
Shaifizat Mansor, Roshidi Din & Azman Samsudin

International Journal of Computer Science and Security (IJCSS), Volume (3) : Issue (2) 113

Analysis of Natural Language Steganography

Shaifizat Mansor shaifizat@kedah.uitm.edu.my
School of Computer Science
Universiti Sains Malaysia (USM)
Minden, Pulau Pinang, 11800, MALAYSIA

Roshidi Din roshidi@uum.edu.my
School of Computer Science
Universiti Sains Malaysia (USM)
Minden, Pulau Pinang, 11800, MALAYSIA

Azman Samsudin azman@cs.usm.my
School of Computer Science
Universiti Sains Malaysia (USM)
Minden, Pulau Pinang, 11800, MALAYSIA

ABSTRACT

The technology of information hiding through an open network has developed
rapidly in recent years. One of the reasons why we need tools to hide message,
is to keep secret message concealed from unauthorized party. Steganography is
one of the techniques in sending secret message. In this paper, several software
metrics were used to analyze the common criteria in steganographic tools and
measure the complexity of the tools in hiding message. Several criterias have
been chosen: Percent Lines with Comments (PLwC); Average Statements per
Function (ASpF) and Average Block Depth (ABD) to measure the tools
complexity. The analysis process has been implemented using a single Linux
platform.

Keywords: Steganography, Text Steganography, Secret Message, Software Metric.

1. INTRODUCTION

Recently, millions of documents are produced and easily accessed in the Internet [1]. Thus, the
information of these documents needs to be secured and protected because the activities of
document analysis [2]. Steganography is one of the popular areas in information protection. The
purpose of steganography is to establish communication between two parties whose existence is
unknown to a possible attacker [3]. If this is done correctly, the exchanged messages should not
arouse any suspicion since the communicated information has an innocent looking and the
communication itself does not require any secret key as part of its information hiding process. In
text, this can be done in many ways such as inclusion of line break characters, and multiple
spacing that represents a hidden message.

Steganography technique is not a new technique [4]. They are some older practices in message
hiding such as invisible ink, tiny pin punctures on selected characters and pencil mark on

Shaifizat Mansor, Roshidi Din & Azman Samsudin

International Journal of Computer Science and Security (IJCSS), Volume (3) : Issue (2) 114

typewritten characters. In term of the key management, steganography is more secure than
cryptography [5]. If The goal of steganography is to hide secret message in such a way that it
does not arouse any eavesdropper’s suspicion. Steganography is characterized as a process of
hiding message in cover signal so that the message can be extracted unknowingly to the public at
the receiving end. Steganography can be divided into two broad categories namely technical
steganography and natural language steganography. Technical steganography is a technique of
hiding information onto another medium such as image, audio, video or other digitally
represented code invisibly [6]. On the other hand, natural language steganography is the art of
using the natural language to conceal secret message [7]. Natural language steganography
focuses on hiding information in text steganography, linguistic steganography and its hybrid as
shown in FIGURE 1.

FIGURE 1: Field of Information Hiding and Its Classification (Adopted from [8]).

One of the linguistic steganography strength is the ability to hide a secret message during
sending process [9]. The efficiency and the level of complexity to encode the hidden message is
one of the linguistic steganography issues. Another important issue is the speed performance of
the tools in executing the encoding process [10]. This issue raises a question on how to examine
the execution time and tools complexity.

In order to improve the productivity and development of steganographic tools, the evaluation of
existing steganographic tools must be carried out and use as a yardstick to improve the quality of
software industry [11] especially in natural language steganography. Equally important, is the
attacks analysis on steganographic tools which is deemed essential in evaluating the
steganographic tools performance in order to improve the steganography algorithm [12].
Therefore, the natural language steganographic tools should be examined both from the software
metric perspective as well as their robustness against attack. Thus, our main objective of this
study is to analysis the performance of natural language steganographic tools based on these
two perspectives.

