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Abstract 

 
Random numbers have been used extensively in many simulation applications 
like Monte Carlo Integration or computer modeling. But recently security 
applications have increased the need for strong (secure) random number 
generation like automatic password generation, encryption algorithms, on-line 
gambling etc. Thus random number generation has become a challengingand an 
interesting task. Most classical random number generators, generate sequences 
that are either linear or predictable hence not suitable for cryptographic and 
security applications. Others generate sequences that even though they are 
secure they are not cryptographicallystrong and above all are slow in execution.  
Also recent advances in random number generation like the construction of 
Multiple Recursive Generator(MRG) with large orders, Fast Multiple Recursive 
Gener-ator (FMRG) and DX(system of multiple recursive generators proposed by 
Deng and Xu [2003]) generators does not generate a strong random number 
sequences. Though MRGs have extremely long period of length with good 
empirical performance, its recurrence equation can be solved given a small set of 
its generated sequence, this implies that MRGs and FMRGs are not strong 
cryptographic generators.  We propose an algorithm that will transform linear 
sequences generated by both classical LCG, MRGs, FMRGs and DX generators 
and make them cryptographically strong generators by hiding the entire 
sequence generated by the generators, thus it will be difficult for cryptanalyst to 
predict or infer the generator sequence if even the partial sequence or the 
parameters or knowledge of the algorithm used in the transformation of the 
generators  
are known. 
 
Keywords: Linear Congruential Generator (LCG), Multiple Recursive Generator (MRG), Random Number 

generation, Strong (Secure) generators and classical generator 
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1.  INTRODUCTION 

The quality of any simulation application or study depends to a large extent the quality of random 
number generator. In the same manner the security of any cryptographic application that uses 
random numbers depends on the strong nature of the random number generators.  Classical 
generators like LCGs generates random sequences that are linear, fast, simple and easy to 
implement, thus they have wide range of uses in simulation applications.  But recently there have 
been great demand for random generators by security applications like automatic password 
generation, on-line gambling, digital signatures, encryption algorithms etc.  A random generator is 
cryptographically strong if it is not possible to predict the value of the next random bit and also if it 
is generally incompressible (See, Bruce [1994]).  The efficiency of a good random number 
generator for cryptographic purposes is determined by the number of mistakes in predicting the 
next random bit and also if the prediction can be computed in polynomial time (See, Hugo 
[1998]). Cryptographic generators are also expected to be fast in generating its output 
sequences, and the sequences it generates should be difficult to predict or infer. There have 
been recent advances in random number generation to generate sequences that are 
cryptographically strong but experimental results have shown that these generators are still 
insecure as their next bits can be predicated. Recent advances in random number generation 
include MRGs with large order (See, Deng [2005]), FMRGs (See, Deng and Lin [2000]) etc. In 
Section 2, we review some of the classical generators and state why they are not 
cryptographically strong generators by enumerating their shortcomings. In Section 3, we review 
the recent advances in random generation and attempt to make these generators strong 
cryptographic generators. We also stated how to transform these generators into strong 
generators. In Section 4, we proposed an algorithm that will transform the sequences generated 
by classical linear generators like LCGs and recent generators to produce a strong cryptographic 
generator that will be difficult for a cryptanalyst to predict or infer. Our algorithm transform the 
random bits generated by both linear classical generators and MRGs into a cryptographically 
strong bits by performing a transformation on the original generated bits and then perform a 
bitwise exclusive-or operation between the original bits and the transformed bits. The 
transformation of the bits is used in hiding the generated bit sequence from the attacker. The 
transformation also breaks the linear structure of the linear sequences making them difficult to 
predict. The final output are sequences that are difficult to predict and strong for cryptographic 
purpose. In Section 5, we did a comparison between sequences generated by classical 
generators and our transformed sequences.  
 
