
Jia Song

International Journal of Computer Science & Security (IJCSS), Volume (16) : Issue (5) : 2022 70
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

A Review on Library Fuzzing Tools

Jia Song jsong@uidaho.edu
Computer Science Department
University of Idaho
Moscow, Idaho, 83844, USA

Abstract

Fuzzing is a powerful software security testing technique. It can be automated and can test
programs with many randomly generated fuzzing inputs to trigger overlooked bugs. Libraries and
functions are commonly used by programmers to be directly called from their programs. However,
most programmers would simply use public libraries without doubting whether these libraries are
secure or not.To help with it, library fuzzing has been proposed.Fuzzing a whole program is very
common, however, fuzzing a standalone function or library is challenging. Different from an
executable program, functions cannot be run on themselves. In addition, randomly generating
certain parameters might break the relationships between parameters and therefore result in a
large number of false positives.There has been not much research in the area of library fuzzing.
However, library or function fuzzing could be a very useful testing toolfor programmers and
developers. This paper reviews the recent research work related to library fuzzing and function
fuzzing. The results may be helpful to any researchers who plan to explore this research area.

Keywords: Fuzzing, Library Fuzzing, Software Testing, Function Fuzzing.

1. INTRODUCTION

Fuzzing is one of the software security testing methods. It generates random input which can be
fed to a fuzzer to test programs. The testing process is monitored to specifically look for program
crashes. The advantages of fuzz testing include that it can be automated and does not require
access to the source code. It can quickly generate malformed fuzzing inputs and feeds them into
the program under test. Then the system will monitor any raised exceptions or failures while
running the program using these fuzzing inputs. Programmers tend to expect users to always
provide valid input as they interact with the program.However, attackers always give unexpected
input to try to mess up the program execution. In addition, people make mistakes accidentally by
entering invalid input into the program. Fuzz testing is extremely useful for testing input
components of programs because the randomly generated input could test overlooked cases in
the programs.

In traditional fuzzing, because the randomly generated input usually fails to satisfy the required
format of the input, a well-known drawback of traditional fuzz testing is that it is ineffective at
triggering bugs at the deeper level of the program (Sutton et al., 2007). Most of the programs
which require user interaction expect user input to be in a certain format. For example, a
command followed by zero or more parameters. If the input does not match the required input
format, then the input may be rejected directly by the program. Since traditional fuzzing generates
fuzzing input randomly, a large portion of the fuzzing input may fail to satisfy the input format
requirement at the early stage of the program execution. Therefore, the fuzzing input may be
dropped before reaching deeper levels of the code, hence leaving the deeper code unreachable
and untested.

Different from fuzzing regular programs, library fuzzing focuses on fuzzing a single function or
multiple functions in a library. Library fuzzing becomes a hot research topic because of the
security concerns of existing libraries. Libraries are commonly used by programmers and

Jia Song

International Journal of Computer Science & Security (IJCSS), Volume (16) : Issue (5) : 2022 71
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

software developers to reduce their workload on coding. For example, modern operating
systems, such as Ubuntu and Debian, consistof a base system and hundreds of libraries and
services (Ispoglou et al., 2020). These libraries are a handful to software developers because
they can be directly used by the developers without the need of understanding the internal
details. Similarly, no matter of writing code in C/C++ or Python, different libraries are frequently
used by programmers in their programs without many inspections of the security of those
libraries. As software security becomes an important issue, more and more developers started to
question the security of libraries. Many libraries are existing there, but a lot of them have not been
examined or tested for their security. To help test the security of libraries, library fuzzing can be a
good solution. This paper focuses on reviewing the existing fuzzers which test standalone
libraries. The result may be helpful to any researchers who are considering conducting research
in the library fuzzing area.

2. BACKGROUND
Fuzzing is a promising technique to discover vulnerabilities in software automatically. The
traditional fuzzing tool, proposed by Miller et al. (Miller et al., 1990) in 1990, is a form of black-box
testing. It uses a fuzzing tool to randomly generate or mutate input strings. Miller et al. indicated
that their fuzzing tool successfully crashed 25% to 33% of UNIX utility programs. Since then,
many studies (Miller et al., 1990, Sutton et al., 2007, Oehlert, 2005) have proven fuzzing to be
surprisingly effective in revealing vulnerabilities in software systems.

