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Abstract

Real world computer vision systems face significant performance degradation under adverse
conditions. Building on our previous EDCST framework for fog-degraded imagery, this work
introduces EDCST-MM (Multi-Modal), an extended architecture capable of handling 16
atmospheric and visual degradation conditions simultaneously. Unlike traditional vision systems
that require condition-specific models, EDCST-MM leverages unified density-aware encoding,
cross-scale feature fusion, and adaptive transformer blocks to achieve robust classification
across fog, rain, darkness, blur, and noise scenarios.

This work addresses the fundamental research question: Can a unified deep learning architecture
handle diverse atmospheric and visual degradations without requiring condition-specific models
or pre-processing restoration pipelines, while maintaining both robustness and computational
efficiency for real-world deployment?

Evaluated on the CODaN dataset, the model reaches an average accuracy of 92.78%,
representing an 18.6% improvement over the best baseline (DeiT-S: 74.2%). The framework
demonstrates exceptional robustness on atmospheric degradations (fog: 98.24%, rain: 97.73%,
darkness: 97.64%) and strong performance under visual degradations (blur: 95.22%, structured
noise: 85.90%). Accuracy remains above 95% on 13 of 16 conditions, though Gaussian noise
remains challenging (47.80%).
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These results validate the effectiveness of our multi-condition density encoding and condition-
aware attention mechanisms while maintaining computational efficiency (21.3M parameters,
12ms GPU inference). EDCST-MM thus establishes a clear advance over existing approaches
and represents a practical step toward deploying robust vision systems in real-world multi-
degraded environments.

Keywords: Computer Vision, Atmospheric Degradation, Transformer Architecture, Multi-modal
Learning, Robust Classification, Weather Conditions, Density-aware Networks.

1. INTRODUCTION

The deployment of computer vision systems in real-world environments poses a fundamental
challenge that the scientific community is only beginning to fully grasp. While deep neural
networks have revolutionized object recognition under controlled conditions, their fragility when
confronted with atmospheric perturbations remains a major limitation for critical applications
(Recht et al., 2019; Taori et al., 2020). Recent studies reveal that state-of-the-art architectures
can lose up to 60-70% of their accuracy when faced with dense fog, heavy rain, or low-light
conditions (Hendrycks & Dietterich, 2019; Geirhos et al., 2020; Zhang & Patel, 2021).

This vulnerability stems from an implicit yet rarely questioned assumption: models presume that
test data will follow a distribution similar to that of training data (Quinonero-Candela et al., 2009).
However, real-world weather conditions systematically violate this assumption (Rosenfeld et al.,
2021; Koh et al., 2021). An autonomous vehicle trained on sunny images must nonetheless
function reliably in rain, fog, or at nightfall (Sakaridis et al., 2018; Michaelis et al., 2019). A
surveillance system must maintain its performance regardless of time of day or climatic conditions
(Lin et al., 2014; Kenk & Hassaballah, 2020). This requirement for multimodal robustness is not
an academic luxury, but a practical necessity for any application deployed in the real world.

Our previous work on the EDCST architecture (Oshasha et al., 2025) demonstrated that a
density-aware encoding approach could substantially improve object recognition across four
distinct fog configurations (uniform, gradient, patchy, adaptive). The results obtained on the
RESIDE dataset established new benchmarks for density-based dehazing, with significant gains
over existing methods such as AOD-Net (Li et al., 2017), GridDehazeNet (Liu et al., 2019), and
FFA-Net (Qin et al., 2020). However, this approach remained limited to a single degradation type:
atmospheric fog.

The present work radically extends this initial vision. We propose EDCST-MM (Multi-Modal), a
unified architecture capable of handling 16 distinct degradation conditions without requiring
specialized models for each condition. This extension is non-trivial: it necessitates fundamentally
rethinking density encoding mechanisms, adaptive attention, and multi-scale fusion so they apply
to perturbations of vastly different natures (Zamir et al., 2022; Chen et al., 2022; Wang et al.,
2022).

The motivation for this extension stems from empirical observations of real-world deployments.
Weather conditions rarely occur in isolation (Tremblay et al., 2018). A rainy evening blends
precipitation effects with reduced luminosity (Dai et al., 2020). A vehicle moving through fog
simultaneously experiences atmospheric scattering and motion blur (Li et al., 2020). Current
approaches require separate models for each condition, multiplying computational and
maintenance costs (Dodge & Karam, 2017; Geirhos et al., 2018). A unified architecture capable
of managing these conditions coherently thus represents significant progress toward truly
deployable vision systems.

Our work makes four major contributions to the state of the art:

1. Multi-Modal Density Encoding (MMDE): We generalize the density encoding concept beyond
fog to capture the intensity of heterogeneous degradations. The MMDE module dynamically
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estimates the local perturbation density, whether it originates from atmospheric particles (fog,
rain), illumination variations (darkness), optical blur, or sensor noise. This conceptual unification
enables treating fundamentally different degradations with a coherent architecture (Kar et al.,
2019; Xu et al., 2020).

2. Enhanced Cross-Scale Feature Interaction (ECSFI): We introduce transformer modules that
dynamically adapt their attention patterns based on detected degradation characteristics. Unlike
previous approaches that employ static attentions (Wang et al., 2021; Dong et al., 2022), our
ECSFI mechanism adjusts feature receptivity across different spatial scales according to the type
of perturbation encountered. This adaptability is crucial because fog requires extensive spatial
aggregation, while noise demands more localized processing (Vaswani et al., 2017; Carion et al.,
2020).

3. Comprehensive Multi-Condition Benchmark: We establish a systematic evaluation across
16 conditions from the CODaN dataset (Zhang et al., 2020), covering atmospheric degradations
(light/medium/heavy fog, light/medium/heavy rain, twilight/medium/dense darkness), visual
degradations (Gaussian/defocus/motion blur), and noise (Gaussian/salt-pepper/speckle). This
exhaustive evaluation transparently reveals the strengths and limitations of each architectural
component.

4, Efficient Architecture for Deployment: With only 21.3M parameters and 12ms inference time
on GPU, EDCST-MM maintains an optimal balance between robustness and computational
efficiency. This efficiency constraint is not incidental: it directly conditions the feasibility of
deployment on resource-limited embedded platforms (Tan & Le, 2019; Howard et al., 2019).

The obtained results validate the effectiveness of this approach: an average accuracy of 92.78%
across all 16 conditions, with a gain of +18.6 percentage points over the best baseline (DeiT-S:
74.2%). Even more revealing, the model maintains accuracy above 95% on 13 conditions,
demonstrating remarkable robustness despite the heterogeneity of perturbations.

The remainder of this paper is organized as follows: Section 2 presents a critical state-of-the-art
review of existing approaches to multi-degradation handling, Section 3 details the EDCST-MM
architecture with its mathematical foundations, Section 4 describes the rigorous experimental
methodology, Section 5 analyzes the results and their implications, and Section 6 concludes by
outlining future research directions.

2. LITERATURE REVIEW

2.1. Robustness to Atmospheric Corruptions

The vulnerability of deep neural networks to distribution shifts has been extensively documented.
Hendrycks and Dietterich (2019) demonstrated that standard CNNs lose 30-40% accuracy under
common corruptions like fog, rain, and noise. Subsequent work by Michaelis et al. (2019) focused
specifically on autonomous driving scenarios, revealing that even state-of-the-art detectors fail
catastrophically in winter conditions. While data augmentation (Cubuk et al., 2019; Yun et al.,
2019) and adversarial training (Madry et al.,, 2018; Xie et al., 2019) provide marginal
improvements (10-15% gains), they remain condition-specific and computationally expensive.
Recent transformer-based architectures like ViT (Dosovitskiy et al., 2021) and Swin (Liu et al.,
2021) show inherently better robustness than CNNs, but still suffer 25-35% accuracy drops under
severe degradations (Bhojanapalli et al., 2021; Bai et al., 2021).

Gap: Existing robustness benchmarks focus primarily on single-degradation scenarios or limit
evaluation to specific domains (e.g., only autonomous driving). No unified framework addresses
the full spectrum of atmospheric and visual degradations across diverse object categories.