 

2.   Classical Random Number Generators 
Pseudo-random number generators (PRNG) are random number generators that produce 
sequence of values based on an initial seed and current state. They are called deterministic 
generators in that given the same initial seed they will output the same sequence values. 
Random numbers have been applied in simulation experiments, randomized algorithms, and 
Monte Carlos methods in numerical analysis and also in cryptography (See, Neal [1994]). PRNGs 
used for cryptographic purposes are expected to be fast (computable in polynomial time) and 
secure (See, Stinson [2006]). But classical generators do not meet these two objectives 
simultaneously. Most classical generators like RSA and Blum-Blum-Shub (BBS) which are called 
power generators are cryptographically secure but too slow and cumbersome in performance for 
cryptographic applications. Other classical generators based on linear congruencies like Linear 
Congruential Generator (LCG) or linear feedback shift registers (LFSR) are very fast and easy to 
implement. But these linear generators are not cryptographically secure (the next bit stream value 
generated can be predicted), thus they are not good for cryptographic applications A PRNG is 
cryptographically secure if it is computationally infeasible to predict the value of the next random  
bit, even with knowledge of the algorithm, the hardware that generates the sequence and also the 
previous bit  
streams (See, Bruce [1994]).  Also secure PRNG are generally incompressible (See, Bruce 
[1994]), except when given the key (algorithm). In this section we will review some early classical 
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generators like RSA, BBS, BM (Blum Micali), LCG, LFSR and recent advances in pseudo-random 
number generators (Multiple Recursive Generators (MRG) 
 
 
2.1  Linear Congruential Generator: 
Linear Congruential Generator (LCG) was proposed by Lehmer [1951]. It uses a linear function 
over modulus arithmetic field. LCG is one of the most widely used PRNG, especially in simulation 
applications. It is produced iteratively as shown in the equation below;  

Xi = (BXi−1 + c) mod m,   i ≥ 1, (1) 
 

where Xi, B, c, and m are positive integers and are called the parameters of LCG (Xi are all 
integers between 0 and m-1). The quality of the generator depends on the selection of the 
increment c, multiplier B, initial seed X0, and modulus m. If c =0, the LCG is called mulplicative 
linear congruential generator (MLCG) as shown in the equation below;  
 
 

Xi = (BXi−1) mod m,   i ≥ 1, (2) 
 
The number sequence generated by the LCG is of the form X0, X1, X2... , where X0 is the initial 
seed. A series of researches and experiments have shown that LCG sequences can be easily 
predicted and this raises some doubt about the security of LCG when it is used in any 
cryptosystem, thus it is not suitable for cryptographic applications.Boyar [1982] and Bruce [1994] 
showed that if the whole sequence of LGC is published, the sequence can be predicted if the 
initial seed is given, even though other parameters (B, c or m) of LCG may be unknown. LCGs 
have been broken as specified in articles (See, Boyar [1989] and Reeds [1977]). Thus LCGs are  
not good cryptographic generator but very useful in non-cryptographic applications like 
simulation. An on-line poker game that uses random numbers generated by LCG to shuffle deck 
of cards will be flawed because the LCG sequences can be easily be predicted and this will lead 
to cheating in the game if the sequences generated by LCG are not made secured.  
 
2.1.1   Predicting LCG Generator  
Boyar [1982] used the Plumstead’s algorithm to predict the LCG sequence using partial 
consecutive sequence of the generator, the number of the consecutive sequence used depends 
of the size of the modulus. In simulation of the Plumstead’s algorithm by Pommerening (See, 
Pommerening [2003]), when the size of the modulus is of the order of (231 − 1), ten consecutive 
sequence of the generator are needed for the prediction of LCG sequence. There are also many 
other methods of predicting the sequence of LCG which depends on LCG parameters given. If 
the multiplier (B) is unknown but the partial sequence and the modulus are known then the LCG 
(2) can be predicted by calculating the modulus inverse as stated below; B=X1*X0-1 mod 
m,Where X1, X0 are the consecutive variates of the LCG. The value of the multiplier B will then 
be substituted to predict the LCG sequence (2). If only the partial sequence of LCG generator is 
given, the modulus, multiplier and the seed of the LCG can be determined using Haldir method of 
cracking LCG generator (See, Haldir [2004]). Haldir cracking of LCG generator is based on 
George Marsaglia analysis of pseudorandom random number generators.  Marsaglia pointed out 
that there is a flaw in pseudorandom generators as their uniform variants when viewed as points 
in a cube fall into hyper-plane, which contains points that are well distributed in a unit cube. The 
LCG sequence is used in forming a matrix, the determinant of the matrix will give an integer 
multiple of the modulus m. Then the gcd of a number of matrices gives the actual value of the 
matrix. Given the LCG as in (1) where c =0, if X0, X1, X2... are observed from the  sequence of 
LCG, then they can be used to  
form a matrix thus;. 
  

