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Abstract 
 
As the increase of adopting database systems as the key data management technology by 
organizations for day-to-day operations and decision making, the security and privacy issues of 
these systems becomes crucial. Achieving privacy-preserving range query efficiently is a difficult 
challenge in practice. Many privacy-preserving protocols use secure multi-party computation 
(MPC) as building block, which present elegant privacy and security, but brings too much 
computation and communication overheads at the same time. 
 
In this paper, we consider the three-party database system model: A client performing 
privacy-preserving range queries through a Proxy (trusted third party, TTP), to a Server’s database. 
The User does not learn how the query applied on the database, nor any other quarriable attributes 
that the database may contain. The Proxy does not learn any information about the Server’s private 
data, though he interacts with the Server directly. The Server on the other hand, learns nothing 
about the User’s query. 
 
We propose two practical privacy-preserving query schemes for database system. The basic idea 
of our schemes is to first convert each data entry into a set of concrete numbers, which is called 
attribute value numericalization. Then combines in a novel way several efficient cryptographic 
techniques, such as secure hash function, pseudo-random function, XOR, etc. to check whether 
the records match a query. The experimental evaluation (using the data sets collected by UCI KDD) 
of our prototype implementation show that our protocols incur reasonable computation and 
communicating overhead for added privacy-preserving benefit and perform better than those 
MPC-based solutions. 
 
Keywords: Privacy-preserving, Database, Hidden Queries, Hash, Efficiency. 

 
 
1. INTRODUCTION 

1.1 Motivation  
The digitization of our daily business and lives leads to an explosion in collecting personal data by 
corporations, individuals and governments. Such information is stored in large databases. Today, 
more and more applications and services rely on data stored remotely, such as in the cloud, and 
easy access to these databases will result in an increasing disclosure of private information about 
individuals. Similarly, many organizations need to protect their proprietary data from unauthorized 
access and administrators should be able to express various data access control policies. It is 
important to outfit today's data management infrastructure with methods to limit the disclosure of 
information. Many software systems request sensitive information from users to construct a query, 
but privacy concerns can make a user unwilling to provide such information.  
 
For example, consider a medical system which maintains patient records. A potential patient Alice 
wants to consult about some information about a disease case.  So, she makes a query to know 
whether there exists a record in the database that matches her query. In this example, if a match is 
found in the database, the system server immediately knows that Alice may have such a disease, 
even worse, after receiving Alice's query, server can derive additional information about Alice, such 
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as other health problems that Alice might have difficulty getting employment, insurance, credit, etc. 
So, patients wish to make query to the medical system in such a way that the server cannot infer 
which patients have which diseases. 
 
Users are increasingly aware of privacy concerns and the need to maintain privacy in their online 
activities. Developing of such practical schemes is crucial to maintain user privacy in important 
application domains like pharmaceutical databases, patient database, online censuses, 
location-based services, real-time stock quotes, etc. To prevent such attacks, private information 
retrieval (PIR) was proposed (Chor et al. 1995) in the literature. By using PIR, a client can retrieve 
data from a database without the database server learning what data is being retrieved. However, 
most PIR based constructions are expensive, they incur high communication cost for the client, and 
not suitable to deploy in a database for supporting query processing over large data. More 
discussions on the related work can be found in Section 7.  
 
In this paper, we are interested in addressing such security problems in a more practical way, i.e., 
avoid using heavyweight cryptographic operations (such as PIR used) and adopt several efficient 
cryptographic techniques, such as secure hash function, symmetric encryption, etc. 
 
1.2 Problem Definition  
Imagine a database system that consists of a Service Provider (Server), who store his private 
database contents at his own server, a set of Users, who want to access some certain categories of 
records of the database, and a Proxy, who is responsible for forwarding Users' query to Server and 
routing the corresponding files from Server's database to querying users. This scenario is shown in 
Figure 1. 
 

 
 

FIGURE 1:  A typical example. 

In a database system, a table is a set of data elements (values) that is organized using a model of 
horizontal rows and vertical columns. The columns are identified by attributes (fields) names, and 
the rows, which also called tuples (records) are identified by the values appearing in a particular 
column subset which has been identified as a candidate key. Queries are the primary mechanism 
for retrieving information from a database and consist of questions presented to the database in a 
predefined format.  
 
Table 1 shows an example of a subset of a table employee with the attributes: employee id (eid), 
age and salary. 
 

eid age salary 

12 40 58K 

17 33 69K 

35 27 40K 

68 27 73K 

 

TABLE 1: Plaintext relation of employee. 
 
A record may include the tuple (eid, age, salary), of string or integer types respectively. A range 
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query retrieves all tuples in the database whose attribute has values in the interval [low, high]. In 
this example, a range query is defined as a predicate over those three attributes, such as (40  eid  
68) and (30  age  50) and (20K  salary  42K or 50K  salary  100K). Upon receipt of a query to 
the Server, the Proxy performs a transformation on the query, and forward the hidden query to the 
database. Then the Server performs an interval-matchings on the data according to the query and 
aggregates data to decide which record should be send to the User. For example, a record in which 
the age is 35 and the salary is 40K will be send back to the user through the Proxy. Range queries 
usually involve numeric (or numerical) attributes.  
 
The major security concerns of this system should be confidentiality and privacy. 
 
• Since this is the Server's private database, it may contain sensitive content and both the 

Server, and a querying User wish to keep the file content secret. For example, we want to make 
sure that the valid User who make a range query can only access the corresponding matched 
data. This is referred to as data confidentiality. 