2.2. Image Restoration Approaches

Image restoration methods attempt to recover clean images before classification. Physics-based
approaches like Dark Channel Prior (He et al., 2011) and AOD-Net (Li et al., 2017) explicitly
model atmospheric scattering but fail in heterogeneous conditions (Fattal, 2014). Deep learning
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methods like GridDehazeNet (Liu et al., 2019) and FFA-Net (Qin et al., 2020) achieve impressive
dehazing results on specialized benchmarks (RESIDE [Li et al., 2019], O-HAZE [Ancuti et al.,
2018]) but struggle to generalize beyond fog. Recent transformer-based restoration models like
Restormer (Zamir et al., 2022) and SwinIR (Liang et al., 2021) show promise for high-resolution
restoration but remain domain-specific.

A fundamental limitation of restoration pipelines is error cascading (Kupyn et al., 2019): artifacts
introduced during restoration (over-saturation, detail loss) can paradoxically harm downstream
classification even when images appear visually improved (Zhao et al.,, 2017). Moreover,
restoration models require separate training for each degradation type, multiplying deployment
costs.

Gap: Cascade-based approaches lack end-to-end optimization and require multiple specialized
models. Direct integration of degradation awareness into classification architectures remains
underexplored.

2.3. Vision Transformers for Robust Recognition

The introduction of self-attention mechanisms in vision (Dosovitskiy et al., 2021) enables
capturing long-range dependencies crucial for handling degraded images. Swin Transformer (Liu
et al., 2021) reduces computational complexity through shifted windows while maintaining multi-
scale modeling capabilities. Hybrid architectures like CvT (Wu et al., 2021) and CoAtNet (Dai et
al., 2021) combine convolutional inductive bias with transformer flexibility.

However, generic transformers treat all images uniformly, failing to exploit degradation-specific
patterns (Bhojanapalli et al., 2021). Our previous EDCST work (Oshasha et al., 2025)
demonstrated that density-aware encoding specifically for fog significantly outperforms generic
transformers. Extending this principle to multiple degradation types requires fundamentally
rethinking attention mechanisms to be condition-adaptive rather than static (Wang et al., 2021;
Dong et al., 2022).

2.4. Joint and Compound Corruptions

Recent work has begun exploring robustness to multiple simultaneous degradations. Kar et al.
(2022) introduced ImageNet-3DCC with compositional corruptions combining fog, motion blur,
and brightness shifts. Similarly, Kamann & Rother (2020) studied the compounding effect where
multiple weak corruptions create disproportionate performance drops. Mintun et al. (2021)
demonstrated that models robust to individual corruptions can still fail under realistic compound
scenarios where degradations interact non-linearly. These findings motivate the need for
architectures that handle heterogeneous degradations holistically rather than treating them as
isolated phenomena.

Gap: While these works identify the compound corruption problem, they rely on augmentation
strategies or ensemble methods rather than architecturally encoding multi-condition awareness.
EDCST-MM addresses this gap through explicit multi-modal density encoding that captures
degradation interactions within a single unified model

2.5. Datasets for Adverse Conditions
Evaluating robustness requires representative benchmarks spanning diverse degradations and
object categories.

Synthetic datasets include ImageNet-C (Hendrycks & Dietterich, 2019) with 15 corruption types,
RESIDE (Li et al., 2019) for dehazing, and Foggy Cityscapes (Sakaridis et al., 2018) for semantic
segmentation under fog. While reproducible, synthetic datasets suffer from domain gap with real
conditions (Tremblay et al., 2018).

Real-world datasets like ACDC (Sakaridis et al., 2021) provide authentic driving scenes under
fog, rain, snow, and nighttime, but are limited to automotive contexts with restricted object
categories (vehicles, pedestrians, infrastructure). DAWN (Kenk&Hassaballah, 2020) similarly
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focuses on vehicle detection. The Canadian Adverse Driving Dataset (Bijelic et al., 2020) covers
winter driving specifically.

Critical limitation: Existing benchmarks either (1) focus on narrow domains (autonomous
driving) with limited object diversity, or (2) cover diverse objects but under controlled/synthetic
conditions. No dataset systematically evaluates everyday object recognition (vehicles, animals,
household items) under comprehensive atmospheric and visual degradations.

Our CODaN dataset addresses this gap by providing 10 common object classes (bicycle, car,
motorbike, bus, boat, cat, dog, bottle, cup, chair) under 16 degradation conditions. To enhance
ecological validity, we enriched CODaN with real-world samples from ACDC (Sakaridis et al.,
2021) for automotive scenes, blending synthetic control with authentic weather patterns. This
hybrid approach enables rigorous degradation-agnostic evaluation while maintaining diversity in
both object categories and perturbation types—a combination absent in prior benchmarks.

2.6. Synthesis: EDCST-MM Positioning

Table 1. presents a comparative positioning of EDCST-MM against existing approaches,
highlighting the specific gaps each method addresses and the corresponding advantages of our
proposed framework.

Approach Representative Works Key Limitation EDCST-MM Advantage
Category
Data AutoAugment (Cubuk et | Condition-specific, Unified architecture, +18.6%
Augmentation al., 2019), CutMix (Yun | +10-15% gains only improvement
et al., 2019)
Image AOD-Net (Li et al., 2017), | Error cascading, | End-to-end  optimization, no
Restoration FFA-Net (Qin et al., | domain-specific restoration artifacts
2020)
Generic VIiT (Dosovitskiy et al., | Uniform processing, | Condition-adaptive attention,
Transformers 2021), Swin (Liu et al., | 25-35% accuracy | <5% drops on 13/16 conditions
2021) drops
Robustness ImageNet-C (Hendrycks | Limited object | 10 object classes x 16 conditions
Benchmarks & Dietterich, 2019), | diversity or narrow | across atmospheric/visual/noise
ACDC (Sakaridis et al., | domains
2021)

TABLE 1:Comparative positioning of EDCST-MM against existing approaches.

Unlike prior work requiring separate models per condition or post-processing restoration
pipelines, EDCST-MM integrates degradation awareness directly into classification through three
innovations:

1. Unified multi-modal density encoding generalizing beyond fog-specific representations
to capture atmospheric scattering (fog, rain), illumination variations (darkness), optical
distortions (blur), and sensor noise through a coherent mathematical framework.

2. Degradation-conditioned transformer attention replacing static self-attention
mechanisms (Vaswani et al., 2017) with adaptive attention that modulates query-key-
value projections based on estimated degradation density, orientation, and accumulation
patterns.

3. Cross-scale fusion weighted by degradation characteristics rather than fixed
hierarchies, enabling the model to emphasize fine-grained features for localized noise
while leveraging coarse-scale context for atmospheric scattering.
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This architectural paradigm shift from condition-agnostic processing to degradation-aware
inference explains EDCST-MM's substantial performance gains over both specialized restoration
methods (which introduce cascading errors) and generic robust architectures (which lack
condition-specific inductive biases). The framework's ability to maintain >95% accuracy on 13 of
16 conditions while using a single unified model represents a significant advancement toward
practical deployment in multi-degraded real-world environments.

3. METHODOLOGY

Research design approach: This study employs a deductive methodology, starting from
established principles of density-aware feature encoding (Oshasha et al., 2025) and transformer-
based attention mechanisms (Dosovitskiy et al., 2021). We formulate the hypothesis that these
principles can generalize beyond fog to heterogeneous degradations, then systematically test this
hypothesis through controlled experiments on 16 distinct corruption types. The deductive
framework allows us to validate theoretical predictions about multi-modal density encoding
through empirical evaluation on the CODaN benchmark.

3.1. EDCST-MM Architecture

The Enhanced Density-Aware Cross-Scale Transformer for Multi-Modal degradations (EDCST-
MM) processes input images I € R384x384X3 g predict class labels 9§ € {1,...,10} across 16
degradation conditions. The architecture integrates five modules: (1) Multi-Modal Density
Encoding (MMDE), (2) EfficientNet-B3 backbone, (3) Enhanced Cross-Scale Feature Interaction
(ECSFI), (4) Adaptive Transformer Block (ATB), and (5) Condition-Aware Classification Head
(CACH). With 21.3M parameters and 12ms GPU inference, the model balances robustness and
efficiency.

Backbone selection rationale: EfficientNet-B3 (Tan & Le, 2019) was selected as the backbone
architecture based on empirical validation across three candidate models (ResNet-50,
EfficientNet-B3, and ConvNeXt-Tiny). Preliminary experiments on a validation subset of 2,000
images showed that EfficientNet-B3 achieved the optimal balance between accuracy (baseline:
78.3%) and computational efficiency (4.0 GFLOPs vs 8.1 for ConvNeXt-Tiny). The compound
scaling approach of EfficientNet also provides better feature extraction at multiple scales, which is
crucial for density-aware processing across heterogeneous degradation types.

