
Ankur Agarwal 

International Journal of Computer Science and Security, (IJCSS) Volume (3) : Issue (3)    154  

System-Level Modeling of a Network-on-Chip 
 
 
 

Ankur Agarwal       ankur@cse.fau.edu 
Assistant Professor, Department of  
Computer Science and Engineering 
Florida Atlantic University, 
Boca Raton, 33431, Florida 

 
Abstract 

 
This paper presents the system-level modeling and simulation of a concurrent 
architecture for a customizable and scalable network-on-chip (NoC), using 
system level tools (Mission Level Designer (MLD)). MLD supports the integration 
of heterogeneous models of computation, which provide a framework to model 
various algorithms and activities, while accounting for and exploiting concurrency 
and synchronization aspects. Our methodology consists of three main phases: 
system-level concurrency modeling, component-level modeling, and system-level 
integration. At first, the Finite State Processes (FSP) symbolic language is used 
to model and analyze the system-level concurrency aspects of the NoC. Then, 
each component of the NoC is abstracted as a customizable class with 
parameters and methods, and instances of these classes are used to realize a 
4×4 mesh-based NoC within the MLD environment. To illustrate and validate the 
system-level operation of the NoC, we provide simulation results for various 
scheduling criteria, injection rates, buffer sizes, and network traffic patterns. 
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1. INTRODUCTION 

System complexity, driven by both increasing transistor count and customer need for increasingly 
savvy applications, has increased so dramatically that system design and integration can no 
longer be an after-thought. As a consequence, system level design, long the domain of a few 
expert senior engineers, is coming into its own as a discipline. SystemC, introduced seven years 
ago, has made it possible to co-design and co-develop software and hardware, and hence, such 
components [1]. However, integration of an entire product at the SystemC level would take too 
long to complete. In this paper we propose a methodology to separately address design and 
optimization at a higher level, viz., Architect’s level, where components pre-developed (using 
SystemC or any other equivalent system language) can be integrated with each other to build 
subsystems, and ultimately a system, with the (sub) system optimized across several more global 
QoS parameters. Note that for this to be practically feasible, the components have to be 
abstracted to a higher level, so system modeling and analysis, and final architecture selection, 
can be completed rapidly. 
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A system design process is inherently complex. The design involves multiple representations, 
multiple (design) groups working on different design phases, and a complex hierarchy of data and 
applications [2]. The different groups bring different perspectives towards system design. The 
system or product inconsistencies primarily arise out of lack of appropriate communication among 
various design teams. For example, the concerns of a hardware design engineer are different 
from that of a software designer [3]. Such constraints lead to an increase in product development 
cycle and product development cost, thereby reducing system design productivity [4]. To counter 
this, one will have to exploit the principle of “design-and-reuse” to its full potential [5]. Then, a 
system (subsystem) would be composed of reusable sub-systems (components).  
 
The network-on-chip (NoC) architecture can improve this declining design productivity by serving 
as a reusable communication sub-system for an embedded device [6]. NoC provides a multi-core 
architecture for managing complexity by incorporating concurrency and synchronization. This 
NoC architecture may comprise components such as routers, input and output buffers, network 
interfaces, switches, virtual channel allocators, schedulers and switch allocators [7]. To develop a 
system from such reusable components, one has to design and develop variants of each 
component. For example, buffer size is a customizable parameter for an input buffer. Similarly, 
scheduling criteria provide customizability for schedulers. A system architect estimates 
performance and quality-of-service (QoS) parameters for various system configurations. 
Components need to encapsulate their performance metrics for various useful parameter 
combinations, in order to help the architect make informed decisions. We propose that a system 
be modeled in advance of the architect’s design phase. Such a model is analyzed to ensure 
system functionality at an abstract level. This model can then be ported to the architect’s design 
phase, for analyzing the performance of a system and for estimating the resources needed for 
mapping an application onto the system. This model must allow one to manipulate a set of 
parameters to fine tune system performance. Such a system model needs to have a high level 
representation of various performance and QoS parameters for subsystems and components. 
These performance and QoS parameters can then be traded-off against each other in the system 
model, to yield a global optimization. Such a model at the design phase will allow one to make 
key decisions and reduce the scope of the multidimensional search space. These key decisions 
may include the number of processors, hardware-software partitioning, estimated performance 
values for new components, and the use of existing components in software or hardware. Such 
design decisions have the potential to significantly enhance productivity of system design.  
 
Such system modeling, analysis and design will not be an effective solution until we have a 
mechanism for modeling concurrency and synchronization issues [8, 9]. This requires 
representation of various activities and algorithms with appropriate MoC [10, 11, 12]. This defines 
our two goals for system-level designers: (1) To model the system functionality well in advance of 
building the actual computing system in order to provide a level of flexibility in system design. (2) 
To be able to manipulate an abstract set of design elements simultaneously to generate different 
sets of QoS parameters and performance metrics and fine tune the system model.  
 
A model of computation (MoC) is a mathematical formalism that captures and allows us to reason 
about a computational system or concept independent of its implementation details. Different 
MoC have evolved to represent the reasoning in different areas of focus [13]. A synchronous local 
region of a NoC might require one or more such MoC to co-exist and interact. Further, to reduce 
simulation time and to integrate the subsystems into an integrated system model, other MoC may 
be needed. Thus, several MoC are needed for modeling an integrated system. In such a system, 
each component or subsystem of the system should be able to use any allowed MoC and more 
importantly should retain its behavior after integration of the system. Consider also the case in 
which a subsystem uses two or more local regions (or islands) of the NoC. These are connected 
by a switch in a NoC. For example consider a digital camera as a component, or as a subsystem 
of a much larger system, such as a wireless handheld device (system). It is possible that its 
design would not fit into one local region. Under such a scenario we should also be able to 
address the concurrency and synchronization issues because of shared resources (both local 
and global). We have integrated appropriate MoC to model our NoC architecture.  
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In this paper, we present a methodology to obtain a system-level model of a NoC which is quality-
of-service driven, customizable, and parameterizable. The NoC implementation uses several 
MoC to model different regions. Due to the distributed nature of the NoC, the modeling of 
concurrency is essential for a robust design. The contributions of this paper are as follows:  
 

1) We propose a methodology wherein the FSP symbolic language is first used to model 
and analyze the system-level concurrency aspects of the NoC, before any component-
level modeling is done. This prevents the introduction of concurrency issues (such as 
deadlock and livelock) in the subsequent component-level modeling and integration 
phases.  

