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Abstract 
 
Software testing is an important step in the software development life cycle. It focuses on testing 
software functionalities, finding vulnerabilities, and assuring the software is executing as 
expected. Fuzzing is one of the software testing techniques which feeds random input to 
programs and monitors for abnormal behaviors such as a program crash. One of the limitations of 
fuzzing is that most of the fuzzers require highly structured input or certain input pattern; 
otherwise, the fuzz testing may be terminated at the early stage of the program execution 
because of not meeting the input format requirements. Some fuzzers resolve this problem by 
manually creating program specific input grammars to help guide fuzzing, which is tedious, error 
prone, and time consuming. In addition, this solution cannot work efficiently when testing multiple 
programs which require different input patterns. To solve this problem, a general grammar-based 
fuzzing technique is proposed and developed in this paper.  The new fuzzer can extract grammar 
from the sample input files of a program, and then generate effective fuzzing files based on the 
grammar. This fuzzing tool is able to work with different programs by extracting grammar from 
them automatically and hence generate program specific fuzzing files. The fuzzing tool is fast and 
can find a crash in a short time. From the experiments, it successfully crashed 79 (out of 235) 
programs of the DARPA CGC dataset. 
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1. INTRODUCTION 
Recently, software security testing has been widely used to reduce the number of bugs in the 
software. Researchers have proposed different approaches to support automated software 
security testing. Fuzzing is one of the approaches. Fuzzing was first attempted by Barton Miller in 
1988 to fuzz Unix utilities (Miller, Fredriksen, & So, 1990). Since that time, fuzzing became an 
interesting topic. 
 
Fuzzing is an automated technique that supports discovering vulnerabilities and weaknesses in a 
target program by using random generated malformed input data (Oehlert, 2005). Fuzzing can be 
automated and does not require access to the source code compared to manually reviewing the 
source code, which requires a huge amount of time and cost. It can trigger vulnerabilities that the 
programmers overlooked while programming, such as buffer overflow, off by one error, etc. In 
general, a fuzz testing consists of user inputs (seeds), a target program, fuzzing techniques that 
use the seeds to generate new malformed inputs, and abnormal behavior monitor (Liang, Pei, Jia, 
Shen, & Zhang, Sept. 2018). First, an important component in fuzzing process is user input, 
which is the route in discovery of bugs or flaws in a software/system. Second, the target program 
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is the software under test that is needed to conduct fuzzing process. Third, fuzzing technique is 
the strategy of creating fuzzing inputs, which is a part of fuzzing process which creates 
malformed inputs that could trigger vulnerabilities in the target program. In the end, an abnormal 
behavior monitors for any exception after running the target program with the malformed fuzzing 
inputs. Therefore, the idea behind fuzzing is generating a large number of invalid or bad inputs 
and feeding them to the target program to cause a crash or trigger errors (Liang, Pei, Jia, Shen, & 
Zhang, Sept. 2018). 
 
In recent years, fuzzing has been an interesting topic in software testing. There are many fuzzing 
tools that automatically generate malformed test inputs and feed them to the target program for 
exploring any bugs; the most known fuzzing tools are AFL (Zalewski, 2014), Peach (Fuzzer, 
2016), LibFuzzer (Serebryany, 2015), and RADAMSA (Helin, 2006). There are different types of 
fuzzers, such as black-box fuzzing, coverage-guided fuzzing, symbolic execution-guided fuzzing, 
dynamic taint analysis-guided fuzzing, grammar-based fuzzing, etc. Black-box fuzzing randomly 
generates a stream of test cases and fuzzes a program without any knowledge of the program 
(Godefroid, Fuzzing: Hack, art, and science, Jan, 2020). Coverage-guided fuzzing uses trivial 
program coverage feedback to follow how the running path of the program switches via given 
fuzzed input (Blazytko, et al., 2019). The fuzzer employs the collected instrumentation data to 
choose which inputs could be ignored or kept in the corpus queue (Blazytko, et al., 2019). 
Fuzzers that use symbolic execution technique employ input values as symbolic values rather 
than using actual values and use symbolic presentation to express the values of program 
variables (Noller, Sept. 2018). Dynamic taint analysis is a type of data flow analysis method which 
is used in many domains like software engineering, and computer security (Gan, et al., Aug. 
2020). It can be used in fuzzing to track the generation of some kind of inputs to collect useful 
data to fuzz programs with different inputs (Gan, et al., Aug. 2020). Grammar-based fuzzing takes 
grammars for a certain input file structure such as HTML, XML, C language, etc. to generate valid 
input fuzzing files that are accepted by the grammars (Al Salem & Song, June 2019). A detailed 
literature review on the existing grammar-based fuzzers can be found in Section 3. 

 
2. MOTIVATION AND CONTRIBUTIONS 
2.1 Motivation 
Generally, fuzzing is a prevalent and effective way to reveal bugs in applications. Fuzzing tools 
work by providing a huge amount of fuzzing inputs which can be used to test the target program. 
By looking closely at the execution of these fuzzing inputs, fuzzing tools can identify inputs which 
can trigger an exception. In high-level view, one can take into consideration that fuzzing is a 
random method to discover flaws of a software; however, most of the randomly generated inputs 
are rejected in the early stage by the target software without visiting interesting locations in the 
target code. There are many studies conducted on this approach to explore new effective ways to 
generate interesting fuzzing inputs which are able to trigger a vulnerability deeply in a program 
(Wang, Chen , Wei, & Liu, 2017). Although great progress has been accomplished in fuzzing, 
there is still human intervention in the fuzzing process (Blazytko, et al., 2019). It is an important 
goal for fuzzing developers to reduce the human interaction and domain knowledge of the target 
program. 
 
A very important aspect of fuzzing is input generation which affects the effectiveness of fuzzing 
input data. Without the source code and knowledge about the program, the performance of a 
fuzzer will be limited because most of the programs require highly structured input. To help 
improve it, some fuzzers require valid sample input to at least have a good start point, but they 
cannot guarantee that a generated fuzzing input meets the program requirement and can be 
accepted by the program. Some fuzzers limit the format of the target program to be a certain type 
of program, such as pdf, png, html. Some researchers focus on generating fuzzing inputs based 
on one or more input formats (Wang, Chen , Wei, & Liu, 2017), (Fuzzer, 2016), (Guo, Zhang, 
Wang, & Wei, 2013), (Veggalam, Rawat, Haller, & Bos, 2016). For example, fuzzer GramFuzz 
(Guo, Zhang, Wang, & Wei, 2013) deals with JavaScript, HTML, and CSS formats, so the fuzzer 
understands how to generate fuzzing input that satisfies the format requirement for those three 
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formats. Several fuzzers require users to manually create grammars to help generate fuzzing 
input (Aschermann, et al., 2019), (Koroglu & Wotawa, 2019), (Fuzzer, 2016), (Amini, 2013), but 
they require the users to have knowledge about the input format and be able to provide the 
proper grammar to the fuzzer correctly. Therefore, it is still an open question to automatically 
generate fuzzing inputs which are good for general inputs' format specification (often called 
“grammars”).  
 
Some researchers focused on user inputs which studied how to generate effective fuzzing inputs 
(Godefroid, Jan, 2020). Others concentrated on fuzzing techniques that exercised fewer 
resources and reduced the space of potential inputs (Aschermann, et al., 2019). The scope of this 
research is about learning grammar from the sample input file and generating effective fuzzing 
inputs from grammars. In the research, the sample input files will be studied and grammars will 
be extracted from the input automatically. The grammar is later used to help generate effective 
fuzzing input which has correct format that can be accepted by the program and can go deeper 
into the program. 
 