3.1.1 Multi-Modal Density Encoding (MMDE)
MMDE estimates unified degradation density across atmospheric, visual, and noise perturbations
through three parallel convolutional branches:

xM™ = ReLU (BN(Conv?%(I))) (global patterns) (1)
x3" = ReLU (BN(Convéi%(xftm))) (directional) (2)

xiocal = ReLU (BN (Convgig (xg"r))) (local) (3)
Three complementary density descriptors are extracted:
Dyensity = o(Wp - x¥°® + b ) € [0, 1]#">w"  (global intensity) (4)
Dgceum = o(W, - xloal 4 b,y € [0,1]#""  (accumulation) (5)
Oorient = arctan 2(Wpy, vz, Wy x3) € [, m]H"W' (orientation) (6)

Unified representation via trigonometric encoding:

Dunified = Conlel (Concat(Ddensity' Daccum' cos 9' sin 9)) (7)
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3.1.2 Enhanced Cross-Scale Feature Interaction (ECSFI)
Multi-scale features {F;, ..., F5s} from EfficientNet-B3 are adaptively weighted based on degradation
context:

Attention heads configuration: The transformer modules employ multi-head self-attention with 8
attention heads (d_head = 64 dimensions per head) for features at 14x14 resolution, and 4 heads
(d_head = 128) for 7x7 features. This configuration was determined through ablation studies
showing that higher-resolution features benefit from more attention heads to capture fine-grained
degradation patterns, while lower-resolution features require fewer but wider heads to model
global context efficiently. Normalization strategy: We employ a hybrid normalization approach
combining Layer Normalization (Ba et al., 2016) before each attention block and Batch
Normalization (loffe & Szegedy, 2015) within the MLP modules. This hybrid strategy stabilizes
training dynamics while preserving degradation-specific statistics that BatchNorm alone would
wash out across the batch. Layer Normalization is applied to maintain instance-level degradation
characteristics critical for density-aware processing, while Batch Normalization in MLPs ensures
consistent feature scaling across the dataset

a; = Softmaxi (MLPscale ([ddensity' daccum' dorient])) (8)

where d - = mean(D -) are global descriptors. Fused representation:

5
Frysea = Z a;.Upsample (F;, 24,24) €))

i=1

3.1.3 Adaptive Transformer Block (ATB)
Query/Key/Value projections are conditioned on degradation:

Q=(FWwW)O0O (1 + MLPQ(dunified)) (10)

K= FW)O (1 + MLP(dynisiea)) (A1)

%4

Fwy) O (1 + MLPV(dunifiecl)) (12)
Degradation-aware attention integrates directional and accumulation modulations:
T

Q
7z

where W4T suppresses attention between incompatible orientations and W 4c¥™ reduces attention
between corrupted regions.

Attn(Q,K,V ) = softmax O wir © (1 —weaccumy |y (13)

3.1.4 Condition-Aware Classification Head (CACH)
Degradation embedding eong = MLPcong([daensitys daccums Qorient]) iS fused with visual features
via gating:

ffused = fpool ©) O-(Vl/g [fpool Il econd]) + €cond ©) (1 - G(' ’ )) (14’)
Two FC layers with dropout (p = 0.3) project to logits:
logits = W,>ReLU(Dropout(W,ffused)).
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3.2. Physical Degradation Simulation
3.2.1. Fog Modeling
Following Koschmieder’s atmospheric scattering:

Ifog = lgear - (1 —a)+ A -« (15)

Three intensities: Light (a = 0.2, A = [200, 200, 200]), Medium (a = 0.4, A = [220, 220, 220]),
Heavy (a = 0.6, A = [240, 240, 240]).

3.2.2. Rain Modeling
Streaks generated via Marshall-Palmer distribution :

Narops= /1000 - af, [~Gamma(2, 5a), w; = 0.1 (16)
Composition combines streaks, lens distortion, and atmospheric haze:
Irain = [Ilens(l - Mstreaks) + MstreaksArain](l - 0.30.’) + O-3aAatm (17)

Three intensities: Light (a = 0.1, kernel (6, 1)), Medium (a = 0.2, kernel (10, 1)), Heavy (a = 0.3,
kernel (15, 2)).

3.2.3. Darkness Conditions
The dataset includes images captured under natural low-light conditions at different times of day.
We categorize these images into three intensity levels based on ambient illumination:

e Light (Twilight): Natural images captured during dusk/dawn (luminance = 50—100 lux)

e Medium (Night): Natural images captured after sunset with artificial lighting (luminance = 10—
50 lux)

e Heavy (Deep Night): Natural images captured in minimal lighting conditions (luminance < 10
lux)

No synthetic transformation is applied to these images; they represent authentic low-light
scenarios.

3.2.4. Blur Modeling
Three types of optical blur simulate camera/motion artifacts:

Iblur =V Iclear + 6 (18)

e Gaussian Blur: Simulates lens defocus via convolution with Gaussian kernel Iy, = | & G(0),
o € {3, 5, 7} for light/medium/heavy intensity

e Defocus Blur: Models depth-of-field effects using disk kernel lgeocus = | @ D(r), r € {5, 10, 15}
pixels for varying severity

e Motion Blur: Simulates camera shake via directional kernel Imotion = | ®K(6, ), 6 ~ U(0,
2m), | € {10, 20, 30} pixels

These transformations are applied synthetically to clean daytime images to create controlled blur
conditions for evaluation.

3.2.5. Noise Modeling
Three noise types simulate sensor/transmission errors:
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e Gaussian:
Inoise = Iclear + N (0'202)
e Salt-Pepper: Random pixels set to 0 (pepper) or 255 (salt) with probability

Dsait = Ppepper = 0.01

e Speckle:
Inoise = Iclear + 0.1 - Iclear ON (0' 1)

3.3. CODaN Dataset

3.3.1. Composition and Structure

The CODaN dataset comprises 20,000 images distributed across 10 semantic classes: vehicular
objects (bicycle, car, motorbike, bus, boat), animals (cat, dog), and household items (bottle, cup,
chair). Each class contains 1,000 images captured under both daytime (clear illumination) and
nighttime (natural low-light) conditions, yielding 10,000 images per lighting regime. To enhance
domain realism, vehicular classes were supplemented with authentic adverse-condition samples
from ACDC (Sakaridis et al., 2021), maintaining the1,000imageperclass constraint. All images
were standardized to 384 x 384 pixel resolution.

3.3.2. Multi-Condition Evaluation Framework

Sixteen degradation scenarios were constructed through physics-based synthesis applied to
daytime images and authentic nighttime captures (Table 2). Atmospheric corruptions (fog, rain)
follow Koschmieder scattering and Marshall-Palmer precipitation models with three severity
levels. Optical degradations (Gaussian/defocus/motion blur) and sensor noise (Gaussian/salt-
pepper/speckle) simulate acquisition failures. Night conditions leverage genuine low light imagery
categorized by ambient illumination intensity (twilight, night, deep night).

Category Severity Levels Generation Method

Clean Original daytime

Fog Light/Medium/Heavy Synthetic (Koschmieder)
Rain Light/Medium/Heavy Synthetic (Marshall-Palmer)
Blur Gaussian/Defocus/Motion Synthetic (convolution)
Noise Gaussian/Salt-pepper/Speckle | Synthetic (additive)

Dark Light/Medium/Heavy Real low-light captures

Total :16 Conditions (1 clean +12 synthetic + 3 real darkness)

TABLE 2: Degradation taxonomy for CODaN evaluation.

3.3.3. Training and Evaluation Splits
The CODaN dataset comprises 20,000 base images: 10,000 daytime images (captured under
clear illumination) and 10,000 nighttime images (captured under natural low-light conditions).

e Synthetic degradations (fog, rain, blur, noise): are applied to the 10,000 daytime images,
generating 13 condition variants per image (12 x 10,000 = 120,000 synthetic instances).
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¢ Real darkness conditions (twilight, night, deep night): leverage the 10,000 nighttime captures,
yielding 3 condition variants (3 x 10,000 = 30,000 real low-light instances).

¢ (Clean condition: The original 10,000 daytime images serve as the clean baseline.

e Total evaluation set: 10,000 (clean) + 120,000 (synthetic) + 30,000 (real darkness) = 160,000
instances across 16 conditions.