2) The MLD environment is used to model each component of the NoC, using different 
MoC. Each component is abstracted as a customizable class with parameters and 
methods. Only the system-level functionality of each component is modeled, i.e. no gate-
level design is done. Indeed, the goal is to obtain a rapid customizable system-level 
design, which the system architect can use in iterations until the final design. 

3) Instances of these classes of components are used to realize a 4×4 mesh-based NoC, in 
the integration phase. To illustrate and validate the system-level operation of the NoC, we 
provide simulation results for various scheduling criteria, injection rates, buffer sizes, and 
network traffic patterns. 

4) The NoC architecture is implemented on a field Programmable gate array (FPGA), and 
area results are abstracted. 
 

The goal of this paper is not to propose yet another improved NoC architecture, but rather to 
develop a methodology to accelerate the development of NoC architectures, by performing 
system-level modeling of the NoC, taking into account concurrency issues. In the process, we 
show how to apply two complementary tools to the NoC modeling: FSPes and MLD. Once the 
NoC has been designed using these two tools, it can be easily ported to an FPGA, which allows 
us to rapidly obtain gate counts and other performance measures for the NoC. Hence, this 
methodology allows a system architect to rapidly evaluate the performance of a NoC by using 
system-level modeling, instead of tedious gate-level modeling, while still obtaining gate-level 
results. 
 
After this Introduction, Section 2 gives an overview of the NoC architecture to be modeled, and 
discusses the MoC to be used at the system, subsystem and component levels of the NoC. 
Section 3 presents the system-level concurrency modeling of the NoC architecture using FSP. 
Section 4 introduces the MLD environment, and details each class of component, along with its 
set of customizable parameters. Section 5 presents and discusses numerical results for both the 
simulation of the MLD (in terms of latency) and its emulation on a FPGA (in terms of number of 
gates). Section 6 concludes the paper. 
 

2. NETWORK-ON-CHIP MODELING USING MoC 

To enhance the declining system design productivity one will have to introduce and adopt of new 
technology, and by addressing system-level design concerns at a higher level of abstraction. A 
system architect must be able to analyze system performance and complete “what-if-scenarios” 
from the executable specifications at the initial phases of the design cycle. This will help in 
reducing and possibly eliminating the re-spins in the design phase, thereby increasing the design 
productivity. To achieve such capability it is necessary to separate the design concerns, 
specifically computation from communication. This has led to the exploration of layered system 
architecture for embedded system development. The concerns related to each layer will be 
modeled separately, independent of the underlying architectures. This will help us increase the 
amount of component re-use by facilitating the portability of the components onto the different 
architectures. These layers are as shown in Figure 1. In this paper we discuss the components 
associated with the two following layers: the communication backbone and the communication 
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protocol. The components from these two layers have then been designed using system level 
modeling environment “Mission Level Designer” (MLD).  
 

ArchitectureArchitecture

Operating SystemOperating System

MultimediaMultimedia RealReal--TimeTime LegacyLegacy ApplicationsApplications

Communication ProtocolCommunication Protocol

Communication BackboneCommunication Backbone

ArchitectureArchitecture

Operating SystemOperating System

MultimediaMultimedia RealReal--TimeTime LegacyLegacy ApplicationsApplications

Communication ProtocolCommunication Protocol

Communication BackboneCommunication Backbone
 

 
Figure 1: Layered Architecture for System Design. 

 
A NoC is designed as a layered architecture and comprises two main layers: the communication 
protocol layer and the communication backbone layer. The communication protocol layer consists 
of the network interface (NI) and is responsible for decoupling communication from computation 
and packetization/depacketization. Resources such as a general purpose processor (GPP), 
digital signal processor (DSP), FPGA, application specific integrated circuit (ASIC), memory, or 
any other hardware element, are connected to the communication backbone layer components 
through the NI’s. A resource is called a producer (P) when data originates from it, and a 
consumer (C) when data is received by it. The communication backbone layer, on the other hand, 
is responsible for buffering, network routing, switching, flow-control, and prioritization of data. It is 
made up of routers, buffers and links. Figure 2 shows a 3×3 NoC architecture. 
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Figure 2: A 3×3 Network-on-Chip Architecture. 



Ankur Agarwal 

International Journal of Computer Science and Security, (IJCSS) Volume (3) : Issue (3)    158  

 
The Bi, Bo, P, C, N, S, and NI acronyms denote input buffer, output buffer, producer, consumer, 
node, scheduler and network interface, respectively. Links provide connections between routers. 
Routers are connected to each other and to the NI, as per a specific topology. The router block 
includes the node (N) and scheduler (S) components. The scheduler is responsible for controlling 
the traffic flow, while the actual data is routed via the node. 
 
At the system (top) level, the NoC model must be defined at a high level of abstraction for it to be 
useful for performance evaluation [14]. Lower level descriptions, such as register transfer level 
(RTL) code and source code, while appropriate for the design level, would slow down the trade-
off analysis. We should be able to adjust one of these parameters to fine tune system 
performance and yield different combinations of cost-performance-QoS-power dissipation. One 
may wish to do this on a dynamic basis for better power management of the system in the field. 
Thus, we can argue that at the system level, we would need some kind of manager to 
dynamically optimize the system-level design parameters. The local region for a NoC is again 
divided into two different domains: NoC at the subsystem level and NoC at the component level. 
At the sub-system level, we address local issues (as relating to a particular subsystem) rather 
than global issues. Such a subsystem will usually be some DSP subsystem, IP-core, FPGA, or 
ASIC. A component is another essential part of the local region. A set of components taken 
together would constitute the higher subsystem level. At this level, the designer would not have to 
worry about addressing the system-wide concurrency and synchronization issues. The design 
should be highly reusable in order to be utilized in other products and scalable in order to be 
mapped into the higher domains, i.e. the subsystems and the systems. This component level 
would comprise software components and a computation part, which in turn could be represented 
by electronic components and computer architecture components.  