Based on the knowledge of the target program, fuzzing can be categorized into three groups:
white-box fuzzing, grey-box fuzzing, and black-box fuzzing (Manes et al., 2019). With more
information on the testing program, white-box fuzzing could be more effective in revealing bugs
and can be used to target a specific portion of the program. Grey-box fuzzing has certain
knowledge of the target program, and it usually collects information through static analysis and/or
dynamic analysis of the program to improve the effectiveness of fuzzing. Black-box fuzzing has
no information about the program, such as no access to source code, and therefore can only
observe the input to the target program and output from the execution of the program. However
black-box fuzzing is easy to set up.

To make fuzzing smarter, researchers have combined different techniques, such as symbolic or
concolic execution, taint analysis, and grammar detection, with fuzzing to help direct the testing.
In symbolic execution, symbolic values are used instead of concrete values as input values, and
symbolic expressions are used to represent the values of program variables (Cadar and Sen,
2013). When testing software, the symbolic execution technique is used especiallyto explore as
many execution paths as possible. Fuzzing tools guided by symbolic or concolic execution (Yun
et al., 2018, Cadar et al., 2011, Mouzarani et al., 2015, Ognawala et al., 2017, Stephens et al.,
2016), are good at exploring program paths. A major problem with symbolic execution is the path
explosion problem, which leadsto the symbolic execution technique requiringa large amount of
computing power and running overhead.

With taint analysis (Suh et al., 2004),all of the data received from untrusted sources can be
marked as tainted. These tags, representing whether a tagged data is tainted or untainted, are
propagated while the program's execution. The tags are checked when running certain
operations, such as making security-related decisions. If the tainted data are used, either further
checks will be done, or the tainted data is simply rejected and not used. Fuzzers assisted by taint
analysis(Ganesh et al., 2009, Bekrar et al., 2012, Cai et al., 2014, Liang et al., 2022) are more
effective when detecting vulnerabilities caused by input from unsafe sources, but the processes
of propagating and checking tags add extra execution time.

Grammar-guided fuzzing (Hoschele and Zeller, 2016, Hoschele et al., 2017, Bastani et al., 2017,
Godefroid et al., 2017, Salem and Song, 2021)is another method to improve the quality of fuzzing
input. Some of the grammar-based fuzzers include extra work from the tester, who need to enter
the accepted grammar or format of the valid input to the fuzzer. Others may extract grammars

Jia Song

International Journal of Computer Science & Security (IJCSS), Volume (16) : Issue (5) : 2022 72
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

from sample valid input files to the program, and then use the extracted grammars to help
generate effective fuzzing input. To keep track of the coverage of the test cases, code coverage
information isusuallymaintained (Lou and Song, 2020).

3. DIFFICULTIES IN LIBRARY FUZZING
In fuzzing, a large amount of input is fed into the target program and the output from the
execution of the program is monitored. However, what makes library fuzzing difficult is the fact
that libraries cannot be executed as standalone programs. Instead, functions in libraries are
called at different places of the programs with the required arguments. Therefore, in practice,
library fuzzing (eg.libFuzzer) usually requires the help of an analyst to manually write a fuzzing
stubto call functions in the target library (Manes et al., 2019). The fuzzing stub can call the target
library functions with the required arguments and later it can be leveraged with random
arguments to fuzz the target function.

Fuzzing functions with random arguments are less likely to produce efficient fuzzing (Ispoglou et
al., 2020). For example, a function that manipulates an integer array usually gets two
arguments.One of themstores the start address of the array and the other one indicates the
length of the array. Library fuzzing may not understand the relationship between the two
parameters. Hence feeding the function with random fuzzing input may cause a large number of
false positive crashes. Therefore, to develop a good fuzzer stub, the analyst who writes it needs
to have a good understanding of the target library and the possible relationship among the
arguments.

