretty_Printer 0:33 1000 38319 13:24

Lazybox 0:24 1000 31622 0:35

Loud_Square_Instant_Messaging_Protocol_LSIMP 0:49 1000 52134 24:32

Matchmaker 0:31 1000 35638 0:21

matrices_for_sale 0:6 1000 6450 0:32

Monster_Game 0:40 1000 46249 32:32

Movie_Rental_Service 0:8 1000 9628 0:32

Multicast_Chat_Server 3:59 968 253273 0:34

Network_Queuing_Simulator 0:45 1000 52461 0:13

online_job_application 0:29 1000 34581 2:40

online_job_application2 0:29 1000 34570 18:15

OTPSim 0:50 1000 51325 0:12

Palindrome 0:7 1000 8889 0:5

Palindrome2 0:8 1000 9731 0:7

payroll 3:27 900 113370 0:11

Pipelined 0:6 1000 7600 0:20

pizza_ordering_system 0:40 1000 46155 0:35

Printer 1:12 1000 72683 0:42

PRU 0:4 1000 4810 1:1

PTaaS 1:8 1000 39967 0:33

Query_Calculator 0:1 1000 1000 1:9

Recipe_and_Pantry_Manager 3:18 1000 186476 9:39

Recipe_Database 3:31 1000 196705 1:53

REMATCH_2--Mail_Server--Crackaddr 0:3 1000 4003 0:25

REMATCH_3--Address_Resolution_Service--
SQL_Slammer 0:5 1000 6569 0:8

REMATCH_4--CGCRPC_Server-MS08-067 0:2 1000 2947 13:51

REMATCH_5--File_Explorer--LNK_Bug 0:8 1000 9942 0:10

REMATCH_6--Secure_Server--Heartbleed 0:10 1000 11409 0:23

RRPN 0:1 1000 1907 0:29

Sad_Face_Template_Engine_SFTE 0:18 1000 23031 0:9

Sample_Shipgame 0:45 1000 51385 0:36

SCUBA_Dive_Logging 1:14 1000 81656 1:51

Secure_Compression 0:40 1000 46846 0:1

simple_integer_calculator 0:2 1000 2136 1:10

simplenote 4:5 1000 300239 0:5

SPIFFS 0:24 1000 25222 24:41

stream_vm 5:6 1000 300448 0:4

TAINTEDLOVE 1:57 1000 69188 0:11

Hamad Al Salem & Jia Song

International Journal of Computer Science and Security (IJCSS), Volume (15) : Issue (5) : 2021 165
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

Program name
Generation
time (m:s)

of
sample

input files

of
fuzzing

files

Testing
time
(m:s)

Tennis_Ball_Motion_Calculator 0:8 1000 9134 0:2

The_Longest_Road 0:46 1000 48838 0:14

TVS 5:31 1000 300456 3:24

university_enrollment 0:36 1000 27849 3:44

Vector_Graphics_2 0:3 1000 2377 12:54

Vector_Graphics_Format 0:2 1000 2371 0:23

virtual_pet 0:3 1000 4445 0:12

Water_Treatment_Facility_Simulator 1:11 1000 59185 11:28

WhackJack 1:9 1000 55939 16:11

WordCompletion 0:3 1000 3926 0:55

TABLE 2: List of Crashed Programs.

8. CONCLUSION AND FUTURE WORK
In conclusion, the research is about to analyze grammars from input files and develop a fuzzer
that uses the extracted grammars to generate fuzzing files. Extracting grammars can support the
fuzzing tool to generate fuzzing files that may reveal bugs/vulnerabilities in a target program.
Also, the fuzzing methods and techniques are more effective to find bugs in the venerable
programs. The experiments and testing show that there are 79 programs of the DARPA CGC
dataset crashed successfully. The tool extracts critical grammars from sample input files. The
grammar is later used when generating fuzzing files to make them more effective. From our
experiments, the fuzzer is fast and usually finds vulnerabilities in under 5 minutes. The fuzzing
tool can support the software security community with new approach and fuzzing techniques.
Moreover, it will give a hand to software developers to find vulnerabilities in their programs before
delivery stage. Therefore, the research work could bring in new conceptual methods to the
software testing community.

The future work for this research is learning the commands order to support generating new
fuzzing files without modifying the sample input files. Moreover, the tool will learn the order of the
commands and the probability of the occurrence of each command. Then, it combines them with
the analyzed grammars, to generate completely new fuzzing files. This step can be run on top of
the current tool. These new fuzzing files will be inserted to the programs to find or discover bugs
or vulnerabilities in them. The current plan is to learn commands' order to help further analyze the
sample input.