2.2 Contributions 
Most previous research studies centered on generating fuzzing files on a specific input language 
and use public grammar rules to generate fuzzing input files. The proposed tool can analyze 
sample input files, obtain the grammar rules, and use them to generate fuzzing inputs 
automatically. The proposed work is a grammar-based fuzzing tool that analyzes sample input 
files of a program and uses fuzzing techniques to generate effective fuzzing inputs.   
 
The proposed tool will be designed and implemented based on grammars and effective fuzzing 
techniques that will improve the efficiency of vulnerabilities detection. without any human 
interaction, by using input files, the tool can automatically learn the grammar and generate 
effective fuzzing inputs which can trigger vulnerabilities in a target program. This will provide 
software developers a hand to test their software, discover vulnerabilities, and make sure their 
software is safe and secure. The extracted grammar will guide the fuzzer to generate fuzzing files 
which can explore bugs deeply in the target program. Therefore, the tool will support software 
developers and industry to find bugs in a system. Since the tool is automated, it will save time 
and energy of the developers and testers. 

 
3. RELATED WORK  
Grammar-based fuzzing is a fuzzing technique that takes a particular input format to get the 
correct grammars structure. Then, it uses the grammars to generate fuzzing input that passes the 
parsing stage of a program. The vast majority of the grammar-guided fuzzing techniques take 
unique file format for specific input structure. A fuzzing tool will have difficulties and problems if it 
does not have a valid user input format known before. Therefore, it is critical for grammar-based 
fuzzing tool to have grammar specification which will support the generation of valid fuzzing 
inputs that meet the program testing and assist in exploring interesting bugs. Moreover, grammar-
based fuzzing tool that uses grammar guided method is able to increase code coverage and 
reach deeper locations in a target application (Kim, Cha, & Bae, 2013). Most of the techniques 
that use grammar-based fuzzing are utilizing grammar with user inputs in the beginning of fuzzing 
process to generate test. By using grammars, the fuzzing tool can generate new user inputs and 
then apply them to generate new fuzzing inputs. Many studies have been performed on fuzzing 
techniques that use grammar to guide fuzzer. Moreover, they combine grammar-based fuzzers 
with techniques such as mutation, machine learning (e.g., neural networks), evolutionary 
computing (e.g., genetic algorithm), or coverage feedback to guide fuzzing and improve the ability 
of revealing bugs in a program under test. 
 
Mutation-based fuzzing takes sample inputs and chooses them in particular order, then 
mutates/changes them in different ways, and examines target programs with the newly generated 
test input. Mutation is the most common technique used for fuzzing guidance because it has an 
efficient way to get fuzzing user input that supports finding deep bugs while using it with 
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grammar-guided fuzzing (Guo, Zhang, Wang, & Wei, 2013). Machine learning fuzzing is another 
method that a fuzzer can use to find bugs in the target programs. It is a learning algorithm which 
learns or trains model to do certain operations with some probabilities, and it can be used with 
fuzzing to generate intelligent or organized fuzzing files. Evolutionary computing fuzzing is 
inspired by evolution theory and generates new individuals in the eco-system with reproduction 
and combination of good features of individuals by using fitness function. Therefore, the tool can 
generate effective fuzzing inputs. Coverage-guided fuzzing is a technique in which a fuzzer can 
get coverage feedback information so the fuzzer uses it to test unvisited locations in the program 
under test. 
 
3.1 Grammar-based Fuzzers based on Mutation 
Some studies used mutation technique in a grammar-based fuzzing such as GramFuzz (Guo, 
Zhang, Wang, & Wei, 2013), SD-Gen (Sargsyan, et al., 2018), BlendFuzz (Yang, Zhang, & Liu, 
2012), QuickFuzz (Grieco, Ceresa, & Buiras, 2016), LangFuzz (Holler, Herzig, & Zeller, 2012), 
and mutated grammar fuzzer (MGF) (Koroglu & Wotawa, 2019). When a fuzzing tool combines 
grammars with mutation the generated test cases will be more effective (Guo, Zhang, Wang, & 
Wei, 2013). Mutation has different ways to mutate and alter the user input. GramFuzz (Guo, 
Zhang, Wang, & Wei, 2013), BlendFuzz (Yang, Zhang, & Liu, 2012), SD-Gen (Sargsyan, et al., 
2018), and LangFuzz (Holler, Herzig, & Zeller, 2012) are similar that after extracting the 
grammars from user/sample inputs, they mutate some parts of the user inputs based on the user 
input type to get fuzzing input that may find a vulnerability in the tested program. QuickFuzz 
(Grieco, Ceresa, & Buiras, 2016) combines bit-level fuzzers with the fuzzing tool to support 

mutate user input in certain locations. However, Koroglu et al. (2019) stated that a grammar is 

provided to the fuzzer; then the tool mutated it to generate the fuzzing inputs. 
 
Fuzzing tools GramFuzz (Guo, Zhang, Wang, & Wei, 2013), QuickFuzz (Grieco, Ceresa, & 
Buiras, 2016), and  LangFuzz (Holler, Herzig, & Zeller, 2012) are focusing on generating fuzzing 
files for web browsers engines like Mozilla, IE, and Firefox. They use user input format XML, 
CSS, HTML, PHP, and JavaScript particularly to extract the grammars from those languages. 
Then, they used them to mutate the generated user inputs. Moreover QuickFuzz (Grieco, Ceresa, 
& Buiras, 2016), in addition to web browser engines, it focuses on generating fuzzing files for 
image processing utilities and file achievers. Sargsyan et al. (2018) stated that SD-Gen focuses 
on generating fuzzing user inputs on programming languages such as C, C++, Python, Java, etc. 
 
According to Guo et al. GramFuzz (2013) has found 36 vulnerabilities that are believed to be 
severe security issues in IE, Mozilla, and FireFox. MGF (Koroglu & Wotawa, 2019) has found to 
have an increased code coverage by 8.5% than the mutated fuzzer without using grammars. 
Also, the MGF found important bugs in the compiler under test (Koroglu & Wotawa, 2019). The 
experiment results of the fuzzing tools SD-Gen (Sargsyan, et al., 2018), BlendFuzz (Yang, 
Zhang, & Liu, 2012) and QuickFuzz (Grieco, Ceresa, & Buiras, 2016) showed increased code 
coverage and more vulnerabilities has been discovered in the tested programs. In LangFuzz, it 
has discovered 164 bugs in popular JavaScript engines and detected 20 bugs on PHP engine 
(Holler, Herzig, & Zeller, 2012).  
 
3.2 Grammar-based Fuzzers Guided by Machine Learning 
Some other grammar-guided fuzzing tools employ machine learning techniques to produce well-
organized and well-formed user inputs which will be able to increase code coverage and discover 
new bugs.  
 
Learn&Fuzz (Godefroid, Peleg, & Singh, 2017), Skyfire (Wang, Chen , Wei, & Liu, 2017), and 
GANFuzz (Hu, Shi, Huang, Xiong, & Bu, 2018) tools employ machine learning techniques to 
generate user input grammars. Jitsunari et al. (2019) proposed a generative model to learn the 
input token to generate new fuzzing inputs. Godefrois et al. (2017) stated that Learn&Fuzz learns 
the input grammar and generates fuzzing inputs for fuzzing purposes. Jitsunari et al. (Jitsunari & 
Arahori, 2019) stated that their study overcomes the problems in Learn&Fuzz (Godefroid, Peleg, 
& Singh, 2017).  Wang et al. (2017) stated that Skyfire use sample inputs and the provided 
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grammars to generate fuzzing inputs by learning PCSG (Probabilistic Context-Sensitive 
Grammar) which is based on semantics and syntax. GANFuzz (Hu, Shi, Huang, Xiong, & Bu, 
2018) utilizes machine learning (deep learning) to learn the input grammars for network protocol. 
 