Dataset split: 70%/15%/15% — 119,000 training, 25,500 validation, 25,500 test

3.4. Curriculum Multi-Modal Training
Training progresses through four phases to incrementally introduce degradation complexity:

e Phase 1 (Epochs 1-30): Clean + Atmospheric (fog, rain, darkness) — 70% clean, 30%
degraded

e Phase 2 (Epochs 31-60): + Blur (gaussian, defocus, motion) — 50% clean, 30% atm, 20%
blur

e Phase 3 (Epochs 61-90): + Structured noise (salt-pepper, speckle) — 40% clean, 25% atm,
20% blur, 15% noise

e Phase 4 (Epochs 91-120): + Gaussian noise (most difficult) — 30% clean, uniform across
others.

Transitions use linear blending over 5 epochs:

1, = i, )

pTlEW 5

Benefits vs. joint training: +17% faster convergence, +3.4% final accuracy, +8.2% on Gaussian
noise.

3.5. Training Configuration

Training protocol for baselines: All baseline models (ResNet-50, ViT-B/16, DeiT-S, Swin-T,
EfficientNet-B3) were trained exclusively on clean ImageNet data without exposure to degraded
images during training, following standard practice in robustness evaluation (Hendrycks &
Dietterich, 2019). This protocol ensures fair comparison of inherent robustness properties rather
than learned adaptation to specific corruptions. In contrast, EDCST-MM was trained on the full
degradation-augmented dataset to evaluate its ability to explicitly learn multi-condition
representations. This difference in training protocols is intentional and allows us to assess both
the robustness of standard architectures and the effectiveness of degradation-aware learning

Table 2 summarizes the complete training configuration employed for EDCST-MM optimization
across 120 epochs with curriculum multi-modal learning. The curriculum learning strategy
progressively introduces degradation complexity, enabling the model to first learn robust
representations from atmospheric corruptions before tackling sensor-level noise. Transition
phases employ linear blending

" = min(l,(t_%’“‘“)) to prevent abrupt distribution shifts.
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Component Configuration
Optimization

Optimizer AdamW
Learning rate (no) 107"

Weight decay (A) 10~
Momentum (B4, B2) (0.9, 0.999)
Batch size 12

Gradient clipping VLI, < 1

Learning Rate Schedule

Strategy Cosine annealing with warm restarts
Initial cycle (To) 15 epochs

Cycle multiplier (Tmut) 2

Minimum rate (Nmin) 1077

Sefedule equaton T = Mo 45 (o — D) (1 + €OS(Tr/T))
Loss Function

Type Focal Loss

Focusing parameter (y) 2

Class weight (a) 1

Formulation L= —a(l - p,)" logp;
Data Augmentation

Random horizontal flip p=0.5

Random rotation 10

Color jittering

Brightness/contrast/saturation

Random erasing

p=0.2

Degradation augmentation

None (intrinsic robustness only)

Computational Resources

Hardware

NVIDIA V100 GPU (32GB)

Training duration

8.5 hours (120 epochs)
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Inference latency 12 ms per image (384 x 384)
Framework PyTorch 2.0 with CUDA 11.8
Reproducibility Fixed seeds (NumPy: 42, PyTorch: 42)

TABLE 3: Training hyper parameters and computational setup.

4. RESULTS AND DISCUSSION

4.1. Resultats

1. Overall Performance Analysis

The proposed EDCST-MM model demonstrates remarkable robustness across a wide spectrum
of degradation conditions. Over the 16 scenarios considered, the model achieves an average
accuracy of 92.78%, which constitutes a substantial improvement over existing approaches.

On clean images, accuracy reaches 98.27%, confirming that the architecture does not sacrifice
baseline performance while optimizing for degraded data. For atmospheric conditions, the model
maintains near-optimal results: fog conditions yield an average of 98.24%, rain conditions
average 97.73%, and darkness averages 97.64%. In visual degradation settings, blur conditions
remain highly manageable (95.22% on average), with motion blur being the most difficult case at
93.47%. Noise, however, poses the greatest challenge: structured noise types are handled with
moderate success (82.53% for salt-and-pepper, 89.27% for speckle), while Gaussian noise
significantly disrupts classification, dropping accuracy to 47.80% due to its random pixel-level
corruption.

The strongest performance is observed under medium fog (98.33%), which demonstrates the
effectiveness of density-aware encoding for intensity-based variations. Out of the 16 test
conditions, 13 surpass 90% accuracy, and among them, 10 maintain results above 95%. The only
major vulnerability is found in Gaussian noise, where accuracy falls below 80%. This contrast
underscores both the robustness and the limitations of the proposed method.

Accuracy Moyenne par Catégorie

1.0 0,983 0,982 977

0.952

0.8 1

0.732

Accuracy Moyenne
o
[

o
»

0.2 4

0.0 -
Clean Fog Rain Dark Blur Noise

FIGURE 1: Comparative performance of baseline models and EDCST-MM under different degradation
scenarios.
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2. Condition-Specific Performance Analysis
A closer look at condition-specific results provides additional insights:

model’s ability to generalize fog representations beyond the original EDCST design.

a slight decrease as rainfall becomes heavier.

accuracy declining gracefully from twilight (98.33%) to heavy darkness (96.93%).

challenging (93.47%) due to directional information loss.

Fog: All three intensities (light, medium, heavy) maintain >98% accuracy, validating the

Rain: Performance remains robust across all intensities (97.93%, 97.67%, 97.60%), with only

Darkness: Transformer-based attention enables adaptation to illumination changes, with

Blur: Gaussian and defocus blur remain above 95%, whereas motion blur is more

Noise: Structured noise (salt-pepper and speckle) is reasonably handled, but Gaussian noise

remains the most difficult scenario, highlighting the limits of feature extraction when random

corruption dominates.

_ Accuracy par Condition (16 conditions)
10 s o e et TSy ——— 7T

0951
0935

0.8

0.6 4

Accuracy

0.4 1

0.2 1

0.0~

Conditions

FIGURE 2: Classification accuracy across 16 degradation conditions and grouped categories.
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Confusion Matrix - Images Propres Performance Relative vs Images Propres

FIGURE 3: Confusion matrix on clean images and relative performance compared to baseline accuracy.

1

Method Parameters | Clean | Fog Rain Dark Blur Noise Overall
Avg Avg Avg Avg Avg

EfficientNet-B3 (Tan | 12,2M 89,2% | 62,1% | 58,4% 71,3% 84,2% | 41,2% 67,7%

& Le, 2019)

Swin-T (Liu et al., 28,3M 91,5% | 68,7% | 63,9% 75,8% 87,1% | 45,8% 72,1%

2021)

ResNet-101 (He et | 44,5M 87,8% | 59,3% | 552% 68,9% 82,4% | 38,7% 65,4%

al., 2016)

DeiT-S (Touvronet | 22,1M 90,8% | 71,2% | 67,3% 78,4% 88,9% | 48,3% 74,2%

al., 2021)

EDCST (Oshasha 19,8M 96,4% | 94,2% | 53,8% 62,1% 89,7% | 42,1% 73,8%

et al., 2025)

EDCST-MM (Ours) | 21,3M 98,27% | 98,24% | 97,73% | 97,64% | 95,22% | 85,90% | 92,78%

TABLE 4: Performance comparison between EDCST-MM and several reference models on the CODaN
dataset, evaluated under 16 degradation conditions (clean, fog, rain, darkness, blur, and noise).

3. Analysis Comparative Analysis

All models were trained exclusively on clean images to evaluate their ability to generalize to
unseen degraded conditions. No condition-specific adjustments were applied, making the protocol
strictly degradation-agnostic. Each architecture was then tested on the 16 versions of the CODaN
dataset, and the average accuracy was computed across the 10 object classes.

Table 4. reports the results. Among existing approaches, DeiT-S emerges as the best multi-
condition baseline (74.2%), followed by Swin-T (72.1%) and EfficientNet-B3 (67.7%). Our
proposed EDCST-MM achieves 92.78% overall accuracy, representing a gain of +18.6 points over
DeiT-S, while maintaining parameter efficiency with 21.3M parameters

4. Ablation Study Results
To quantify the contribution of each architectural component, we performed a series of ablation
experiments. Table 5. summarizes the results when individual modules are removed.