4. LITERATURE REVIEW
Fuzzing kernel code or device drivers is a challenging task. For example, kernel and device
drivers use pointers and function pointer tables frequently, however, the random value generated
by the fuzzer cannot satisfy the requirement in most cases. In addition, it is difficult to figure out
the right sequence and proper arguments of system calls to be able to trigger the bugs located
deeply in the system (Kim et al., 2020). On the other hand, one good thing about kernel fuzzing is
that most of the system kernels and device drivers are open sources (Corina et al., 2017), so the
source code can be analyzed to extract important information to guide fuzzers. To make kernel
fuzzers more effective, different information about the target is used to guide fuzzers. For
instance, Trinity (Jones, 2011), Syzkaller (Syzkaller, 2017), and DIFUZE (Corina et al., 2017) are
type-aware kernel fuzzers that use data type information derived from the system calls. Syzkaller
requires an analyst to provide the information while Trinity and DIFUZE can analyze the target
code and generate this type of information automatically. Code coverage feedback and symbolic
or concolic execution are also common techniques used to guide fuzzers. For example, Syzkaller
(Syzkaller, 2017), kernel-fuzzing (Kernel-fuzzing, 2016), and HFL (Kim et al., 2020) leverage
code coverage feedback to guide generations of the test cases where HFL also employs concolic
execution technique.

4.1 System Call and Device Driver Fuzzing
Trinity (Jones, 2011) is a type-aware kernel fuzzer. It generates fuzzing input using the data type
information from system call prototype definitions. When fuzzing a function, Trinity learns the data
type of each parameter in that function and randomly picks or generates a value to test it. For
example, when testing a read system call, the first parameter requires a file descriptor. Trinity
maintains a list of valid file descriptors and randomly picks one of them to pass to the read
system call. When encounters a length parameter, it randomly generates an integer value to be
used as the length parameter. Given the fact that there will be a lot of different combinations for
parameters of a system call, Trinity does not test everything (Jones, 2011).

Syzkaller (Syzkaller, 2017) was developed to fuzz Linux system calls and later extended to work
with other OS kernels. It is a widely used tool adopted by researchers to fuzz kernel code. It
requires analysts to manually provide information about the target system call, such as
arguments to the call, and then fuzzes the system calls. Syzkaller consists of three main

Jia Song

International Journal of Computer Science & Security (IJCSS), Volume (16) : Issue (5) : 2022 73
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

components, syz-manager, syz-fuzzer, and syz-executor. syz-manager interacts with the VM
environment from outside of the VMs. And syz-fuzzer and syz-executor are running inside VMs,
with syz-fuzzer focusing on generating fuzzing input and syz-executor executing the target
system call with the input from syz-fuzzer (Li and Chen, 2019). Syzkaller is a grey-box fuzzer and
it is typically used on kernels compiled with kernel code coverage feedback, such as from kcov
(kcov, 2011).

Implemented by Han and Cha, IMF (Han and Cha, 2017) is a fuzzing system that targets finding
latent bugs located deeply in the kernel code. The fuzzer employs a model-based approach that
deduces an API model from executing the regular program, then the model is used to help
generate fuzzing input. An API model indicates two types of dependences among function calls:
(1) an ordering dependence which indicates the order of function calls, and (2) a value
dependence which keeps track of the relationship between an output from a function to an input
of another function (eg. a return value from a function is used as an argument to another function)
(Han and Cha, 2017). IMF consists of three components, a logger, an inferrer, and a fuzzer. The
goal of the logger is to execute the program with a given set of inputs and log everything, such as
the parameter in the target function, and the return values. Then the inferrer component analyzes
the API logs and figures out the API model which specifies the ordering and value dependences
among function calls. This API model is sent to the fuzzer component to generate fuzzing inputs
which are executable programs. These programs are executed by the fuzzer and IMF monitors
whether a crash happened or not.