Learn&Fuzz (Godefroid, Peleg, & Singh, 2017) focused on PDF files to find grammar and use it 
for fuzzing generations to test programs. Jitsunari et al. (2019) focused on using a generative 
model that learns the sequence of tokens in PDF files and generate new fuzzing files. Moreover, 
Skyfire (Wang, Chen , Wei, & Liu, 2017) focused on input files such as XML, XSLT, and 
JavaScript to fuzz certain locations in the inputs based on its type that meets the grammar 
context. 
 
3.3 Grammar-based Fuzzers Guided by Evolutionary Computation 
There are some grammar-guided fuzzing tools that employ evolutionary computation methods 
such as genetic algorithm and genetic programming. These tools take advantage of the crossover 
and mutation techniques to produce well-organized and well-formed test inputs based on 
enhanced fitness function. 
 
EvoGFuzz (Eberlein, Noller, Vogel, & Grunske, Sept. 2020), Grammarinator (Hodován, Kiss, & 
Gyimóthy, 2018), and IFuzzer (Veggalam, Rawat, Haller, & Bos, 2016) utilize grammars in 
generating fuzzing input files by using evolutionary computation techniques such as mutation and 
recombination. EvoGFuzz (Eberlein, Noller, Vogel, & Grunske, Sept. 2020) focused on fuzzing 
JSON parsers, CSS and JavaScript parsers. Grammarinator (Hodován, Kiss, & Gyimóthy, 2018) 
and IFuzzer (Veggalam, Rawat, Haller, & Bos, 2016) focused on fuzzing JavaScript engines and 
Grammarinator found over 100 issues in some of JavaScript projects (Hodován, Kiss, & 
Gyimóthy, 2018). IFuzzer discovered 40 bugs in Mozilla (Veggalam, Rawat, Haller, & Bos, 2016). 
EvoGFuzz (Eberlein, Noller, Vogel, & Grunske, Sept. 2020) found 11 exceptions more than 
baseline that found only 6 exceptions. Moreover, EvoGFuzz (Eberlein, Noller, Vogel, & Grunske, 
Sept. 2020) is significantly higher in code coverage than the baseline. 
 
3.4 Grammar-based Fuzzers Guided by Coverage Feedback 
Coverage-guided fuzzing tools are able to effectively create inputs for programs with structured 
input languages. Coverage-guided grammar-based fuzzing tools can mutate inputs in a small 
group by using the given grammar (Blazytko, et al., 2019). Moreover, the fuzzing tool has the 
ability to reasonably merge inputs that lead to critical attributes with a high probability of 
discovering more risky actions. However, the grammars need human labor, expert knowledge, 
and hard work to be manually written to obtain correct input format. Also, it is error prone, which 
makes it difficult to manually provide a correct specification (Blazytko, et al., 2019). 
 
There are several tools that employ this technique; they are NAUTILUS (Aschermann, et al., 
2019), AFLSMART (Pham, Böhme, Santosa, Caciulescu, & Roychoudhury, 2019), Pythia 
(Atlidakis, Geambasu, Godefroid, Polishchuk, & Ray, 2020), and Superion (Wang, Chen, Wei, & 
Liu, 2018). They combine grammar and coverage feedback to guide fuzzing to explore bugs and 
vulnerabilities deeply in the program under test. NAUTILUS (Aschermann, et al., 2019), 
AFLSMART (Pham, Böhme, Santosa, Caciulescu, & Roychoudhury, 2019), and Superion (Wang, 
Chen, Wei, & Liu, 2018) use the provided grammar to generate new fuzzing input files. Pythia 
(Atlidakis, Geambasu, Godefroid, Polishchuk, & Ray, Pythia: Grammar-Based Fuzzing of REST 
APIs with Coverage-guided Feedback and Learning-based Mutations, 2020) extract grammars 
from sample input files to use the grammars for generating fuzzing input files. They use 
grammars with coverage feedback to mutate interesting inputs and increase the chance to find 
bugs located deep in the program under test. 
 
NAUTILUS (Aschermann, et al., 2019) and Superion (Wang, Chen, Wei, & Liu, 2018) focus on 
fuzzing web browser engines such as IE, PHP engine, and JavaScript programs by using XML 
and JavaScript grammars. AFLSMART (Pham, Böhme, Santosa, Caciulescu, & Roychoudhury, 
2019) focuses on AVI and WAV files. It uses their grammar to produce new fuzzing files to test 
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programs.  Pythia focused on extracting grammars from web services like HTTP (Atlidakis, 
Geambasu, Godefroid, Polishchuk, & Ray, 2020). 
 
NAUTILUS (Aschermann, et al., 2019),  AFLSMART (Pham, Böhme, Santosa, Caciulescu, & 
Roychoudhury, 2019), and Superion (Wang, Chen, Wei, & Liu, 2018) discover bugs in the 
programs that they tested. NAUTILUS (Aschermann, et al., 2019) has found 13 new bugs in 4 
targets mRuby, Lua, PHP, and ChakraCore. AFLSMART (Pham, Böhme, Santosa, Caciulescu, & 
Roychoudhury, 2019) has found 42 bugs in multimedia open-source programs and 22 of them 
assigned CVEs. Pythia (Atlidakis, Geambasu, Godefroid, Polishchuk, & Ray, 2020) tested web 
services APIs GitLab and Mastodon programs for 24 hours and found 29 bugs in them. Superion 
(Wang, Chen, Wei, & Liu, 2018) found 34 new bugs in Jerryscript, XML engine, 3 JavaScript 
engines, and ChakraCore. Also, it discovered 22 new vulnerabilities with 19 CVEs identifier 
assigned. In comparison with AFL and JsFunFuzz (Ruderman, 2007), AFL found only 6 bugs of 
34 and JsFunFuzz did not discovered anything (Wang, Chen, Wei, & Liu, Superion: Grammar-
Aware Greybox Fuzzing, 2018). 

 
4. DARPA CGC DATASET 
DARPA Cyber Grand Challenge (CGC) is a competition developed to spur the research on 
automated vulnerability discovery and patching. CGC representatives created a dataset 
containing vulnerable programs with details of explaining a program process. DARPA designed 
the DARPA Experimental Cyber Research Environment (DECREE) which is a simple operating 
system and an open-source Linux extension made for managed software security trails. DECREE 
OS contains 7 system calls: transmit to send data, receive to receive data, waitfd to wait 

for data over file descriptors, random to generate random data, allocate, deallocate for 

memory control and terminate to stop the server communication (Shoshitaishvili, et al., 2016). 

There are about 250 programs in the DARPA CGC dataset. Each program has at least one 
vulnerability in it. The programs are written in C or C++ programming languages. Despite the 
simplicity of the CGC environment model, the programs given by DARPA have a large scope of 
complexity (Shoshitaishvili, et al., 2016). 
 
Although source code for each of the programs is not given during the competition, most of the 
programs came with network traffic files saved in pcap (Package CAPture) files. These pcap files 
record the interactions with the programs, what was sent to the program and what the program 
responded to. The network traffic can be extracted from the pcap files. 
 