X1 X2 
X2 X3 

The determinant D = X1 × X3 − X2 × X2 .  Note that 
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D mod m = 0(since D is an integer multiple of modulus m. Thus modulus m = GCD (D, for some 
number of matrices (about 4 or 5).  
If the LCG is as in (1) where there is a constant, the matrix formed is as given below using Haldir 
cracking  of LCG generator method as shown below; 

 
 
 

X1 X2 1 
 

X2 X3 1 
X3 X4 1 

  
Given the LCG sequence of consecutive numbers; 207482415, 1790989824, 2035175616, 
77048696, 24794531, 

 
109854999, 1644515420, 1256127050. Using Haldir method, the LCG sequence is used to form 

a 3 × 3 matrix of 
 

the form; 
 
 

207482415 1790989824 
 

1790989824  2035175616 
2035175616 77048696 

 
 
1 
 
1 
1 
 

The implementation of Haldir’s method using the LCG sequence predicts the LCG sequence 
thus; m =2147483647, k= 16807 and seed =12345.  
When we applied Haldir’s method to our proposed algorithm(as in section 4), the transformed 
LCG sequence is not predicted, because the transformed LCG sequence are hidden by applying 
our proposed algorithm in section 4, making it computationally difficult for an attacker to infer the 
sequence of an transformed LCG sequence. Thus knowing the partial sequence or some of the 
parameters of the transformed LCG generator does not pose a threat any longer as our proposed 
algorithm is applied to the transformed LCG sequence. 
 
2.2   Linear Feedback Shift Register (LFSR) Generator: 
 
LFSR is used in generating sequence of binary bits. It is a PRNG whose input bit is a linear 
function of two or more bits. It uses a short seed to produce sequence of bits which has a very 
long cycle. LFSR can be said to be a special type of Multiple Recursive Generator (MRG) but it 
differs from MRG in that it generates binary sequence of bits while MRG generates sequence of 
numbers. It is based on the linear recurrence which is of the form stated below (See, Tausworthe 
[1965]);  
 

 
Xi = (α1Xi−1 + ••• + αkXi−k) mod 2, (3) 

The linear recurrence of LFSR is based on Z2 recurrence.  The sequence of values produced by 
LFSR is determined by its current or previous state. The parameters of LFSR are k > 1 (the order 
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of the recurrence), Xi (bit generated), α (the multiplier) and X0 the initial seed. The maximum 
period of the recurrence is 2k − 1, if and only if the characteristics polynomial is as given below;  
 
 

F(x) = 1 + α1x + α2x2 + ••• + xk (4) 
 
The characteristic polynomial (4) is a primitive polynomial in Z2, which is a finite field with 2 
elements (See, Lidl [1994]). The recurrence of (3) shows how each bit of the state evolves and 
also that each bit of the output is a linear combination in Z2 of the given state (See, Tausworthe 
[1965]).  LFSR like LCG is a fast generator; it produces linear sequence of bits. LFSR sequence 
like that of MRG can be predicted as stated in section 3.1.1. Also LFSR bit-string sequence can 
be predicted using Berlekamp-Massey algorithm (See, Massey [1969] and Berlekamp [1968]). 
 
2.3  Blum-Micali (BM) Generator 
 
BM is a cryptographically secure generator presented by Blum and Micali [1982]. It is based on 
the difficulty in computing discrete logarithms [See, Stinson 2006], which is also based on the 
believe that the modular exponentiation modulo is prime and a one-way function. Thus it is based 
on the underlying discrete logarithm over a finite field and also on the assumption that solving 
discrete logarithm problems is a hard problem even when  
the exponent is small.  
The general form of BM is as given below;  
 
 
 
Xi+1 = aXi mod m,   i ≥ 0 (5) 
 
The output of the generator is 1 if Xi < m/2, otherwise 0. The constant a is a primitive root in the 
finite field.  
This generator is secure if the modulus m is very large (1024-bit modulus ) thus it is 
computationally difficult to compute the discrete logarithms mod m. BM is not suitable for 
cryptographic applications even though it is secure, because the generation of the output 
sequence is very slow. 
 