DIFUZE (Corina et al., 2017) is an interface-aware fuzzing tool that generates valid inputs to
execute the kernel drivers in modern Unix-like systems. It focuses on the exploration of the
Ioctlinterface provided by different device drivers. Ioctl is a device-specific system call that allows
for input and output operations to be processed by a device driver. For every driver, DIFUZE
performs static analysis on the driver code to identify all the Ioctl entry points and the
corresponding structures (eg. types of arguments). Corina et al. have integrated DIFUZE into
syzkaller (Corina et al., 2017). DIFUZE can convert the results of the analysis into a format
required by syzkaller. Then syzkaller performs fuzzing on the system call. A weakness of DIFUZE
is that if the driver crashes at the beginning, the deeper driver code will not be fuzzed because of
the earlier crash. In addition, the authors indicate that DIFUZE is unable to analyze complex
relationships between arguments (Corina et al., 2017). Similar to DIFUZE, other fuzzing tools,
iofuzz (ioctl, 2014) and ioctlfuzzer (ioctl, 2011) can test the Ioctl interfaces for Windows kernels.

HFL (Kim et al., 2020) combines traditional fuzzing and concolic execution to fuzz Linux system
calls. HFL maintains a template which is a list of existing system calls and the corresponding
structures. This includes the type of parameters in system calls, a range of constant values of
certain parameters, the relationships between systems calls, etc. (Kim et al., 2020). Based on
these pre-defined system call templates, HFL can generate or mutate programs that execute
system calls in certain orders with different parameters. HFL instruments all blocks of code in the
kernel, so that fuzzing can be guided by the coverage feedback. Its goal is to mutate fuzzing input
to reach a bigger execution coverage. A frequency table is maintained by HFL during fuzzing to
keep track of whether a branch is hard-branch (a branch is always evaluated to True or False) or
not. When a hard branch is identified by fuzzing, it will be sent to the symbolic analyzer to help
find out a value that can flip the evaluation of the hard branch (Kim et al., 2020). HFL obtains
potential dependency pairs from the results of static analysis on the kernel code. It then performs
runtime validation on the dependency data to identify true dependency pairs. By doing this, HFL
achieves better efficiency and effectiveness in fuzzing kernel space (Kim et al., 2020).

4.2 Function and Library Fuzzing
A challenge of function fuzzing is function cannot be executed as a standalone program.
Therefore, to fuzz a function, the fuzzer needs to have a proper way to call the target function and
pass a correct number of arguments to the function. Some function fuzzers require analysts to
write fuzzing stubs manually to call the target function (libFuzzer, 2016). This not only requires
analysts to have a good understanding of the target but adds extra workload to the analysts. To

Jia Song

International Journal of Computer Science & Security (IJCSS), Volume (16) : Issue (5) : 2022 74
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

solve this problem, several advanced function fuzzers can analyze the program or source code to
derive dependence information among functions to generate fuzzing stubs automatically
(Ispoglou et al., 2020, Blair et al., 2020). To fuzz only a portion of a program, the idea of in-
memory fuzzing was proposed (Sutton et al., 2007, Hoglund, 2003) The advantage of in-memory
fuzzing is that it can reduce the execution overhead by eliminating the process of re-executing the
whole program and only test a small portion of the program (Manes et al., 2019). Several fuzzers
that implemented this idea include GRR (Trail of Bits, 2016), AFL in persistent mode (Zalewski,
2015), IMF-SIM (Wang and Wu, 2017), etc.

LibFuzzeris a coverage-guided fuzzing engine.It can be used to test libraries or a single function
(libFuzzer, 2016). Supported by the LLVM's built-inSanitizerCoverage instrumentation (SAN,
2017), LibFuzzer gets code coverage feedback to detect which parts of the target code are
reached and which are not. Then it mutates the input data to try to reach that code area.
LibFuzzer can work without any input data but will not be efficient especially when the target
functions require complex or structured input. The weakness of LibFuzzer is it requires source
code and some human involvement to write fuzzing stub which is used to call the target function.
Several advanced fuzzer use LibFuzzer to support fuzzing libraries or functions, such as
SlowFuzz (Petsios et al., 2017), FuzzGen (Ispoglou et al., 2020), DeepState (Goodman and
Groce, 2018).