The research learns the structure of the sample input file as well. This allows the fuzzer to
generate completely new fuzzing files without mutating or modifying the sample input files. It will
give conceptual methods based on inputs' grammar analysis of general programs and
understanding ways to use them to generate new fuzzing input from those grammars to explore
bugs easily. To our knowledge, this will be the first grammar-based fuzzer which can generate
fuzzing files based on the analysis and grammar learning of the sample input files.

9. REFERENCES
Al Salem, H., & Song, J. (June 2019). A Review on Grammar-Based Fuzzing Techniques.
International Journal of Computer Science & Security (IJCSS), 13(3), 114-123.

Amini, P. a. (2013, May). Sulley: Pure Python fully automated and unattended fuzzing framework.

Hamad Al Salem & Jia Song

International Journal of Computer Science and Security (IJCSS), Volume (15) : Issue (5) : 2021 166
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

Aschermann, C., Frassetto, T., Holz, T., Jauernig, P., Sadeghi, A.-R., & Teuchert, D. (2019).
NAUTILUS: Fishing for Deep Bugs with Grammars. NDSS.

Atlidakis, V., Geambasu, R., Godefroid, P., Polishchuk, M., & Ray, B. (2020). Pythia: Grammar-
Based Fuzzing of REST APIs with Coverage-guided Feedback and Learning-based Mutations.

Atlidakis, V., Geambasu, R., Godefroid, P., Polishchuk, M., & Ray, B. (2020). Pythia: Grammar-
Based Fuzzing of REST APIs with Coverage-guided Feedback and Learning-based Mutations.
arXiv preprint arXiv:2005.11498.

Blazytko, T., Bishop, M., Aschermann, C., Cappos, J., Schlögel, M., Korshun, N., . . . others.
(2019). GRIMOIRE: Synthesizing structure while fuzzing. 28th USENIX Security Symposium
(USENIX Security 19), (pp. 1985–2002).

Böhme, M., Pham, V.-T., & Roychoudhury, A. (2017). Coverage-based greybox fuzzing as
markov chain. IEEE Transactions on Software Engineering, 45, 489–506.

Darpa challenge binaries on multiple os systems. (n.d.). Retrieved from
https://github.com/trailofbits/cb-multios

Eberlein, M., Noller, Y., Vogel, T., & Grunske, L. (Sept. 2020). Evolutionary Grammar-Based
Fuzzing. International Symposium on Search Based Software Engineering.

Fuzzer, P. (2016). Discover unknown vulnerabilities. Peach, Peach Fuzzer.[Online]. Available:
http://www. peachfuzzer. com/. Accessed on: Jul, 13.

Gan, S., Zhang, C., Chen, P., Zhao, B., Qin, X., Wu, D., & Chen, Z. (Aug. 2020). GREYONE:
Data Flow Sensitive Fuzzing. Proceedings of the 29th USENIX Security Symposium.

Godefroid, P. (Jan, 2020). Fuzzing: Hack, art, and science. Communications of the ACM, 63(2),
70-76.

Godefroid, P., Peleg, H., & Singh, R. (2017). Learn&fuzz: Machine learning for input fuzzing.
Proceedings of the 32nd IEEE/ACM International Conference on Automated Software
Engineering, (pp. 50–59).

Grieco, G., Ceresa, M., & Buiras, P. (2016). Quickfuzz: an automatic random fuzzer for common
file formats. Proceedings of the 9th International Symposium on Haskell, (pp. 13–20).

Guo, T., Zhang, P., Wang, X., & Wei, Q. (2013). GramFuzz: Fuzzing testing of web browsers
based on grammar analysis and structural mutation. Informatics and Applications (ICIA), 2013
Second International Conference on, (pp. 212–215).

Helin, A. (2006). Radamsa fuzzer. Radamsa fuzzer.

Hodován, R., Kiss, Á., & Gyimóthy, T. (2018). Grammarinator: a grammar-based open source
fuzzer. Proceedings of the 9th ACM SIGSOFT International Workshop on Automating TEST Case
Design, Selection, and Evaluation, (pp. 45–48).

Holler, C., Herzig, K., & Zeller, A. (2012). Fuzzing with Code Fragments. USENIX Security
Symposium, (pp. 445–458).