5. INPUT FILES GRAMMARS ANALYSIS 
After examining the programs in the DARPA CGC dataset, it was determined that each program 
is a standalone program and there is no similarity among the programs. For example, there are 
ship game, palindrome test, picture analysis, file reading and searching programs in the dataset. 
Each program has its own way to interact with the program, such as using specific commands 
and special strings. To be able to conduct effective fuzzing, the formats of how to interact with the 
programs have to be learned. Since most of the vulnerable programs come with network traffic 
data, the interactions between the user and program can be extracted. These network traffic data 
can be treated as valid sample input files, and a grammar can be learned from these files and be 
used in the later process.  

 
This section discusses how to analyze input files from the DARPA CGC dataset to extract 
grammars. After extracting grammar from the sample input, the grammar can be fed to the fuzzer 
to generate effective fuzzing input files. 
 
This stage begins by collecting data from the DARPA CGC dataset which then starts analyzing 
for grammars. After investigating the input files/network traffic files in the DARPA CGC dataset, 
we found that most of the programs require input that are command-like. One example can be 
found in Listing 1 it shows all the messages sent from the user to the program. By taking a closer 
look, we can find the messages are in the format of command and one or more parameters, 
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copy README.txt lcggfldeuausqsrx 
list 
show README.txt 
erase authentication.db 
make gtims 
last README.txt 10 
show lcggfldeuausqsrx 
show README.txt 
list 
write authentication.db 
show README.txt 
last README.txt 10 
last README.txt 10 
first README.txt 10 
last lcggfldeuausqsrx 10 
first authentication.db 10 
list 
logout 
evjfrtm 58932 
xboskhi 18012 
ahpoyva 1614 
last authentication.db 10 
make flxzzofveqexsfje 
make kzoycqeppd 
write flxzzofveqexsfje 
chwvsfnnspychdjfrbyfjunhvlbypwibjeiuixgoipvxr 
write authentication.db 
erase README.txt 
first lcggfldeuausqsrx 10 
perms authentication.db 2 
list 

command only, or some random strings. Therefore, when analyzing the input, we treat the first 
word as command and the later part as parameters. For example in Listing 1, commands are the 

first word of each line such as copy, list, show, erase, make, last, write, etc.. 

Parameters are the items that come after a command. Using the first line in Listing 1 as an 

example, copy is a command and the parameters are README.txt, and lcggfldeuausqsrx. 

On the second line, list is a command and no parameter after it. The grammar analysis step is 

to go through each sample input files for a program and analyze them to extract the commands 
with their parameters and use them for generating fuzzing files in the next stage. This step can be 
further divided into four smaller tasks: 1) read in sample input files, 2) analyze real commands, 3) 
analyze common parameters, and 4) analyze numbers. 
 
5.1 Reading Input Files 
The tool starts by reading all the sample input files and saving all of the strings from the input files 

into an input list because it has to be easy and flexibles, that the tool can find repeated or 

common items in all the input files. Then it scans through the input list and counts the numbers of 
each possible delimiter ( , / | : ; = - ` space). The reason for this is the tool needs to determine 
which character should be treated as the delimiter to split the words on each line. From the 
manual examination of the programs, most programs use white space as the delimiter; however, 
some programs use hyphen, semicolon, or equal sign to separate command and parameters. 
Therefore, a possible delimiter list is maintained and the tool first scans and counts the 
occurrence of each possible delimiter and uses the top one as the delimiter to separate words in 
the input files. For example, the delimiter for Listing 1 is ``space" after the tool counts all the 
possible delimiters in all input files. Then the delimiter is used to split the input strings, so that the 
first word before the first space is treated as command and the later part of the line is treated as 
parameters of the specific command. 
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make zmhvbqsjmzo 
perms README.txt 2 
last authentication.db 10 
first flxzzofveqexsfje 10 
perms authentication.db 1 
erase flxzzofveqexsfje 
last zmhvbqsjmzo 10 
perms zmhvbqsjmzo 1 
perms README.txt 3 
erase gtims 
perms authentication.db 4 
write authentication.db 
exit 

 
5.2 Analyzing Real Commands 
This stage is for extracting and analyzing real commands. After determining the delimiter, each 

string in the input list is split. Then, each of the first words after splitting the lines will be 

treated as a possible command. The possible commands are kept in a command list. 
 

Because of the large amount of input strings, we cannot treat each first word as a command. 
Instead, only the commands which have higher occurrences should be treated as commands. For 
example, some commands showed more than 500 times, but some other commands only 
occurred for 2 or 3 times. Then the low-occurrence commands are less likely to be the real 
command, and they should be ignored. Otherwise, the number of real commands will be too high 
and it takes much longer time to analyze them. In addition, many of the low-occurrence 
commands are random strings and they are not real commands.  
 
The percentage number is for comparisons to decide whether a word is a real command or not. If 
the occurrence number of a command is larger or equal to the percentage number, then it will be 
treated as a real command; otherwise, it will be dropped. The tool currently uses 10% of the 
number of input files as the percentage number, but the number can be changed easily if needed. 
For example, if input files count 1000, then the percentage is 100. After counting an item, if the 
counting number is larger than or equal to 100, the tool considers it as a real command. The 
reason for doing that is to not include unnecessary items as commands. We set the maximum 
number of real commands to be 20. So, the tool will not get too many real commands. Therefore, 
the tool will be able to speed up the process of analyzing larger input files with huge data input 
and support generating effective fuzzing input files by focusing only on the found items. 
 

 
FIGURE 1: Sorting commands. 

Using the input in Listing 1 as an example, after the commands are collected, the command list 
are taken and sorted as shown in Figure 1. Then, for each real command in the list, the number 

LISTING 1: Filesystem_Command_Shell Program User Input Example. 
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LISTING 3: Real commands and their real parameters. 

of occurrences is counted (see Figure 2). After that, it is compared with the percentage number; 
therefore, the tool keeps the ones that equal or exceed the percentage number. For example, the 
real commands list for Listing 1 is shown in Listing 2. 
 

  
 

FIGURE 2: Real commands. 

 

 
 

 

 
In the command list, an extra digit is added after each command. Because the tool needs to 
distinguish for each command how many parameters it has, a digit is added after each command. 
By having this digit, the tool knows how many parameters that come after a command and collect 

them for finding common parameters (next step). As shown in Listing 1, using first line copy 

README.txt lcggfldeuausqsrx as an example, the number of the split words on this line is 

3, which means there are 2 parameters following the command. Then it will show a copy2 on the 

real command list if it exceeds the percentage number so the tool knows that the command copy 

has 2 parameters. However, if the command does not have a parameter, a digit 0 is appended to 

the command to indicate no parameter follows the command, such as list0 in the example. To 

lower the amount of generated fuzzing files, the max parameter number is set for 3. This means if 
a line has more than 4 split words, it will be excluded from the analyzing. 

 
5.2 Analyzing Real Parameter 
The goal for the third step is to find common and most available parameters for each command 
by analyzing all the parameters for that command. The tool manages all the parameters and 
identifies the parameters that appear mostly with a command if the counted number equals to or 
exceeds a calculated percentage.  
 
Similar to the percentage number used for determining real command, another percentage 
number (10%) is used. This percentage can be changed if necessary. The reason for using the 
percentage number is to limit the number of real parameters and avoid treating random strings as 
real parameters. If the possible parameter occurs more than or equal to the calculated 
percentage, it is considered as a real parameter for that command. For example, if a real 
command number occurrence is 200, the tool multiplies it by 10%, which will give a calculated 
percentage of 20. Therefore, if the possible first parameter occurs 20 times or more, it will be 
considered as a first real parameter for that command. 