FuzzGen (Ispoglou et al., 2020), developed by Ispoglou et al., is a fuzzing tool that analyzes the
whole system automatically and generates fuzzing stubs which can be fed to the LibFuzzer. A
library function may be used multiple times in a program at different places. FuzzGen analyzes
the whole program, collects information about each use of the target function, and defines an
Abstract API Dependence Graph to keep track of the possible library dependence. The Abstract
API Dependence Graph includes control dependencies and data dependencies. The control
dependencies tell how the different API calls should be invoked, while data dependencies
indicate the relationships of data values, such as an output of a function being used as the input
to another function (Ispoglou et al., 2020). Then the dependence graph is used by FuzzGen to
generate proper fuzzing stubs for different API calls. The output of FuzzGen is a set of C++
source files and each one is a fuzzer stub. In this way, the fuzzing stubs can be generated
without the help of analysts, and they will be fed to the code coverage guided LibFuzzer to
perform the actual library fuzzing work (Ispoglou et al., 2020).

Blair et al. proposed a framework, HotFuzz (Blair et al., 2020), which automatically discovers
algorithmic complexity vulnerabilities in Java libraries. Algorithmic complexity vulnerability is
defined as a situation that a small adversarial input can lead to worst-case behavior (eg. denial-
of-service) when processing it. HotFuzz consists of two phases: (1) micro-fuzzing and (2) witness
synthesis and validation (Blair et al., 2020). In the micro-fuzzing phase, HotFuzz takes the whole
Java program or library as input and tries to automatically generate a test harness for every
function in the input. A test harness is a function input that can be fed to the function under test.
Then micro-fuzzing invokes the target function with the specific test harness and measures the
resources consumption by the target function. If the consumption exceeds a pre-defined
threshold, the test harness is sent to the second phase. The goal of the second phase is to
validate whether or not the forwarded test harness can produce abnormal resource consumption
when testing in a real Java run time environment. If yes, the test case is flagged to indicate an
existing vulnerability in the program, otherwise, the test case is discarded to reduce the false
positive rate (Blair et al., 2020). The advantage of HotFuzz is that it can be executed without any
help from analysts. Several similar fuzzers which generate input to reveal algorithmic complexity
vulnerabilities include Slowfuzz(Petsios et al., 2017) and PerfFuzz (Lemieux et al., 2018). Built on
top of libFuzzer, Slowfuzz uses an evolutionary guidance engine to generate inputs that can lead
to worst-case resource consumption. PerfFuzz is based on AFL, and it implements a
performance map and focuses on generating inputs with a higher number of execution paths.

Developed by Patrice Godefroid, MicroX (Godefroid, 2014) is a prototype VM which allows micro
execution of binary code. Micro execution means the ability to execute a portion of a binary file

Jia Song

International Journal of Computer Science & Security (IJCSS), Volume (16) : Issue (5) : 2022 75
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

without the user providing input data or test drivers (Godefroid, 2014). In MicroX, a user can
simply identify a function or a code location in an exe file or dll file. Then the VM starts executing
the code from that specific location, feeds input value, and catches all memory operations. The
value of the input depends on which input mode the VM is running. The VM has several input
modes -- zero mode, random mode, file mode, process-dump mode, and SAGE mode
(Godefroid, 2014). Each mode indicates a method to generate input, for instance, all input values
are set to zeros in zero mode, and 32-bit random values are used as input in random mode. In
SAGE mode, a white box fuzzer, SAGE (Godefroid et al., 2012), is used in MicroX to generate
input values to fuzz the target code fragment. SAGE can help symbolically execute the code path
taken by the micro execution and generate a path constraint for the specific micro execution.
Therefore, it can guide MicroX to reach more program paths (Godefroid, 2014).

AFL (Zalewski, 2013) is a popular fuzzer that is widely used by developers and researchers.
When fuzzing, AFL starts a new process, feeds in an input, and monitors whether a new path is
reached or not. If a new path is reached by using a specific input, AFL puts the input into its
queue and later uses it to reach other parts that are deep in the program. AFL constantly creates
new processes and tests input and discards them when the input is tested. To avoid the
overhead, AFL has an optional persistent mode that can be used (Zalewski, 2015). In persistent
mode, instead of using the execve()syscall and the linking process, AFL uses the fork() call to test
each fuzzing input. It performs in-memory fuzzing in a loop, hence does not need to restart the
program again and again. The author indicates the speed gains by using the AFL persistent
mode can be as high as ten times of the regular AFL. However, there may be problems such as
possible accidental memory leaks and Denial of Service conditions in the fuzzing process
(Zalewski, 2015).