The rest of the paper is organized as follows: In Section 2 we introduce text steganography tools

that are currently being used. Section 3 discusses the parameter measurement of the selected

steganographic tools in message hiding. In Section 4 we discuss the measurement of the
software metric including Percent Lines with Comments (PLwC), Average Statements per

Function (ASpF), and Average Block Depth (ABD). Section 4 also discusses execution time of the

steganographic tools. Section 5 provides a discussion on the evaluation of the text

steganographic. Section 6 is the conclusion of this paper.

Shaifizat Mansor, Roshidi Din & Azman Samsudin

International Journal of Computer Science and Security (IJCSS), Volume (3) : Issue (2) 115

2. TEXT STEGANOGRAPHY

Natural language steganographic tools and techniques are becoming more widespread and need
to be evaluated [13]. One of the methods in evaluating natural language steganographic tools is
by employing software metric [14], which is important in determining the tools efficiency. Among
the components of software metrics are cost and effect estimation, productivity measures, quality
measures, reliability tools, structural complexity metrics and execution time.

This study used text steganographic tools in order to analyze the field of natural language
steganography. Numerous tools have been identified as text steganographic tools [15-22]. They
are: Texto, Stego, SNOW, Stegparty, Steganos, Snowdrop, PGPn123, and FFEncode. TABLE 1
shows the description of each steganography tools.

TABLE 1: The Description of Text Steganography Tools.

Among the identified text steganoography tools, only Texto, Stego, SNOW, and Stegparty are
being examined. The selection is based on similarity criterion such as the steganography
approach (line-shift coding, word-shift coding and feature coding) and manipulation of
dictionary/corpora. In addition, the four identified tools also share common standard source code
(C/C++) which are accessible from the open source. The accessibility of the codes aid
tremendously in the evaluation process.

2.1 Texto
Texto is a rudimentary text steganography program to facilitate the exchange of binary data. It is
using a simple substitution cipher which transforms uuencoded or pgp ascii-armoured ascii data,
especially encrypted data into English sentences so that the text will look apparently reasonable
during data transmission. FIGURE 2 shows the flow of Texto program.

Each symbol is replaced by nouns, verbs, adjectives, and adverbs in the preset sentence
structures without punctuation or "connecting" words through English sentences. However, not all
of the words in the resulting English are significant to the Texto program. Usually, the output of
Texto is close enough to normal English text that it will slip by any kind of automated scanning.

No. Tools Platform Description of encoding process

1.

Texto

DOS:WIN(Unix Linux)

Transform uuencode or PGP-armoured
ascii data

2.

Steganosaurus

(Stego)

C: DOS

Encode binary to text based on the
dictionary from a source document

3.

SNOW

C/C++: DOS WIN

Append tabs and white space to end of
text lines

4.

Stegparty

Unix/Linux

Alter the text on spelling and punctuation

5.

Steganos

DOS

Looks at a list of words on text to find and
match words

6.

Snowdrop

C

Embed the text in the least significant
portions of some binary output

7.

PGPn123

Window front-end to PGP

Using PGP shell tools to hide text

8.

FFEncode

DOS

Using Morse code in null characters to
encode message

Shaifizat Mansor, Roshidi Din & Azman Samsudin

International Journal of Computer Science and Security (IJCSS), Volume (3) : Issue (2) 116

FIGURE 2: The Process Flow of Texto Steganography Tool.

2.2 Steganosaurus (Stego)
Steganosaurus also known as Stego uses a line-shift coding method which is a plain text
steganography utility which encodes a binary file into a gibberish text based on either a spelling
dictionary or words taken from a text document. The output of Stego converts any binary file into
nonsense text based on a dictionary from a source document. The output of stego is nonsense
but statistically resembles text in the language of the dictionary supplied. A human reader will
instantly recognize it as gibberish while to eavesdroppers; the encrypted messages may consider
it to be unremarkable, especially if a relatively small amount of such text appears within a large
document. Stego makes no attempt, on its own, to prevent the message from being read. It is the
equivalents of a code book with unique words as large as the dictionary.