3. CONCURRENCY MODELING USING FSP 

During the previous decade one could enhance the system performance by simply increasing the 
clock speeds. The International Technology Roadmap of Semiconductors (ITRS) predicts that the 
saturation point for these clock speeds is nearing [16, 17, 18]. Thus, we need to find other 
innovative ways of further enhancing performance. One way that could help in this direction is by 
exploiting concurrency [8]. However, if concurrency issues are not addressed properly, then it 
may lead any system into a deadlock state. In a multiprocessing environment there are various 
processes executing simultaneously. For example, in a NoC, at a given time, every resource may 
either be producing or consuming some data packets. Thus, it can be said that almost every 
element (node, link, buffer, router, scheduler, resource, etc…) might be communicating with 
another element at some point perhaps concurrently on the NoC platform. Therefore, there are 
several inter-processes communications in such a model. If these inter-process communications 
are not modeled properly then the system may fail. Such a failure may not be detected at the 
system integration phase. This is due to the fact that these failures are intermittent, which occur 
only under certain conditions, but nevertheless may be catastrophic. A system may be more 
prone to intermittent failures if concurrency concerns are not addressed properly. These 
intermittent failures may finally result into a deadlock or a livelock state. Thus, it is very important 
to model concurrency issues in such NoC systems.  
 
The main issue is to be able to analyze whether after following all the steps for designing a 
concurrent system, the new system design will still have any concurrency concerns. There are 
various MoC which can achieve concurrency [19]. Some of these MoC’s include communicating 
sequential processes (CSP) [20], pi-calculus [21], lambda calculus [22] and finite state machines 
(FSM) [23]. CSP, pi-calculus and lambda-calculus offer an effective mechanism of specification 
and verification. Pi-calculus is a well-defined process algebra that can be used to describe and 
analyze process systems. It allows mobility of communication channels, includes an operational 
semantics, and can be extended to a higher-order calculus, where not only channels but whole 
processes can be transferred. However, they are based on mathematical models; they are not 
only hard to understand for a software/hardware designer but also hard to apply practically. 
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FSM’s have been extensively used in the past, especially in the domain of modeling of control 
applications. But these FSM’s are not able to address the increasing size of the software content 
in the systems. Hierarchical FSM’s have replaced FSM’s in modeling concurrent applications. 
Several tools and methodologies have also been introduced which address these concurrency 
concerns. Unified Modeling Language (UML) addresses these concurrency concerns in the form 
of state diagrams and sequence charts [24]. But UML may not be useful for analyzing the system 
exhaustively for concurrency failures.  
 
FSP and Labeled Transition System Analyzer (LTSA) provide a framework for modeling 
concurrency and analyzing it exhaustively [25]. FSP is a language based on CSP. But unlike CSP 
a system designer will not have to analyze the system specification in the form of a mathematical 
model in order to expose concurrency issues in the system. We can develop a simplified 
concurrency model in FSP and analyze the concurrency issues with LTSA graphically. LTSA also 
provides a capability of exhaustive analysis to uncover synchronization issues such as deadlocks 
and livelocks.  
 
3.1 Concurrency Model for NoC 
To develop a concurrency model, we first write a high-level specification. This should not be 
platform or data dependent. We then identify the concurrent processes in our model. As the 
concurrency issues arise only among interacting processes, not in the (sequential) internal data 
processing, we model only the (external) interaction among various processes. This reduces the 
model complexity significantly; models execute faster due to reduced state exploration. Figure 3 
shows a high-level concurrency modeling flow diagram. 
 

 
Figure 3: Concurrency Modeling Flowchart. 

 
To model concurrency, we start with a very high-level specification. This high-level specification 
must not contain any internal details of the process behavior. It encompasses the following: 
* Data will be received in serialized packet format; 
* There will be several paths available arranged in a matrix fashion for the data packet to travel; 
* Data may be buffered at each intersection; 
* Further routing is available based on the availability and congestion of the links at the 
destination; 
* Packets will contain destination addresses and priorities; 
* Links may be unidirectional (one link for each direction) or bi-directional. 
 
We further made two assumptions to simplify our concurrency model: links are unidirectional and 
nodes are arranged in a 2-D mesh. Concurrent processes in a system can be identified from 
these high-level specifications. In the NoC model, the identified concurrent processes were links, 
buffers, schedulers, nodes, producers and consumers. We then define detailed specifications for 
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all individual processes. To model concurrency one must follow an incremental approach. In the 
NoC model, we first developed the producer and link processes. We then checked for 
concurrency issues in these two processes before including other processes in the model. Since 
links are attached to buffers, we then added a buffer process to the model.  
 
As concurrency concerns arise only when two or more processes interact with each other, and 
not from the internal actions of any processes, we should therefore only model interactions 
among various processes and not their internal actions. Further, a NoC model with nine nodes 
and schedulers along with thirty-six buffers, nine producers and consumers and hundreds of links 
will comprise of tens of thousands of states. Thus it will not only be difficult but almost impossible 
to model it with FSP and analyze it with LTSA. Therefore, we abstracted this model to represent 
only one representative scenario of interaction. If this interaction does not have any concurrency 
issues then other interactions may be replicated in a similar manner to avoid any deadlock or 
livelock in the system. This abstracted model is represented in Figure 4.  
 

 
Figure 4: NoC Model for Interaction Between One Producer Process and One Consumer Process. 

