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Abstract 

 
Ensuring the security of web applications against cross-site scripting is practically a never-ending 
story. With the emergence of new applications with loaded payloads of open expressiveness and 
versatile functionalities to provide users with interactive services, the fight is even more 
challenging. A new feasible approach now in growing prominence is to use machine-learning 
classification. In this paper, we demonstrate an approach for payload abstraction through the 
translation of payloads into sentences of syntactic tags. This is to extract a normalized set of 
features of appropriate data and to minimize the problems of manually creating rules based on 
dangerous characteristics of payloads. We show that through abstraction and normalized 
features, we can accurately classify input payloads according to their proper categories. We 
assert that the security work is adequately informative to represent payloads and it can be more 
sustainable by using the automaton of machine-learning technique. 
 
Keywords: Cross-site Scripting, N-gram, Web Application Security, Supervised Machine-
learning, Tagging, Syntactic Structure.

 

 
1. INTRODUCTION 
Despite the various security measures, the vulnerability of web applications to cross-site scripting 
(XSS) attacks remains an issue(MITRE Corporation, n.d.; OWASP, 2021). The client-based 
attacks causing unintended execution in a victim’s browser are due to vulnerability related to 
insufficient input-validation(Pereira et al., 2020). Failing to prevent malicious scripts from entering 
or exiting the application could cause infiltration. 
 
The vulnerability becomes more concerned with the advancement of web technology. Some 
applications now allow HTML input from users to incorporate advanced features. This is to 
expand the usability of web facilities or to create an enhanced user experience. Multiple 
interactive features of web pages, such as blogs or wikis, are a typical example of a case in point. 
Unfortunately, these features are taken advantage of by attackers to create new threats (Cure53, 
n.d.). Incidentally, they are in fact amassing formidability to the validation process to the point that 
legitimate strings are often mistaken as malicious(Gupta & Gupta, 2016). In any case, to do away 
with HTML inputs is to limit the application’s functionality. 
 
Various techniques proposed for the detection and prevention of XSS over the years include 
static analysis (Steinhauser & Gauthier, 2016; Yan & Qiao, 2016), dynamic analysis(Mitropoulos 
et al., 2016; Stock et al., 2014), and input validation(Bates et al., 2010; Gupta & Gupta, 2016; 
Rao et al., 2016). Static analysis techniques validate server-side code without executing it and 
can indicate flaws before the application is deployed. However, apart from requiring access to the 
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source code (Duraibi et al., 2019), this technique requires advanced security knowledge to 
validate the analysis report that has been known to produce false positives (Talib & Doh, 2021a). 
Dynamic analysis techniques validate source code during program execution and can minimize 
false positives reported during static analyses. However, it may incur runtime overhead as the 
number of inputs or the program size increases (Lou & Song, 2020; Mujawib Alashjaee & Duraibi, 
2019). Input validation, such as XSS filtering techniques, inspects the input or output string to or 
from the application based on either a white list of allowed strings or a blacklist of prohibited 
strings. However, they are now seemingly less able to stand in control as security devices due to 
the ever-growing complexity of the influx of web application contents. 
 
In short, these limitations are all the more reasons to call for the use of a new strategy in the 
protection of XSS vulnerabilities by detecting XSS payloads. 
 
1.1 Motivation 
As a way forward, we are looking at some new serious efforts to detect XSS attacks, specifically 
the use of the machine-learning technique. It is a technique now drawing particularly greater 
attention in the field of software security for its favorable property to automatically categorize new 
data from the existing data. It provides an added advantage of reducing manual dependency in 
the procedure. 
 
In the application of machine learning, a classification model requires numerical inputs known as 
feature vectors. By a crucial process called feature engineering, the data features are extracted to 
inherently describe the dataset to represent the problem to the model. The model will then use 
these feature vectors to learn and solve the related problem. 
 
In previous work, features are created based on malicious characteristics of payloads (or web 
pages) and are extracted using customized string-matching algorithms(Fang et al., 2018; Nunan 
et al., 2012; Rathore et al., 2017). However, this approach is somewhat constricting. First of all, 
the manual feature-engineering process that requires human intervention and specialized 
knowledge of XSS may not expand well with the new advancement in web technologies. 
Secondly, the focus on malicious characteristics as features may potentially preclude benign 
characteristics that may be substantial information for classification. Thirdly, the use of string-
matching algorithms may misidentify the correct meaning of a string in the payload. 
 
These limitations provide us with a motivation to attempt a way of solving by translating payloads 
into a form of text-based features based on their syntactic structure for classification. Because 
text classification is proven to be effective in natural language processing (NLP), such as spam 
filtering, intrusion detection(Nasser Mohammed & Mohamed Ahmed, 2019), and sentiment 
analysis, its use can be extended to the task of identifying malicious or benign input payloads in 
web applications. 
 
Overall, this technique may help to reduce the arbitrariness that comes with the concrete 
language of payloads, and therefore, improve a model’s detection capability. It may also help to 
potentially minimize the effort of provisionally selecting features by allowing the model to 
automatically learn the words pertaining to a class.  In other words, without the need to manually 
define a blacklist of features specific to malicious payloads, we believe that our classification 
model is able to automatically learn a solution based on the information provided regardless of a 
malicious or benign class. 
 