2.4   Blum Blum Shub(BBS) Generator: 
 
 
Blum, Blum and Shub [1986] invented the BBS pseudo-random number generator. BBS is based 
on the hardnessof quadratic residues and inter factorization over modulus field ( See, Stinson 
[2006], Raja and Hole [2007] ). Itis a simple and secure cryptographic generator. BBS is generally 
of the form; 
 

Xi+1 = (Xi)2 mod  m,   i ≥ 1 (6) 
 
 
 

Zi =Xi mod  2 (7) 
 

Zi  is the output of the generator. 
 
 
 
The modulus m of BBS is the blum integer.  The relationship between the modulus m and the two 
large prime integers p and q is given below.  
m=p×q and p≡q≡3mod m.  
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The security of this generator rests on the ability of the cryptanalyst to factor m.  Also only one bit 
of the sequence is generated at a time instead of the whole number (See, Boyar [1989]), this 
makes the generator very slow in generating its sequences. Also it cannot be used as a strong 
cryptographic generator because it has been shown that in the Blum protocol of BBS, the modulo 
m can be factored during key exchanges (See, Hastad and  
Shamir [1985]). 
 
2.5   RSA Generator 
RSA generator is based on the assumed security of RSA cryptosystem proposed by Rivest, 
Shamir, and Adleman[1978]. It is based on the hardness of integer factorization of the modulus 
number (See, Stinson [2006]). RSA forms a sequence of numbers in which each element in the 
sequence is an RSA encryption of the previous element. The least bit of the element forms the 
bit-string. The general form of RSA is as stated below;  
 

Xi+1 = Xie mod m,   i ≥ 1 (8) 
 
 
 

Zi = Xi mod 2 (9) 
 
Zi is the output of the generator.  
The modulus m is a product of two large prime numbers p and q (512-bit primes), e is chosen so 
that  
 
 
 

gcd(e,φ(m)) = 1 (10) 
where m and e are public key while p and q are the secret keys. The security of RSA is based on 
finding the factors of m, If m is large enough(1024-bit modulus ) it will be difficult to factor it, RSA 
is a very slow generator, as only one bit of the sequence is generated at a time instead of the 
whole number. 
 

3.   Recent Advances in Random Number Generation 
The classical generators like BBS, BM, RSA, LCG and LFSR described above are not good 
candidates for security applications. While BBS, BM and RSA are secure, they are slow in 
generating their bit sequences yet they are being used in some security applications as they are 
readily available. LCG and LFSR are not secure but they are fast in generating their sequences 
and also easy to implement. Cryptographically secure generators are supposed to be fast in 
generating its sequences and also its bit sequence is supposed to be difficult to predict  
 
 3.1   Multiple Recursive Generators (MRGs) 
 
MRG is one the most extensively studied and most widely used PRNG which is based on the k-th 
order linear recurrence. The next value of MRG is computed recursively based on its previous 
values (See, Lehmer [1951]). The basic equation of MRG is thus stated below;  
 
Xi = (α1Xi−1 + ••• + αkXi−k) mod m, i ≥ k (11) 
The starting values are (X0, X1, X2... Xk−1), which are not all zero; m is the modulus which is a 
large prime number and Xi can be transformed using Ui = Xi/m. In order not to obtain 0 or 1, 
(See, Deng and Xu [2003]) transformed  
Ui = (Xi +0.5)/m. The parameters of MRG are Xi (generated sequence), αk(the multiplier), m(the 
modulus)and the order k. The maximum period of an MRG of an order k is mk − 1, which is 
obtained if the characteristic polynomial is as given below;  
 