 
Further, from the implementation of the link process we realized that a link is responsible for just 
forwarding the data to the next process. In this it does not play any role which may cause any 
concurrency concerns. Thus we eliminated the link process from the model. We further reduced 
this model shown in Figure 3, into a more simplified model by removing unnecessary data paths. 
Instead of showing three data paths (three buffers connected to one node) we represented the 
model with two data paths (two buffers with one node). This is due to the fact that synchronization 
issues will arise when more than one process tries to interact with another process. But as long 
as the number of similar processes is more than one, we can have a general model to represent 
these interactions. It may be concluded that the number of buffers (as long as it is more one) will 
not make any difference in addressing concurrency issues. However, it should be noted that a 
node with one buffer will not have the same implementation as a node with two buffers. Figure 4 
represents a further simplified model with a single data path for the NoC.  
 

 
Figure 4: NoC Model for Interaction Between one Producer Process and one Consumer Process with Link 

Processes Eliminated. 

 
The final abstracted model as shown in Figure 4 has been described in Figure 5. We can realize 
from the model implementation that there are one producer process - p1, two buffer processes - 
b1 and b2, one scheduler process – s1. The final composition process includes all of the above 
processes. These processes have been exhaustively tested. Figure 6 shows results for an 
exhaustive simulation. It can be seen from simulation results that there are 351 different possible 
states and 882 possible transitions among these states in the system. None of these states are 
involved in any deadlock and livelock.      
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Figure 5: FSP Implementation for Abstracted NoC Model. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Simulation Result for Abstracted NoC Model. 

PRODUCER = (buffAvail → (hiPriDataOut → PRODUCER | midPriDataOut → PRODUCER)). 

 

const N      = 2 

range Data_Range = 0..N 

BUFFER = STATE[0][0], 

STATE[a:Data_Range][b:Data_Range] 

    = (when ((a+b)<N) buffAvail → (hiPriDataIn  → STATE[a+1][b] |midPriDataIn → STATE[a][b+1]) 

      |when (a>0) shortDataInBuff → nodeGrantFast → hiPriOut → (confirm → STATE[a-1][b] 

                    |notConfirm → STATE[a][b])   

      |when((a==0)&& b>0) dataInBuff → nodeGrantSlow → midPriOut → (confirm → STATE[a][b-1] 

                                                              |notConfirm → STATE[a][b])). 

const M = 1 

range Node_Requests = 0..M 

 

SCHEDULER = STATE[0][0][0][0], 

STATE[h1:Node_Requests][l1:Node_Requests][h2:Node_Requests][l2:Node_Requests] 

  = (when (((h1+l1+h2+l2)<M)) shortDataInBuff1   → STATE[h1+1][l1][h2][l2] 

    |when (((h1+l1+h2+l2)<M)) dataInBuff1        → STATE[h1][l1+1][h2][l2] 

    |when (((h1+l1+h2+l2)<M)) shortDataInBuff2   → STATE[h1][l1][h2+1][l2] 

    |when (((h1+l1+h2+l2)<M)) dataInBuff2        → STATE[h1][l1][h2][l2+1] 

    |when (h1>0) nodeGrantFast1 → (outBuffAvail1     → STATE[h1-1][l1][h2][l2] 

             |outBuffNotAvail1  → STATE[h1-1][l1][h2][l2]) 

    |when (h2>0) nodeGrantFast2 → (outBuffAvail2    → STATE[h1][l1][h2-1][l2] 

             |outBuffNotAvail2  → STATE[h1][l1][h2-1][l2]) 

    |when ((h1==0)&&(h2==0)&&(l1>0)) nodeGrantSlow1    → (outBuffAvail1      

       → STATE[h1][l1-1][h2][l2] 

      |outBuffNotAvail1   → STATE[h1][l1-1][h2][l2]) 

    |when ((h1==0)&&(h2==0)&&(l2>0)) nodeGrantSlow2    →  (outBuffAvail2     

        → STATE[h2][l1][h2][l2-1] 

      |outBuffNotAvail2   → STATE[h2][l1][h2][l2-1])). 

 

||FINAL1 = ({b1, b2}:BUFFER||s1:SCHEDULER||p1:PRODUCER)/{ 

 b1.hiPriDataIn/p1.hiPriDataOut,b1.midPriDataIn/p1.midPriDataOut,b1.buffAvail/p1.buffAvail, 

 b1.shortDataInBuff/s1.shortDataInBuff1,b1.dataInBuff/s1.dataInBuff1, 

 b1.nodeGrantFast/s1.nodeGrantFast1,b1.nodeGrantSlow/s1.nodeGrantSlow1, 

 b2.shortDataInBuff/s1.shortDataInBuff2,b2.dataInBuff/s1.dataInBuff2, 

 b2.nodeGrantFast/s1.nodeGrantFast2,b2.nodeGrantSlow/s1.nodeGrantSlow2, 

 s1.outBuffAvail1/b1.confirm,s1.outBuffNotAvail1/b1.notConfirm, 

 s1.outBuffAvail2/b2.confirm,s1.outBuffNotAvail2/b2.notConfirm}. 

 

Compiled: BUFFER 

Compiled: SCHEDULER 

Compiled: PRODUCER 

Composition: 

FINAL1 = b1:BUFFER || b2:BUFFER || s1:SCHEDULER || p1:PRODUCER 

State Space: 

 24 * 24 * 9 * 2 = 2 ** 15 

Composing... 

-- States: 351 Transitions: 882 Memory used: 3043K 

Composed in 110ms 

FINAL1 minimising........ 

Minimised States: 351 in 46ms 

No deadlocks/errors 

Progress Check... 

-- States: 351 Transitions: 882 Memory used: 3397K 

No progress violations detected. 

Progress Check in: 31ms 
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4. COMPONENT MODELING WITH MLD   

Our NoC model has been designed in an object oriented manner, wherein each component is an 
instance of a class with properties and methods. In this section we describe the different classes 
defined in order to build the NoC model. These classes are (where the capital letters indicate that 
a class is being referred to): Producer, InputBuffer, Scheduler, Router, OutputBuffer, and 
Consumer. While being self-contained as per the principles of object-oriented design, these 
classes need to interact with one another. 
 
