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Abstract 

 

In order to evaluate the feasibility of the proposed C-RBAC model [1], the work in 
this paper presents the prototype implementation of C-RBAC model. We use 
eXtensible Access Control Markup Language (XACML) as a data repository and 
to represent the extended RBAC entities including purpose and spatial model.  
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1  INTRODUCTION 

 

 

1.1   EXtensible Access Control Markup Language (XACML) 

 

The OASIS eXtensible Access Control Markup Language (XACML) is a powerful and flexible 
language for expressing access control policies used to describe both, policy and access control 
decision request / response [2]. XACML is a declarative access control policy language 
implemented in XML and a processing model, describing how to interpret the policies. It is a 
replacement for IBM's XML access control language (XACL) which is no longer in development. 
XACML is a language primarily aimed at expressing privacy policies in a form such that computer 
systems can enforce them. The XACML has been widely deployed and there are several 
implementations of XACML in various programming languages available [3]. The XACML is 
designed to support both centralized and decentralized policy management. 
 
 

1.2 Comparison Between EPAL, XACML and P3P 

 
Anderson [3] suggested that a standard structured language for supporting expression and 
enforcement of privacy rules must meet the following requirements: 
 
Rq1. The language must support constraints on who is allowed to perform which action on which 
resource; 
 
Rq2. The language must support constraints on the purposes for which data is collected or to be 
used; 
 
Rq3. The language must be able to express directly-enforceable policies; 
 
Rq4. The language must be platform-independent; and 
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Rq5. The language used for privacy policies must be the same as or integrated with the language 
used for access control policies. 
 
Keeping in mind the above requirements, the comparison of P3P, EPAL, and XACML are 
summarized in Table 1 in which “√” means the language can satisfy the requirement, “×” means 
the language cannot satisfy the requirement and “?” means it is an unknown feature for the 
corresponding requirement and may depend on the language extension and implementation. 
 

 

 

Table 1: Comparison of P3P, EPAL, and XACML (Anderson, 2005). 

 
 

 P3P EPAL XACML 

Rq1: Constraints on subject × √ √ 

Rq2: Constraints on the purposes √ √ √ 

Rq3: Directly-enforceable policies × √ √ 

Rq4: Platform-independent √ ? √ 

Rq5: Access control × × √ 

 

Although P3P is a W3C recommended privacy policy language that supports purpose 
requirements and is platform-independent, P3P does not support directly-enforceable policies. 
P3P policies are not sufficiently fine-grained and expressive to handle the description of privacy 
policies at the implementation level. P3P mainly focuses on how and for what purpose 
information is being collected rather than on how and who can access the collected information. 
Thus, P3P is not a general-purpose access control language for providing technical mechanisms 
to check a given access request against the stated privacy policy especially in ubiquitous 
computing environment. EPAL supports directly-enforceable policies but it is a proprietary IBM 
specification without a standard status. According to a technical report comparing EPAL and 
XACML by Anderson [3], EPAL does not contain any privacy-specific features that are not readily 
supported in XACML. EPAL does not allow policies to be nested as each policy is separate with 
no language-defined mechanism for combining results from multiple policies that may apply to a 
given request whereas XACML allows policies to be nested. A policy in XACML, including all its 
sub-policies, is evaluated only if the policy's Target is satisfied. For example, policy “A” may 
contain two sub-policies “B1” and “B2”. These sub-policies could either be physically included in 
policy “A” or one or both could be included by a reference to its policy-id, a unique identifier 
associated with each XACML policy. Thus making XACML more powerful in terms of policy 
integration and evaluation.  EPAL [4] functionality to support hierarchically organized resources is 
extremely limited whereas XACML core syntax directly supports hierarchical resources [data-
categories] that are XML documents. In an EPAL rule, obligations are stated by referencing an 
obligation that has been defined in the (vocabulary) element associated with the policy; in 
XACML, obligations are completely defined in the policy containing the rule itself. EPAL lacks 
significant features that are included in XACML and that are important in many enterprise privacy 
policy situations. In general, XACML is a functional superset of EPAL as XACML supports all the 
EPAL decision request functionality. XACML provide a more natural way of defining role 
hierarchies, permissions, permission-role assignment and it support the idea of complex 
permissions that are used in the systems implementing role-based access control models for 
distributed and ubiquitous environments. As a widely accepted standard, it is believed that 
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XACML is suitable for expressing privacy specific policies in a privacy-sensitive domain as 
healthcare. 
 