[‘erase1’, ‘first2’, ‘last2’, ‘list0’, ‘make1’ , ‘perms2’ , ‘show1’, ‘write1’] 

LISTING 2: Real commands 

{'copy2': [['README.txt'], ['authentication.db']],  
'erase1': [['README.txt'], ['authentication.db']],  
'exit0': [], 
'first2': [['README.txt', '10'], ['authentication.db', '10']],  
'last2': [['README.txt', '10'], ['authentication.db', '10']],  
'list0': [], 
'logout0': [], 
'make1': [],  
'perms2':[['README.txt'],['authentication.db'],  
['README.txt', '[0-9]'], ['authentication.db', '[0-9]']],  
'show1': [['README.txt'],['authentication.db']],  
'write1': [['README.txt'],['authentication.db']]} 
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{'copy2': [['README.txt'], ['authentication.db']], 
'erase1': [['README.txt'], ['authentication.db']], 
'exit0': [], 
'first2': [['README.txt', '10'], ['authentication.db', '10']], 
'last2': [['README.txt', '10'], ['authentication.db', '10']], 
'list0': [], 
'logout0': [], 
'make1': [], 
'perms2':[['README.txt'],['authentication.db']], 
'show1': [['README.txt'],['authentication.db']], 
'write1': [['README.txt'],['authentication.db']]} 

If a real parameter was found, the same process will be done for the second and third 
parameters. However, if there is no common first parameter, there is no need to find common 
parameters for the second and third parameters. Similarly, if there is a common first parameter 
but there is no second common parameter, the tool will not find the third common parameter. 
 
After that, the new findings for real commands with their real parameters are kept for further 

processing. The final findings from Listing 1 are shown in Listing 3. On lines 2 and 4, ‘erase1’ 

and ‘first2' are commands. The digit in the end of each command tells how many parameters 

that follow the command. Also, line 2 shows the real first 

parameters[[‘README.txt’],[‘authentication’]] for command ‘erase1’ which is a 

one-parameter command type. The command ‘first2’ is a two-parameter command type that 

has[[‘README.txt’, ‘10’], [‘authentication.db’,’10’]]}} which has two first 

parameters, ‘README.txt' and ‘authentication.db'. Each one is followed by a second 

parameter, which is ‘10' for each one. 

 
5.3 Analyzing Numbers and Change to [0-9] 
While manually examining the sample input files of DARPA CGC dataset, it was noticed that 
some input files such as “move r1, move r4, move r7, move r10”, have different numbers in 

parameters. The first parameters for the move command are r1, r4, r7, r10. If we compare the 

occurrence number of each one with the percentage number, then all of them will be dropped. 
However, they should be treated as a common parameter r[0-9]. Therefore, to be able to detect 

parameters like this, the numerical parts in parameters are modified and changed to [0-9] to make 

it easy to detect these parameters. So the first parameters for the move command (r1, r4, r7, r10) 

will be changed to r[0-9], r[0-9], r[0-9], r[0-9], and they will be counted for an occurrence of 4 and 
saved in the common parameter list. 
 
After this stage, a final grammar shown in Listing 4 will be obtained. The only changes from 
previous listing (Listing 3) are on line 10 in Listing 4. The changes can be seen for command 
perms2 because the second parameters are different numbers for this command. So, all 

numbers in the second parameters were changed and modified to “[0-9]”. Therefore, it was easy 
and helpful for them to be discovered. “[0-9]” was included with the parameters in the parameters' 
list. Another reason to change numbers in parameters is that the fuzzing tool will substitute the 
“[0-9]” to generate random numbers in a hope to discover any vulnerability caused by using 
invalid numbers in the program. Some input files have numbers in them, which means there could 
be a chance of one of those numbers triggering a buffer overflow, integer overflow, or other 
vulnerabilities. 

 
6. GENERATING FUZZING FILES 
After finishing the sample input files analysis, grammars are extracted, which will support 
generating fuzzing files. This section discusses how the new fuzzing tool creates and generates 

LISTING 4: Real commands and their real parameters after changing numbers to [0-9]. 
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fuzz data by using the extracted grammar. To be able to test the deeper code in the program, the 
sample input files are used and modified because we need to keep the orders of commands as 
shown in the valid sample input files. Also, they were used to help generate effective fuzzing files 
which can interact with the program correctly. Therefore, the strategies of generating fuzzing files 
in this step are to make substitution and replacement on the valid sample input files. In this step, 
a random string generator is developed. The new fuzzer gets a sample input file and figures out 
which part to substitute with the help of the extracted grammars. Then it uses the random string 
generator to generate a random string to be used to substitute a particular part of the sample 
input. This new fuzzing file will be saved and later will be fed into the target program for testing.  
 
The step can be divided into two major steps: 1) Read in sample input file and identify the 
location in the sample input file where it needs to be substituted, and then construct a new line to 
substitute the original line, and 2) Generate a random string and substitute the identified part in 
the sample input file with newly constructed line and save it as a new fuzzing file. 
 
6.1 Lines Replacements 
The purpose of this step is to replace a line of an input file each time with new random string 
because most of programs require keeping the order of the commands in user inputs so the 
programs run and execute correctly. After having the input file, the tool can use it to create 
multiple fuzzing files from it by substituting different lines. 
 
6.1.1 Constructing Fuzzing Files 
In the beginning, the tool starts to generate fuzzing files by opening a sample input file, then all 
the data from that file will be copied to the new text file because the aim is to create many input 
fuzzing files from one input file so the tool will have a higher chance in triggering a vulnerability in 
a program. Second, it takes a line from the input file and creates a target line to recognize the line 
that needs to be replaced with a random string. Third, it starts replacing lines from first line and 
then goes to the next line by increasing the target line by 1 and continues until it reaches the last 
line. After replacing a line, it copies the lines before the target line and the following lines that 
come after it. By keeping the order of commands in the testing file, the programs can be executed 
correctly and the tool will have a higher chance in discovering a vulnerability deeper in the 
program. Fourth, the tool works by taking the first line and taking the first word of it which is 
considered a command. Then, the length of the command is calculated by knowing the number of 
its parameters because the tool will use this number and concatenate it with the command to 
check with the grammars and to make the replacement based on the number of parameters. 
Based on the number of parameters, the tool will be able to recognize the type of a command; the 
command types are a command only, one-parameter command, two-parameter command, and 
three-parameter command. After that, when the tool knows the format of the line, it is compared 
with the extracted grammars, if it is one of the commands then it continues to the parameters 
checking. However, if the first word does not match any command in the command list, then the 
tool will generate a random string for that line. So, this will support testing programs that do not 
have real commands and may discover a vulnerability from them. 
 
6.1.2 Creating Fuzzing Line 
In a line, the tool will have different number of parameters that come with a command. There are 
commands with no parameters and one, two, or three parameters. For each one, the line is taken 
based on if it is a command with one, two, or three parameters. Then, any number that is found in 
a parameter is changed to “[0-9]” for each parameter. After that, it is compared with the grammar 
extracted before. If there is a match, the numeric parameter will be recognized and it is going to 
be substituted by a random number with a different length. However, if there is no match, the tool 
will consider these parameters as strings. So, for a command with no parameter, the tool can 
substitute the command and replace it by a random string with different length or keep it with no 
replacement. For a command with one, two, or three parameters, the tool will replace either the 
command or any one of the parameters with a random string with a different length. 
Nevertheless, in case there is no command match, there will not be parameter match. So, the 
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target line will be substituted or will be added a random string to it with a random length. The idea 
is to generate a fuzzing line that could lead to revealing a bug in a program under test. 
 