The NoC model supports component customization, which eases the task of a design architect. 
The latter can now change the actual system model to understand the impact of various design 
parameters without the need for changing the actual design. Thus, it has the potential to provide 
a more effective analysis of the result by investing less time as compared to traditional 
performance analysis. The customization parameters are discussed as part of the description for 
each class. The MLD tool was used to design the classes. The next section provides a brief 
overview of MLD and the motivations for choosing it for our NoC design. 
 
4.1 System-Level Design with MLD 
MLD is a system-level modeling environment which allows one to model a system at an abstract 
level. MLD supports modeling in different domains such as discrete event (DE), synchronous data 
flow (SDF), finite state machine (FSM), dynamic data flow (DDF), and synchronous reactive (SR), 
among others. Multiple domains can be combined to represent a system model. The performance 
analysis of a model is done at an abstract level, therefore simulations run faster as compared to 
other modeling environments, which are C, C++ or SystemC-based.  
 
System models are implemented in MLD through either a graphical editor or the Ptolemy Tool 
command language, PTcl. The functionality of the modules may be specified by a hierarchical 
block diagram, a finite state machine, a module defined in C/C++ language, or by a PTcl module 
definition. 
 
4.2 Producer Class 
A producer is instantiated from the Producer class. It comprises a resource and a resource 
network interface. A producer generates the required traffic pattern and packetizes the data into 
flits. A flit is the smallest unit of communication supported in the NoC. The Producer class has 
been implemented with a synchronous data flow model of computation as it is responsible for 
continuous data flow.  
 
Referring to Figure 2, a producer outputs a flit when buffAvail is asserted by the corresponding 
buffer. A flit is time-stamped at the time of its generation. The timestamp is used to determine the 
latency involved in delivering the flit. The source and destination address fields of the flit header 
are updated at this time. The flit header has fields for its priority, timestamp, X-direction of source 
address, Y-direction of source address, X-direction of destination address, and Y-direction of 
destination address. The priority of this flit is governed as per a statistical distribution block. For 
example, in the case of a uniform distribution pattern, every third flit will be a high priority flit. 
Once the new flit has its timestamp, source and destination addresses and priority fields updated, 
it is then forwarded to the output through dataOut.  
 
The customizable parameters for the Producer class are: (1) the distribution pattern of the data; 
(2) the packet injection rate, i.e. the amount of data generated as a function of time; (3) the 
priorities of the generated data - High, Mid or Low. Each set of parameters is described below. 
We used three statistically generated traffic distribution patterns – uniform traffic with linear 
destination, random, and application-specific patterns.  
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The packet injection rate represents the number of flits per cycle injected into the network for 
transmission. Defining it as a customizable parameter, allows us to test the NoC model for 
varying load conditions. The injection rate is changed from 0.1 to 1.0 in equal increments of 0.1 to 
check the resultant network latency. An injection rate of 1.0 is equivalent to a producer outputting 
a flit every clock cycle. Similarly, a rate of 0.33 represents the injection of a flit in every three clock 
cycles.  
 
We provided three priority levels for data packets in our NoC model: High priority, Mid priority and 
Low priority. High priority supports control signals such as Read (RD), Write (WR), Acknowledge 
(ACK), and interrupts. Therefore, high priority data is a short packet (single flit packet). Mid 
priority supports real-time traffic on the system, while Low priority supports non-real time block 
transfers of data packets. We have defined control signals as High priority because the data must 
respond immediately to a control signal. Therefore, a control signal must reach its destination in 
time to manage the communication flow of the network. Real-time data must be delivered in real-
time bounds. Therefore, we have assigned Mid Priority to real-time data. The rest of the data on 
the network belongs to the Low priority class. The number of priority levels is a customizable 
parameter.  
 
4.3 InputBuffer Class 
An input buffer is instantiated from the InputBuffer class. It contains a buffer, a buffer scheduler, 
and a virtual channel allocator. An input buffer stores the incoming flits, generates the proper 
handshaking signals to communicate with the scheduler and forwards the flits to the router. An 
input buffer has an input block and an output block. These two blocks are controlled by a state 
machine. Thus, we have implemented InputBuffer in the DE and FSM domains. Two concurrent 
FSM’s are responsible for storing the input data at the input terminals of the input buffer and 
forwarding the data to a router at the output terminal of the input buffer. The DE domain is used 
for implementing a handshaking protocol. A data forwarding path has been implemented based 
on a “request-grant” signaling approach (other NoC implementations refer to it as flow control 
logic). Incoming flits corresponding to all the priority levels (High, Mid and Low) are stored in a 
common buffer. Let buffSize represent all the available space in an input buffer. buffAvail 
indicates whether there is space available in the input buffer. The stored data flits are forwarded 
to the router based on their scheduling criteria. For example, in case of priority-based scheduling, 
High priority flits are forwarded before the Mid or Low priority flits, etc. Table 1 shows the 
classification of flit types. 
 

Bit combination Flit type 

00 No flit 

01 High priority flit 

10 Mid priority flit 

11 Low priority flit 

T 
Table 1: Flit Priority Bit Combinations. 

 

    
    (a)     (b)  
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(c) 

 
Figure 7: MLD Implementation of the InputBuffer Class: (a) Input Side; (b) Output Side; (c) Combined Input 

and Output Sides. 

 
The input buffer is virtually divided into three different buffers A, B and C (see Figures 7 (a) and 
(b)). We have provided flexibility in the size of these virtual buffers (the combined size is a fixed 
user-defined parameter). The input side (i.e. Figure 7 (a)) is responsible for checking the 
available buffer space and allocates memory space for an incoming flit. The output side (i.e. 
Figure 7 (b)) forwards a flit and releases the allocated memory.  
 
We have implemented a handshaking protocol for forwarding a flit. The availability of data flits in 
the input buffer for further transmission is indicated by dataInBuff. If a grant comes in response to 
this request (nodeGrant), the flit stored in the buffer is forwarded to the corresponding Router. 
Table 2 shows the bit allocation of nodeGrant.  