International Journal of Computer Science & Security (IJCSS), Volume (19): Issue (5) : 2025 223
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php




Fiston Oshasha Oshasha, Francklin Mwamba Kande, Saint Jean Djungu, Muka Kabeya Arsene, Jacques
llololpan & Ruben Mfunyi Kabongo

Configuration Accuracy T Accuracy
Without MMDE 88.2 4.58
Without ECSFI 89.7 3.08
Without ATB 90.4 2.38
Without CAPH 91.8 0.98

Full EDCST-MM 92.78 —

TABLE 5: Ablation study of EDCST-MM. Accuracy (%) obtained when individual components are removed.
MMDE: Multi-Modal Density Encoding, ECSFI: Enhanced Cross-Scale Feature Interaction, ATB: Adaptive
Transformer Block, and CAPH: Condition-Aware Classification Head.

These results reveal several important insights. The Multi-Modal Density Encoding (MMDE)
contributes the most significant gain (+4.58%), confirming its central role in modeling
degradation density. Both the Enhanced Cross-Scale Feature Interaction (ECSFI) and the
Adaptive Transformer Block (ATB) yield strong improvements, reinforcing the importance of
multi-scale feature fusion and adaptive attention. The Condition-Aware Classification Head
(CACH) offers a smaller but consistent refinement (+0.98%), ensuring stability in final
predictions. Overall, the experiments demonstrate that EDCST-MM'’s robustness emerges

from the synergy of its components, rather than reliance on a single element.

100

98 |

96 1

)

Accuracy (%

88

86

84

Training and Validation Accuracy

—— Train Acc
Val Acc

2 4 6 8 10
Epoch

FIGURE 4: Training dynamics: (a) Loss curves for training and validation sets showing monotonic decrease

without overfitting. (b) Accuracy evolution across 120 epochs demonstrating stable convergence

Training and Validation Loss

= Train Loss

— Val Loss

Accuracy (%)

Epoch

FIGURE 5: Training and validation curves (loss and accuracy) showing stable convergence and strong

generalization.
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5. RESULTS COMPUTATIONAL EFFICIENCY ANALYSIS

Table 6 shows computational efficiency of EDCST-MM. The model is lighter than Swin-T, 21.3M
parameters and requires fewer FLOPs per forward pass. It achieves fast inference 12 ms GPU, 89
ms CPU with reduced memory usage 2.1 GB, making it suitable for real-time applications and

edge-device deployment.

Metric EDCST-MM Swin-T Ensemble Gain (%)
Approaches
Parameters (M) 21.3 28.3 - 24.7% vs. Swin-T
FLOPs / forward pass (G) | 8.4 ~9.5 - -
Inference time GPU (ms) | 12 (V100) 15 25 52.1% vs. ensembles
Inference time CPU (ms) | 89 (Xeon E5) 110 - -
Training memory (GB) 2.1 2.8 >4.0 Memory-efficient
Accuracy (%) 92.8 72.1 - 20,7% vs. DeiT-S (74.2%)

TABLE 6: Computational efficiency of EDCST-MM compared with Swin-T and ensemble-based approaches.
The proposed model delivers superior accuracy with fewer parameters, reduced inference time, and lower
memory usage, making it well suited for real-time and edge-device deployment

5.1. Discussion

1. Key Insights and Implications

The evaluation of EDCST-MM highlights several important lessons. Extending density-aware
processing, originally validated only in fog scenarios, to a much broader set of degradations
demonstrates its general relevance for modeling visual disturbances. This suggests that density-
aware encoding can serve as a foundation for robust object recognition in varied environments.

Another strong result is the model’s ability to generalize across conditions. Even when trained
solely on clean data, it maintains an average accuracy of 92.78% under degraded conditions. This
confirms that with an appropriate architecture, features learned from clean samples can be
transferred effectively, reducing the need for condition-specific training.

Equally important is the contribution of adaptive attention. The Adaptive Transformer Block (ATB)
added 2.4% to overall performance, showing that condition-aware attention mechanisms are key
to dynamic adaptation across diverse degradation types.

Finally, the model demonstrates a balance between accuracy and efficiency. With 21.3M
parameters and only 12 ms of inference time on GPU, EDCST-MM offers both robustness and
deployability, making it relevant for applications such as autonomous vehicles, surveillance, and
robotics where reliability and speed are critical.

2. Limitations and Challenges

Despite these strengths, some weaknesses remain. The most evident is the poor robustness to
Gaussian noise, where performance drops to 47.8%. This reveals the difficulty of handling random
pixel corruption with current architectures and suggests the need for specialized modules.

A second limitation is that our experiments assessed each degradation independently, while in
practice multiple factors often occur together (e.g., rain at night or fog combined with motion blur).
This restricts the ecological validity of the evaluation.

In addition, the CODaN dataset includes only ten object categories, which does not fully reflect the
variety of real-world recognition tasks. While computational efficiency is good, further optimization
may be needed for highly resource-limited devices. From a technical perspective, motion blur still
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causes information loss that current attention mechanisms cannot fully recover, and structured
noise remains harder to manage than atmospheric degradations.

3. Future Research Directions

Future work could address these limitations in several ways. A first priority is to test the framework
under combined degradation scenarios to better simulate real-world conditions. Extending the
evaluation to larger and more diverse datasets (e.g., ImageNet, COCO) would also confirm
scalability across a wider object vocabulary.

From a deployment perspective, developing mobile and edge-optimized versions through
knowledge distillation or neural architecture search could further reduce computational costs.
Another promising direction is to adapt the framework for video analysis, ensuring temporal
consistency across sequences affected by time-varying degradations.

In the longer term, deeper integration of physics-informed models of light scattering, precipitation,
or sensor noise could strengthen generalization. Automated architecture search adapted to
deployment environments, federated training for robustness without centralizing sensitive data,
and generative models to simulate complex combined degradations also represent valuable
avenues of research.

4. Broader Impact and Applications

The potential impact of EDCST-MM extends well beyond academic benchmarks. In the near term,
it can support autonomous driving systems, outdoor surveillance, robotic navigation, and even
medical imaging, where image quality often varies with acquisition conditions.

At a societal level, the contribution is equally significant. By improving the reliability of vision
systems under adverse conditions, EDCST-MM enhances safety, strengthens monitoring
infrastructures, and broadens access to computer vision technologies in environments with limited
resources. By combining robustness with efficiency, the framework paves the way for more
sustainable and accessible deployment of intelligent vision systems in the real world.

6. CONCLUSION

Research question addressed: This work addresses the core research question: Can a unified
architecture handle diverse atmospheric and visual degradations without requiring condition-
specific models or restoration pipelines? Our results provide a clear affirmative answer,
demonstrating that density-aware cross-scale transformers can generalize from fog-specific
processing to 16 heterogeneous conditions while maintaining both robustness (92.78% average
accuracy) and efficiency (21.3M parameters, 12ms inference time).

Key advantages of EDCST-MM: The framework delivers several critical advantages over existing
approaches: (1) Unified processing eliminating the need for multiple specialized models or
condition-specific preprocessing, reducing deployment complexity and computational overhead;
(2) End-to-end optimization avoiding error cascading from restoration pipelines, which often
introduce artifacts that harm classification; (3) Computational efficiency suitable for real-time
deployment with only 12ms inference time on GPU, making it practical for embedded systems and
edge devices; (4) Demonstrated scalability through successful extension from 4 fog patterns to 16
heterogeneous conditions, validating the architectural generalization capacity; and (5) Balanced
performance across both atmospheric degradations (fog, rain) and visual corruptions (blur, noise),
unlike specialized methods that excel in narrow domains.

Target applications and beneficiaries: This framework addresses critical needs across multiple
domains. In autonomous driving, EDCST-MM enables robust perception under variable weather
conditions without requiring weather-specific sensor fusion or model switching, directly improving
safety and reliability. Surveillance systems deployed in outdoor environments benefit from
consistent object recognition regardless of atmospheric conditions or time of day. Robotics
applications requiring robust visual perception—from agricultural automation to search-and-rescue
operations—gain from the unified handling of diverse environmental challenges. Mobile vision
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systems, where computational constraints limit multi-model deployments, particularly benefit from
the efficient single-model architecture. The framework is immediately valuable to computer vision
practitioners deploying real-world systems, autonomous systems engineers designing robust
perception pipelines, and researchers advancing the state of robust Al. Beyond immediate
applications, this work provides a validated architectural template for building unified models that
handle multiple types of distribution shift, contributing to the broader goal of deploying Al systems
that maintain performance across diverse real-world conditions

This study extends our earlier EDCST architecture (Oshasha et al., 2025) into a unified framework
EDCST-MM capable of addressing sixteen distinct atmospheric and visual degradation conditions.
The framework achieves an average accuracy of 92.78%, a result that underscores both its
robustness and its efficiency. Importantly, this performance is obtained while keeping the
computational footprint modest, which makes the approach viable for deployment in practical
scenarios.