1.2 Contributions 
We present this case here to offer an alternative XSS detection technique by classifying payloads 
using text-based features. It is the features for the classification process to replace the blacklist-
only approach of extracting features by means of string-matching algorithms. Using a supervised 
machine-learning method, we attempt to develop an approach of creating an improved automatic 
classification of XSS in web applications by using syntactic structures of payloads in the feature 
set. By this approach, we offer the following contributions: 
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• A pre-processing method of translating payloads into syntactic-structure-aware documents 
using an HTML and a URI parser. 
 

• A feature extraction approach using n-grams of a normalized set of features. 
 

• A novel XSS-attack detection methodology that has achieved satisfactory results in terms 
of accuracy, precision, recall, and F1 rate with various classifiers. 

 
Following are the discussions of our work in 5 sections. Section 1 contains an introduction of the 
study as is already discussed. In Section 2, we present some background concepts, while 
Section 3 outlines our methodology. The results of our work are explained in more detail in 
Section 4. Section 5 contains the conclusions. 

 

2. BACKGROUND 

This section overviews XSS and its vulnerabilities, reviews the literature on feature engineering to 
detect XSS, and summarizes the use of n-gram in text classification for NLP. 
 
2.1 Cross-site Scripting 
XSS is among the top security threats in web applications for more than a decade(OWASP, 2004, 
2021). It occurs when attackers inject malicious scripts into vulnerable applications to be 
executed in a victim’s browser. To illustrate, consider the following benign URI with the user input 
payload “John” (underlined) and its syntactic structure: 
 
http://www.safe.com/welcome_page.html?username=John 

 Syntactic type: Text 

 
An attacker can successfully insert a malicious script as input to the application if there is no 
proper validation as follows: 
 
http://www.safe.com/welcome_page.html?username=<script>doEvil()</script> 
 Syntactic type: HTML script element 

 
Notably, it is common that malicious and benign payloads may have different syntactic structures 
(Lekies et al., 2013).  
 
XSS is an attack often associated with HTML injection due to the common presence of both 
languages (scripting and HTML) in the attack payload (Rao et al., 2016). The inclusion of 
malicious scripts in HTML as payloads can be done in various ways (van Oorschot, 2020). We 
categorize them as HTML elements and attributes as follows: 
 
1) HTML Elements 

 

• Inline script tags,  
e.g., <script>doEvil()</script> 

• External scripts,  
e.g., <script src="http://malicious-site.com/xss.js"></script> 

• CSS or style tags,  
e.g., <style>@import url("http://malicious-site.com/xss.css");</style> 

 
2) HTML Attributes 

 

• CSS or style attributes,  
e.g., <div style="background-image:url(javascript:doEvil())"> 
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• URI attributes,  
e.g., <img src=”javascript:doEvil()” >and 
<a href=’http://safe.com?name=%3Cscript%3EdoEvil()%2Fscript%3E’>link</a> 

• Event handlers,  
e.g., <img src=’img.jpg’ onload=’doEvil()’ /> 

 
In point of fact, malicious payloads are often crafted by attackers to exploit XSS vulnerability 
contexts of a target application.  By contexts we mean the embedding location of the payload in 
the application (Kallin & Lobo Valbuena, n.d.; Lekies et al., 2013), such as the following: 
 

• HTML element-content value,  
e.g.,<p>untrusted_input</p> 

• HTML attribute value,  
e.g., <p id=’untrusted_input’> 

• URI query value,  
e.g., <a href=’http://site.com?query=untrusted_input’> 

• CSS value,  
e.g., <p style=”color:’untrusted_input’;”>and 
<style>untrusted_input</style> 

• JavaScript value,  
e.g., var a = ’untrusted_input’;and  
<script>untrusted_input</script> 

 
The untrusted_input represents the place where a payload is to be embedded. Note that the 
payload can be embedded within a context with or without quotes (single or double). In some 
cases, the embedding contexts are not exploited by injecting a complete element. Rather, only a 
partial string is injected to abuse the tags or attributes that are already present in the surrounding 
context. This relates to the act of element hijacking, unquoted attribute injection, trailing content, 
etc. (Gundy et al., 2009; Stock et al., 2014) 
 
By all accounts, the safety measure is to scrutinize payloads that come as inputs into the 
applications. Then, it is to determine whether the inputs are benign, or otherwise, in the process 
of validation. In short, it is crucial that elements in the payload, be they scripts, style, other HTML 
tags, or attributes; all are subject to scrutiny. It follows that the legitimacy of the values associated 
with the elements should also be properly examined. 
 
2.2 Feature Engineering for Detecting Cross-site Scripting 
The feature engineering process for the detection of XSS primarily begins with examining 
malicious (XSS) or benign payloads. The ad-hoc extraction of features in previous works is to 
search for dangerous characteristics of known XSS payloads using customized functions(Fang et 
al., 2018; Habibi & Surantha, 2020; Mereani & Howe, 2018; Nunan et al., 2012; Rathore et al., 
2017). The features, for example, are the payload length, the number of URL domains present, 
and the presence of special and/or encoded characters. These features would help differentiate 
between the following two payloads of different query values: 
 

Payload Class 
http://www.safe.com/index.html?lang=English Benign 
http://www.safe.com/index.html?lang=%3Cscript%20src%3Dhttp%3A%2F 

%2Fmalicious-site.com%2Fxss.js%3EdoEvil%28%29%3C%2Fscript%3E 

Malicious 

 
The selection of features may also include syntactical or text-based features of dangerous 
strings, which are extracted using string-matching algorithms. For example, the presence of the 
“script” word (Habibi & Surantha, 2020) and the number of occurrences (Mereani & Howe, 2018; 
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Nunan et al., 2012; Rathore et al., 2017) or the embedding (Fang et al., 2018) of the script tags. 
This way of feature selection is often used in the domain of text classification, forming a 
vocabulary in the creation of a feature set based on the words in the corpus or dataset. 
 