 

Bit combination Flit type 

00 No flit 

01 High priority flit 

10 Mid priority flit 

11 Low priority flit 

 
Table 2: nodeGrant Bit Allocation. 

 
On receipt of nodeGrant, a data packet is forwarded by the output side of the input buffer through 
dataOut. Figure 7 (c) shows the complete implementation of the input side and the output side of 
the InputBuffer class. Three virtual buffers as shown in Figures 7 (a) and (b) are represented as 
memories (M) in Figure 7 (c). A flit is not removed from the input buffer until a confirmation (via 
confirm) is received from the scheduler (from the output side of Figure 7 (c)). If confirm is not 
received, the data flit is not removed from the input buffer; however, it will be queued for later 
forwarding. We provided three virtual channels (VC) per buffer. A VC controller inside the input 
buffer updates these virtual channels. We implemented the InputBuffer class with a discrete-
event model of computation. The DE domain facilitates the signaling protocol and is thus a 
suitable choice for implementing handshaking protocols. 
 
The customizable parameters for the InputBuffer class are the buffer size and the scheduling 
criteria. We can change the buffer size to any value. By changing the buffer size, we can 
understand its impact on latency, area and therefore the silicon cost. A buffer forwards data to the 
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next block based on its scheduling criteria. We provided three scheduling criteria (also referred to 
as service levels, SL): first-come-first-serve (FCFS), priority-based (PB), and priority-based-
round-robin (PBRR). In the FCFS scheduling criterion, all the data packets are treated in the 
same way. A data flit is forwarded to the next block based on its arrival time. The data flit with the 
earliest arrival time will be forwarded first. In the PB scheduling criterion, the input buffer first 
forwards all data packets with High priority, then those with Mid priority. It forwards Low priority 
data packets only when there are no High or Mid priority data packets present in the input buffer. 
In the PBRR scheduling criterion, the input buffer forwards data packets with different priorities in 
a specific rotation pattern. It first forwards a High priority packet, then a Mid priority packet, 
followed by a Low priority packet. This cycle is repeated throughout the simulation. 
 
4.4 Scheduler Class  
A scheduler is instantiated from the Scheduler class. The data and control parts of a node have 
been separated (the Router class handles the data part and the Scheduler class handles the 
control signals) to manage concurrency issues and make the design more scalable and reusable. 
The actual data flows from one node to another through a router. The path of the actual flow of 
this data is defined by a scheduler. A scheduler is also responsible for synchronizing the input 
buffer with the router and the router with the output buffer while receiving and transmitting the 
data further. It schedules the incoming requests for data transmission to the next node, by 
checking for the availability of the output data path and by arbitrating the requests from various 
input buffers associated with it. The Scheduler class has been implemented in the DE domain. A 
scheduler is mainly responsible for synchronization, and thus the DE domain is the ideal MoC for 
its implementation. Figure 8 shows the MLD implementation of the Scheduler class interfaced 
with five buffers on input and output side. The scheduler is connected to five instances of 
InputBuffer (one for each direction in the 2-D mesh network and a fifth buffer for the local 
Producer class connected through a NI) and, similarly, five instances of OutputBuffer on the 
output side. 
 

 
 

Figure 8: MLD Implementation of the Scheduler Class Interfaced with Five Input and Output Buffers. 
 
A scheduler accepts the requests from an input buffer via dataInBuff (the input signal on the left 
side of Figure 8) and allocates the data path by asserting nodeGrant (the output signal on the left 
side of Figure 8). The data path allocation is based on the availability of an output buffer and the 
route. We have embedded multiple algorithms in the Scheduler class as discussed in the 
previous section. A scheduler will select an input buffer from multiple input buffers requesting for 
transmission of a data packet. The router informs the scheduler about the physical output path for 
flit transmission via outputPort. Availability of the data path is acknowledged by assertion of 
confirm. This interaction between the Scheduler and Router classes is shown in Figure 9. The 
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Scheduler class is implemented in two different MoC. The control part of the scheduler has been 
implemented with FSM. This FSM interacts with the DE domain for proper handshaking with the 
input buffer and router on the input side and the output buffer on the output side of the scheduler. 
 
The customizable parameter for the Scheduler class is the scheduling criterion. The Scheduler 
class supports different scheduling criteria: first-come-first-served (FCFS), round-robin (RR), 
priority-based (PB), and priority-based-round-robin (PBRR). Thus, in a network we can have a 
combination of scheduling algorithms.  
 
4.5 Router Class  
A router (shown in Figure 9), instantiated from the Router class, determines the output path and 
handles the actual data transfer on the implemented backbone. The router receives a certain 
number of data flits per unit time and is constrained by the data bandwidth for transmitting a fixed 
number of flits at the output. Thus, the Router class has been implemented in the SDF domain. A 
dimension-order routing protocol was implemented in the Router class for determining the output 
path. We have provided customization in routing algorithms as discussed earlier. Upon receipt of 
data, a router extracts the destination information and determines the physical output port for 
transmitting the data. This output port address is sent to the corresponding scheduler, which 
determines the availability of this port. Upon its availability, data flits are then forwarded to the 
corresponding output buffer for this port. 
 
The type of routing algorithm is a parameter for the Router class. It can be set to: X-direction-first, 
Y-direction-first, and XY-random. In the X-direction-first algorithm, the data is routed to the X-
direction first provided there is the possibility of the data to be routed to the Y-direction as well. 
The Y-direction-first algorithm works similarly. In the XY-random algorithm, if there is a possibility 
for the data to be routed to the X-direction as well as the Y-direction, the direction is chosen in a 
randomized fashion with the same likelihood for the two choices. 
 

 
 

Figure 9: MLD Implementation of the Router Class. 