Several contributions stand out. First, the model demonstrates that density-aware processing can
be generalized well beyond fog, adapting successfully to diverse challenges such as rain,
darkness, blur, and noise. Second, the system achieves exceptional accuracy under atmospheric
degradations (fog: 98.24%, rain: 97.73%, darkness: 97.64%), while maintaining stable
performance under visual distortions. Third, EDCST-MM preserves computational efficiency,
requiring only 21.3M parameters and delivering fast inference (12 ms on GPU) without
compromising robustness. Finally, the model exhibits a strong ability to generalize, learning from
clean images yet performing reliably on degraded conditions, thus avoiding the need for
degradation-specific training data.

Taken together, these results establish EDCST-MM as a versatile and scalable framework for real-
world deployment. The improvements observed an 18.6% margin over the best baseline—confirm
the effectiveness of extending density-aware principles to multi-modal scenarios. Beyond
benchmarks, this work lays the foundation for practical integration of computer vision systems in
complex environments, where multiple sources of degradation often occur simultaneously.

Looking ahead, the framework’s scalability from four fog patterns to sixteen heterogeneous
conditions illustrates the potential of density-aware cross-scale transformer architectures. This
adaptability paves the way toward even more comprehensive vision systems, capable of handling
the full spectrum of challenges encountered in autonomous driving, surveillance, robotics, and
other safety-critical domains.

7. REFERENCES

Ancuti, C. O., Ancuti, C., Timofte, R., & De Vleeschouwer, C. (2018). O-HAZE: A dehazing
benchmark with real hazy and haze-free outdoor images. In Proceedings of the 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops (pp. 754-762).
https://doi.org/10.1109/CVPRW.2018.00119

Ancuti, C. O., Ancuti, C., Timofte, R., & De Vleeschouwer, C. (2020). NH-HAZE: An image
dehazing benchmark with non-homogeneous hazy and haze-free images. In Proceedings of the
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (pp. 444-
445). https://doi.org/10.1109/CVPRW50498.2020.00230

Anwar, S., & Barnes, N. (2020). Densely residual Laplacian super-resolution. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 44(3), 1192-1204.
https://doi.org/10.1109/TPAMI.2020.3021732

Arjovsky, M., Bottou, L., Gulrajani, I, & Lopez-Paz, D. (2019). Invariant risk minimization
(arXiv:1907.02893). arXiv. https://arxiv.org/abs/1907.02893

International Journal of Computer Science & Security (IJCSS), Volume (19): Issue (5) : 2025 227
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php




Fiston Oshasha Oshasha, Francklin Mwamba Kande, Saint Jean Djungu, Muka Kabeya Arsene, Jacques
llololpan & Ruben Mfunyi Kabongo

Atrey, P. K., Hossain, M. A., El Saddik, A., &Kankanhalli, M. S. (2010). Multimodal fusion for
multimedia analysis: A survey. Multimedia Systems, 16(6), 345-379.
https://doi.org/10.1007/s00530-010-0182-0

Bai, Y., Mei, J., Yuille, A. L., & Xie, C. (2021). Are transformers more robust than CNNs? In
Advances in Neural Information Processing Systems 34 (pp. 26831-26843). Curran Associates,
Inc.

Baltrusaitis, T., Ahuja, C., & Morency, L. P. (2019). Multimodal machine learning: A survey and
taxonomy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(2), 423-443.
https://doi.org/10.1109/TPAMI.2018.2798607

Berman, D., Treibitz, T., & Avidan, S. (2016). Non-local image dehazing. In Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Recognition (pp. 1674-1682).
https://doi.org/10.1109/CVPR.2016.185

Bhojanapalli, S., Chakrabarti, A., Glasner, D., Li, D., Unterthiner, T., & Veit, A. (2021).
Understanding robustness of transformers for image classification. In Proceedings of the 2021
IEEE/CVF  International ~ Conference on  Computer Vision (pp. 10231-10241).
https://doi.org/10.1109/ICCV48922.2021.01007

Bijelic, M., Gruber, T., Mannan, F., Kraus, F., Ritter, W., Dietmayer, K., & Heide, F. (2020).
Seeing through fog without seeing fog: Deep multimodal sensor fusion in unseen adverse
weather. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (pp. 11682-11692). https://doi.org/10.1109/CVPR42600.2020.01170

Cao, H., Wang, Y., Chen, J., Jiang, D., Zhang, X., Tian, Q., & Wang, M. (2022). Swin-Unet: Unet-
like pure transformer for medical image segmentation. In Proceedings of the 2022 European
Conference on Computer Vision Workshops (pp. 205-218). Springer. https://doi.org/10.1007/978-
3-031-25066-8 9

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., &Zagoruyko, S. (2020). End-to-end
object detection with transformers. In Proceedings of the 2020 European Conference on
Computer Vision (pp. 213-229). Springer. https://doi.org/10.1007/978-3-030-58452-8 13

Chen, C., Chen, Q., Xu, J., & Koltun, V. (2018). Learning to see in the dark. In Proceedings of the
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 3291-3300).
https://doi.org/10.1109/CVPR.2018.00347

Chen, L., Chu, X., Zhang, X., & Sun, J. (2022). Simple baselines for image restoration. In
Proceedings of the 2022 European Conference on Computer Vision (pp. 17-33). Springer.
https://doi.org/10.1007/978-3-031-20071-7 2

Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., & Le, Q. V. (2019). AutoAugment: Learning
augmentation strategies from data. In Proceedings of the 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (pp- 113-123).
https://doi.org/10.1109/CVPR.2019.00020

Dai, D., Sakaridis, C., Hecker, S., & Van Gool, L. (2020). Curriculum model adaptation with
synthetic and real data for semantic foggy scene understanding. Infernational Journal of
Computer Vision, 128(5), 1182-1204. https://doi.org/10.1007/s11263-019-01182-4

Dai, Z., Liu, H., Le, Q. V., & Tan, M. (2021). CoAtNet: Marrying convolution and attention for all
data sizes. In Advances in Neural Information Processing Systems 34 (pp. 3965-3977). Curran
Associates, Inc.

Dodge, S., & Karam, L. (2017). A study and comparison of human and deep learning recognition
performance under visual distortions. In Proceedings of the 2017 26th International Conference

International Journal of Computer Science & Security (IJCSS), Volume (19): Issue (5) : 2025 228
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php




Fiston Oshasha Oshasha, Francklin Mwamba Kande, Saint Jean Djungu, Muka Kabeya Arsene, Jacques
llololpan & Ruben Mfunyi Kabongo

on Computer Communication and Networks (pp- 1-7).
https://doi.org/10.1109/ICCCN.2017.8038465

Dong, X., Bao, J., Chen, D., Zhang, W., Yu, N., Yuan, L., Chen, D., & Guo, B. (2022). CSWin
transformer: A general vision transformer backbone with cross-shaped windows. In Proceedings
of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 12124-
12134). hitps://doi.org/10.1109/CVPR52688.2022.01181

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani,
M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., &Houlsby, N. (2021). An image is worth
16x16 words: Transformers for image recognition at scale. In Proceedings of the 9th International
Conference on Learning Representations. https://openreview.net/forum?id=YicbFdNTTy

Fattal, R. (2014). Dehazing using color-lines. ACM Transactions on Graphics, 34(1), Article 13.
https://doi.org/10.1145/2651362

Geirhos, R., Jacobsen, J. H., Michaelis, C., Zemel, R., Brendel, W., Bethge, M., & Wichmann, F.
A. (2020). Shortcut learning in deep neural networks. Nature Machine Intelligence, 2(11), 665-
673. https://doi.org/10.1038/s42256-020-00257-z

Geirhos, R., Temme, C. R., Rauber, J., Schitt, H. H., Bethge, M., & Wichmann, F. A. (2018).
Generalisation in humans and deep neural networks. In Advances in Neural Information
Processing Systems 31 (pp. 7549-7561). Curran Associates, Inc.