Based on FIGURE 3, text created by stego uses only characters in the source dictionary or
document. It means that during encoding process, the message will be converted into an output
text file using the specified (or default) dictionary. The specified file called ‘dictfile’ is used as the
dictionary to encode the file. The dictionary is assumed to be a text file with one word per line,
containing no extraneous white space, duplicate words, or punctuation within the words. All
duplicate words and words containing punctuation characters are deleted, and each word
appears by itself on a separate line. The Stego text will look less obviously gibberish if the output
is based upon template sentence structures filled in by dictionaries. The efficiency of encoding a
file as words depends upon the size of the dictionary used and the average length of the words in

Sender Public Environment Recipient

 ?

?

Shaifizat Mansor, Roshidi Din & Azman Samsudin

International Journal of Computer Science and Security (IJCSS), Volume (3) : Issue (2) 117

the dictionary. Preprocessing a text file into dictionary format allows it to be loaded much faster in
subsequent runs of stego. Another file namely ‘textdict’, is created to build the dictionary for input
file used during encoding or decoding process. The ‘textdict’ is scanned and words, consisting of
alphanumeric characters, are extracted. Duplicate words are automatically discarded to prevent
errors in encoding and decoding processes.

Spelling

Checker

Dictionary,

‘dictfile’ file

FIGURE 3: The Process Flow of Stego Steganography Tool.

Stego can then be applied to the encrypted output, transforming it into seemingly innocuous text
for transmission, so it can be sent by sender through media, such as electronic mail, which
cannot transmit binary information. If the medium used to transmit the output of stego, ‘textdict’
cannot correctly deliver such data; the recipient will be unable to reconstruct the original
message. To avoid this problem, the sender can either encode the data before transmission or
use a dictionary which contains only characters which can be transmitted without loss. The
decoding process by receiver to recover the original message, ‘dictout’, must be carried out using
the same dictionary as encoding process because the ability to recognize gibberish in text is
highly language dependent. Usually, the default dictionary is the system spelling checker
dictionary. However, this dictionary is not standard across all systems.

2.3 SNOW
Steganographic Nature Of Whitespace or SNOW, is a program for conceling messages and
extracting messages in ASCII text file. This feature coding method conceals messages by
appending tabs and spaces (known as whitespace) at the end of lines. Tabs and spaces are
invisible to most text viewers, hence the steganographic nature of this encoding scheme.

This allows messages to be hidden in the ASCII text without affecting the text visual presentation.
Since trailing spaces and tabs occasionally occur naturally, their existence should not be deemed
sufficient to immediately alert an observer who stumbles across them.

The data is concealed in the text file by appending sequences of up to 7 spaces, interspersed
with tabs. This usually allows 3 bits to be stored in every 8 columns. The SNOW program runs in
two modes which are message concealment and message extraction as shown in FIGURE 4.

Sender Public Environment Recipient

yes

no

Shaifizat Mansor, Roshidi Din & Azman Samsudin

International Journal of Computer Science and Security (IJCSS), Volume (3) : Issue (2) 118

FIGURE 4: The Process Flow of SNOW Steganography Tool.

There are three important steps involve in the concealing process which are;
i. Compression - used a rudimentary Huffman encoding scheme where the tables are

optimized for English text. This was chosen because the whitespace encoding
scheme provides very limited storage space in some situations, and a compression
algorithm with low overhead was needed.

ii. Encryption - used an ICE encryption algorithm [17] with 64-bit block cipher. It runs on
a 1-bit cipher-feedback (CFB) mode, which is quite inefficient (requiring a full 64-bit
encryption for each bit of output).

iii. Encoding scheme – at the beginning of a message, a tab is added immediately after
the text on the first line where it will fit. Tabs are used to separate the blocks of
spaces. A tab is not appended to the end of a line unless the last 3 bits coded to zero
spaces, in which case it is needed to show some bits are actually there.

While in extracting process, there are also three steps involved which are decoding, decryption
and decompression. All of these steps are running on sequential during extraction process. After
extraction process is completed, an extracted message is transferred to output text called outf.

2.4 Stegparty
Stegparty is a hiding information system that hides data inside a text file by using a set of rules
defining various flexible components within the English language. Stegparty can hide small
alterations to the message by matching the text and replacing it with small typos, grammatical
errors, or equivalent expressions such as spelling and punctuation changes as shown in FIGURE
5. It is a unique data hiding method by creating misspellings inside original text files.