 
4.6 OutputBuffer Class  
An output buffer (shown in Figure 10), instantiated from the OutputBuffer class, accepts the 
incoming flits from the router and forwards these flits to the input buffer of the next node. It is 
implemented in the form of two concurrently executing state machines. The received flits are 
stored in the output buffer memory. The input state machine accepts and stores the data flits 



Ankur Agarwal 

International Journal of Computer Science and Security, (IJCSS) Volume (3) : Issue (3)    167  

while there is available memory in the output buffer. Upon the request of the scheduler by 
reqBuffAvail, the availability of buffer space in the output buffer is signaled by buffAvail. The 
output state machine senses the request for transmitting data from the output buffer of the next 
router via outputBuffAvail of that output buffer and forwards the data flit, if that signal was 
asserted. 
 
The customizable parameters for the OutputBuffer class are the same as those for the 
InputBuffer class. 
 

 
 

Figure 10: MLD Implementation of the OutputBuffer Class. 
 
4.7 Consumer Class 
A consumer, instantiated from the Consumer class, comprises a computing resource and a 
network interface (NI). A consumer accepts data flits, strips off the header information, and 
forwards the remainder of the data to its internal computing resources. A consumer consumes 
data packets. Thus, as we did for the Producer class, we have implemented the Consumer class 
in the SDF domain. 

5. NUMERICAL RESULTS   

Figure 11 shows the resulting 4x4 mesh-based NoC after system integration. We have simulated 
this NoC model with different packet injection rates (varying from 0.13 to 1.0), buffer sizes (1 
through 10), and scheduling criteria (PB, PBRR, FCFS, RR). From these simulations we have 
estimated the High, Mid, and Low priority latencies. We have further implemented the NoC on a 
FPGA and estimated the total area and areas for each component.  
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Figure 11: MLD Implementation of 4×4 Mesh NoC. 
 
5.1 Latency Results via Simulation  
The minimum latency for a single hop will be 6 clock cycles due to synchronization signals 
(concurrency cost) among different components: the 1st clock cycle is for storing data flits into the 
input buffer (buffAvail); the 2nd clock cycle is for requesting the data output to the scheduler 
(dataInBuff); the 3rd clock cycle is for receiving the grant signal from the scheduler (nodeGrant); 
the 4th clock cycle is for forwarding the data to the router (dataOut); the 5th clock cycle is for 
confirming the output path availability (reqBuffAvail); the 6th clock cycle is for forwarding the data 
packet to the output buffer (dataOut).  
 
To simulate the NoC, we injected 10,000 flits into the network. High priority flits are used for 
transmitting control signals such as MemRD (Memory Read), MemWR (Memory Write), IORD 
(Input/Output Read), IOWR (Input/Output Write), and interrupts among others, while Mid priority 
flits and Low priority flits are used for transmitting real-time data and non-real time block transfers, 
respectively. For the network simulation, control signals were assumed to account for 10 % of the 
total data traffic flow, with real-time data and non-real time data accounting for 20 % and 70 %, 
respectively. However, this traffic load can be altered as it is a customizable parameter.  
 
The final implementation of the NoC network was simulated for various scheduling criteria (FCFS, 
PB, PBRR, and RR) for varying buffer sizes (from 1 to 10) and varying packet injection rations as 
well. The FCFS scheduling algorithm does not prioritize the data packets. Thus, packets with all 
three priorities suffer almost the same latency. As the buffer size increases from 1 to 10, the data 
latency also increases from 14 to 107. With a larger buffer size, a data packet has to wait in the 
buffer for a longer time. Thus, larger buffer sizes lead to higher data latencies. In PBRR 
scheduling, High priority data packets must secure the lowest latency while Low priority packets 
have the highest latency. The data packet latencies for PBRR scheduling criteria vary from 8 to 
30 clock cycles for High priority, from 15 to 36 clock cycles for Mid priority, and from 15 to 140 
clock cycles for Low priority. The main advantage of the PBRR algorithm is its capability to serve 
all the five input buffers connected with the scheduler at the same time. Each input buffer 
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receives an equal scheduler response time. The latency results for PBRR scheduling are very 
similar to those for RR scheduling: indeed, the PBRR scheduling algorithm rotates and serves 
each input buffer in a RR fashion. However, it provides better results when more than three input 
buffers are producing data at the same time. In such a scenario, RR scheduling will not be able to 
deliver the High priority data in time. However, PBRR will work effectively under such a condition. 
In a real-time embedded system, a system must obey real-time requirements. The NoC must 
deliver real-time data and control signals required for this data processing in a timely manner. 
Consequently, we must select scheduling criteria that can perform this task. Figure 12 shows 
High priority data latency results against buffer sizes for different scheduling criteria.  
 

 
 

Figure 12: High priority data latency vs buffer size for different scheduling criteria. 
 
It can be seen that the FCFS and RR scheduling algorithms may not always deliver High priority 
data packets in real-time bounds. Thus, we should use the PBRR or PB scheduling criteria for 
this NoC architecture. We used Low priority data latency results to finally choose between PBRR 
and PB scheduling. Figure 13 shows Low priority data latency against buffer sizes for PBRR and 
PB scheduling.  
 

 
 

Figure 13: Low Priority Data Latency vs Buffer Size for Different Scheduling Criteria. 
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PB scheduling delivers the High priority data and Mid priority data in a timely manner. However, it 
has a higher latency for low priority data. Thus, it is best to use PBRR as the scheduling criterion 
for this NoC architecture. 
 
5.2 Area Results via FPGA Implementation  
We implemented all the Network-on-Chip (NoC) classes with Field Programmable Gate Arrays 
(FPGA) to extract the total NoC area and area information of each component. Table 3 shows the 
area result for a 32-bit and 64-bit Input Buffer and Output Buffer implementations. These area 
results are not directly proportional to the buffer size i.e. a linear relationship between buffer size 
and number of gates does not exist. This is mainly because of two reasons: 
 

1. Our Input Buffers and Output Buffers have scheduling capability, along with the functions 
of storing and forwarding the data packets, as discussed in chapter 5. This scheduling 
circuit does not depend upon the buffer size. Therefore, buffer of a size two will not have 
double the number of gates as compared to a buffer of size one.  