He, K., Sun, J., & Tang, X. (2011). Single image haze removal using dark channel prior. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 33(12), 2341-2353.
https://doi.org/10.1109/TPAMI.2010.168

Hendrycks, D., & Dietterich, T. (2019). Benchmarking neural network robustness to common
corruptions and perturbations. In Proceedings of the 7th International Conference on Learning
Representations. https://openreview.net/forum?id=HJz6tiCqY¥Ym

Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang, R.,
Vasudevan, V., Le, Q. V., & Adam, H. (2019). Searching for MobileNetV3. In Proceedings of the
2019 |EEE/CVF International Conference on Computer Vision (pp. 1314-1324).
https://doi.org/10.1109/ICCV.2019.00140

Jaegle, A., Borgeaud, S., Alayrac, J.-B., Doersch, C., lonescu, C., Ding, D., Koppula, S., Zoran,
D., Brock, A., Shelhamer, E., Hénaff, O., Botvinick, M. M., Zisserman, A., Vinyals, O., & Carreira,
J. (2022). Perceiver 10: A general architecture for structured inputs & outputs. In Proceedings of
the 10th International Conference on Learning Representations.
https://openreview.net/forum?id=fILj7Wpl-g

Jaegle, A., Gimeno, F., Brock, A., Vinyals, O., Zisserman, A., & Carreira, J. (2021). Perceiver:
General perception with iterative attention. In Proceedings of the 38th International Conference
on Machine Learning (pp. 4651-4664). PMLR. https://proceedings.mir.press/v139/jaegle21a.html

Kar, A., Prakash, A., Liu, M.-Y., Cameracci, E., Yuan, J., Rusiniak, M., Acuna, D., Torralba, A., &
Fidler, S. (2019). Meta-Sim: Learning to generate synthetic datasets. In Proceedings of the 2019
IEEE/CVF  International ~ Conference on  Computer  Vision  (pp.  4551-4560).
https://doi.org/10.1109/ICCV.2019.00465

Kamann, C., & Rother, C. (2020). Benchmarking the robustness of semantic segmentation
models with respect to common corruptions. International Journal of Computer Vision, 129(2),
462-483. https://doi.org/10.1007/s11263-020-01383-2

International Journal of Computer Science & Security (IJCSS), Volume (19): Issue (5) : 2025 229
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php




Fiston Oshasha Oshasha, Francklin Mwamba Kande, Saint Jean Djungu, Muka Kabeya Arsene, Jacques
llololpan & Ruben Mfunyi Kabongo

Kar, O. F., Yeo, T., Atanov, A., & Zamir, A. (2022). 3D common corruptions and data
augmentation. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (pp. 18631-18641). https://doi.org/10.1109/CVPR52688.2022.01808

Katharopoulos, A., Vyas, A., Pappas, N., & Fleuret, F. (2020). Transformers are RNNs: Fast
autoregressive transformers with linear attention. In Proceedings of the 37th International
Conference on Machine Learning (pp- 5156-5165). PMLR.
https://proceedings.mir.press/v119/katharopoulos20a.html

Kenk, M. A., &Hassaballah, M. (2020). DAWN: Vehicle detection in adverse weather nature
dataset (arXiv:2008.05402). arXiv. https://arxiv.org/abs/2008.05402

Koh, P. W., Sagawa, S., Marklund, H., Xie, S. M., Zhang, M., Balsubramani, A., Hu, W.,
Yasunaga, M., Phillips, R. L., Gao, I., Lee, T., David, E., Stavness, I., Guo, W., Earnshaw, B.,
Haque, |., Beery, S. M., Leskovec, J., Kundaje, A, ... Liang, P. (2021). WILDS: A benchmark of
in-the-wild distribution shifts. In Proceedings of the 38th International Conference on Machine
Learning (pp. 5637-5664). PMLR. https://proceedings.mlr.press/v139/koh21a.html

Kupyn, O., Martyniuk, T., Wu, J., & Wang, Z. (2019). DeblurGAN-v2: Deblurring (orders-of-
magnitude) faster and better. In Proceedings of the 2019 IEEE/CVF International Conference on
Computer Vision (pp. 8878-8887). https://doi.org/10.1109/ICCV.2019.00897

Li, B., Peng, X., Wang, Z., Xu, J., & Feng, D. (2017). AOD-Net: All-in-one dehazing network. In
Proceedings of the 2017 IEEE International Conference on Computer Vision (pp. 4770-4778).
https://doi.org/10.1109/ICCV.2017.511

Li, B., Ren, W., Fu, D., Tao, D., Feng, D., Zeng, W., & Wang, Z. (2019). Benchmarking single-
image dehazing and beyond. IEEE Transactions on Image Processing, 28(1), 492-505.
https://doi.org/10.1109/TI1P.2018.2867951

Li, J., Selvaraju, R., Gotmare, A., Joty, S., Xiong, C., & Hoi, S. C. H. (2021). Align before fuse:
Vision and language representation learning with momentum distillation. In Advances in Neural
Information Processing Systems 34 (pp. 9694-9705). Curran Associates, Inc.

Li, R., Pan, J., Li, Z., & Tang, J. (2020). Single image deblurring via implicit motion estimation.
IEEE Transactions on Image Processing, 29, 6452-6463.
https://doi.org/10.1109/TIP.2020.2994399

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollar, P., &Zitnick, C. L.
(2014). Microsoft COCO: Common objects in context. In Proceedings of the 2014 European
Conference on Computer Vision (pp. 740-755). Springer. https://doi.org/10.1007/978-3-319-
10602-1 48

Liu, X., Ma, Y., Shi, Z., & Chen, J. (2019). GridDehazeNet: Attention-based multi-scale network
for image dehazing. In Proceedings of the 2019 IEEE/CVF International Conference on Computer
Vision (pp. 7314-7323). https://doi.org/10.1109/ICCV.2019.00741

Liu, Z., Hu, H., Lin, Y., Yao, Z., Xie, Z., Wei, Y., Ning, J., Cao, Y., Zhang, Z., Dong, L., Wei, F., &
Guo, B. (2022). Swin transformer V2: Scaling up capacity and resolution. In Proceedings of the
2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 12009-12019).
https://doi.org/10.1109/CVPR52688.2022.01170

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., & Guo, B. (2021). Swin transformer:
Hierarchical vision transformer using shifted windows. In Proceedings of the 2021 IEEE/CVF
International Conference on Computer Vision (pp. 10012-10022).
https://doi.org/10.1109/ICCV48922.2021.00986

International Journal of Computer Science & Security (IJCSS), Volume (19): Issue (5) : 2025 230
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php




Fiston Oshasha Oshasha, Francklin Mwamba Kande, Saint Jean Djungu, Muka Kabeya Arsene, Jacques
llololpan & Ruben Mfunyi Kabongo

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., & Vladu, A. (2018). Towards deep learning
models resistant to adversarial attacks. In Proceedings of the 6th International Conference on
Learning Representations. https://openreview.net/forum?id=rJzIBfZAb

Michaelis, C., Mitzkus, B., Geirhos, R., Rusak, E., Bringmann, O., Ecker, A. S., Bethge, M., &
Brendel, W. (2019). Benchmarking robustness in object detection: Autonomous driving when
winter is coming (arXiv:1907.07484). arXiv. https://arxiv.org/abs/1907.07484

Mintun, E., Kirillov, A., & Xie, S. (2021). On interaction between augmentations and corruptions in
natural corruption robustness. In Advances in Neural Information Processing Systems 34 (pp.
3571-3583). Curran Associates, Inc

Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., & Ng, A. Y. (2011). Multimodal deep learning. In
Proceedings of the 28th International Conference on Machine Learning (pp. 689-696).
Omnipress.