• Queries can reveal sensitive interest information about the Users, in which case the Users may 
wish to keep the query private. For example, when querying the employee database, the User 
may not want the Server to know which age of people they are interested in. This is referred to 
as query privacy. 

 
Hereby, there appear two important problems for such 3-party privacy-preserving database 
system: Given Server, Proxy and Users, 
 
Problem 1: How to design protocol that supports range query in a privacy-preserving manner in 
the above application scenario. 
 
A satisfactory solution to this problem should meet the following three requirements: (1) The User 
cannot gain any more knowledge on the database, except the data returned to him. We refer to this 
requirement as database privacy. (2) It should be computationally infeasible for the Server to figure 
out a query. We refer to this requirement as query privacy. (3) The overhead of the solution should 
be marginal. Timely processing of every query is critical for distributed applications. We refer to this 
requirement as protocol efficiency. 
 
In addition to the above three requirements, a desirable solution should not require the Proxy to be 
trusted; otherwise, the solution will be difficult to deploy. Therefore, we have another problem: 
 
Problem 2: Design a protocol to support range query in a privacy preserving manner in the above 
scenario while Proxy is not trusted by either Server or Users. 
 
We emphasize that the above two problems are different from the secure database query problem 
which has been the subject of much research (Du et al., 2001). To provide such a user with the 
means to retrieve data from a database without the database learning any information about the 
item that was retrieved in a two-party (server and user) model, private information retrieval (PIR) 
(Beimel et al. 2007, Chor et al. 1995) can be used.  
 
In this work, in order to address such security problems in a more practical way, we want to avoid 
using those heavyweight cryptographic operations (such as PIR used). We use several lightweight 
cryptographic building blocks, such as secure hash function, symmetric encryption, etc. Therefore, 
we formulated the three-party model for the database system by introducing an additional party, the 
Proxy. In our model, The Server and the Proxy work in a collaborative way that the Server's data 
which is unrelated to a query will not be revealed to the User, and the User's query will not be 
revealed to the Server. 
 
1.3 Contributions  
We propose a new database system model which contains three parties: Server, Proxy and Users. 
Under this new model, we formulate and address two interesting problems, which have not been 
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studied in the literature. Then we present two practical, secure interactive protocols which support 
privacy-preserving database query to solve the problems. The protocols take place between the 
three parties, the Server, in possession of a private database, the Proxy which is a trusted third 
party (TTP) take responsibility of forwarding data that matched a query from the Server, and the 
Users, in possession of queries. 
 
Our protocol does not reveal any data information except the records match the User's query. The 
User does not learn how the query applied on the database, nor any other quarriable attributes that 
the database may contain. The Proxy does not learn any information about the Server's private 
data, though he is interacting with the Server directly. The Server on the other hand, learns nothing 
whatsoever about the User's query. 
 
The problem we deal with is not trivial. Achieving security properties efficiently is a difficult 
challenge in practice. Many privacy-preserving protocols for PIR use secure multi-party 
computation protocol as building block, which present elegant for security, but brings much 
computation and communication overheads at the same time. Our protocol combines a novel way 
several efficient cryptographic techniques, such as secure cryptographic hash function, 
pseudorandom function, XOR, etc. 
 
We also present an experiment using the data sets collected by UCI KDD. Experimental evaluation 
of our prototype implementation demonstrates that our protocol performs significantly better than 
those MPC base solutions. 
 
1.4  Outline  
This paper is organized as follows. We introduce the preliminary in Section 2. In Section 3, we 
present our first protocol for problem 1, which constitutes database processing and query 
processing. In Section 4, we present an advanced protocol for problem 2, in which the Proxy is not 
a trusted party. In Section 5, we discuss some practical considerations and security issues. We 
give the experimental results in Section 6 and analyze the performance. We describe related work 
in Section 7. Concluding remarks are given in Section 8. 

 
2. PRELIMINARIES 
Throughout this paper, attributes are denoted by  and attribute values are denoted by 

lowercase letters such as the j-th record value for attribute i is .  There can be additional content 
associated with the record that is not included in the quarriable record. We call this information the 
payload or file of the record. Because the payload is not needed for making interval matching of 
range queries, in this paper we will only be concerned with the attributes of the database which 
support range query, and the payload for each record are exist in a plaintext form. In the employee 

example, the attributes are  (string),  (integer) and  (integer). The 
quarriable record is defined as the tuple (eid, age, salary). 
 
2.1 Xhash and Oblivious Comparison  
In this section, we consider the following oblivious comparison problem. Suppose we have two 

parties, denoted Server and Proxy, where each party has a private number, and 

respectively. Server and Proxy want to compare whether ; however, no party wants to 

disclose its number to the other. In case , no party should learn the value of the other 
party. 
 
In this paper, we will use a simple and efficient protocol (Liu et al., 2008) based on cryptographic 
hash, called Xhash, to achieve oblivious comparison. Xhash works as follows. First, Server and 

Proxy each choose a secret key  and  respectively. Second, Database sends  to 

Proxy. Then, Proxy computes  and sends the result to Database. Third, 

Proxy sends  to Database. Then, Database computes  and 

compares it with , which was received from Proxy. Finally, the condition 



Miaomiao Zhang 

International Journal of Computer Science & Security (IJCSS), Volume (16) : Issue (4) : 2022       47 
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php 

 holds if and only if . Figure 2 illustrates the 
Xhash protocol.  
  

 
 

FIGURE 2: The Xhash protocol. 