Shaifizat Mansor, Roshidi Din & Azman Samsudin

International Journal of Computer Science and Security (IJCSS), Volume (3) : Issue (2) 119

FIGURE 5: The Process Flow of Stegparty Steganography Tool.

3. EXPERIMENTAL WORK

This section discusses the parameter measurement of the selected steganographic tools during
the hiding of a message. This study use software metric, such as dataset selection, execution
time, and algorithm segment in order to analyse the performance of steganographic tools.

3.1 Software Metrics
In this analysis, three attributes of the software metric parameter have been used which are
Percent Lines with Comments (PLwC), Average Statements per Function (ASpF), and Average
Block Depth (ABD) [23-25].

a) Percent Lines with Comments

Percent Lines with Comments (PLwC) is used to determine the documentation level of selected
tools. This analysis is very important for developers to understand the inner workings of each tool.

%100×

CommentsofNumberTotal

LinesofNumberTotal

 Percent Lines (%) = %100
1001

1

20001

1
×

∑

∑
<<

=

<<

=

n

i

i

m

i

i

b

a

 (1)

 where
 a = Total Number of Lines
 b = Total Number of Comments

PLwC =

Shaifizat Mansor, Roshidi Din & Azman Samsudin

International Journal of Computer Science and Security (IJCSS), Volume (3) : Issue (2) 120

b) Average Statements per Function (ASpF)

ASpF calculates the average number of statements per function. Thus, ASpF can be used to
determine the complexity of the each selected tool.

Average Statements per Function =

FunctionsofNumber

StatementsofNumberTotal

d

c

x

n

i

∑
<<

=

=

1001

1
 (2)

 where

 c = Total Number of Statement
 d = Number of functions

c) Average Block Depth (ABD)

This analysis is used to determine the average depth of the available block in each of the
selected tools. Higher value of ABD may lead to higher usage of memory space of the tools.

=

DepthBlock

DepthBlockNestedofNumberTotal
ckDepthAverageBlo

f

e

x

n

i

∑
<<

=

=

1001

1

 (3)

where

 x = Average Block Depth
 e = Total Number of Nested Block
 f = Block Depth

3.2 Data Set Selection
Text chosen dataset is one of the important components in benchmarking steganographic
techniques [26]. Our study used a dataset of text which includes a variety of textures and sizes. In
order to evaluate the text steganographic techniques, various file sizes have been categorized in
four phases during evaluation process from phase I to phase IV, respectively. Phase I started
with 10 bytes, followed by phase II with 100 bytes, phase III with 1000 bytes and end up with 20
kilobytes of plaintext files size in phase IV as shown in TABLE 2. For every size category,
hundreds of files are created to ascertain the relation of time taken based on the different type of
file size. Then, the result of execution time of each data files in the selected text steganographic
tools during evaluation process is recorded.

TABLE 2: Distribution of File Size Category.

Testing Phase Size (bytes)
Phase I 10

Phase II 100

Phase III 1000

Phase IV 20 000

Shaifizat Mansor, Roshidi Din & Azman Samsudin

International Journal of Computer Science and Security (IJCSS), Volume (3) : Issue (2) 121

3.3 Execution Time
To obtain the execution time of the whole process, different parameters are selected from all four
steganography tools. To get a secret message to be encoded, different tools will transform this
message in a four different ways. Stegparty will use code segment secretfile to encode message
and later the message is stored in codedfile code segment. Stego secret message stored text in
secretmessage code and result will be stored in code segments cf. Texto used msgfile code
segment to store secret message and engfile code message for encoded message. In addition,
SNOW tools use –f code in encoding secret message and crf code segment as an encoded
message. From the encoding process, the execution time is recorded. Start time, stop time and
time taken to encode message are recorded for every file sizes. The result of the time taken is
discussed further in Section 4.2. TABLE 3 shows the various types of codes segment of hidden
message and output file on retrieving execution time in each tool.

TABLE 3: Various Types of Codes Segment in Selected Text Steganographic Tools.

In determining the efficiency of execution time, a small segments of code is created in every
steganographic tools. This code segment is activated when a run command is executed.