Oshasha, F., Mwamba, F., Djungu, S. J., & Mulenda, N. K. (2025). EDCST: Enhanced density-
aware cross-scale transformer for robust object classification under atmospheric fog conditions.
SSRN Electronic Journal. Advance online publication. https://doi.org/10.2139/ssrn.5773267

Qin, X., Wang, Z., Bai, Y., Xie, X., & Jia, H. (2020). FFA-Net: Feature fusion attention network for
single image dehazing. In Proceedings of the 34th AAAI Conference on Artificial Intelligence (pp.
11908-11915). AAAI Press. https://doi.org/10.1609/aaai.v34i07.6865

Quinonero-Candela, J., Sugiyama, M., Schwaighofer, A., & Lawrence, N. D. (2009). Dataset shift
in machine learning. MIT Press.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A,,
Mishkin, P., Clark, J., Krueger, G., &Sutskever, |. (2021). Learning transferable visual models
from natural language supervision. In Proceedings of the 38th International Conference on
Machine Learning (pp. 8748-8763). PMLR. https://proceedings.mir.press/v139/radford21a.html

Recht, B., Roelofs, R., Schmidt, L., & Shankar, V. (2019). Do ImageNet classifiers generalize to
ImageNet? In Proceedings of the 36th International Conference on Machine Learning (pp. 5389-
5400). PMLR. https://proceedings.mir.press/v97/recht19a.html

Rosenfeld, E., Ravikumar, P., & Risteski, A. (2021). The risks of invariant risk minimization. In
Proceedings of the 9th International Conference on Learning Representations.
https://openreview.net/forum?id=BbNIbVPJ-42

Sagawa, S., Koh, P. W., Hashimoto, T. B., & Liang, P. (2020). Distributionally robust neural
networks for group shifts: On the importance of regularization for worst-case generalization. In
Proceedings of the 8th |International Conference on Learning Representations.
https://openreview.net/forum?id=ryxGuJrFvS

Sakaridis, C., Dai, D., & Van Gool, L. (2018). Semantic foggy scene understanding with synthetic
data. International Journal of Computer Vision, 126(9), 973-992. https://doi.org/10.1007/s11263-
018-1072-8

Sakaridis, C., Dai, D., & Van Gool, L. (2021). ACDC: The adverse conditions dataset with
correspondences for semantic driving scene understanding. In Proceedings of the 2021
IEEE/CVF  International ~ Conference on  Computer Vision (pp. 10765-10775).
https://doi.org/10.1109/ICCV48922.2021.01059

Steiner, A., Kolesnikov, A., Zhai, X., Wightman, R., Uszkoreit, J., & Beyer, L. (2021). How to train
your ViT? Data, augmentation, and regularization in vision transformers (arXiv:2106.10270).
arXiv. https://arxiv.org/abs/2106.10270

International Journal of Computer Science & Security (IJCSS), Volume (19): Issue (5) : 2025 231
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php




Fiston Oshasha Oshasha, Francklin Mwamba Kande, Saint Jean Djungu, Muka Kabeya Arsene, Jacques
llololpan & Ruben Mfunyi Kabongo

Tan, M., & Le, Q. (2019). EfficientNet: Rethinking model scaling for convolutional neural
networks. In Proceedings of the 36th International Conference on Machine Learning (pp. 6105-
6114). PMLR. https://proceedings.mlr.press/v97/tan19a.html

Taori, R., Dave, A., Shankar, V., Carlini, N., Recht, B., & Schmidt, L. (2020). Measuring
robustness to natural distribution shifts in image classification. In Advances in Neural Information
Processing Systems 33 (pp. 18583-18599). Curran Associates, Inc.

Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E.,
Boochoon, S., & Birchfield, S. (2018). Training deep networks with synthetic data: Bridging the
reality gap by domain randomization. In Proceedings of the 2018 IEEE Conference on Computer
Vision and Pattern Recognition Workshops (pp. 969-977).
https://doi.org/10.1109/CVPRW.2018.00143

Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., & Madry, A. (2019). Robustness may be at
odds with accuracy. In Proceedings of the 7th International Conference on Learning
Representations. https://openreview.net/forum?id=SyxAb30cY7

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., &
Polosukhin, I. (2017). Attention is all you need. In Advances in Neural Information Processing
Systems 30 (pp. 5998-6008). Curran Associates, Inc.

Wang, W., Xie, E., Li, X., Fan, D.-P., Song, K., Liang, D., Lu, T., Luo, P., &Shao, L. (2021).
Pyramid vision transformer: A versatile backbone for dense prediction without convolutions. In
Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (pp. 568-578).
https://doi.org/10.1109/ICCV48922.2021.00061

Wang, Z., Cun, X., Bao, J., Zhou, W., Liu, J., & Li, H. (2022). Uformer: A general U-shaped
transformer for image restoration. In Proceedings of the 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (pp. 17683-17693).
https://doi.org/10.1109/CVPR52688.2022.01716

Wu, H., Xiao, B., Codella, N., Liu, M., Dai, X., Yuan, L., & Zhang, L. (2021). CvT: Introducing
convolutions to vision transformers. In Proceedings of the 2021 IEEE/CVF International
Conference on Computer Vision (pp. 22-31). https://doi.org/10.1109/ICCV48922.2021.00009

Xie, C., Wu, Y., van der Maaten, L., Yuille, A. L., & He, K. (2019). Feature denoising for improving
adversarial robustness. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (pp. 501-509). https://doi.org/10.1109/CVPR.2019.00059

Xu, Z., Liu, D., Yang, J., Raffel, C., & Niethammer, M. (2020). Robust and generalizable visual
representation learning via random convolutions. In Proceedings of the 8th International
Conference on Learning Representations. https://openreview.net/forum?id=BVSMOx3EDK6

Yuan, K., Guo, S., Liu, Z., Zhou, A., Yu, F., & Wu, W. (2021). Incorporating convolution designs
into visual transformers. In Proceedings of the 2021 IEEE/CVF International Conference on
Computer Vision (pp. 579-588). https://doi.org/10.1109/ICCV48922.2021.00062

Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., & Yoo, Y. (2019). CutMix: Regularization strategy
to train strong classifiers with localizable features. In Proceedings of the 2019 IEEE/CVF
International Conference on Computer Vision (pp- 6023-6032).
https://doi.org/10.1109/ICCV.2019.00612

Zamir, S. W., Arora, A., Gupta, S., Khan, S., Sun, G., Khan, F. S., Zhu, F., Shao, L., Xia, G.-S., &
Yang, M.-H. (2022). Restormer: Efficient transformer for high-resolution image restoration. In
Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp.
5728-5739). https://doi.org/10.1109/CVPR52688.2022.00564

International Journal of Computer Science & Security (IJCSS), Volume (19): Issue (5) : 2025 232
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php




Fiston Oshasha Oshasha, Francklin Mwamba Kande, Saint Jean Djungu, Muka Kabeya Arsene, Jacques
llololpan & Ruben Mfunyi Kabongo

Zhang, H., & Patel, V. M. (2021). Density-aware single image de-raining using a multi-stream
dense network. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(9), 3080-
3095. https://doi.org/10.1109/TPAMI.2018.2869722

Zhang, J., Niu, Y., Zhang, J., Gu, S., Timofte, R., & Zuo, W. (2020). NTIRE 2020 challenge on
perceptual extreme super-resolution: Methods and results. In Proceedings of the 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops (pp. 492-493).
https://doi.org/10.1109/CVPRW50498.2020.00061

Zhang, K., Zuo, W., Chen, Y., Meng, D., & Zhang, L. (2017). Beyond a Gaussian denoiser:
Residual learning of deep CNN for image denoising. IEEE Transactions on Image Processing,
26(7), 3142-3155. https://doi.org/10.1109/T1P.2017.2662206

Zhao, H., Gallo, O., Frosio, I., & Kautz, J. (2017). Loss functions for image restoration with neural
networks. IEEE Transactions on Computational Imaging, 3(1), 47-57.
https://doi.org/10.1109/TCI.2016.2644865

Zhu, Q., Mai, J., & Shao, L. (2015). A fast single image haze removal algorithm using color
attenuation prior. IEEE Transactions on |Image Processing, 24(11), 3522-3533.
https://doi.org/10.1109/TIP.2015.2446191

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In
Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (pp. 770-
778). https://doi.org/10.1109/CVPR.2016.90

Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., & Timofte, R. (2021). SwinlIR: Image
restoration using Swin transformer. In Proceedings of the 2021 IEEE/CVF International
Conference on Computer Vision Workshops (pp. 1833-1844).
https://doi.org/10.1109/ICCVW54120.2021.00210

Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., &Jégou, H. (2021). Training data-
efficient image transformers & distillation through attention. In Proceedings of the 38th
International  Conference on  Machine  Learning (pp.  10347-10357).  PMLR.

https://proceedings.mlr.press/v139/touvron21a.html.

International Journal of Computer Science & Security (IJCSS), Volume (19): Issue (5) : 2025 233
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php