The above function HMAC is a keyed-Hash Message Authentication Code, such as HMAC-MD5 or 

HMAC-SHA1, which satisfies the one-wayness property (i.e., given , it is 
computationally infeasible to compute x and k) and the collision resistance property (i.e., it is 

computationally infeasible to find two distinct numbers x and y such that . 
Note that the key k is shared between Server and Proxy. Although hash collisions for HMAC do 
exist in theory, the probability of collision is negligibly small in practice. Furthermore, by properly 
choosing the shared key k, we can safely assume that HMAC has no collision. 
 
To prevent brute force attacks, we need to choose key K to be sufficiently long. In our 
implementation, we choose K to be 128 bits. Note that in our framework x might be much less than 
128 bits. To meet the length of K such that x can be XORed with K, we use a pseudorandom 
function prf to expands x into a longer string so that the output matches the key size. Let x be the 

seed and feed it into prf. The output  looks indistinguishable with the real random 
number of 128 bits long. 
 
The correctness of Xhash follows from the facts that the commutative property of XOR operation 

(i.e.,  ), and the one-wayness and collision resistance properties of 
HMAC functions. Note that in the case that , Server can compute the secret key of Proxy 

because . However, when applying the above oblivious comparison scheme in 
our protocol, Server compares  with many numbers in a set and does not know which number 

is equal to . 
 
2.2 Prefix Membership Verification 

We define two new concepts here: k-prefix and prefix family. We call the prefix with 
k leading 0s and 1s followed by w-k *s a k-prefix. If a value x matches a k-prefix, the first k bits of x 
and the k-prefix are the same. For example, if  (i.e., ), then the first 

two bits of x must be 01. Given a binary number  of w bits, the prefix family of this 

number is the set of w+1 prefixes , where the i-th prefix 

is . We use PF(x) to represent the prefix family of x. For example, 
. Based on the above definitions, it is easy to draw the 

following conclusion: Given a number x and a prefix ,  if and only if . 
 
2.3  Prefix Numericalization 
A prefix numericalization scheme f needs to satisfy the following two properties: (1) for any prefix

,  is a binary string; (2) for any two prefixes  and ,  if and only if 

. 
 
There are many ways to do prefix numericalization. In this paper, we use the following scheme: 

Given a prefix  of w bits, we first replace every * by 0; second, we append 

 bits whose value is equal to k. For example, 101* is converted to 1010011. After 
prefix numericalization, each prefix becomes a concrete number. 
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3. THE PROPOSED SCHEME 
3.1  Assumptions and Threat Model 
Assumptions: First, we assume that database systems allow each query to be range-based. And 
even attributes such as name, not typically thought of as numerical, can be indexed and therefore 
linearized in some fashion. Second, we assume that all parties running the protocols are 
semi-honest, or honest-but-curious.  This means that they execute the protocol exactly as 
specified, but they may attempt to glean more that the obvious information by analyzing the 
transcripts. Third, we assume there exists secure channels, which could be achieved using 
protocols such as SSL. 
 
Threat Model: The Server may attempt to break the query request and the Proxy may attempt to 
extract more information both from Server and Users' sides. 
 
3.2  Database Processing 
In the database processing protocol, Server first transfers its attribute values into binary forms, then 
converts each of the binary string to a set of concrete numbers, which is called prefix 
numericalization. Second, Server applies XOR operation to every set of numbers using its secret 

key . Third, for each attribute, Server sorted all the attribute values and maintain a list of 
pointers used for binary search. Finally, the Server sends the anonymized attribute values together 
with the lists of pointers and non-private data (payload) to the Proxy. Then the Proxy further applies 
XOR and HMAC operations to every number in the received attribute values using its secret key 

, encrypts the lists of pointers of each attribute with a separate secret key K. At last, Proxy sends 
the resulting table and encrypted pointers back to Server and keep the non-private data in his own 
server. 
 
1. Attribute values numericalization 
In this step, Server converts each attribute values in the database table to a concrete number. Let 

 denotes the numericalization function. It works as follows. For attribute , let  denote the 

maximum number of bits used to represent the attribute values. So, for attribute value , where j 

denotes the j-th record, it's binary string form is . Second, for each binary form 

of attribute values, the Server generates its prefix family . Third, the Server converts 

each prefix to a number using the prefix numericalization scheme f. That is append  

bits whose value is equal to the prefix length and get the final result, a numericalized set  

for each attribute value . Note that, the size of each set is . This means the quarriable 

data will expand  for each attribute value . For example, for an age value 35, we first use 

8 bits to represent the binary form 00100011. The prefix family  is shown in Figure 3(b). 
The final sequences of numbers are shown in Figure 3(c). 
 

 
 

FIGURE 3: Example of attribute value processing by Database. 

Table 2 and Table 3 show the plaintext form of a database and the data entries after the attribute 
value numericalization. 
 

  
… 

 
… 

 

  
… 

 
… 

 
 

TABLE 2: Plaintext form of the j-th record in a database. 
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… 

 

 
… 

 
 

TABLE 3: Numericalized form of the j-th record. 

 
2. Applying XOR by the Server 
After the numericalization of attributes values, the Server applies XOR to every number in the 

expanded using its secret key . This step is applying the first step of Xhash protocol. 
 