Extracting features following an ad-hoc manner and only searching for dangerous characteristics 
similar to a blacklist-based approach has elicited some limitations. For one, these selected 
features tend to exclude benign characteristics and thus, may potentially preclude substantial 
information associated with benign payloads. For another, they may succumb to new attack 
payloads that emerge with upgraded versions of HTML such as the attack via the embed tag 
succeeding the introduction of HTML5. Furthermore, the use of a string-matching approach for 
feature extraction may lead to the capture of incorrect data with the same pattern (Bates et al., 
2010; Manico & Hansen, 2015; Talib & Doh, 2021b). An instance is the capture of a “script” word 
that may appear as a tag name or in the safe context of an element-content value. 
 
As an alternative to the manual creation of blacklist-based features, the feature that we propose 
is a set that includes structural information of payloads that can be generalized to various 
payloads. Regardless of any upgrade to the HTML language, it covers both benign and malicious 
payloads. 
 
2.3 N-gram in Text Classification 
N-gram techniques are used predominantly for extracting features in the domain of NLP and 
information retrieval (Kowsari et al., 2019). The technique is a way to maintain the syntactical 
relation between words in the text representation. In traditional n-gram, the features to represent 
texts in a document is a collection of n adjacent words in the order of as they appear in texts.  
 
The bag-of-words (BOW) technique is an instance of a 1-gram text representation. To illustrate, 
for the text, “This is an example of a sentence”, the 1-gram features that would represent it are: 
“This”, “is”, “an”, “example”, “of”, “a”, and “sentence”. To add, the BOW technique disregards the 
grammatical, or syntactic, order of words in texts as it only describes their occurrences in a 
document. A common solution to this problem is to use n>1, such as 2-gram. This way, the 
extracted features contain more information on the text’s syntactic structure. The 2-grams (bi-
grams) for the previous example are: “This is”, “is an”, “an example”, “example of”, “of a”, and “a 
sentence”. 

 
3. METHODOLOGY 

The methodology of our study subsumes the ensuing subsections: our research design of feature 
language and its application in the payload translation. 
 
3.1 Feature Language 
The focus of previous work for feature engineering has been answering the question of selecting 
the strings that make payloads malicious. In our attempt, we seek to address the question of how 
payloads can be represented in a way that adequately maintains their syntactic information. To 
answer, we examine the characteristics of input payloads that usually are HTML, URI, or textual 
strings.  They are often embedded in the output web page to applications. As parts of a web 
page, they can be structured according to the HTML language and, therefore, be used to 
construct our language of features. 
 
In our approach, the features are a pre-defined set of alphabetic tags each of which represents 
the syntactic function (term) of each sub-string (chunk) in the payloads. We refer our feature tags 
to labels as to avoid confusing them with HTML tags. Before we present our approach, we take 
into account the hierarchical strategies of normalizing payloads to obtain a sequence of labels. 
 
The first attempt is the normalization of payloads whose labels are concrete values of chunks that 
results, by default, in unnormalized labeling. An example of unnormalized labelling is shown 
below: 
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Malicious #3 <div id=”div1” onload=”doEvil()”> Some text </div> 

Unnormalized 
Labels 

<div id      div1 onload      doEvil() Some text </div> 

 
In opposition, the normalization is to use high-level-labeling of elements, attributes, and element-
content values as features. However, it only provides very general information in classification. 
The examples of such normalization due to the same sequence of labels are shown in the 
following: 
 
Benign #1 <a id=”anchor1” href=”http://safe.com?lang=en”> Link </a> 

Malicious #1 <a id=”anchor1” href=”http://safe.com?lang= 

<script>doEvil()<script>”> 

Link </a> 

Malicious #2 <script id=”script1” type=”text/javascript”> doEvil() </script> 

Malicious #3 <div id=”div1” onload=”doEvil()”> Some text </div> 

High-level 
Labels 

tag   attribute         attribute content endtag 

 
To enhance normalization, the labeling is therefore to make only the concrete values of tags and 
attribute names distinct as labels. Examples of such labeling are div and a for divand atags, 

respectively, and id and href for id and href attributes, respectively. However, by the presence 
of the various types of tag and attribute names in the HTML language, such labeling can lead to 
both data sparsity and expansiveness. The tag and attribute names include obfuscation that 
attackers use to evade detection and those new ones that come with the advancement of web 
technologies. Labeling them in such a way may also provide limited information because 
malicious and benign payloads can contain the same tag and attribute (Talib & Doh, 2021b). 
Examples of normalization from such labeling are shown in the following: 
 
Benign #1 <a id=”anchor1” href=”http://safe.com?lang=en”> Link </a> 

Malicious #1 <a id=”anchor1” href=” http://safe.com?lang= 

<script>doEvil()<script>” > 

Link </a> 

Labels <a id href content endtag 
      
Malicious #2 <script id=”script1” type=”text/javascript”> doEvil() </script> 

Labels <script id type content endtag 
      

Malicious #3 <div id=”div1” onload=”doEvil()”> Some text </div> 

Labels <div id onload content endtag 

 
Note that, although two of the malicious payloads have label sequences that differ from the 
benign, one of them remains equal.  
 