 
2. The internal architecture of an FPGA is divided into several Configurable Logic Blocks 

(CLBs) along with other components such as Digital Clock Manager (DCM) and block 
Random Access Memory (BRAM). A CLB is further divided into four slices. Architecture 
of each CLB is identical. The number of gates is calculated by multiplying the number of 
occupied slices with the total number of gates in a single slice. Thus, the equivalent 
FPGA implementation will count the total number of gates for a slice even if it is not fully 
occupied. Similarly, if we use a part of BRAM for storing the data packet/flits, then we 
account for total number of gates for that BRAM.  

Consequently, we will not see a linear relationship between the buffer size and the number of 
gates. 
 

Buffer Size No. of Gates for 32-Bit Buffer Number of Gates for 64-Bit Buffer 

1 7,863 10,686 

2 9,162 11,581 

3 9,622 12,423 

4 9,812 12,310 

5 9,924 12,510 

10 10,680 13,273 
 

Table 3: Total Number of Gates for Different Buffer Sizes 
Table 4 shows area result for different scheduling criteria (Round Robin (RR), Priority Based 
(PB), First Come First Serve (FCFS), and Priority Based Round Robin (PBRR)) and Router. 
Router handles the actual data transfer, thus has dedicated lines for sending and receiving data 
bits. Thus, Router takes more number of gates than Scheduler.  
 

Component Number of Gates 

PBRR Scheduler 5,954 

FCFS Scheduler 3,155 

RR Scheduler 3,674 

PB Scheduler 3,554 

Router 9,589 

 
Table 4: Total Number of Gates for Different Scheduling Algorithms in Scheduler and Router. 

 
5.2.1 Area Results via FPGA Implementation: Impact of Buffer Size on NoC Area: There are 
eighty input buffers and eighty output buffers in a 4×4 mesh based NoC. Thus, buffer size is a 
key parameter for deciding the number of gates used in a NoC architecture. Figure 14 shows the 
High, Mid and Low data latencies against different 64-bit buffer sizes for PBRR scheduling.  
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Figure 14: Latency vs NoC area with PBRR scheduling and different buffer sizes. 
 
We also provided the total NoC area (gate count) for different buffer sizes with PBRR scheduling 
criteria. A buffer size of 10 produces a high value of Low priority data latency (82.4 clock cycles). 
Thus, we do not recommend using a buffer size of 10. Buffer sizes of 1 and 2 will have lower 
values of High priority data latency, however they may not provide sufficient amount of buffering 
needed in a network. The High and Mid priority data latencies for buffer sizes of 3, 4, and 5 are 
almost similar. A buffer size of more that 5 will have a higher number of gates; consequently the 
leakage current will also increase. Therefore, for this NoC it is recommended to use buffer sizes 
of 3, 4, or 5. 
 
5.3 Leakage Power Consumption Results for NoC Parameters 
FPGAs have three main factors affecting the power consumption. These are leakage current, 
dynamic power, and inrush current. Leakage current is a small amount of current that exists even 
when the gate is idle. Such power consumption is referred as leakage power consumption. Its 
value depends upon the technology. In 90 nm technology this leakage current is the dominant 
factor. As the process gets smaller (due to fabrication technology advances), the core voltage 
decreases. Therefore, even if the frequency increases, the rate of increase of the dynamic power 
drops. However, static power has grown exponentially with the introduction of new process 
technologies. Thus, leakage power that was ignored earlier needs to be accounted in total power 
consumption.  
 
Inrush current is the result of the internal circuitry contention when the FPGAs are powered up. 
These spikes can measure in multiple amperes, thus causing huge amount power consumption. 
However, with the advancement of FPGA technology and introduction of 90 nm FPGA technology 
this issue has been resolved. Further with recent advances, parts of FPGAs can be put to sleep 
state consuming a minimum amount of leakage power.  
 
FPGA architecture mainly consists of CLBs, IOB (Input/Output Blocks), carry-chain adder, 
multipliers, BRAMs, and DCM among others. In this dissertation, we provide some insight on 
leakage power consumption for 1.2 V, SRAM (Static Random Access Memory) FPGAs built in 90 
nm technology. The embedded version of this FPGA is also available and consists of only CLBs. 
We detail our leakage power consumption on this embedded version of FPGA. As explained 
earlier that the FPGA architecture consists of CLBs and is symmetrical in nature. So we focus our 
study on single CLB.  
 
Leakage current may change by a factor of three based on the input to a circuit. For example, a 
2:1 multiplexer has three inputs (2 inputs and 1 select line). Its leakage current value ranges from 
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2.88 mW (when all the inputs are zeros) to 0.91 mW (when all the inputs are ones). However, the 
total value of leakage current will also depend upon the utilization factor. Unutilized logic will 
consume less leakage power as compared to utilized logic. Usually, we attain a high utilization 
factor for CLBs and a low utilization factor for IOB. At 25o C, an FPGA consumes 4.2 µW per 
CLB. Table 5 lists the number of slices used for designing NoC components and the total leakage 
power consumption for NoC implementation with different buffer sizes and scheduling algorithms. 
This leakage power will entirely depend upon the FPGA technology.  
. 

NoC Components Number of Slices Leakage Power (W) 

Buffer Size 1 481 0.0020202 

Buffer Size 2 546 0.0022932 

Buffer Size 3 594 0.0024948 

Buffer Size 4 601 0.0025242 

Buffer Size 5 612 0.0025704 

Buffer Size 10 671 0.0028182 

Router 778 0.0032676 

Scheduler (PB) 290 0.001218 

Scheduler (RR) 274 0.0011508 

Scheduler (PBRR) 356 0.0014952 

Scheduler (FCFS) 201 0.0008442 
 

Table 5: Leakage Power Consumption for NoC Components 

6. CONCLUSION 

We have developed a methodology to realistically model and optimally design the communication 
backbone of a NoC. The model is built with reusable and customizable building blocks, which are 
abstract enough to facilitate rapid analysis. We used MLD simulation environment because of its 
support for multiple MoC, which helps with both fast model building and simulation.  
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