3. Sorting and pointers generation by the Server 

In the last step, each attribute value for  has an expansion of . To improve the 
comparison efficiency on the database side, we want to remove the redundant items and put the 

left numericalized numbers in a regular way. For each attribute , the Server sorted all the 

numericalized numbers in a sequence , then merge the repeated numbers. We utilize sorting 

algorithm here for later improve the searching speed by applying binary search. For each value  

in the sorted sequence, we maintain a pointer , which points to the row number where the 
corresponding numericalized attribute value comes from. Note that, many records in a table may 
have a same numericalized attribute value, e.g., for attribute age, 00000000 0000 will always 
appears in the numericalized set of each attribute values. So the pointer may point to one or several 
records of the table. 
 
Since there are n attributes in a database, we totally have n corresponding sorted sequences 

. Figure 5 shows an example for the sorted sequence and the corresponding pointers 
of attribute age. 
 
Finally, the Server sends the sorted data lists, together with their pointers and non-private data in 
the original table form to the Proxy for further processing. 
 
Note that the Server should do XOR operation before sorting. If the Server do the sorting first, then 
all the numbers will be arranged in the ascending or descending form. We can notice that the binary 
string with all 0 bits concatenate ending "00", "01" "10" "11" may always or often appear after the 

numericalization. If XOR the numbers with  after sorting (assume ascending form), the first 
several numbers on the XORed sorting list may reveal some bits of the Server's secret key, which 
makes it possible for the Proxy to attack Server's secret key. 
 
If the Server do XOR before sorting, it obvious that the Proxy cannot apply the above attack, either 

cannot get the quarriable data since he doesn't know the Server's secret key . 
 
4. Applying XOR and HMAC by Proxy 
Upon receiving the sorted lists of numerical sets of attribute values with pointers and non-private 
files from the Server, the Proxy further applies XOR and HMAC to every number in the received 

sequences using its secret key . We use  denotes the resulting sequence for attribute . 
 
5. Encrypt the pointers by Proxy 
To prevent the Server from knowing the files of which user get after the query, the Proxy further 
encrypts each pointer using another secret key K. 
 
After Proxy applies XOR and HMAC and encrypts the pointers, it sends the resulting sequences 
together with the encrypted pointers back to the Database. The Proxy keeps the non-private files in 
its own server. 
 

 
… 

 

 
… 

 
 

TABLE 4: XORed form of the j-th record. 
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6. Sorting the hash values by the Server 
On receiving the lists of hash values from the Proxy, the Server sorted each list again for later 
search. It can also help the Server detect hash collision. We will discuss this issue later. 
 
3.3 Query Processing Protocol 
In this protocol, each time the Proxy receives a query (a range for an attribute or several ranges for 
several attributes) originated from the user, the Proxy first converts the range to binary numbers 
and then converts to prefixes. Utilizing the prefix numericalization scheme it further converts each 
prefix to a concrete number. Then the Proxy applies XOR to every number converted from the 

range query using its secret key  and send the resulting query number set to the Server. On 
receiving the encrypted query number set, the Server further applies XOR and HMAC to the 
received numbers, and searches the double encrypted and hashed sequences which is 
collaboratively generated by both the Server and the Proxy in the database processing protocol. 
Finally, the Server sends the corresponding encrypted pointers back to the Proxy and the Proxy 
decrypts it using his secret K. 
 
1. Query Preprocessing by Proxy 
 

 
 

FIGURE 4: Example of range query preprocessing by Proxy. 

Let  denote a range query sent by a User, where  denote the range predicate 

on the i-th attribute . And let d be the number of attributes related in a query. For each of the d 
fields of a query, the Proxy first converts it into the binary form, then generates its corresponding 
minimum set of prefixes such that the union of the prefixes is equal to the range. Second, the Proxy 
converts each prefix to a number using the prefix numericalization scheme. Third, Proxy applies 

XOR to each number in the numericalized query sets using its secret key . Last, the Proxy 
sends a sequence of d sets of numbers, which corresponds to the d fields of the query, to the 
Server. For example, given an age query [9, 15], the translation process is shown in Figure 4. 
 
2. Query Preprocessing by Server 
After the Server receives the query as a sequence of numbers from the Proxy, the Server further 

applies XOR and HMAC using its secret key . Let  denotes the resulting (hidden) query sets 
for attribute . Because of the commutativity property of Xhash, the Server can do the search and 
comparison on the encrypted quarriable attributes values in the table. Recall that there are n 

attributes in a database. A record  matches a query  for attribute  if 

and only if the condition  holds. 
 
3.4  Searching and Comparing by the Server 
As mentioned above, there is data expansion and data redundancy in the database table after 
applying prefix numericalization. It's not efficient and impractical to go through all the numericalized 
attribute values in the encrypted sequences. We can use binary search here to achieve an elegant 
searching speed. 
 
According to the prefix membership verification, we know that if we find a number in the sequence 

 exact matches a number in the hidden query set , then the row numbers which the 

corresponding pointer point to are satisfied with this range query to attribute . 
 
After the Server find out all the records that match a query, it sends the corresponding encrypted 
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pointers to the Proxy. The Proxy then decrypts it using its secret key K. According to the decrypted 
pointers, the Proxy send the matched files back to the User. For example, if a User makes a query 
of [8,13] to the data table in Figure 5. The Proxy first generates the numericalized query set <1100 
011,  1000 010>. Searching the sorted list, we can see that row 2 is the record which the user can 
retrieve files. 
 

 
 

FIGURE 5: Example of database search based on sorted pointers. 