To suit our purpose, we create feature labels based on two ruminations: (1) to assume payloads 
as context-embedded HTML strings, and (2) to consider the terms in the payload according to the 
HTML Document Object Model (e.g., element and attribute names, content values, etc.) and 
injection contexts (see Section 2.1). To be sure, we define features by merely taking into account 
generally important terms to represent payload structure and not solely basing them on malicious 
chunks. As such, we have labels of the types of terms categorized as follows: 
 

• HTML Tagsthat refer to thescriptandstyletags with their names as labels (script and 
style, respectively). This regards the JavaScript and CSS code injection contexts. All the 
other tags are commonly labeled tag. 

 
• HTML End Tagsthat constitute the closing tags as a single label endtag to closely maintain 

the label of each chunk in the payloads. 
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• Attribute Names that represent the attribute names as a single label, attr, as they are 
regarded as mere carriers for exploit strings in malicious payloads (Talib & Doh, 2021b). 
This is also to avoid the problem causing data sparsity due to the variety of attributes, 
including event handlers. 

 
• Attribute Values that comprise the attribute values as labels with respect to the URI 

components. The selected components as terms comprise: (1) the commonly used URI 
schemes, i.e., “http:” and “https:”, (2) the script-related schemes, such as “javascript:” and 
“vbscript”, (3) other schemes,(4) network locations, (5) file paths, (6) absolute paths, and 
(7) query names. The labels for these terms are urlscheme, scriptscheme, scheme, netloc, 

filepath, abspath, and query, respectively. To clarify, the attribute values can be generalized 
as either URI or non-URI strings (e.g., texts, JavaScript, or CSS code) according to the 
injection contexts. When creating normalized term labels by structuring strings in 
conformity to the URI grammar, non-URI strings are included in the URI components. They 
can be either other paths, query values, or fragments and are treated as other terms. Our 
consideration of all URI terms is because each of them can be referenced in vulnerable 
contexts. 

 
• Data as those referring to the non-URI attribute values and non-HTML-element content 

values. They consist of alphanumeric text, integers, function calls (JavaScript code),and 
special character terms. Note, while we label the former 3 terms according to their stringed 
chunks, (text, int, and functioncall, respectively),we label special characters individually(e.g., ! 
as excl,“ as dquote, and # as hash). This is to give us more information on the underlying 
structure for any chunks with undefined terms. Examples of such cases are CSS or 
JavaScript code (other than function calls), or chunks in malformed, obfuscated, and 
encoded payloads. HTML element-content values are treated as other terms. 

 
• Other HTML Elements as those representing directives (HTML doctype declarations or 

processing instructions) and comment elements with their respective labels, directive and 
comment. We label them as elements rather than according to their chunks due to their rare 
appearance as input payloads. In fact, there are only a few of these elements in our 
dataset, all of which are parts of the malicious payloads. 

 
Lastly, our set of 50 selected features of labels is shown in Table 1. We would like to remind the 
readers that some of the labeling are one-to-one (e.g., script tags to script and the special 
character, !, to excl), while others are many-to-one (e.g., img and a tags to tag and href, id, 

onload attributes to attr). 
 
Term
s 

Chunk 
Examples 

Labels (Features) 

Script 
Tags 

<script>, 
<script 

script 

Style 
Tags 

<style>, 
<style 

style 

Other 
Tags 

<a>,<a,<im
g>, <img 

tag 

End 
Tags 

</script>, 

</style>, 
</a>,/> 

endtag 

Attrib
ute 
Name
s 

href,id,on
load 

attr 

URI 
Sche

http:,http
s: 

urlscheme 
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mes 

Script
-
relate
d 
Sche
mes 

javascrip

t:,vbscrip
t: 

scriptscheme 

Other 
Sche
mes 

ftp:,mailt
o: 

scheme 

Netwo
rk 
Locati
ons 

site.co

m:80, 

safe.co

m 

netloc 

File 
Paths 

/path/i

ndex.ht

ml 

filepath 

Absol
ute 
Paths 

/abspat

h 
abspath 

Query 
Name
s 

page=,l

ang=  

query 

Functi
on 
Call 

doEvil(), 
foo(arg); 

functioncall 

Speci
al 
Chara
cters 

! , ", #, 
$, %, &, ', 

(, ), *, 
+, ,,-
,. ,/, :, ;, 

<, =, >, ?, 
@,[, \, ], ^, 
_, `, {, 

|, }, ~ 

excl,dquote,hash,dollar,percent,amp,squote,lpar,rpar,mul,add,comma,sub,dot,div,co
lon,semicolon,lt,equal,mt,ques,alias,lbrack,bslash,rbrack,caret,undersc,grave,lcurly,

bar,rcurly,tilde 

Intege
rs 

0,999999 int 

Alpha
numer
ic 
Texts 

var,i,id1,

main,color 

text 

Directi
ve 
Eleme
nts 

<!DOCTY

PE 

html>,<
?...> 

directive 

Com
ment 
Eleme
nts 

<!— … -

-> 
comment 

 

TABLE 1: Features of 50 Selected Labels. 