#include <time.h>
clock_t start, end;
double elapsed;
start = clock();
... /* Do the work. */
end = clock();
elapsed = ((double) (end - start)) / CLOCKS_PER_SEC;

4. EXPERIMENTAL RESULT

This section discusses the software metric measurement taken for Percent Lines with Comments
(PLwC), Average Statements per Function (ASpF), and Average Block Depth (ABD). This section
also discusses execution time of the steganographic tools.

4.1 Software Metric Measurement

FIGURE 6: Percent Lines with Comments of The Chosen Text Steganographic Tools.

Tools Encoded File Coded File
Stegparty secretfile codedfile

Stego secretmessage cf
Texto msgfile engfile

SNOW -f crf

Shaifizat Mansor, Roshidi Din & Azman Samsudin

International Journal of Computer Science and Security (IJCSS), Volume (3) : Issue (2) 122

Based on FIGURE 6, the PLwC of the selected tools have been identified. A PLwC value of Texto
is 13.1%, quite close to Stego PLWC value which is 13.5%. Another selected tool called
Stegparty has recorded a percentage of 9.8% while the SNOW recorded a 26.1% which is the
highest value among all tools. This analysis result indicates that SNOW has more documentation
in its source code, compared to Texto, Stego and Stegparty.

FIGURE 7: Average Statement per Function of The Chosen Text Steganographic Tools.

In analyzing the ASpF (see FIGURE 7), this study found that Texto has the highest ASpF value
with 30 statements compared to Stego with its ASpF value of almost 0. While only 12.7 ASpF
value for SNOW, Stegparty has recorded 15.3 for its ASpF value. Thus, SNOW and Stegparty
have a comparable value for ASpF. The amount of code per function seems to be about the
same for both tools.

FIGURE 8: Average Block Depth (ABD) of The Chosen Text Steganographic Tools.

The value of ABD can be obtained by dividing the number of nested block depth with depth of
block for every function. Based on FIGURE 8, the ABD for Texto and Stego are 2.4 and 2.89,
respectively while ABD for SNOW is 1.6 and Stegparty is 1.67, consecutively. In term of block
depth complexity, Stego and Texto are somewhat in the same league while another league
comprises SNOW and Stegparty. Thus, it can be said that Texto and Stego are having about the
same complexity while SNOW and Stegparty share almost the same complexity.

4.2 Execution Time Measurement
TABLE 4 has shown the analysis of execution time for the selected tools based on different file
size, which are: 10 bytes, 100 bytes, 1000 bytes and 20 000 bytes. This study required LINUX
platform and running on the Solaris 7 operating system under SunOS 5.7 version with 64-bit
UltraSPARC microprocessor.

Shaifizat Mansor, Roshidi Din & Azman Samsudin

International Journal of Computer Science and Security (IJCSS), Volume (3) : Issue (2) 123

 TOOLS
BYTES

Texto

Stego

SNOW

Stegparty

10 0.86 0.85 13.35 0.85

100 0.12 0.12 0.15 0.12

1000 0.01 0.01 0.07 0.01

20000 0.04 0.04 0.11 0.03

TABLE 4: Execution Time of The Chosen Text Steganographic Tools

It is found that Steparty requires 0.85 to 0.86 seconds to encode file size of 10 bytes to 1000
bytes. The running time increases significantly to 13.35 seconds when encoding file size of 20000
bytes. Stego requires much less time for encoding files where it requires 0.12 seconds to encode
file size between 10 bytes to 100 bytes. Encoding file size of 20000 bytes does not change the
running time very much as Stego takes only 0.15 seconds to encode the data. While Texto
requires 0.01 seconds to encode file size of 10 bytes to 1000 bytes and takes an extra 0.06
seconds to encode file size of 20000 bytes. Likewise, SNOW is also in the same category as
Stego and Texto. SNOW encodes file size 10 to 1000 bytes at between 0.03 and 0.04 seconds
and taking only 0.11 seconds to encode file size of 20000 bytes.

5. DISCUSSION

This study provides the evaluation of text steganographic tools based on the criteria that has
been selected. The result of the software metric and execution time have shown the level of
complexity and speed performance, respectively.