 

2 CORE C-RBAC IMPLEMENTATION USING XACML 

 

The implementation of core RBAC entities (USERS, ROLES, OBJECTS, OPS, PRMS) in XACML 
are presented in table 2. 

 

Table 2: Core RBAC Entities in XACML. 

 

Core RBAC Entities XACML Implementation 
 

USERS 
 

 

<Subjects> 
 

ROLES 
 

 

<Subject Attributes> 
 

OBJECTS 
 

 

<Resources> 
 

OPS 
 

 

<Actions> 
 

PRMS 

 

<Policyset> 

<Policy> 
 

 

 

The current XACML specification does not include the work for extended RBAC model but it has 
the core RBAC profile to implement the standard RBAC model. Therefore, XACML is further 
investigated and extended to support the proposed privacy access control model C-RBAC and 
privacy policies. Table 3 shows the proposed XACML extension for the privacy access control 
model.  
 

Table 3: Extended Entities of C-RBAC Model. 

 
 

C-RBAC ENTITIES 
XACML/XML 

IMPLEMENTATION 
 

PHYSICAL LOCATION 

  

<PLOC> 
 

LOGICAL LOCATION 
 

<LLOC> 
 

LOCATION HIERARCHY SCHEMA 
 

<LHS> 
 

LOCATION HIERARCHY INSTANCE 
 

<LHI> 
 

SPATIAL DOMAIN OVER LHS 
 

<SSDOM> 
 

SPATIAL DOMAIN OVER LHI 
 

<ISDOM> 
 

PURPOSE 
 

<PURPOSE> 
 

SPATIAL PURPOSE 
 

<SP> 
 

SPATIAL PURPOSE ROLES 
 

<SPR> 
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2.1 Experimental Evaluation 

 

We created different healthcare scenarios to analyze behavior of the proposed C-RBAC entities. 
By simulating different healthcare scenarios, we calculated response time including the access 
time (with and without authorization) and response time to derive spatial granularity, spatial 
purpose and spatial purpose role enabling and activation, have showed that the time required to 
collect contextual attributes, to generate a request and to authorize an access request have been 
in milliseconds and seconds that are considered to be tolerable in real time situations. 
 
The use of XML as a tool for authorization raises questions as to expressiveness versus 
efficiency, particularly in a large enterprise.  Ideally, authorization should account for a negligible 
amount of time per access but it is necessary that all access conditions be expressed and context 
be checked completely. In this implementation, all authorization policies are loaded into memory, 
independent of request comparison.  Therefore, the time to read policies is not included into 
access time.  Instead, authorization time consists of formal request generation, request parsing, 
contextual attribute gathering, request-policy comparison and context evaluation, response 
building, and response parsing. The experiments have been performed on a 2.66 GHz Intel 
machine with 1 GB of memory. The operating system on the machine is Microsoft Windows XP 
Professional Edition, and the implementation languages used is Microsoft C-Sharp (C#).  
 

For the experimental evaluation, different healthcare scenarios that are mentioned 
throughout the thesis (the one presented in chapter 5 and section 7.3) have been executed to 
analyze the performance and expected output of C-RBAC model (Tahir, 2009a). According to 
those healthcare scenarios, contextual values including purpose setup, location modeling that 
include locations, location hierarchy schemas and instances, spatial purposes, spatial purpose 
roles and privacy policies have been defined in the system with their selectivity to 100 percent i.e. 
all policies, operations, purposes, locations and spatial purpose roles have been set to allow 
access for every access request. After creating the necessary objects and relations the response 
has been analyzed in order to verify that whether the proposed model correctly grant or deny 
access according to the privacy rules or not. Moreover, the response time has been also 
calculated at different levels to measure the computational cost for monitoring and evaluating the 
dynamic contextual values like purpose, location and time.   
 
 

Figure 1 shows purpose inference algorithm based on the contextual values of the user. 
It includes time, location, motion direction, distance and user motion direction with measurement 
unit as meter, centimeters etc. 
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Figure 7.16: Purpose Inference Algorithm. 