f(x) = xk − α1xk−1 − ••• − αk, (12) 
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 is a primitive polynomial and the modulus is prime. MRG is an improvement of LCG as it has 
good empirical performance, long periods and higher dimensional uniformity when compared to 
LCG. MRG reduces to LCG when its order k=1.  When the order k of MRG is large, it becomes 
less efficient as it needs several multiplications compared to LCG which needs only one 
multiplication. To improve the efficiency of MRG many authors and researchers proposed 
improvements to it. Deng and Lin [2000] proposed FMRG which needs only one multiplication like 
LCG, thus in addition to features inherent in MRGs, FMRG is very fast, making it as efficient as 
LCG. Deng and Xu [2003] and Deng [2005] improved the performance of FMRG by proposing a  
system of DX generators which are fast, portable and efficient with maximal period compared with 
FMRG. They fixed the coefficient of the non-zero multipliers to be equal.  The DX (DX-k-s(s =1 
t4)) generators by  
Deng and Xu [2003] are as stated below:  

 
1. DX-k-1 [FMRG] (α1 = 1, αk = B). 

 
Xi = Xi−1 + BXi−k mod m,   i ≥ k.(13) 

 
2. DX-k-2 (α1 = αk = B). 

 
Xi = B (Xi−1 + Xi−k) mod m,   i ≥ k. (14) 

 

3. DX-k-3 (α1 = α�k/2� = αk = B). 
 

Xi = B (Xi−1 + Xi−�k/2� + Xi−k) mod m,   i ≥ k. (15) 
 
 
 
 
 
 
 
 

4. DX-k-4 (α1 = αk/3 = α�2k/3� = αk = B). 
 

Xi = B (Xi−1 + Xi−�k/3 + Xi−�2k/3� + Xi−k) mod m,   i ≥ k. (16) 
 
 
 
3.1.1   Predicting MRG Generator 
The characteristics equation of MRG as defined in (12) has been determined by the first 2k terms 
of the sequence using a system of k equations (See, Lidl and Niederreiter [1994]). MRG 
sequence with the modulus and the partial sequence known can also be predicted, when the 
system of linear equations which can be formed using the recurrence of (11) is solved (See, 
Stinson [2006]) as shown below;  
 

• α1X1 + α2X2 + ••• + αkXk = Xk+1 mod m 
 

• α1X2 + α2X3 + ••• + αkXk+1 = Xk+2 mod m 
. 

•                                                                                . 
. 

• α1Xk + α2Xk+1 + ••• + αkX2k−1 = X2k mod m 
 
These systems of linear equations can be re-written in matrix format as 
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Xk+1 
 

Xk+2      = 
 
 

X2k 
 
 

X1        X2     •••     Xk                          α1 
 
α2 

X2 X3 •••  Xk+1 
. 
. 
. 

Xk   Xk+1    •••   X2k−1                   αk 
  
   
 
The above equation can also be re-written as X (column), α (column) and M (matrix) as shown 
below,X = M* α (mod m). (17)This gives rise to k equations in k unknowns. If the matrix M (k 
× k) in (17) has an inverse (mod m), then the solution to (17) can be obtained thus; α= M−1* X 
(mod m). (18)The values of the multipliers (α1, α2, •••, αk) can then be 
obtained by solving (18). Hence this will lead to the prediction of MRG sequence of (11), given 
the modulus m. If the modulus of MRG is not known but the partial sequence 
(Xk+1,Xk+2,Xk+3,...,X2k) (at least 2k terms) for k-th order MRG is given, the sequence of the 
MRG can be predicted by forming a matrix of (k + 1) rows using consecutive terms of the 
sequence as done in the case of LCG. The determinant D of the matrix can then be 
calculatedcalculated is an integer multiple of the modulus m, thus D (mod m) =0. The actual 
modulus is calculated thus m = gcd (D, for a number of matrices (about 4 -5)). The sequence of 
the MRG is then used to form a matrix equation; the modulus is substituted and used in solving 
the equation of (18) to calculate other parameters of the MRG. Given the following MRG 
sequences; 1870519315, 618460120, 287572083, 2134648799, 83050304, 1713934911, 
1872854851 with initial seeds of X0 = 12345678, X1 = 207482415, X2 = 79098924 and modulus 
m = 2147483647, of k-th order =3, we used (17) and (18) to obtain the parameters of the MRG 
and hence predict its sequence as  
shown below; 
  