For example, if a line contains a command and two parameters and the command matches one 
of the commands in the grammar, the tool will analyze each parameter and change any number 
in it to ``[0-9]". Therefore, those parameters are compared with the parameters in the grammars. 
If there is a match, then the tool considers the parameters are numeric. After that, they are 
changed to random numbers with different length. For example, in Listing 1, after the line “perms 
README.txt 2” is split, the tool will get [‘perms’, ‘README.txt’, ‘2’ ]. The tool will go to first and 
second parameters. If there is any number in them the tool will change it to “[0-9]” so in the end 
the tool will have the parameters look like [‘README.txt’, ‘[0-9]’], and then it will have a match 
with one in Listing 4. Thus, the tool will be able to change the “[0-9]” with a random number. On 
the other hand, if there is no numeric parameter and no match, they will be considered as string 
parameters and will be substituted with a random string. For example, if there is a two-parameter 
command on a line, the tool can make one of the following replacements: 
 

 Replace the command with a random string and keep the two parameters with no 
change. 

 Keep the command and second parameter with no change and replace the first 
parameter with a random string. 

 Keep the command and first parameter with no change and replace the second 
parameter with random string. 

 
Since the grammar of the input was extracted, the tool is able to use it to generate more effective 

fuzzing files by substituting only part of a line. For example, the line move r3, r2 may be 

changed to move r12348579204756380801, r2 or move r3, 

r385972939754098840242 or even move r3, r-328495723975892. Helped with the 

grammar, the string can be substituted precisely. In addition, it is more likely to trigger a bug in a 
program compare to substituting the whole line with a random string which may not meet the 
format requirement and hence will be rejected by the program. 
 
6.2  Generating Random String 
After finding a target line and matching with the grammars, the tool is going to generate a random 
string or random number for the selected element from the split line. 
 

6.2.1  Random Test Numbers 
In the beginning, random test numbers list is created for each command that is found in the 
grammar. Each random test number is a three-digit number between 000 and 999. Each of the 
digits is used for different things in generating a random string. The first digit is for selecting an 
element that is going to be replaced with a random string; the second digit is for the type of string 
that is going to be generated; and the third digit is for the length of the generated string. For 
example, if a random test number is 234, 4 is the first digit which is for selecting an element to be 
replaced, 3 is the second digit that is type of string to be generated, and 2 is the third digit which 
is for the length of generated random string. The goal of the random test number list is to get a 
better coverage of string types, substitution types, and lengths so the random test number will 
have the information of string types, substitution types, and lengths which will be passed to the 
random string generator to generate different combinations of strings. Moreover, these numbers 
can be positive or negative, with the negative numbers representing the generation of negative 
numbers for only numeric parameters. 
 
After completing the generating process from one of the picked random test number, it will be 
removed from the list. Then, the generating process will continue for every command until all of 
the random test number list is empty. If the random test number list for a command is empty, one 
more random test number list will be created for that command to keep generating new random 
strings for it if the command is found in coming lines until the last line in the last sample input file. 
Therefore, the tool will have large combination of different random strings with different length 
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that will be generated for fuzzing files, so that the fuzzer will generate adequate amount of fuzzing 
files to get a higher probability of finding bugs or vulnerability in a program. 
 
6.2.2  Digit 1: Selecting and Replacing Part of a Line 
For selecting and replacing a string, random test numbers list for a command are obtained. Then, 
when there is a command match with a command from the target line, a random test number 
from the list is picked. As mentioned previously, the first digit is for selecting the element that is 
going to be replaced with a random string. The choices are going to be 5 options based on the 
line format (command only or command with parameter(s)) ranging from 0 to 4. These options as 
follows: 
 

 0 means replace the command. 

 1 means replace the first parameter. 

 2 means replace the second parameter. 

 means replace the third parameter. 

 means select one of the four locations and insert a random string in the selected position. 
 

6.2.3  Digit 2: String Types To Be Generated 
In the picked random test number, the second digit is for the type of string that is going to be 
generated. The following are the types of strings that are going to be generated by the fuzzer: 
 

 Numbers only. 

 Characters only (upper and lower case). 

 Symbols only. 

 Numbers and characters. 

 Numbers, characters, and symbols. 

 0 with space. 

 1 with space. 

 %x. 

 %n. 

 %p. 

 Multiple spaces ``\x20". 

 Multiple ``\xff". 

 Multiple of null character ``\x00". 

 Hex control characters. 

 Hex characters without the control characters. 
 
The string type 1 with space and 0 with space are for programs that trigger an overflow 
vulnerability in them. The string types %x, %n, and %p are for discovering format string 
vulnerability. The hex characters “\x20”, “\x00”, and “\xff” are going to be used to fuzz the 
programs for memory corruption. In addition, the hexadecimal control characters from “\x00” to 
“\x20” and “\x7f” are bad characters that can cause memory corruption in programs under test by 
giving mixed strings from these characters then inserting them into a program to trigger a buffer 
overflow or a bug that leads to crash the program. Finally, the hexadecimal uncontrol characters 
from “\x21” to “\x7e” will be used to fuzz the programs with different combinations of characters to 
increase the chance of triggering a buffer overflow vulnerability in the fuzzed program.  
 
The tool is able to generate any combination of strings for every generated line because of using 
the random test numbers for each command in the fuzzer which will help the tool to create 
different random string in each round.  
 

6.2.3  Digit 3: Length of A Random String 

After the tool has the type of replacement and the type of generated string, it has to determine the 
length of the generated string. Therefore, the third digit in the picked random test number is for 
the length of generated string. Because the random test number is three digits from 000 to 999, 
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the third digit in the random test number is in range 0 to 9. The tool will have different kinds of 
lengths, and there are two lists each containing 10 different lengths. First list is 
[4,6,8,16,32,64,128,256,512,1025] and the second list is 
[1200,1500,1800,2000,2200,2500,2800,3000,3500,4001]. The tool is going to try with different 
lengths in a hope to find a bug or vulnerability in the program. The tool works by choosing 
between 0 and 1 randomly. If 0 is selected, the tool will use the first list; otherwise, if 1 is selected, 
it will use the second list. Therefore, the probability to choose between the two list is 50%. The 
purpose of having various lengths is to have a higher chance to trigger buffer overflow 
vulnerabilities. Many programmers forget about checking length or size of a string or an array that 
could be revealed by fuzzing, so, the tool will be helpful in finding these mistakes before the 
production stage. 

 

6.3  Fuzzing process Explanation with an Example 
For more clarification, as an example, consider the picked number is 463 and the line is a 
command with three parameters. So, the first digit 3 means replace the third parameter with a 
random string. Second digit is 6, which is for the type of the generated string, and it is 1 with 
space. Moreover, the third digit is 4, which is going to determine the length of the generated 
string, so as stated above, if the selected item is 0 or 1, it taking the 4th element in either of the 
two lists. If 0 is selected, the length of the random string will be 32 (from the first list). Otherwise, if 
1 is selected the length of the random string will be 2200 (from the second list).  
 
Once the random string is generated, it will be plugged in to the new line and the new fuzzing file 
will be constructed. This step will be performed many times to generate a large number of fuzzing 
files. After completing and generating fuzzing files, the tool will have thousands of fuzzing files 
and use them to test the target program. Moreover, it will obtain different kinds of fuzzing data in 
each generated fuzzing file because the random data covers different combination of numbers, 
letters, and symbols, and for each combination, there will be different string lengths. In the end, 
there should be a good amount of fuzzing files generated, and they can be fed to the target 
program for testing. 