Having defined our features, the labels for the earlier examples are as follows: 
 
Payload: <a id=”anchor1” href=”http://site.com?lang=en”> Link </a> 

Labels: tag attr text attr     urlscheme     netloc    query   text text endtag 
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Payload: <a id=”anchor1” href=”http://safe.com?lang= 
<script>doEvil()<script>”> 

Link </a> 

Labels: tag attr text attr urlscheme netloc query  
script functioncall script 

text endtag 
 

      

Payload: <script id=”script1” type=”text/javascript”> doEvil() </script> 

Labels: script attrtext attr text div text functioncall endtag 

      

Payload: <div id=”div1” onload=”doEvil()”> Some text </div> 

Labels: tag attrtext attr        functioncall text endtag 

 
We refer to the features in our approach as normalized label features. These features would be 
used to compute weights of labels that represent payloads by certain methods to form feature 
vectors (see Section 4.1). However, to closely maintain the order of labels in payloads, we use 
the bi-gram technique (refer to Section 2.3). It is of a lower bound to maintain the label order 
information. 
 
3.2 Payload Translation 
We translate payloads into a target language: sentence of labels. This is by applying syntax 
analysis through the use of a parser to scan the chunk patterns in payloads. It is an alternative to 
using lexical analysis techniques that may be insufficient for identifying terms, particularly in 
nested HTML elements.  
 
For our purpose of translation, we utilize Python’s HTML parser

1
by virtue of its essential 

capability to identify both HTML opening and closing tags. More so, it comes with handler 
functions to handle each HTML term in a payload. For instance, the handle_comment function 
handles comment elements. It also offers functions for processing named, decimal, and 
hexadecimal character references. Additionally, we add a URI parser

2
 into the HTML parser to 

translate attribute values. Our customization of the parser is to implement the translation scheme. 
 
The scheme starts with accepting a payload string and processes it using the HTML parser. The 
parser recognizes a chunk’s term based on its pattern and passes the chunk to its respective 
handler function. The chunk representing an attribute value is passed to its handler and 
processed by the URI parser. Each handler function appends a label representing the chunk to 
the sentence string. For example, when the parser encounters a script tag, it appends the script 
label to the sentence. The chunks without a pre-defined term label (refer to Table 1) are passed 
to specific handlers for further processing to obtain their labels. To be sure, some attribute values 
of the URI components, specifically, “other paths”, that are generally texts are passed to 
handle_data. Likewise, query values and fragments that can carry elements are passed to the 
start of the parser. In the event of an error while parsing, the parseerror label is appended to the 
sentence to mark its erroneous structure. The result of our scheme is a sentence. 
 

                                                

1
https://docs.python.org/3/library/html.parser.html 

2
 https://docs.python.org/3/library/urllib.parse.html 
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FIGURE 1: Syntactic Structure and Translation of a Hypothetical Benign Payload. 

To provide a visual of how our translation scheme works, we present the syntactic structure of a 
hypothetical benign payload with its translation of labels (greyed boxes) as shown in Figure 1. 
The structure and translation of the same payload with a malicious script in the URI fragment are 
shown in Figure 2. To further illustrate our scheme with other examples, the syntactic structure 
and translations for different HTML elements (i.e., processing instruction, HTML doctype 
declaration, comment, and HTML tags) are shown in Figure 3. The same is shown in Figure 4, 
but with a style tag payload. 
 

 

 

FIGURE 2: Syntactic Structure and Translation of a Hypothetical Malicious Payload. 
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FIGURE 3: Syntactic Structure and Translation of Different HTML Elements. 
 
 

 

 

FIGURE 4: Syntactic Structure and Translation of a Hypothetical Style Tag Payload. 

 
Note that in the case of sequential text, int, and special character labels in attribute or content 
values, we reduce them into a single label. An example of such a case is the chunk This is a 

green-colored text, where their labels of text text text text sub text text are reduced to only text 

sub text. Due to their high-frequent appearance in the values, it is to avoid over-labeling, i.e., 
unnecessary increase in weights of the label, that may negatively affect classification. 

 
4. EXPERIMENTAL ASSESSMENT 

In this section, we analyze and assess our methodology through an experiment using the real-
world dataset previously used by other work using a classifier training and testing process. The 
details are as follows. 
 
4.1 Preparation 
The preparation involves basically the selection of vectorizers and datasets for our experiment. 
The sentence of labels is first transformed into a machine-readable vector using a process called 
vectorization. In this experiment, we use the TF-IDF

3
 vectorizer in Python’s Scikit-learn

4
 library. 

                                                

3
 https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html 
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Its weighting algorithm can produce a vector based on word counts. To apply bi-gram features, 
we set TF-IDF’s ngram_range parameter with the value of (2,2). This specifies the lower and 
upper boundary of the range of n-values, respectively.  
 
Our collection of the dataset is chosen from the work of Fang et al. (2018) which consists of 
64,833 payloads. The 31,407 benign URIs originate from the DMOZ

5
 database and the 33,426 

malicious URIs originate from the XSSed
6
 database. The target values in the dataset are the 

categorical data of 0 and 1 that are to represent the benign and the malicious outputs of a URI 
(payload), respectively. 
 