Proposed by Wang and Wu, IMF-SIM (Wang and Wu, 2017) is a tool for analyzing binary code
similarity. The tool leverages in-memory fuzzing to quickly test functions and collects multiple
behavior traces. The in-memory fuzzing module of IMF-SIM employs a dynamic binary
instrumentation tool, Pin (Luk et al., 2005). Hence an advantage of IMF-SIM is that it does not
require access to source code and even works with stripped binaries thathave no debug
information or program relocation information. In-memory fuzzing can start executing from any
point of a program. When performing in-memory fuzzing, IMF-SIM sets a starting point, then
fuzzes from that point with a fuzzing input. After one iteration of fuzzing, the target program is
tested from the same starting point with other mutated fuzzing inputs. IMF-SIM suffers from the
same problem as other function fuzzing techniques -- no data type information is available. To
address this issue, the authors proposed a backward taint analysis method to reveal the root of a
pointer data flow (Wang and Wu, 2017). Whenever a pointer dereference error happens, the
pointer is tainted and propagated backward until finding the source of the pointer is, such as from
a function parameter. In this case, the source is fed with a valid pointer on the later fuzzing
iterations.

5. CONCLUSION
Fuzzing a whole program has been studied by many researchers, but there are only a few
research works related to fuzzing a standalone library.This paper surveys the existing library
fuzzing tools. The target for library fuzzers is usually a function. The advantage of this is that it is
less likely to run into the path explosion problem because the number of execution paths of a
function is much smaller compared to a whole program. In addition, testing a single function is
much faster, which means hundreds and thousands of fuzzing inputs can be tested in a very
short time. On the other hand, compared to fuzzing a whole executable, effectively fuzzing a
standalone library tend to be much harder. Firstly, most of the library functions need arguments to
be passed to the function. If there are relations between two or more arguments, such as an array
and its size or a buffer and its size, a library fuzzer may be ineffective because of not knowing this
relationship between arguments. Secondly, a function alone is not executable, hence requiring
certain ways to call the function and pass the correct number of arguments to it. This step usually
requires some help from human testers. Thirdly, to make library fuzzers more efficient,
information about the function need to be provided to the fuzzer by human testers. In short, the

Jia Song

International Journal of Computer Science & Security (IJCSS), Volume (16) : Issue (5) : 2022 76
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

research about fuzzing standalone libraries has been explored by some researchers, but more
advanced researchcan be conducted to make library fuzzer more effective.

6. ACKNOWLEDGMENT
This research work wassupported through the INL Laboratory Directed Research& Development
(LDRD) Program under DOE Idaho Operations Office Contract DE-AC07-05ID14517.

7. REFERENCES
Bastani, O., Sharma, R., Aiken, A., and Liang, P. (2017). Synthesizing program input grammars.
In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2017, pages 95–110, New York, NY, USA. ACM.

Bekrar, S., Bekrar, C., Groz, R., and Mounier, L. (2012). A taint based approach for smart
fuzzing. In 2012 IEEE Fifth International Conference on Software Testing, Verification and
Validation, pages 818–825.

Blair, W., Mambretti, A., Arshad, S., Weissbacher, M., Robertson, W., Kirda, E., and Egele, M.
(2020). Hotfuzz: Discovering algorithmic denial-of-service vulnerabilities through guided micro-
fuzzing. Proceedings 2020 Network and Distributed System Security Symposium.

Cadar, C., Godefroid, P., Khurshid, S., Pasareanu, C. S., Sen, K., Tillmann, N., and Visser, W.
(2011). Symbolic execution for software testing in practice: Preliminary assessment. In
Proceedings of the 33rd International Conference on Software Engineering, ICSE ’11, pages
1066–1071, New York, NY, USA. ACM.

Cadar, C. and Sen, K. (2013). Symbolic execution for software testing: Three decades later.
Commun. ACM, 56(2):82–90.