 
7. EXPERIMENTS AND EVALUATION 
7.1  Experiments 
The research experiments begin with analyzing sample input files from DARPA CGC programs to 
get grammars from them because the tool needs to get more knowledge on the format of the 
sample input files. After that, the tool generates fuzzing input files to be used in testing process. 
When testing the fuzzing input files, we look for segmentation fault or program crash.  
 
A bash script has been written to loop through each fuzzing file and feed them to the target 
program under test. In the meantime, the output of running the program is monitored for any “core 
dumped” or “Segmentation fault”.  
 
When a message “core dumped” or “Segmentation fault” is displayed in the output, it means a 
crash in the program has happened; then the running program stops and terminates the running 
process because it violates memory access. “Segmentation fault” message informs that the 
program encounters a serious error and the program has a bug or vulnerability. As shown in 
Figures 3 and 4, when a fuzzing input file crashed a program under test, it is displayed on the 
terminal that the program has been “CORED” or crashed, and then continue testing next fuzzing 
files. 
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FIGURE 3: Printer Program core dumped example. 

 

 
 

FIGURE 4: Payroll Program core dumped example. 

 
For instance, as shown in Figure 5 when testing the RRPN program with the generated fuzzing 
inputs, the program crashed and displayed that the ``Segmentation fault" when the file 
``127.0.0.144788-127.44.224.53.2457_3780.pov" and ``127.0.0.144788-
127.44.224.53.2457_3781.pov" fed to the program. While running other input files, there was no 
crash or SIGSEGV message. 
 

 
 

FIGURE 5: RRPN Program Crash. 

 
7.2  Used Tools In Experiments 
We compared our work with these four tools: the latest version of AFL (Zalewski, 2014), MOPT 
(Lyu, et al., 2019), FairFuzz (Lemieux & Sen, 2018), and AFLFAST (Böhme, Pham, & 
Roychoudhury, 2017). 
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AFL (American fuzzy lop) is a state-of-the-art greybox fuzzer (Zalewski, 2014). It uses trivial 
instrumentation to get new path coverage information. Based on that, AFL can choose unique 
identification of the path that is applied by an input. Then, it utilizes genetic algorithms to find 
interesting test cases that are likely to reveal new internal states in the program under test. After 
that, these test cases will be added to the sample inputs queue. 
 
Lyu et al. introduced MOPT (Lyu, et al., 2019) a mutation-based fuzzing tool. MOPT uses a 
customized Particle Swarm Optimization (PSO) algorithm to explore the possibility to give an 
optimal selection probability of different kinds of mutation operations. The optimization enhances 
the ability of a fuzzer to find the coverage information quickly.  
 
Lemieux et al. stated that FairFuzz (Lemieux & Sen, 2018) is a mutation-based gray-box fuzzing 
tool. The tool first looks for these branches that are rarely hit by fewer AFL inputs. Second, based 
on new mutation operation techniques, it makes the tool lean to generate inputs hitting a provided 
rare branch. This mutation is calculated dynamically during fuzzing and can be used to fuzz other 
targets. 
 
According to Bohme et al., AFLFAST (Böhme, Pham, & Roychoudhury, 2017) is a graybox 
fuzzing tool that uses Markov chain knowledge (Norris, 1998). It does not require a program 
analysis. It generates new test inputs with few mutations of seed input samples. It employs 
Markov chain model that specifies the probability of fuzzing the sample input that exercises path i, 
which then provides an input that exercises path j. Instead of fuzzing highly visited locations, the 
tool redirects to fuzz lower visited locations in the code. 
 
7.3  Testing Results and Observations 
The machine for generating fuzzing files and testing has environment: the CPU is AMD Ryzen 
Threadripper 2920X 12-Core Processor, memory is 32 GB, Ubuntu 18.04.4 LTS, and OS type 64-
bit. 

 
We use CB-multios dataset that is provided by TrailofBits team ( Darpa challenge binaries on 
multiple os systems, n.d.) who ported DARPA dataset from DEGREE system to Linux. There are 
247 programs. We excluded 12 challenges because there are issues with compiling and running 
those programs. 235 programs had been tested separately with different number of rounds for a 
one-hour run. During the one hour, the testing will be stopped if a crash is found.  
 
AFL (Zalewski, 2014), MOPT (Lyu, et al., 2019), FairFuzz (Lemieux & Sen, 2018), and AFLFAST 
(Böhme, Pham, & Roychoudhury, 2017) fuzzing tools had been tested with 235 programs. Each 
one took 1 hour of testing for each program. After tests were completed, the number of crahsed 
programs was collected. Table 2 shows the number of crashes of each tool and the appromiated 
time to crash most of programs. Therefore, AFL crashed 45 programs, which is 19.14%. AFLFast 
crashed 44 programs, which is 18.71%. Moreover, MOPT and FairFuzz crashed 54 programs, 
which is 22.98%. Our tool crashed 79 programs, which is 33.61% of the programs.  
 

Tool Name Number of crashes 
Approximated Time to crash 

most programs (minutes) 

AFL 45 20-30 

AFLFast 44 10-15 

MOPT 54 15-20 

FairFuzz 54 25-30 

Our tool 79 5 
 

TABLE 1: Experimental Results. 

 
Figure 6 shows our fuzzing tool discovered vulnerabilities more than other tools. In the help of 
grammar, our tool found 34 more than AFL, 35 more than AFLFast, and 25 more than MOPT and 
FairFuzz. Moreover, the fuzzing techniques have different kinds of options to create fuzzed inputs 
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OurTool(79) 

that support revealing bugs and vulnerabilities. For example, it can use the grammar for 
numerical parameters and replace it with a random number. Also, the grammar for string 
parameters supports obtaining different types of strings with different lengths that can provide the 
fuzzing tool with a higher possibility to trigger buffer overflow, off-by-one error, use after free 
vulnerabilities, etc. 
 
We observed that our tool crashed programs faster than others. For most of the crashed 
programs, we noticed that AFL took 20 to 30 minutes to find a vulnerability. Moreover, AFLFast 
found most vulnerabilities in 10 to 15 minutes. FairFuzz discovered vulnerabilities in most of 
programs in 25 to 30 minutes. Also, MOPT needs an average of 15 to 20 minutes to crash a 
program. However, our tool usually finds a crash in average of 5 minutes. 
 
Our tool is able to get grammars form many different types of input file formats such as web 
browser, photo analyzer, board game, etc. However, other studies in the related work are focused 
on using a provided grammar for certain type of input formats such as GramFuzz (Guo, Zhang, 
Wang, & Wei, 2013) and Learn&Fuzz (Godefroid, Peleg, & Singh, 2017). Moreover, our tool can 
learn grammars from sample input files to generate fuzzing input files. However, other studies in 
the related work are using manually provided grammars to the fuzzing tool such as Skyfire 
(Wang, Chen , Wei, & Liu, 2017) and MGF (Koroglu & Wotawa, 2019). 
 

 
 
 

Programs 

AFL(45) AFLFast(44) 

FairFuzz(45) MOPT(54) 

 

FIGURE 6: Venn Diagram for discovered bugs. 
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Our tool showed that it is faster in triggering vulnerabilities in the tested program than others. By 
using sample input files during testing, AFL, AFLFast, FairFuzz, and MOPT are not able to find 
more crashes than our tool because they are not grammar-based and it is difficult for them to get 
the correct file input structure to generate fuzzing inputs that can help them to trigger the 
vulnerabilities in the programs. Grammar-based fuzzing support to get the correct format for a 
program and use it to generate fuzzing inputs that leads to possibly crash a program. 
 