4.1 Training and Testing 
The experimentation is conducted using a Mac-Book Pro machine with 8GB of memory and a 2.3 
GHz Dual-Core Intel Core i5 processor. As a procedure, the experimentation involves training 
and testing the classification model. In the training process, we start with translating a training 
dataset containing raw payloads as shown in Figure 5. This begins with each of the payloads 
individually fed to our translation scheme to result in sentences of features. The sentences are 
fed to the vectorization algorithm in order to develop a vector space (feature vectors) based on 
the bi-grams in the sentences. The vectors would then be used as an input to train the 
classification model. The final output is a trained classifier. 
 

 

 

FIGURE 5: Overview of Training Process. 

 
In the testing process, we utilize all the payloads in the testing set and prepare them for a 
translation and vectorization process. The classifier will next identify each payload’s target value 
in the set to decide whether the payload’s feature vector is either benign or malicious, based on 
the information it gained from the training phase. 
 
We analyze the results of the study based on the accuracy, precision, recall, and F1 scoring 
metrics using the counts of true positives, true negatives, false positives, false negatives as 
follows: 
 

• True positives (TP): The frequency of actual malicious payloads that are correctly classified 
as malicious 

• True negatives (TN): The frequency of benign payloads that are correctly classified as 
benign  

• False positives (FP): The frequency of benign payloads that are incorrectly classified as 
malicious  

• False negatives (FN): The frequency of actual malicious payloads that are incorrectly 
classified as benign. 

                                                                                                                                            

4
 https://scikit-learn.org/ 

5
 http://dmoztools.net/ 

6
 http://www.xssed.com/ 
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• Accuracy: The ratio between correct detection and the total detection,  
(TP+TN)/(TP+FP+FN+TN) 

• Precision: The ratio between the correct detection of malicious payloads and all the 
predicted malicious payloads, TP/(TP+FP) 

• Recall: The ratio between the correct detection of malicious payloads and all the actual 
malicious payloads, TP/(TP+FN) 

• F1:  The harmonic mean between the precision and recall,  
((2 × Recall × Precision))/((Recall+Precision)) 

 
Additionally, we calculate the execution time (Time) for classification, which is measured as the 
amount of time spent by the classifier to make a decision on the testing set. Time is measured 
before the start and after the classification procedure, which includes the normalization and 
vectorization of each payload. 
 
We use a stratified 10-fold-cross

7
 validation in Python’s Scikit-learn library to analyze the results 

of our approach. Nine folds are used for the training set, and one is used for the testing set. Each 
set contains the same distribution of malicious and benign payloads. This validation process is 
iterated 10 times. 
 
In proceeding, we apply and compare 8 different trained classifiers to classify the dataset to 
validate their usability for the model in our approach. The classifiers are Random Forest, Neural 
Network, Decision Tree, Support Vector Machine (SVM), AdaBoost, K-Nearest Neighbors, 
Logistic Regression, and Naive Bayes. The selection of classifiers is conducted on their default 
parameters. 
 

Classifier Accuracy (%) Precision (%) Recall (%) F1 (%) 
Random Forest 99.25 99.82 98.72 99.26 
Neural Network 99.19 99.86 98.56 99.21 

Decision Tree 99.15 99.77 98.58 99.17 
SVM 99.14 99.82 98.52 99.16 
AdaBoost 99.04 99.58 98.55 99.06 
K-Nearest Neighbors 98.97 99.62 98.38 99.00 
Logistic Regression 98.70 99.17 98.29 98.73 

Naive Bayes 95.67 99.72 91.86 95.63 
 

TABLE 2: Classification results for different classifiers. 

The classifier for evaluation of our approach is chosen based on the report of the classification 
results shown in Table 2. According to the results, with the exception of Naïve Bayes, all 
classifiers produce promising classification results, showing a similar percentage in accuracy, 
precision, recall, and F1. On this count, we can say that they are all usable in our approach. 
Hence, we simply choose the most promising classifier, Random Forest, for our evaluation. 
 
4.2 Evaluation 
To evaluate, we compare the results of our approach with (1) those of other text-based feature 
approaches from previous work and (2) those of other attempted features. The feature 
approaches are as follows: 
 

a) Script-related Concrete Features are those that only take on the dangerous script-related 
concrete values following the discussion in section 2.2. We include HTML start and end 
tags, event handlers, function calls, and special characters in reference to a previous work 
(Fang et al., 2018). There is an average of 2,228 bi-grams in these features. 

 

                                                

7
 https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html 
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b) Script-related label features are the single labels to each script-related concrete features 
(start tags, end tags, event handlers, function calls, and special characters). This feature 
set comprises an average of 26 bi-grams. 

 
c) Word-only features are those consisting of only alphanumeric chunks. It is a result of 

applying the common pre-processing step of removing special characters in NLP to attain a 
sequence of words (Kowsari et al., 2019). Unfortunately, this set is excluded from our 
evaluation. This is because the machine used for the experiment was not capable of 
supporting the computational power required for the execution due to its large feature set. 
As it churns out a selection of 66,339 unigram features, it is an extremely too big a number 
of bi-gram features to go for a similar process as other approaches. This speaks for a 
reason to the problem in our evaluation of the unnormalized feature approach for XSS 
detection. 