Cai, J., Yang, S., Men, J., and He, J. (2014). Automatic software vulnerability detection based on
guided deep fuzzing. In Software Engineering and Service Science (ICSESS), 2014 5th IEEE
International Conference on, pages 231–234.

Corina, J., Machiry, A., Salls, C., Shoshitaishvili, Y., Hao, S., Kruegel, C., and Vigna, G. (2017).
Difuze: Interface aware fuzzing for kernel drivers. pages 2123–2138.

Cr4shloctl. (2011). Ioctl fuzzer - windows kernel drivers fuzzer.
https://github.com/Cr4sh/ioctlfuzzer.

Ganesh, V., Leek, T., and Rinard, M. (2009). Taint-based directed whitebox fuzzing. In
Proceedings of the 31st International Conference on Software Engineering, ICSE ’09, pages
474–484, Washington, DC, USA. IEEE Computer Society.

Godefroid, P. (2014). Micro execution. In Proceedings of the 36th International Conference on
Software Engineering, ICSE 2014, pages 539–549, New York, NY, USA. Association for
Computing Machinery.

Godefroid, P., Levin, M. Y., and Molnar, D. (2012). Sage: Whitebox fuzzing for security testing.
Queue, 10(1):20:20–20:27.

Godefroid, P., Peleg, H., and Singh, R. (2017). Learn&fuzz: Machine learning for input fuzzing. In
Proceedings of the 32Nd IEEE/ACM International Conference on Automated Software
Engineering, ASE 2017, pages 50–59, Piscataway, NJ, USA. IEEE Press.

Goodman, P. and Groce, A. (2018). Deepstate: Symbolic unit testing for c and c++.

Jia Song

International Journal of Computer Science & Security (IJCSS), Volume (16) : Issue (5) : 2022 77
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

Han, H. and Cha, S. K. (2017). Imf: Inferred model-based fuzzer. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, CCS ‘17, pages 2345–
2358, New York, NY, USA. Association for Computing Machinery.

Hoglund, G. (2003). Runtime decompilation the ‘greybox’ process for exploiting software.
https://www.blackhat.com/presentations/bh-federal-03/bh-fed-03- hoglund.pdf.

Hoschele, M., Kampmann, A., and Zeller, A. (2017). Active learning of input grammars. CoRR,
abs/1708.08731.

Hoschele, M. and Zeller, A. (2016). Mining input grammars from dynamic taints. In Proceedings
of the 31st IEEE/ACM International Conference on Automated Software Engineering, ASE 2016,
pages 720–725, New York, NY, USA. ACM.

Jones, D. (2011). Trinity: Linux system call fuzzer. https://github.com/Cr4sh/ioctlfuzzer.

Kcov. (2011). kcov - code coverage analysis for compiled programs and python scripts.
https://manpages.debian.org/unstable/kcov/kcov.1.en.html.

Kernel-fuzzing. (2016). Kernel-fuzzing. https://github.com/oracle/kernel- fuzzing.

Kim, K., Jeong, D., Kim, C. H., Jang, Y., Shin, I., and Lee, B. (2020). Hfl: Hybrid fuzzing on the
linux kernel.

Libfuzzer. (2016)LibFuzzer- a library for coverage-guided fuzz testing.
https://llvm.org/docs/LibFuzzer.html.

Ioctl. (2014). A mutation based user mode (ring3) dumb in-memory windowskernel (ioctl) fuzzer.
https://github.com/debasishm89/iofuzz.

Ispoglou, K., Austin, D., Mohan, V., and Payer, M. (2020). Fuzzgen: Automatic fuzzer generation.
In 29th USENIX Security Symposium (USENIX Security 20), Boston, MA. USENIX Association.

Lemieux, C., Padhye, R., Sen, K., and Song, D. (2018). Perffuzz: Automatically generating
pathological inputs. In Proceedings of the 27th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2018, pages 254–265, New York, NY, USA. Association
for Computing Machinery.

Li, D. and Chen, H. (2019). Fastsyzkaller: Improving fuzz efficiency for linux kernel fuzzing.
Journal of Physics: Conference Series, 1176:022013.