Hu, Z., Shi, J., Huang, Y., Xiong, J., & Bu, X. (2018). GANFuzz: a GAN-based industrial network
protocol fuzzing framework. Proceedings of the 15th ACM International Conference on
Computing Frontiers, (pp. 138–145).

Hamad Al Salem & Jia Song

International Journal of Computer Science and Security (IJCSS), Volume (15) : Issue (5) : 2021 167
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

Jitsunari, Y., & Arahori, Y. (2019). Coverage-guided Learning-assisted Grammar-based Fuzzing.
IEEE International Conference on Software Testing, Verification and Validation Workshops
(ICSTW).

Kim, S. Y., Cha, S., & Bae, D.-H. (2013). Automatic and lightweight grammar generation for fuzz
testing. Computers & Security, 36, 1–11.

Koroglu, Y., & Wotawa, F. (2019). Fully automated compiler testing of a reasoning engine via
mutated grammar fuzzing. IEEE/ACM 14th International Workshop on Automation of Software
Test (AST), (pp. 28–34).

Lemieux, C., & Sen, K. (2018). Fairfuzz: A targeted mutation strategy for increasing greybox fuzz
testing coverage. Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering, (pp. 475–485).

Liang, H., Pei, X., Jia, X., Shen, W., & Zhang, J. (Sept. 2018). Fuzzing: State of the Art. IEEE
Transactions on Reliability, 67(3), 1199-1218.

Lyu, C., Ji, S., Zhang, C., Li, Y., Lee, W.-H., Song, Y., & Beyah, R. (2019). MOPT: Optimized
mutation scheduling for fuzzers. 28th USENIX Security Symposium (USENIX Security 19), (pp.

1949–1966).

Miller, B. P., Fredriksen, L., & So, B. (1990). An empirical study of the reliability of UNIX utilities.
Communications of the ACM, 33, 32–44.

Noller, Y. (Sept. 2018). Differential program analysis with fuzzing and symbolic execution. ASE
2018: Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering, (pp. 944-947).

Norris, J. (1998, July). Markov Chain (Cambridge Series in Statistical and Proba-bilistic
Mathematics). Cambridge, U.K.: Cambridge Univ. Press.

Oehlert, P. (2005). Violating assumptions with fuzzing. IEEE Security & Privacy, 3, 58–62.

Pham, V.-T., Böhme, M., Santosa, A. E., Caciulescu, A. R., & Roychoudhury, A. (2019). Smart
greybox fuzzing. IEEE Transactions on Software Engineering.

Ruderman, J. (2007). Introducing jsfunfuzz. URL http://www. squarefree.
com/2007/08/02/introducing-jsfunfuzz, 20, 25–29.

Sargsyan, S., Kurmangaleev, S., Mehrabyan, M., Mishechkin, M., Ghukasyan, T., & Asryan, S.
(2018). Grammar-Based Fuzzing. Ivannikov Memorial Workshop (IVMEM), (pp. 32–35).

Serebryany, K. (2015). Simple guided fuzzing for libraries using LLVM’s new libFuzzer. Simple
guided fuzzing for libraries using LLVM’s new libFuzzer.

Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N., Polino, M., Dutcher, A., . . . others. (2016).
Sok:(state of) the art of war: Offensive techniques in binary analysis. IEEE Symposium on

Security and Privacy (SP), (pp. 138–157).

Veggalam, S., Rawat, S., Haller, I., & Bos, H. (2016). Ifuzzer: An evolutionary interpreter fuzzer
using genetic programming. European Symposium on Research in Computer Security, (pp. 581–

601).

Wang, J., Chen, B., Wei, L., & Liu, Y. (2017). Skyfire: Data-driven seed generation for fuzzing.
Security and Privacy (SP), IEEE Symposium on, (pp. 579–594).

Hamad Al Salem & Jia Song

International Journal of Computer Science and Security (IJCSS), Volume (15) : Issue (5) : 2021 168
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

Wang, J., Chen, B., Wei, L., & Liu, Y. (2018). Superion: Grammar-Aware Greybox Fuzzing. arXiv

preprint arXiv:1812.01197.

Yang, D., Zhang, Y., & Liu, Q. (2012). Blendfuzz: A model-based framework for fuzz testing
programs with grammatical inputs. Trust, Security and Privacy in Computing and
Communications (TrustCom), IEEE 11th International Conference on, (pp. 1070–1076).

Zalewski, M. (2014). American fuzzy lop. American fuzzy lop.