 
d) High-level-labeling features represent the normalization of elements, attributes, and 

element-content values as discussed in section 3.1. The set contains an average of 20 bi-
gram features of the training set. 

 
e) Concrete Tags and Attributes (CTA) features represent the normalization of elements 

that includes the tags and attribute names as labels as discussed in section 3.1. They are 
those consisting of the concrete values of HTML start and end tags, and attribute names. 
The set contains an average of 796 bi-gram features of the training set. 

 
f) Advanced Concrete Tags and Attributes (ACTA) features represent the extension of 

CTA features to include attribute values. They are function calls, URI schemes, non-integer 
query values, and fragments. It is somewhat a concrete version of our approach with a 
selection of normalized labels (texts and some attribute values) to avoid the 
unnormalization problem in (c). The features contain an average of 9,753 bi-grams of the 
training set. 

 
We then compare those results with our experimental results using normalized label features. 
Although our features include labels for dangerous and legitimate chunks, we manage to come 
up with a comfortable number of only 778 bi-grams comprising the 50 features presented in Table 
1. Note that we include 2 additional labels to each feature set: (1) the document label that marks 
the start of the sentence to help form a bigram for payloads containing only a single chunk, and 
(2) the parseerror label (refer to Section 3.2).Following are the examples of the feature sentence 
used in the payload: 
 

Payload <img id = ‘id1’ src = ‘x’ onload = ‘doEvil()’ / > 

Script-related concrete <img       onload  doEvil() / > 

Script-related label tag       event  functioncall               endtag 

High-level-labelling tag attr   attr   attr   endtag 

CTA <img id   src   onload   endtag 

ACTA <img id  text src  text onload  doEvil() / > 

Normalized label tag attr  text attr  text attr  functioncall             endtag 

 
Feature Approach Performances Time (sec.) 

Accuracy (%) Precision (%) Recall (%) F1 (%) 
Script-related concrete 51.56 51.56 100.00 68.03 1.72 

Script-related label 96.62 98.58 94.83 96.67 1.22 

High-level-labelling 92.45 100.00 85.35 92.09 0.50 

CTA 92.44 100.00 85.34 92.09 0.61 

ACTA 86.10 88.60 83.81 86.13 2.49 

Normalized label 99.25 99.80 98.74 99.27 1.64 
 

TABLE 3: Comparison of classification performance of feature selection approaches. 
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Table 3 shows the comparison results of classification models using 5 different features and the 
normalized features of our approach. We observe that the use of our normalized label features 
appears with the best result in accuracy and F1, by a difference that ranges from 3-48% and 3-
31%, respectively. In terms of precision, our approach stands the third best with a score of 99%, 
just 0.2% behind high-level labeling and CTA features. By the same token, our approach scores a 
high of 98% in recall, second to script-related concrete with a difference of less than 2%. 
 
We note that despite the high score in precision of high-level-labeling and CTA features, they 
report a lower score in accuracy, recall, and F1. This is to say that these models are good at 
classifying truly malicious payloads, but only for a small proportion of detection. This highlights 
that their use of normalization at only elements and attributes level is a case of under-fitting in 
their classification model. 
 
As for the script-related concrete features, they perform with a perfect recall (100%) but slack with 
a significantly lower score in accuracy, precision, and F1. This means that although the model 
using dangerous-only strings can correctly classify most of the malicious payloads, they go at the 
expense of misclassifying benign payloads as malicious. Therefore, the model is said to be over-
fitting. 
 
Although the approach of using script-related label features can result in better performance, it 
cannot compete with ours. The fact that our labeling covers more terms than that of the script-
related, we conclude that ours is better equipped to handle both benign and malicious payloads 
within a controlled set of features. 
 
Meanwhile, the approach of using ACTA features shows considerably lower scores of accuracy, 
precision, and recall compared to our approach. This means that the use of concrete attribute 
values does not necessarily improve a model’s performance, although it also provides a steady 
balance between precision and recall.  
 
To point out, addition of concrete features for arbitrary chunks, as is the case for script-related 
concrete and ACTA, can negatively affect a model’s classification capability (except recall in the 
case of script-related concrete features). In contrast, the use of normalized labeling of features, 
such as high-level labeling and script-related label features can increase a model’s performance. 
In some cases, adding concrete features of a somewhat rational set of chunks, such as tags and 
attribute names in CTA, to the normalized labels can also increase a model’s performance, 
particularly in precision. However, our normalized labeling with various terms is adequately 
informative to come up with a well-balanced performance. Thus, helping to differentiate between 
malicious and benign payloads. 
 
It is interesting that the number of features of each approach does not significantly affect the 
models’ performance. This is evident in the similar performance of the 26 script-related label 
features and our 778 normalized label features. Similarly, the 20 features of high-level-labeling 
has a comparable performance result with the 796 features of CTA. However, a large set of 
unnormalized features would require an immense amount of computational power for the 
execution that can be offset by using our use of normalized label features. This is because ours is 
appropriate insofar as the number just suffices the need for the classification process to 
distinguish the benign from the malicious payloads.  
 