 
4. AN ADVANCED SCHEME SUPPORTING HIDDEN QUERIES 
To solve Problem 2, we present an advanced protocol which can support hidden queries to the 
Proxy in this section. Based on the assumptions of last scheme, we further assume that the Proxy 
is not trusted by both the Server and the Users. They want to prevent the Proxy known about their 
quarriable data and queries. We also assume that the Users and Server share a common key . 
We group all the users into m small groups. For each group, the members share a same group key 

 with the Server. A secure key distribution scheme such as (Neuman et. al. 1994, Ganesan et al. 
1995, Reiter et al. 1996, Wong et al. 2000) suitable for the specific requirements (e.g., scalability) of 
an organization can be used for this purpose. We will discuss the group key management issue 
later. Our assumptions are reasonable in practical scenarios. This advanced solution is based on 
the basic scheme given in the previous section and a secure encryption algorithm, denoted by E. 
The protocol runs as follows. 
 
4.1  Database Processing 
When the Server wants to establish the quarriable tables, after the attribute values 
numericalization, see Table 3, the Server first applies encryption on all the numbers using the 
shared key . The resulting quarriable table shows in Table 5. That means, for each group, the 
Server should maintain a corresponding table in the processing phase. 
 

 
… 

 

 
… 

 
 

TABLE 5: The j-th record after encryption with the shared key. 
 
 

… 
 

… 

… 
 

…  

 

TABLE 6: The XORed j-th record after encryption with the shared key. 

 
Then the Server apply XOR on all the attribute values of this table using its private key . The 
results are shown in Table 6.  After that, the Server sorted all the numbers for each attribute and 
generate the pointer lists the same way as in last scheme.  Finally, the Server sends these sorted 
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encrypted data lists to the Proxy together with their pointers and non-private data for further 
processing. 
 
The Proxy's operations are the same as in basic solution. The Proxy applies XOR and HMAC, 
encrypts the pointers, keeps the non-private data and sends the hashed lists together with the 
encrypted pointers back to the Server. 
 
The Server will further sort each list again for later search. 
 
4.2  Query Processing 
When a User makes a query to the Server and doesn't want to reveal the query to both the Proxy 
and Server, it will do the query preprocessing first. So compared with our basic solution, Query 
Processing will be divided into three phases, which will be operated by User, Proxy and Server step 
by step separately. 
 
1. Query Processing by the User: 
For each of the d fields of a query, the User first convert it into the binary form, then generates its 
corresponding minimum set of prefixes such that the union of the prefixes is equal to the range. 
Second, User converts each prefix to a number using the prefix numericalization scheme. Third, 
encrypt each number in these d sets using his shared group key  and send the encrypted 
number sets to the Proxy. In addition, the Proxy should attach his group number to the Proxy. 
 

 

FIGURE 6: A query example includes three steps. 

2.  Query Processing by the Proxy: 
After receiving the encrypted form of query from the User, the Proxy applies XOR to each number 

using its secret key  and sends the results to the Server together with the User's group number. 
The Proxy cannot figure out the User's query since he doesn't know the then User's key. 
 
3. Query Processing by the Server: 
In this phase, the operations of Server are the same as in the basic solution. Figure 6 gives an 
example of the three steps of query processing. 
 
4.3  Searching and Comparing by the Server 
On receiving the group number of the User passing through the Proxy, the Server should first 
determine the processed data for the User's group to do the search. 
 
The searching and comparing phases are the same as the previous scheme. 

 
5. DISCUSSIONS 
5.1  Other Practical Considerations 
1. Database Update 
When the Server updates its database, the Server and the Proxy don't need to run the whole 
database processing protocol again. Instead, they only need to process the updated data records. 
 
When adding a new record to the database, the Server first do numericalization for each attribute 

values in this record. Then XOR the numbers with its secret key  and construct new pointers to 
store the corresponding row numbers for them. After that, the Server send all the numbers with 
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pointers and the non-private files of this row to the Proxy. 
 
Upon receiving the data from the Server, the Proxy apply XOR and HMAC to the XORed numbers, 
encrypts the pointers, add the non-private file directly to the payload table he kept. Then return the 
hash values together with the encrypted pointers to the Server. 
 
The Server need to insert the new computed hash values to the related attribute hash lists. It first 
applies binary search on the list, if a hash value already exists on a list, concatenate the hash 
value's corresponding encrypted pointer to the pointer for the existed hash value. If a hash value 
has not appeared on the list, insert it into the proper location together with its encrypted pointer. 
Hence the update operation of adding a new record is done. The update process for deleting a 
record is the same. 
 
2. Treatment of string 
So far, all the examples we give are for integer attribute values. As mentioned in our assumption, 
the attributes such as name, not typically thought as numerical, can be indexed in some fashion. 
Here we show how to apply range query on the strings in our protocol. 
 
Since we know that each letter has a unique ASCII code of 8 bits. Let's take attribute name for 
example. We concatenate all the ASCII codes of letters in a name, then padding it to form a certain 
length of binary string, e.g., 128 bits. When a query is made for the name of a beginning letter "A", 
we should first convert "A" into its ASCII form "01100101", then concatenate 120 "*"s to convert it 
into a range (a prefix) which includes all the 128 bits binary strings of names with a beginning letter 
"A". It obvious that we can apply the query on the attributes of string format. 
 
5.2 Security Properties 
The protocol presented in Section 4 is secure in the semi-honest model, i.e., under the assumption 
that participants faithfully follow the protocol, but may attempt to learn extra information from the 
protocol transcript. 
 