 
2134648799 

 
83050304 

1713934911 
  
    
 1870519315 
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= 
618460120 

 
287572083 

 
 

618460120 287572083          α1 
 
 

287572083 2134648799          α2 
 

2134648799 83050304            α3 
   
The solution to the above matrix equation in modulus m (we developed a c-code using NTL 
(Number Theory Library) packages to solve the matrix equation) gives the parameters 
(multipliers) of the MRG, the solution is as  
stated below;  
(α1, α2, α3) = (16807, 1036675, 1047849).  
The MRG sequence can be predicted by substituting the parameters obtained in (11), which will 
give the matrix equation as  
 
 
Xi = (16807Xi−1 + 103667Xi−2 + 1047849Xi−3) mod 2147483647, i ≥ 3 (19) 
where X0 = 12345678, X1 = 207482415, X2 = 79098924. Using (19), we predicted the sequence 
of the MRG.  
When this method of obtaining the parameters of MRG is appliedto our proposed algorithm 
(section 4) for the MRG, the parameters of the MRG was not obtained because our proposed 
algorithm hides the MRG sequence making it difficult for an attacker to infer or predict the 
sequence. Thus knowing the partial sequence or any of the parameters of the MRG does not 
pose a threat any longer when our proposed algorithm is applied.  
 

4.   Algorithm for secure and efficient pseudo-random number generator 
 
In order to make LCGs and MRGs and other linear PRNG strong cryptographic generators.  We 
propose an algorithm that will transform the linear sequence generated by the PRNGs. The 
transformation (20) hides the generated bits sequence, breaks the linear structure of the 
sequences and then perform a bitwise exclusive OR between the original bits and the 
transformed bits 
 
The output of our algorithm gives a bit sequence which will be practically impossible for an 
attacker to infer in computational time. Our algorithm is stated below;  
 
Yi = Xi T (Xi+1). (20) 
In transforming the generated bits, we first truncate the bit performing a binary shift operation as 
shown  
below;  
STEP 1: A transformation is performed on the sequence (Xi)  
 
Xi = (b1, b2... bn) mod 2                                                                      (21) 
The transformation produces T (Xi+1) given below;  
T (Xi+1) = (bn, bn−1... b2, b1) mod 2.                                                            (22) 
STEP 2: A bitwise exclusive-or operation is then performed between the transformed and the 
original generated sequences as shown below;  
 
Yi = Xi T (Xi+1), (23) 
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where  denotes exclusive OR operation between the transformed sequence and the original 
generated sequence. The exclusive OR operation is used in producing a secure cryptosystem as 
explained in the next subsection. The final output of our algorithm (23) gives a cryptographically 
strong pseudorandom sequence which is computationally difficult to infer or predict. The 
transformed sequence hides the bits for each of the generated output sequence and breaks its 
linear structure making it impossible for the cryptanalyst to infer or predict the linear equence or 
solve the characteristics equation of the MRGs by a system of k equations Our algorithm not only 
hides the originally generated bits but it performs exclusive OR operation between the 
transformed bits and originalbits. The exclusive OR operation is necessary to ensure that the final 
output sequence is computationally  
difficult to infer.  

 

 
4.1  Simulation of the Proposed Algorithm 
 
 
We applied our algorithm as stated in (23) to equations (2), (13), (14), (15) and (16).  We 
implemented our algorithm using c-code supplements, various parameters of both LCG and 
MRGs were used. The algorithm is based on a 32-bit binary sequence. Our algorithm produces a 
secure generator that is very fast and computationally difficult to infer or predict, this is evidence 
by the following features;  
 
• Our algorithm generates its bits sequence in polynomial computable time; the generation of the 
bits is also very fast.  
• We used linear sequences (LCGs, MRGs) by Deng [2005, 2008] that passed standard statistical 
tests, thus both the input and output bit-strings of the algorithm are well distributed.  
• The algorithm uses initial seed of short sequences and generates output long sequences bit-
strings that are well distributed.  
• Our algorithm hides the entire bits of the bit-string generated by linear generators, making it 
computationally difficult for an attacker to infer or predict the bit string of the generator.  
 