In analyzing the software metric, this study has considered the Percent Lines with Comments
(PLwC), Average Statement per Function (ASpF), and Average Block Depth (ABD) in order to
measure productivity of software development. TABLE 5 shows a summarization of software
metric for all four text steganographic tools.

TABLE 5: Software Metric of Text Steganographic Tools.

Result on Percent Lines with Comments (PLwC) indicates that SNOW has more documentation
in its source code, a characteristic which is good in order to understand the flow of the tool.
Compared to SNOW, Stegparty does not have much comment lines in its code. Thus, a
Stegparty’s developer may face some difficulties in modifying the source code due to lack of
description on what each of the code does. Closer examination of Average Statement per
Function (ASpF) for all source code reveals that Stego has small amount of statements with
many functions. As such, its ratio between number of statements and number of functions seems
to be quite imbalance with small number of statements and large amount of functions. On the
other hand, Texto does not have many functions. Most of its statement is included in the main
function. Having a non-function source code makes it difficult for future alteration if need arises. In
term of modular programming [27], this study found that the coding style in Texto is weak.
However, it contributes to the shortened development time because the modules can be

METRIC / TOOLS Texto Stego SNOW Stegparty

Percent Lines With Comments (PLwC) 13.1 13.5 26.1 9.8

Average Statement per Functions (ASpF) 30 15.3 12.7 0

Average Block Depth (ABD) 2.4 2.89 1.6 1.7

Shaifizat Mansor, Roshidi Din & Azman Samsudin

International Journal of Computer Science and Security (IJCSS), Volume (3) : Issue (2) 124

implemented separately, thus increasing the flexibility and comprehensibility of the program [19].
For Average Block Depth (ABD), Stego is more complex than the other tools since its blocks
traverse deeper. There is also a probability that it uses more stack memory since traversing
deeper inside the block will make the parent variables to be pushed onto stack.

In analyzing the execution time, Texto is the fastest in term of encoding secret message inside a
file. It does not depend on any carrier file like Stegparty. As such, encoding file size of 10 bytes
will not be too much different from encoding file size of 20000 bytes. Stego and SNOW exhibit the
same behavior as Texto. These two tools are also not dependent on carrier file size. As such the
time required to encode files does not differ very much. It is also discovered that Stegparty took
the longest time to encode files.

6. CONCLUSION
In conclusion, this study found that Texto has the highest complexity level and speed
performance among the text steganographic tools followed by Stegparty, SNOW and Stegano.
The PLwC and AspF metrics have shown to be an important system parameter to measure
productivity of software development. The envisaged future work will involve performance
evaluation on the efficiency of pre-encrypt and post-encrypt process. In addition, the software
productivity need to be measured more precisely by taking into account not only the four
attributes but also will involve more parameters. Finally this study is only running on a single
Linux platform. Taking into account more platform and different machine used to compare
software performance is considered as a future work.

7. REFERENCES

1. M. A. A. Murad, and T. Martin. “Similarity-based estimation for document summarization
using Fuzzy sets”. International Journal of Computer Science and Security (IJCSS),
Computer Science Journal Press, Kuala Lumpur, 1(4): 1 - 12, Nov/Dec 2007

2. B. V. Dhandra, and M. Hangarge. “Morphological reconstruction for word level script

identification”. International Journal of Computer Science and Security (IJCSS), Computer
Science Journal Press, 1(1): 41 - 51, May/June 2007

3. J. J. Eggers, R. Bäuml, and B. Girod. “A communications approach to image steganography”.

In Proceedings of SPIE: Electronic Imaging, Security and Watermarking of Multimedia
Contents IV, 4675:26-37, San Jose, CA, USA, January 2002

4. J. Zollner, H. Federrath, H. Klimant, A. Pritzmann, R. Piotraschke, A. Westfeld, G. Wicke, and

G. Wolf. “Modeling the security of steganographic systems”. In 2
nd

 International Workshop
Information Hiding. Springer, Berlin/Heidelberg, German, vol. 1525: 345 - 255, 1998

5. C. Kant, R. Nath, and S. Chaudhary. “Biometrics security using steganography”. International

Journal of Security (IJS), Computer Science Journal Press, 2(1): 1 - 5, Jan/Feb 2008