Table 1 shows the crashed programs. The table has five columns. The first one is the program 
names. The second column is generation time, which is the duration time for generating all of the 
fuzzing files. It is based on minutes and seconds (m:n). The third column is showing the number 
of sample input files for each program. The fourth column is showing the number of generated 
fuzzing files, and the fifth column is testing time, which is the duration of time the program has 
been tested by the generated fuzzing files until a vulnerability has been found by the tool, and it is 
based on minutes and seconds (m:s). 

 

Program name 
Generation 
time (m:s) 

# of 
sample 

input files 

# of 
fuzzing 

files 

Testing 
time 
(m:s) 

Azurad 3:44 1000 196782 1:45 

Bloomy_Sunday 0:26 1000 30900 1:4 

CGC_Planet_Markup_Language_Parser 4:43 1000 300018 42:8 

Charter 0:2 1000 2458 4:43 

Checkmate 0:5 1000 4995 18:46 

CML 0:50 1000 48607 2:32 

Cromulence_All_Service 6:43 1000 225262 34:6 

CTTP 5:41 1000 89278 59:59 

DFARS_Sample_Service 2:32 1000 36657 0:41 

Diary_Parser 0:3 1000 3093 0:50 

Diophantine_Password_Wallet 0:16 1000 19747 48:42 

Divelogger2 1:28 1000 82757 5:53 

Document_Rendering_Engine 3:37 1000 222070 0:30 

Eddy 0:1 1000 1226 9:2 

electronictrading 0:1 1000 1006 21:53 

EternalPass 0:5 1000 6984 2:1 

FablesReport 0:2 1000 1000 1:20 

FileSys 0:15 1000 12929 0:50 

Filesystem Command Shell  0:30 1000 36627  5:12 

Finicky_File_Folder 0:14 1000 11366 0:43 

Flash_File_System 0:4 1000 5164 1:36 

Flight_Routes 0:52 1000 46971 0:53 

Fortress 3:2 1000 151818 49:23 

Game_Night 0:12 1000 14618 0:56 

Grit 3:19 1000 147446 3:10 

HackMan 2:16 1000 135426 1:4 

HeartThrob 0:3 1000 2987 4:3 

HighFrequencyTradingAlgo 0:1 1000 1012 0:57 

Hug Game  0:25  1000 27058 6:29 
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Program name 
Generation 
time (m:s) 

# of 
sample 

input files 

# of 
fuzzing 

files 

Testing 
time 
(m:s) 

INSULATR 2:7 1000 38556 34:31 

Kaprica_Script_Interpreter 5:37 1000 302474 0:47 

KTY_Pretty_Printer 0:33 1000 38319 13:24 

Lazybox 0:24 1000 31622 0:35 

Loud_Square_Instant_Messaging_Protocol_LSIMP 0:49 1000 52134 24:32 

Matchmaker 0:31 1000 35638 0:21 

matrices_for_sale 0:6 1000 6450 0:32 

Monster_Game 0:40 1000 46249 32:32 

Movie_Rental_Service 0:8 1000 9628 0:32 

Multicast_Chat_Server 3:59 968 253273 0:34 

Network_Queuing_Simulator 0:45 1000 52461 0:13 

online_job_application 0:29 1000 34581 2:40 

online_job_application2 0:29 1000 34570 18:15 

OTPSim 0:50 1000 51325 0:12 

Palindrome 0:7 1000 8889 0:5 

Palindrome2 0:8 1000 9731 0:7 

payroll 3:27 900 113370 0:11 

Pipelined 0:6 1000 7600 0:20 

pizza_ordering_system 0:40 1000 46155 0:35 

Printer 1:12 1000 72683 0:42 

PRU 0:4 1000 4810 1:1 

PTaaS 1:8 1000 39967 0:33 

Query_Calculator 0:1 1000 1000 1:9 

Recipe_and_Pantry_Manager 3:18 1000 186476 9:39 

Recipe_Database 3:31 1000 196705 1:53 

REMATCH_2--Mail_Server--Crackaddr 0:3 1000 4003 0:25 

REMATCH_3--Address_Resolution_Service--
SQL_Slammer 0:5 1000 6569 0:8 

REMATCH_4--CGCRPC_Server-MS08-067 0:2 1000 2947 13:51 

REMATCH_5--File_Explorer--LNK_Bug 0:8 1000 9942 0:10 

REMATCH_6--Secure_Server--Heartbleed 0:10 1000 11409 0:23 

RRPN 0:1 1000 1907 0:29 

Sad_Face_Template_Engine_SFTE 0:18 1000 23031 0:9 

Sample_Shipgame 0:45 1000 51385 0:36 

SCUBA_Dive_Logging 1:14 1000 81656 1:51 

Secure_Compression 0:40 1000 46846 0:1 

simple_integer_calculator 0:2 1000 2136 1:10 

simplenote 4:5 1000 300239 0:5 

SPIFFS 0:24 1000 25222 24:41 

stream_vm 5:6 1000 300448 0:4 

TAINTEDLOVE 1:57 1000 69188 0:11 
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Program name 
Generation 
time (m:s) 

# of 
sample 

input files 

# of 
fuzzing 

files 

Testing 
time 
(m:s) 

Tennis_Ball_Motion_Calculator 0:8 1000 9134 0:2 

The_Longest_Road 0:46 1000 48838 0:14 

TVS 5:31 1000 300456 3:24 

university_enrollment 0:36 1000 27849 3:44 

Vector_Graphics_2 0:3 1000 2377 12:54 

Vector_Graphics_Format 0:2 1000 2371 0:23 

virtual_pet 0:3 1000 4445 0:12 

Water_Treatment_Facility_Simulator 1:11 1000 59185 11:28 

WhackJack 1:9 1000 55939 16:11 

WordCompletion 0:3 1000 3926 0:55 
 

TABLE 2: List of Crashed Programs. 

 

8. CONCLUSION AND FUTURE WORK 
In conclusion, the research is about to analyze grammars from input files and develop a fuzzer 
that uses the extracted grammars to generate fuzzing files. Extracting grammars can support the 
fuzzing tool to generate fuzzing files that may reveal bugs/vulnerabilities in a target program. 
Also, the fuzzing methods and techniques are more effective to find bugs in the venerable 
programs. The experiments and testing show that there are 79 programs of the DARPA CGC 
dataset crashed successfully. The tool extracts critical grammars from sample input files. The 
grammar is later used when generating fuzzing files to make them more effective. From our 
experiments, the fuzzer is fast and usually finds vulnerabilities in under 5 minutes. The fuzzing 
tool can support the software security community with new approach and fuzzing techniques. 
Moreover, it will give a hand to software developers to find vulnerabilities in their programs before 
delivery stage. Therefore, the research work could bring in new conceptual methods to the 
software testing community. 
 
The future work for this research is learning the commands order to support generating new 
fuzzing files without modifying the sample input files. Moreover, the tool will learn the order of the 
commands and the probability of the occurrence of each command. Then, it combines them with 
the analyzed grammars, to generate completely new fuzzing files. This step can be run on top of 
the current tool. These new fuzzing files will be inserted to the programs to find or discover bugs 
or vulnerabilities in them. The current plan is to learn commands' order to help further analyze the 
sample input. 
 
The research learns the structure of the sample input file as well. This allows the fuzzer to 
generate completely new fuzzing files without mutating or modifying the sample input files. It will 
give conceptual methods based on inputs' grammar analysis of general programs and 
understanding ways to use them to generate new fuzzing input from those grammars to explore 
bugs easily. To our knowledge, this will be the first grammar-based fuzzer which can generate 
fuzzing files based on the analysis and grammar learning of the sample input files.  
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