Our Algorithm hides the bits generated by the linear generators using the following techniques;  
• Our algorithm transforms the bit-string sequence by reversing the order of the bits of the bit-
string after  
truncating its lower bits before performing a Bitwise Exclusive-OR operation on the bits.  
• The reversal of the bit-string sequence by our algorithm breaks the linear structure of the linear 
sequences  
producing a non-linear sequence.  Also non-linear sequence is more secure when compared with 
linear  
structure as evidenced by BBS, BM and RSA generators  
• The Bitwise Exclusive-OR between the transformed bit-string and the original bit-string by our 
algorithm  
is used to toggle the positions of bits in the original bit-string with the transformed bit-string 
making it  
computationally difficult for the attacker to  predict correctly the position of the bits in the original 
bit-string.  
• The Bitwise Exclusive-OR between the transformed bit-string and original bit-string is used to 
produce a  
cipher bit-sting.  Thus when an attacker attempts to predict the bit-string he will only succeed in 
getting 
 the cipher bit and not the original bit.  This makes the bit-string produced by our algorithm to be 
computationally difficult to predict  
• The Bitwise Exclusive-OR operation introduces a piling-up lemma (See, Lemma 3.1 of Stinson 
[2006, page  



Matthew N. Anyanwu, Lih-Yuan Deng & Dipankar Dasgupta 

International Journal of Computer Science and Security, (IJCSS) Volume (3) : Issue (3) 196 

81]), which ensures that the binary variables are independent, that is the state of one has no 
effect on the  
state of any of the others which also ensures equi-distribution among the binary bits. Thus it is 
difficult for  
an attacker to predict the transformed even if some part of the sequence is revealed.  
Thus our algorithm produces a strong generator by transforming the linear sequences produced 
by LCG and MRGs into unpredictable sequence of bits. 
 
 
4.2 Security of the Proposed Algorithm 
 
 
The figures below shows that the sequence generated by linear generators is linear in structure 
(figure 1) while our transformed sequence is not linear (figure 2). We used LCG (B, m) to denote 
LCG (2) with multiplier B and prime modulus m. Thus we used LCG (B=3, m=127) to show that 
LCG sequence is linear (figure1), while the transformed LCG (B=3, m=127) is not linear. Figure 2 
shows that our algorithm breaks the linear structure of the linear generators sequences, thus 
making them more difficult to infer or predict.  The linear structure of the linear sequences is 
broken when our algorithm is applied by reversing the order of the bits, shifting the bits by one 
position to the right, and performing exclusive-OR operation between the original bit sequence 
and the transformed bit sequence.  Also the same result in figure 1 and figure 2 will be obtained if 
MRGs and MRG ransformed by our algorithm is used. The security property of our proposed 
algorithm is based on the reversal of the bits sequence and the bitwise exclusive-OR operation 
between the original bit sequenceand the reversed bit sequence. Our proposed algorithm has 
transformed the linear sequence of LCG and MRG into non-linear sequence. Thus a hacker can 
obtain information about the parameters of LCG and MRG generators as stated above(for LCG 
generator) and given in the Table 1(for MRG generator)and attempt to used it to break our 
proposed algorithm but our algorithm hides the entire sequence generated by the linear 
generators making it difficult for him to crack the algorithm, hence knowing some of the partial 
sequence or the parameters of the linear generators LCG(B, c and m) and MRG(K, αk, and m) 
will no longer pose a security threat to the generators, as they cannot be used to solve for or 
predict the sequence of the generators. This makes our algorithm difficult to infer by attackers.  
Also if the hacker has information about the algorithm we used in transforming the generator 
sequences, it will be difficult for him to reverse (invert) the sequences back to linear sequence. 
Thus the transformed sequence now behaves like a non-linear sequence, which is difficult to infer 
or break. 
 