Table 3 also shows the execution time for classification. It is measured as the amount of time 
spent to translate, vectorize, and classify the testing set into the category of malicious or benign 
payloads. The results show that the advanced concrete feature approach takes the longest 2.5-
second time, followed by the script-related concrete feature approach of 1.7 seconds on average 
to complete execution. Our approach of normalized label features comes next with 1.6 seconds, 
followed by script-related label, CTA, and high-level-labeling with 1.2, 0.6, and 0.5 seconds, each. 
However, the differences of time score of the approaches are practically negligible, showing 1 
second or less. 
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4.3 Comparative Assessment with Other Work 
For purpose of further verification, we include the result comparing the performance of our 
approach and a similar work. Fang et al., (2018)applied an XSS detection approach called 
DeepXSS via word2vec embedding and Long Short-Term Memory (LSTM) recurrent neural 
networks. A comparison of our approach with theirs is shown in Table 4. The result shows that 
our use of the normalized label feature comes out slightly better in all three scores. This would 
convince us that our approach can well be an alternative for a solution in detection technique. 
Apart, the high complexity of deep-learning models that require longer training and testing 
duration would be saved by using machine-learning models (Liu & Lang, 2019). Additionally,  
 

Approach Accuracy (%) Precision (%) Recall (%) F1 (%) 
DeepXSS (Fang et al., 2018) N/A 99.5 97.9 98.7 

Normalized Label 99.3 99.8 98.7 99.3 
 

TABLE 4: Comparison of performance with an alternative solution. 

deep-learning models often require large datasets to produce good results (Xin et al., 2018). For 
instance, Ferrag et al., (2020) in their attempt to show how deep-learning models outperform 
machine-learning models for intrusion detection using2 different datasets consisting of about 15 
million and 3 million each. Apruzzese et al., (2018) who work with the size of 500,000 dataset are 
not able to show that deep-learning models can outperform machine learning. In any case, 
obtaining large datasets with a variety of distinctive payloads in the field of cyber-security is not 
easy, particularly for XSS. 
 
4.4 Discussion 
Using concrete strings from payloads as features has resulted in an overall lower classification 
performance and could risk data sparsity. This stands in contrast to using dangerous concrete 
strings that often end up with model over-fitting. The use of labels for the concrete strings as 
features would help to improve a model’s performance on the conditions that it is not over-
generalizing the labeling as it can lead to model under-fitting. One other pertinent point is that 
using features with syntactic structural information of only HTML and URI labels is evidently a 
reliable model with high and well-balanced performance. This is to say, there is a practically equal 
detection rate of precision and recall. Most importantly, our normalized features have shown to be 
adequately informative to represent payloads, thus helping a model to differentiate the malicious 
from the benign.  
 
It is particularly relevant to say that our approach of using syntactic structure, instead of white lists 
or blacklists of known strings, as features is helping to eliminate human manning of creating or 
updating features. This would especially be of help to those with or without the background 
knowledge of XSS.  
 
As with the advancement of web technology and the continuous crafting of new malicious 
payloads by attackers to circumvent defense mechanisms, there is a growing need for a feature 
set that does not expand with the incoming of new types of payloads. We have developed a 
translation scheme that transforms payloads into language of syntactic features using an HTML 
and a URI parser. By using this language, our feature set acquires a controlled number of 778 
features on average, at least about an18 to 66,000 count reductions from a partially normalized or 
unnormalized set. Our study offers an opportunity to many researchers, particularly those 
interested in using NLP and machine learning, for the protection of web applications against other 
attacks. 

 
5.  CONCLUSION 

As a solution to the problem of having to manually create blacklist-based features in supervised 
machine learning XSS classification, we have proposed a pre-processing method of translating 
payloads into a text-based feature language comprising normalized syntactic tags.We have 
shown that our approach has done a satisfactory job of correctly classifying XSS payloads. We 
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have provided commendable proof that the use of our approach in text classification is able to 
successfully distinguish a variety of malicious payloads (64,833) from benign ones. More 
importantly, our attempt in letting the machine make classifications based on past observations of 
payloads’ syntactic structure instead of provisionally crafted rules is an initiative to be considered 
as a timely switch.  
 
The evaluation of our approach using Random Forest classifier on real-world datasets, including 
the results with 7 other classifiers has demonstrated that our approach is high in accuracy, 
precision, recall, and F1 rates. We are also able to show that our approach is effective in its 
detection task and thus, pointing to a more credible selection procedure in the process of 
preventing various XSS attacks. Additionally, we have included a systematic comparison with a 
previous study. Although the use of features in similar work against XSS is already very strong, 
we have empirically shown that our approach is indeed practical and that our proposed feature 
has vastly improved the classification performance. 
 
By doing away with using a blacklist or white list, our approach is free from any need for manual 
updates. Its ability to handle HTML, URI, and textual input payloads, enables our proposed XSS 
detection to be applied to various parts of the web application architecture without the need of 
acquiring the application source code.It is particularly applicable as a proxy to the application 
server and the browser, or as a validation mechanism in input source or output functions to 
external processors (the database or browser).By these characteristics, our approach can be 
beneficial to web developers, with or without background knowledge in XSS to protect 
applications against XSS. 
 
There are a few possible directions in which this research can be taken to further improve the 
current results. Firstly, the consideration of additional features according to the CSS and 
JavaScript language is a very likely step for future attempts. An alternative is the addition of 
features that have been used in other works, such as URL length and the number of domains. 
Secondly, testing our approach using different vectorizers with different n-grams is worth 
investigating. Lastly, considering the classification of output strings from the application is 
potentially another way to go. 
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