Figure 1: Purpose inference algorithm 

 

 

 

 

 

Figure 1: Purpose inference algorithm 

 

 

 

 

 

 

 

 

 

 

 

PurposeInference (s, pos1, pos2) { 

// s ∈ SESSIONS, pos1 and pos2 are user’s current position and the position 

to which user is heading to; 

 

//Step 1: Getting the subject roles through the active session 

SPR spr = SessionSPR(s); 

 

//Step 2: Getting the current time 

Time t = DateTime.Now; 

 

//Step 3: Getting ploc in which user is located 

PLOC ploc1 = Ploc(pos1); 

PLOC ploc2 = Ploc(pos2); 

 

//Step 4: Getting motion direction 

DIRECTION dir = PlocDir(ploc1, ploc2); 

 

//Step 5: Getting distance measurement unit 

DUnitPloc(ploc2) → dunit 

 

//Step 6: Getting distance between the two physical locations 

Distance dval = DisPloc(ploc1, ploc2) 

 

//Step 7: Retrieving the corresponding spatial purposes from the spatial 

purpose global file (refer to figure 7.10) 

 

Purpose p = Get_Purpose(spr, t, dir, pos1, dval, DUnit) 

 

Return p; 

} 
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Figure 2 shows the response time of purpose inference algorithm. As shown, the response time 
increases as the number of purpose inference requests increase. This is because of the constant 
movement of the user over the space defined within the system. For a single request, the system 
takes approximately 38 milliseconds to compute the purpose from the collected contextual 
attributes that are necessary input to the purpose inference algorithm.  

 

 
 

Figure 2: Purpose Inference Response Time. 

 

Figure 3 shows the response time in general for purpose collection based on the user’s current 
contextual attributes. Figure 4 shows the response time for purpose collection at location 
hierarchy schema and instance level. As shown, the response time increases as the number of 
logical or physical locations defined in schema or instances increases. It also shows that the 
response time at schema level is less than that of instance. This is because for each instance, the 
system collects the spatial purposes defined not only at an instance level but also from its 
corresponding schema from which it is instantiated (lhi is instance of lhs). Thus, the response 
time increases as the location granularity becomes finer. 
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Figure 3: Purpose Collection Response Time in General. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Purpose Collection Response Time at LHS and LHI Level. 

 

 

Figure 5 shows spatial granularity mapping from LHS to logical locations lloc defined 

within the schema. It also shows the mapping response time to generate a set of physical 

locations ploc that are derived from lloc defined within the given LHS. Figure 6 shows the 

response time to derive physical locations from a given LHI. 
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Figure 5: Response Time to Derive Physical and Logical Locations from a Given 

LHS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Response Time to Derive Physical Locations from a Given LHI. 

 

Figure 7 shows the response time to activate a spatial purpose through C-RBAC 
constraints defined within the system. It has been observed that the activation of spatial purposes 
depends on the spatial granularity. For example the spatial purposes defined at location hierarchy 
schema level took more time to activate as compared to spatial purpose at physical location level. 
This is because at physical level, the system directly activate the spatial purpose for the given 
purpose and physical location whereas in case of location hierarchy schema, the system had to 
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derive all logical locations and then to its corresponding physical locations first and then activate 
those corresponding physical locations with the given purpose. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 7: Response Time to Activate Spatial Purposes. 
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Figure 8 shows the response time to enable spatial purpose roles defined with different spatial 
granularities and purposes. The results have been analyzed by enabling a single spatial purpose 
role spr (without spatial purpose role hierarchy) and multiple spr in the presence of hierarchy. It is 
noticed that the enabling of roles defined without hierarchical relationships is less than to those 
defined with hierarchical relationships. This is because in case of hierarchical relationships, 
constraints are applied and evaluated based on the contextual values of the user before the 
system enable/disable spatial purpose roles defined within the C-RBAC implementation. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 8: Response Time for Spatial Purpose Roles Enabling  

(with and without Hierarchical Relationships). 
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Figure 9 and 10 shows the response time for spatial purpose role activation and mapping 

of user session onto enabled and active spatial purpose roles respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 9: Response Time for Spatial Purpose Roles Activation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 10: Response Time for Mapping a User Session Onto Enabled and Active 

Spatial Purpose Roles. 
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Figure 11: Access Control Decision Algorithm for the Proposed Privacy Based C-RBAC 

 

 

while(true){ 

 //Step 1: Gets the access requests from the subject 

 If request(SUBJECTS s, OPS op, OBJECTS o, PURPOSES {p1,p2 …, pn }, 

 RECIPIENTS {rp1,rp2 …, rpn}) { 

  

  //Step 2: Processes the request 

  //Step 2.1: Checks the object ownership 

  OWNERS owr = object_owner(o) 

 

  //Step 2.2: Checks the subject role 

  ROLES r = subject_roles(s) 

 

  //Step 2.3: Retrieves the corresponding privacy rules 

PRIVACY-RULES rule = GetPrivacyRules(r, op, o, {p1,p2 …, pn},{rp1,rp2 …, 

rpn}) 