1. Privacy preserving 
In our first scheme, the basic scheme, after the server processing protocol, the Proxy learns only 
the size of the database. It's difficult for the Proxy to learn other information such as the values of 
the private attribute values, the non-private files' relation with the attribute values. The Server's 
privacy is protected by the Xhash protocol. After the XOR operation by the Server, the resulting 
sequences seem to be random to the Proxy. The Proxy cannot gain any information about the 

original attribute values unless he gets the Server's secret key . In addition, as we mentioned 
before, the Server do the sorting after the XOR operation can prevent the partial disclose of the 
Server's secret key. On the other hand, the Server learns nothing about the pointers and their 
relationship to the attribute values. Since the Proxy applies XOR and the one-way hash function. 
Due to the one-way property, it is computationally difficult for the Server to figure out the Proxy's 

secret key  or the XORed values he send to the Proxy. Hereby, the data confidentiality is 
guaranteed. 
 
After a query protocol, the User gets the information which fits for his query ranges, and the Server 
learns nothing about the query of the User. Due to the query preprocessing operations, the User's 
range queries are mapped to hash values, the one-wayness of hash function made it difficult for the 
Server to figure out the original query. What's more, after the comparison, the Server can only get 
the encrypted pointers which points to the satisfied data entries of the query. It is computational 
difficult for the Server to decrypt the pointer, because only the Proxy has the key. Since the Proxy 
will decrypt the pointers and send the related non-private files back to the User, the Server doesn't 
know what's the exact files returned to the User, hence unable to guess the rough range of the 
User's query. It's clear that the query privacy is achieved in our scheme. 
 
In the advanced protocol, we further prevent the Proxy know about the User's query. To prevent 
this, the User first encrypted his query with the shared key. Hence what the Proxy received is a 
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hidden query of the User, the Proxy cannot figure out the User's query since he doesn't know the 
shared key. Although the Proxy can learn the size of the hidden query, but it useless to figure out it, 
since the size of the hidden query does not only depend on the query range. Since other processing 
phases are similar to the basic scheme, the data confidentiality and query privacy can be 
guaranteed in a same way. 
 
2. Hash collision 
The chance of having hash collisions for HMAC is extremely small. However, to be on the safe side, 
we propose the following solution to the problem. Our solution is based on the observation. In the 
database processing phase in our protocol, the Proxy will apply XOR and hash operation on a 
sorted list without redundancy. When he returns the hash lists back to the Server, the Server will 
sort the hash lists again. If a hash collision happens, the sorted hash values will have redundancy 
(two neighbors on the sorted list are of the same value). This fact can be observed by the Server, 
and he can easily detect whether hash collision happens. 
 
Note that the Proxy should maintain both the input and output lists of HMAC for observation. In the 
database update phase, if a hash value already exists on a list, the Proxy should first compare the 
input values of HMAC to make sure if this is a real hash collision or a redundancy. 
 
In the case that hash collision does happen, the Server and the Proxy can simply redo the data 
processing phase, in which they will choose different secret keys and henceforth the hash collision 
is most likely removed. 
 
3. Group key management 
In the advanced scheme, we group all the users into m small groups. And for each group, the 
members share a same key with the Server. For security concern we need to update the group key 
periodically to prevent the brute force attack to the shared keys. Also considering the dynamic 
membership of a group, the group key needs to be updated upon each user's join to prevent the 
new user from accessing the past group key. Similarly, upon each user's departure, the key needs 
to be updated to prevent the leaving user from accessing the future group key. Thus, group 
members need to agree upon the same key management protocol for key establishment and 
update. Sometimes the group key management protocol is also referred to as the group key 
agreement. 
 
Collusion can also be a problem. If a user of one group is compromised by an adversary or the 
Proxy, it will lead to the leakiness of the group key. Hereby, we are going to apply a secure group 
key management protocol with Collusion-Scalability. 
 
The topic of secure group communications has been investigated a lot. How to distribute a secret to 
a group of users has been addressed in the cryptography literature. Considering the need for 
frequent key changes and the associated scalability problem for a large group, we are going to 
apply a hierarchical approach which developed by (Wong et al., 2000). Hence, the confidentiality 
issue of the shared key can be guaranteed by the secure group key management protocol we used. 

 
6. EXPERIMENTAL RESULTS 
In this section, we evaluate the performance of the privacy-preserving database query protocol. We 
implemented our protocol using Java 17. Our experiments were carried out on a laptop PC running 
Windows 10 with 8G memory and 11th Gen Intel Core i3 processor. This is a realistic 
approximation of what the User might use, but we expect that the Server and the Proxy would 
maintain more powerful dedicated servers to manage the database and apply queries. 
 
In the experiment, we use HMAC-SHA1 algorithm and AES to encrypt the pointers. In our analysis 
of scaling behavior, we use the data sets downloaded from UCI KDD Archive with various attributes 
and records and measured the computation time of each party separately. In the database setup 
phase, the computation time of the Proxy includes the XOR and HMAC, and encryption of pointers, 
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while the computation time of the Server comes from the numericalization, XOR and twice sorting. 
Query time is the more important metric since it dictates how long the three party must maintain a 
connection. Database update calculations can be performed during idle times when the CPU is in 
low demand. 
 
The database processing time of our basic scheme with an input table (100003) is 4.4 seconds. 
Adding one more entry to the existing database (13) is 11ms. Table 7 shows the query processing 
time for a 10000-row table. 
 
For the advanced solution, the average querying time is shown in Table 8. The performance of the 
advance scheme is very close to the basic scheme. Because in the advanced scheme, for each 
query processing, we need one more encryption by the shared key, which is based on the XOR 
operation. 