6. N. F. Johnson, S. Jajodia. “Exploring steganography: seeing the unseen”. IEEE Computer

Magazine, 31(2):26 – 34, 1998

7. M. Chapman, G. I. Davida, and M. Rennhard. “A practical and effective approach to large-

scale automated linguistic steganography”. In Proceedings of the Information Security
Conference (ISC '01), Malaga, Spain, 156 -165, October 2001

8. F. A. P. Petitcolas, R. J. Anderson and M. G. Kuhn. “Information hiding: A survey”. In

Proceedings of the IEEE on Protection of Multimedia Content, 87(7):1062 - 1078, July 1999

Shaifizat Mansor, Roshidi Din & Azman Samsudin

International Journal of Computer Science and Security (IJCSS), Volume (3) : Issue (2) 125

9. Z. Oplatkova, J. Holoska, I. Zelinka, and R. Senkerik. “Steganography Detection by Means of
Neural Networks”. 19

th
 International Conference on Database and Expert Systems

Application (DEXA ’08), 2008

10. K. Ochiawai, H. Iwasaki, J. Naganuma, M. Endo, and T. Ogura. “High Speed Software-based

Platform for Embedded Softwar of A Single-Chip MPEG-2 Video Encoder LSI with HDTV
Scalibility”. In Proceeding of the Conference on Design, Automation and Test in Europe: 1-6,
1999

11. D. Welzel, H. L. Hausen. “A five steps method for metric-based software evaluation: effective

software metrication with respect to quality standard”. Journal of ACM, 39(2 –5):273 – 276,
1993

12. A. Westfield, A. Pfitzmann. “Attacks on steganographic systems”. In Proceedings of 3
rd

International Workshop Computer Science (IH '99) Germany, 1999

13. S. R. Baragada, M. S. Rao, S. Purushothaman, and S. Ramakrishna. “Implementation of

radial basis function neural network for image steganalysis”. International Journal of
Computer Science and Security (IJCSS), Computer Science Journal Press, Kuala Lumpur,
1(4): 12 - 22, Jan/Feb 2008

14. S. Nystedt, C. Sandros. “Software Complexity and Project Performance”. Master Thesis and

Bachelor Thesis, University of Gothenburg, 1999

15. K. Maher. “Texto”. Underware Software Production Ltd. Inc.,1995, http://linkbeat.com/files/

16. J. Walker. “Steganosaurus”. 1997, http://www.fourmilab.ch/ or http://www.fourmilab.to/stego/

17. M. Kwan. “SNOW”. Darkside Technologies Pty Ltd ACN 082 444 246 Australia, 1998

http://www.darkside.com.au/snow/index.html

18. S. E. Hugg. “StegParty”. Hamco Software (COMETBUSTERS-DOM) 1249 Turkey Point Rd

Edgewater, MD 21037 US, 1999 http://www.cometbusters.com/hugg/projects/stegparty.html

19. Steganos can be accessed at; http://zerblatt.forex.ee/~ftp/crypto/code/STEGANOS.ZIP

20. Snowdrop can be accessed at; http://linux.softpedia.com/get/Programming/Version-

Control/snowdrop-23917.shtml

21. PGPn123 can be accessed at; ftp://ftp.dei.uc.pt/pub/pgp/pc/windows/

22. FFEncode can be accessed at; http://www.rugeley.demon.co.uk/security/ffencode.zip

23. METRIC DATA PROGRAM can be accessed at

http://mdp.ivv.nasa.gov/loc_metrics.html#PERCENT_COMMENTS

24. C. Johns. Applied Software Measurement (3
rd

 Edition). USA, 2008

25. Metrics Complexity can be accessed at http://download.instantiatons.com/CodeProDoc

26. M. Kharrazi, H. T. Sencar, Memon. “Benchmarking steganographic and steganalysis

techniques” Security, Steganography, and Watermarking of Multimedia Contents, 2005

27. R. P. Cook. “An introduction to modular programming”, 1995 from

http://www.docdubya.com/belvedere/cpp/modular.html