 

  //Step 3: Makes a decision by 

  DECISIONS d = deny or allow; 

  

  //Step 3.1: Checks permission from the core C-RBAC model 

  PRMS prms = assigned_permission(sprloc_type, p) 

 

  //Step 3.2: Checks legitimate purposes 

  If(p’ ∧ rule.p = {p1,p2 …, pn}){ 

   //Step 3.3: Checks legitimate recipients 

   If(rule.rp = {rp1,rp2 …, rpn}){ 

 

   //Step 3.4: Checks the location granularity 

  If (loc_type ∧ rule.loc_type = {lloc, ploc, lhs, lhi, sdomlhs, sdomlhi}) { 

    

   //Step 3.5 Checks ssod and dsod constraints 

  If (rloc_type, p) { 

   Apply_SSoDConstraints(rloc_type, p); 

   Apply_DSoDConstraints(rloc_type, p); 

 

   //Step 3.6 Final decision 

   d = rule.decisions 

   OBLIGATIONS {obl1, obl2 …, obln} = rule.obligations 

   RETENTIONS rt = rule.retentions 

  }  }  } }  

 

  //Step 4: Returns a response and an acknowledgement 

  If(d = allow){ 

   //Step 4.1: Returns: allow, Obligations, Retention policy 

   Response(d, {obl1, obl2 …, obln},rt) 

   } Else { 

   //Step 4.1: Returns deny, null, null 
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It is observed that the response time to enable spatial purpose roles is more than that of 
activation and mapping time. This is because of object/classes based implementation in C# of the 
proposed C-RBAC model. During the execution of different healthcare scenarios, it is observed 
that at the time of login, the system has evaluated the contextual values of the user and enabled 
all the spatial purpose roles assigned by the administrator. From implementation point of view, 
role enabling means that the system loads all the assigned roles into the memory based on the 
contextual values and SSoD constraints. Then for each change in the user’s context, the system 
decides whether to activate or deactivate the spatial purpose role by based on the DSoD 
constraints and new contextual values. Figure 11 shows the access control algorithm to evaluate 
the user’s request and to grant/deny access based on the contextual values, enabled and 
activated roles. 
 
For authorization, request generation time is approximately 2 seconds. The request parsing time 
is 1.28 seconds.  The average time for the PDP to gather attributes and authorize a formal 
request is 3.5 seconds.  All local transfer times are less than 1 seconds. Therefore, the total time 
to authorize an access is 6.78 seconds. 
 
The average total time to determine which regular spatial purpose roles a user has assigned is 
776 ms.  Role assignment is trivially parallelizable because each role can be checked 
independently, so taking a distributed approach or using multi-threads could reduce this number 
to a fraction of this original value.  If the time is reduced to a tenth of the original, it would take 77 
ms to determine a user’s roles.   
 
Without authorization, the average time to perform an access is 703 ms.  When authorization is 
added into this system, the total time for an authorized access is 7483 milliseconds (6.78 * 1000 
+ 703 = 7483 milliseconds = 7.5 seconds approximately).  The 6.78 seconds access authorization 
time is 89% of the total system time.  This additional time is easily tolerated in a system where 
tens of milliseconds are not critical.  Role assignment can be determined per session or per 
access.  The 77 milliseconds this process took is invisible during the login process.  Per access, 
this 77 milliseconds added to the 6780 milliseconds (7.78 seconds) for authorization would 
account for 88% of the 7483 milliseconds (7.5 seconds) total access time.  This result is still 
tolerable. Based on the results generated by measuring the response time for spatial granularity 
derivation, spatial purpose and spatial purpose role enabling and activation, request generation 
and evaluation and response time, it is concluded that the extensions introduced by C-RBAC are 
reliable and due to very less overheads, the model can be effectively used for dynamic context-
aware access control applications. 
 
 

3. CONCLUSION 

 
In this paper, we simulated the different healthcare scenarios to analyze the behavior and to 
calculate the response time of the proposed C-RBAC model. Our findings include the access time 
(with and without authorization) and response time to derive spatial granularity, spatial purpose 
and spatial purpose role enabling and activation, have showed that the time required to collect 
contextual attributes, to generate a request and to authorize an access request have been in 
milliseconds and seconds that are considered to be tolerable in real time situations. The model 
implementation and its results also showed that the extensions introduced by C-RBAC have been 
reliable and due to very less overheads, the model can be effectively used for dynamic context-
aware access control applications. 
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