 
We also analyzed the scaling behavior of the database processing algorithm. We find that the 
Server's algorithm and Proxy's algorithm scale linearly with the number of rows in the database. 
Both algorithms' computation time depends linearly on the size of the database. 
 
We also evaluate the scaling behavior of query algorithm. The computation of query algorithm is 
independent of the attributes. But not scales linearly with the row numbers. This is because the 
query processing time also depends on the query range. If the query range is large, it will need 
more processing time. 
 
For the database update algorithm, it scales linearly with the number of rows in the database. 
 
The performances show that the computation cost of executing our privacy-preserving database 
query protocols perform efficiently in practical scenarios. 
 
QUERY name age salary 

TIME 0.9ms 0.5ms 5.6ms 

 

TABLE 7: Average querying time of the advanced scheme based on 10000 tests. 

 
7. RELATED WORKS 
Yao first investigated the secure two-party computation problem (Yao et al., 1986). This problem 
was later generalized to multiparty computation (MPC). Du (Du et al., 2001) et al. provides a good 
review of secure multi-party computation (MPC) problems and apply it to solve the secure remote 
database query problem. They have developed three models for secure remote database access 
and presented a class of problems and solutions for these models: Private Information Matching 
(PIM) Problem, Secure storage Outsourcing (SSO) Model and Secure Storage and Computing 
Outsourcing (SSCO) Model. Although the authors claimed that the solutions for the above three 
problems (Du et al., 2001) are practical, there are just a theoretical result compared with the 
general solution from multi-party computation. Their protocols are still not suitable for practical use. 
 
Our work differs from Du's work in many ways. First, our framework involves three parties, while the 
Proxy is a trusted third party used for forwarding matched message. Second, the computational 
cost of our framework is low due to the use of efficient Xhash, while computational cost of Du's 
solutions is expected to be high due to the extensive use of PKI certificates. 
 
The private information retrieval (PIR) problem has been widely studied. A PIR protocol allows a 
user to access k (k>1) duplicated copies of data, and privately retrieve one of the n bits of the data 
in such a manner that the databases cannot figure out which bit the user has retrieved. The trivial 
solution has an O(n) communication complexity. Much work has been done for reducing this 
communication complexity (Chor et al. 1998, Di-Crescenzo et al. 1998, Gertner et al. 1998, Ishai et 
al. 1999, Kushilevitz et al. 1997). Tillem et al. (Tillem et al. 2016) proposed a PIR scheme 
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supporting range queries, and Wang et al. (Wang et al.) proposed PIR schemes providing 
functionality approaching standard SQL, including range queries. 

Recently, Hayata et al. (Hayata et al. 2020) propose a simple extension of the standard PIR 
security notion to range queries, give a simple generic construction of a PIR scheme meeting the 
stronger security notion, which has a round complexity logarithmic in the size of the database. They 
also propose a more efficient direct construction based on function secret sharing, the round 
complexity of the latter is constant. Finally, we report on the practical performance of our direct 
construction.  

Our work is related to privacy-preserving inter-database operation, which is another interesting 
problem to design protocols for distributed computation of relational intersections and equi-joins 
such that each site gains no information about the tuples at the other site that do not intersect or join 
with its own tuples. Such protocols form the building blocks of distributed information systems that 
manage sensitive information, such as patient records and financial transactions, that must be 
shared in only a limited manner. 
 
Agrawal, Evfmievski, and Srikant presented a general approach (Agrawal et al., 2003) based on a 
commutative encryption scheme in a symmetric way. The commutative property of the encryption 
scheme allows for two parties to obliviously compare two values. If the equality comparison fails, no 
information about the values is learnt by the other party. This approach also solves the problem at 
the cost of high computation overheads, since commutative encryption is a kind of public key 
encryption algorithm. 

Unlike the general solution outlined in (Agrawal et al. 2003), Liang and Chawathe presented 
protocols in an asymmetric way (Liang et al., 2004): They use blind signatures to protect the privacy 
of one party and one-way hash functions to protect the privacy of the other. Their solution is the 
state-of-art for such privacy-preserving inter-database operation problem. 

Huberman, Franklin, and Hogg have discussed a problem very similar to ours in the context of 
recommendation systems (Huberman et al., 1999, 2000). Their protocol is used to find people with 
common preferences without revealing what the preferences. In a database context, Lindell and 
Pinkas have addressed the same privacy concerns in (Lindell et al., 2000). Their paper addresses 
the privacy-preserving set union problem. The central idea is to make all the intermediate values 
seen by the players uniformly distributed. But all these works are theoretical results. Their solutions 
are not practical from the efficiency angle. 

 
8. CONCLUSING REMARKS 
In this paper, we consider a three-party database system model and present two practical secure 
protocols for database system. Our basic scheme enables a User to apply a query through a 
trusted party, the Proxy, on the Server's database in a privacy-preserving manner. In the advanced 
scheme the Proxy does not need to be a trusted third party, the User can make a hidden query 
through the Proxy. As we are aiming at practically oriented database schemes, besides privacy, 
efficiency is a major challenge. Different from previous related work, we avoid using heavyweight 
building blocks that used in PIR etc. Instead, to achieve oblivious comparison, our scheme uses an 
efficient Xhash protocol which is based on lightweight cryptographic hash function and symmetric 
encryptions. We implemented our protocols and conducted experiments on real life data sets. It 
turns out that our schemes perform well, which makes them very attractive in practice. 