 
4.3 Recommended Parameters for Our Proposed Generator 
 
The modulus of the generators (LCG and MRG) transformed by our proposed algorithm and the 
one we have been using for our experiments is rather too small to be used for practical purposes.  
Park and Miller [1988] published minimal standard for LCG parameters. The minimal standards 
are large prime numbers of modulus m =231 − 1, B=16807 and c (constant term) =0 for 32-bit 
CPUs. We recommend this minimal standard for LCG parameters when our proposed algorithm 
is applied. Table1 below shows some of the parameters of DX generators by Deng [2008] 
determined by efficient search algorithm.  We recommend the parameters in table 1 for our 
proposed algorithm used in transforming the sequence of MRG (DX) generators.  The parameters 
in table 1 are used in producing efficient and portable multiple recursive generators of large order 
with good empirical performance and a period of approximately 1093384 (See, Deng [2008]). 
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               Table 1: List of k, m and      α<2
30

  for     DX-k-s generators 

k m s=1 s=2 s=3 s=4 
5003 2146224359 1073727083 1073741516 1073730698
 1073740466 
6007 2137498943 1073738651 1073715261 1073729141
 1073738504 
7001 2146873559 1073709808 1073728419 1073738188
 1073735327 
8009 2142326903 1073717208 1073726014 1073733016
 1073719175 
9001 2140247399 1073737583 1073717540 1073733156
 1073732451 
10007 2147051903 1073726195 1073702542 1073723329
 1073730725 
 
 
 

5. Comparison between Classical Generators and Transformed 
Generators 

 
As stated in proceeding sections classical generators, that are fast in generating their output 
sequences like LCGs are not cryptographically strong since their sequences can be predicted. 
Also classical generators that are secure are not suitable for cryptographic applications as they 
are very slow in generating their output sequences since the generators produces one bit at a 
time rather than the entire sequence at each step of the generation (See, Boyar [1989]) but they 
are still been used in security applications they are readily available. Classical generators like 
LCG can be easily predicted if the previous elements of the sequence and the initial value are 
given, without knowing the modulus and the multiplier (See, Hugo [1999]). LCG can also be 
predicted if the modulus and the previous sequence is given even though the multiplier and the 
initial seed are not known by using the inverse of the modulus (See, Frieze and Langarias 
[1984]). MRGs, FMRGs including DX generators can be predicted if the characteristics 
polynomial equation can be solved using a system of k equations (See, Lidl and Niederreiter  
[1994]).  The BBS, BM and RSA generators are secure but they are not very fast in generating 
their bits sequence, the output sequence is generated one bit at a time . Most classical 
generators are linear generators in that the structure of the generated sequences is too regular 
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and have a coarse lattice structure (See, Takashi et al [1996]). But the transformed sequence by 
our algorithm is fast, efficient, non-linear and strong, also difficult to predict or infer. 

 
6. Conclusion 

Experimental results and tests have shown that classical generators like LCGs that generate 
pseudorandom linear sequences are not suitable for cryptographic purposes, even though it is 
simple, efficient and easy to generate. Other classical generators like BBS, RSA, and BM etc that 
are thought to be secure are equally not good enough for cryptographic purposes as they are 
slow in generating the next random bit sequence. Also the recent advances in random number 
generation (MRGs and FMRGs) are fast and efficient in generating linear sequences with long 
periods and good empirical performance, but still they are not cryptographically strong as the 
linear system can be predicated using a system of unique k equations. Our proposed algorithm 
produces a strong pseudorandom sequence that is suitable for cryptographic purposes and 
difficult to predict/infer by transforming the linear sequences and breaking its linear structure. The 
transformation hides the linear bits of the generated linear sequence preventing the attacker from 
accessing the generated output sequence, even with the knowledge of the partial sequence, 
parameters of the generators and the algorithm used in transforming the generator sequence. 
Thus knowing the parameters and partial sequence of the generators does not pose any threat 
any longer as the prediction of the generator sequence will no longer be an easy one. Also the 
knowledge of the transformation algorithm will not be of much use to the attacker as he will find it 
difficult to reverse (invert) the transformed sequence back to linear sequence. The bits sequence 
generated by our algorithm has features described in section 4.2, which makes the output 
sequence to be fast, strong and also difficult to predict or infer. 
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