Liang, J., Wang, M., Zhou, C., Wu, Z., Jiang, Y., Liu, J., Liu, Z., and Sun, J. (2022). Pata: Fuzzing
with path aware taint analysis. In 2022 IEEE Symposium on Security and Privacy (SP), pages 1–
17.

Lou, B., & Song, J. (2020). A Study on Using Code Coverage Information Extracted from Binary
to Guide Fuzzing.International Journal of Computer Science and Security (IJCSS), Volume (14):
Issue (5): 2020.

Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi, V. J., and
Hazelwood, K. (2005). Pin: Building customized program analysis tools with dynamic
instrumentation. In Proceedings of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ‘05, pages 190–200, New York, NY, USA.

Manes, V. J. M., Han, H., Han, C., Cha, S. K., Egele, M., Schwartz, E. J., and Woo, M. (2019).
The art, science, and engineering of fuzzing: A survey. IEEE Transactions on Software
Engineering.

Jia Song

International Journal of Computer Science & Security (IJCSS), Volume (16) : Issue (5) : 2022 78
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

Miller, B. P., Fredriksen, L., and So, B. (1990). An empirical study of the reliability of unix utilities.
Commun. ACM, 33(12):32–44.

Mouzarani, M., Sadeghiyan, B., and Zolfaghari, M. (2015). A smart fuzzing method for detecting
heap-based buffer overflow in executable codes. In 21st IEEE Pacific Rim International
Symposium on Dependable Computing, PRDC 2015, Zhangjiajie, China, November 2015, pages
42–49.

Oehlert, P. (2005). Violating assumptions with fuzzing. IEEE Security and Privacy, 3(2):58–62.

Ognawala, S., Hutzelmann, T., Psallida, E., and Pretschner, A. (2017). Improving function
coverage with munch: A hybrid fuzzing and directed symbolic execution approach. CoRR,
abs/1711.09362.

Petsios, T., Zhao, J., Keromytis, A. D., and Jana, S. (2017). Slowfuzz: Automated domain-
independent detection of algorithmic complexity vulnerabilities. CoRR, abs/1708.08437.

Salem, H. A. and Song, J. (2021). Using grammar extracted from sample inputs to generate
effective fuzzing files.

Sanitizer coverage. (2017). https://clang.llvm.org/docs/SanitizerCoverage.html.

Stephens, N., Grosen, J., Salls, C., Dutcher, A., Wang, R., Corbetta, J., Shoshitaishvili, Y.,
Kruegel, C., and Vigna, G. (2016). Driller: Augmenting fuzzing through selective symbolic
execution. In 23rd Annual Network and Distributed System Security Symposium, NDSS 2016,
San Diego, California, USA, February 21-24, 2016.

Suh, G. E., Lee, J. W., Zhang, D., and Devadas, S. (2004). Secure program execution via
dynamic information flow tracking. SIGARCH Comput. Archit. News, 32(5):85–96.

Sutton, M., Greene, A., and Amini, P. (2007). Fuzzing: Brute Force Vulnerability Discovery.
Addison-Wesley Professional.

Syzkaller. (2017). syzkaller - linuxsyscall fuzzer. https://github.com/google/syzkaller.

Trail of Bits. (2016). Shin grr: Make fuzzing fast again. https://blog.trailofbits.com/2016/11/02/shin-
grr-make-fuzzing-fast-again/.

Wang, S. and Wu, D. (2017). In-memory fuzzing for binary code similarity analysis. In 2017 32nd
IEEE/ACM International Conference on Automated Software Engineering (ASE), pages 319–330.

Yun, I., Lee, S., Xu, M., Jang, Y., and Kim, T. (2018). Qsym: A practical concolic execution
engine tailored for hybrid fuzzing. In Proceedings of the 27th USENIX Conference on Security
Symposium, SEC’18, page 745–761, USA. USENIX Association.

Zalewski, M. (2013) American fuzzy lop. http://lcamtuf.coredump.cx/afl/.

Zalewski, M. (2015) New in afl: persistent mode. https://lcamtuf.blogspot.com/2015/06/new-in-afl-
persistent-mode.html.