 
9. REFERENCES 
Agrawal, R., Evfimievski, A. and Srikant, R. (2003). Information sharing across private databases. 
International Conference on Management of Data, 132–143.  

Beimel, A. and Stahl, Y. (2007). Robust Information Theoretic Private Information Retrieval. J. 
Cryptol., 20(3):295–321. 



Miaomiao Zhang 

International Journal of Computer Science & Security (IJCSS), Volume (16) : Issue (4) : 2022       57 
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php 

Chor, B., Kushilevitz, E., Goldreich, O. and Sudan, M. (1998). Private information retrieval. Journal 
of the ACM (JACM), 45:965 – 981.  

Chor, B., Goldreich, O., Kushilevitz, E. and Sudan, M. (1995). Private information retrieval. In 
FOCS, pages 41–50. 

Di-Crescenzo, G., Ishai, Y. and Ostrovsky, R. (1998). Universal service-providers for database 
private information retrieval. In Proceedings of the seventeenth annual ACM symposium on 
Principles of distributed computing (PODC’98), 91–100, New York, NY, USA.  

Du, W. (2001). A Study of Several Specific Secure Two-Party Computation Problems. PhD thesis, 
Purdue University, West Lafayette, Indiana.  

Du, W. and Atallah, M. J. (2001). Secure multi-party computation problems and their applications: a 
review and open problems. In Proceedings of the 2001 workshop on New security paradigms 
(NSPW’01), pages 13-22, New York, NY, USA. ACM.  

Ganesan, R (1995). Yaksha: augmenting kerberos with public key cryptography. In Symposium on 
Network and Distributed System Security (SNDSS’95).  

Gertner, Y., Goldwasser, S., and Malkin, T. (1998). A random server model for private information 
retrieval or how to achieve information theoretic PIR avoiding database replication. In 
Randomization and Approximation Techniques in Computer Science.  

Gertner, Y., Ishai, Y., Kushilevitz, E., and Malkin, T. (1998). Protecting data privacy in private 
information retrieval schemes. In Proceedings of the thirtieth annual ACM symposium on Theory of 
computing (STOC’98), pages 151-160, ACM.  

Hayata, J. & Schuldt, J. & Hanaoka, G. & Matsuura, K. (2020). On Private Information Retrieval 
Supporting Range Queries. Computer Security – ESORICS 2020, 25th European Symposium on 
Research in Computer Security, Proceedings, Part II, pages 674-694. 

Hayata, J., Schuldt, J.C.N., Hanaoka, G., Matsuura, K. (2020). On Private Information Retrieval 
Supporting Range Queries. In: Chen, L., Li, N., Liang, K., Schneider, S. (eds) Computer Security – 
ESORICS 2020. ESORICS 2020. Lecture Notes in Computer Science(), vol 12309. Springer. 

Hogg, T., Huberman, B. A., and Franklin, M. (2000). Protecting privacy while sharing information in 
electronic communities. In Proceedings of the tenth conference on Computers, freedom and 
privacy (CFP’00), pages 73-75.  

Huberman, B. A., Franklin, M. and Hogg, T. (1999). Enhancing privacy and trust in electronic 
communities. In ACM Conference on Electronic Commerce, pages 78–86.  

Ishai, Y. and Kushilevitz, E. (1999). Improved upper bounds on information-theoretic private 
information retrieval. In Proceedings of the thirty-first annual ACM symposium on Theory of 
computing (STOC’99), pages 79-88.  

Kushilevitz, E. and Ostrovsky, R. (1997). Replication is NOT needed: SINGLE database, 
computationally- private information retrieval. In IEEE 38th Annual Symposium on Foundations of 
Computer Science, pages 364-373.  

Liang, G. and Chawathe, S. S. (2004). Privacy-preserving inter-database operations. In 
Intelligence and Security Informatics, volume 3073, pages 66–82. Springer Berlin/Heidelberg.  

Lindell, Y. and Pinkas, B. (2000). Privacy preserving data mining. In Advances in Cryptology 
(CRYPTO’00), pages 36 – 54.  

Liu A. and Chen, F. (2008). Vguard: Collaborative enforcement of firewall policies in virtual private 



Miaomiao Zhang 

International Journal of Computer Science & Security (IJCSS), Volume (16) : Issue (4) : 2022       58 
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php 

networks. In Twenty-Seventh Annual ACM SIGACT-SIGOPS Symposium on Principles of 
Distributed Computing (PODC’08).  

Neuman, B. C. and Tso, T. (1994). Kerberos: an authentication service for computer networks. 
Communications Magazine, IEEE, 32:33–38.  

Reiter, M. K., Franklin, M. K., Lacy, J. B. and Wright, R. N. (1996). The omega key management 
service. In ACM Conference on Computer and Communications Security, pages 38-47.  

Tillem, G., Candan, O.M., Sava ş, E., Kaya, K. (2016). Hiding access patterns in range queries 
using private information retrieval and ORAM. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, 
D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 253–270. Springer, Heidelberg.  

Wong, C. K., Gouda, M. and Lam, S. S. (2000). Secure group communications using key graphs. 
IEEE/ACM Transactions on Networking, 8:16–30.  

Wang, F., Yun, C., Goldwasser, S., Vaikuntanathan, V., Zaharia, M. (2017). Splinter: practical 
private queries on public data. In: NSDI, pp. 299–313  

Yao, A. C. (1986). How to generate and exchange secrets. In Symposium on Foundations of 
Computer Science, pages 162-167.  


