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Abstract 

 
One of the important problems in data mining is discovering association rules from spatial gene 
expression data where each transaction consists of a set of genes and probe patterns. The most time 
consuming operation in this association rule discovery process is the computation of the frequency of 
the occurrences of interesting subset of genes (called candidates) in the database of spatial gene 
expression data. In this paper, an efficient method for mining strong association rules from spatial 
gene expression data is proposed and studied. The proposed algorithm adopts Boolean vector with 
relational AND operation for discovering the frequent itemsets without generating candidate itemsets 
and generating strong association rules with fixed antecedents. Experimental results show that the 
proposed algorithm is fast and memory efficient for discovering of frequent itemsets and capable of 
discovering meaningful association rules in effective manner.  
 
Keywords: Spatial Gene expression data, Association Rule, Frequent itemsets, Boolean vector, Similarity 
Matrix. 

  

1. INTRODUCTION 
The main contribution here has been a great explosion of genomic data in recent years. This is due to 
the advances in various high-throughput biotechnologies such as spatial gene expression database. 
These large genomic data sets are information-rich and often contain much more information than the 
researchers who generated the data might have anticipated. Such an enormous data volume enables 
new types of analyses, but also makes it difficult to answer research questions using traditional 
methods. Analysis of these massive genomic data has two important goals:  
1) To determine how the expression of any particular gene might affect the expression of other 

genes 
2) To determine what genes are expressed as a result of certain cellular conditions, e.g. what genes 

are expressed in diseased cells that are not expressed in healthy cells?  
The most popular pattern discovery method in data mining is association rule mining. Association rule 
mining was introduced by [4]. It aims to extract interesting correlations, frequent patterns, associations 
or casual structures among sets of items in transaction databases or other data repositories. The 
relationships are not based on inherent properties of the data themselves but rather based on the co-
occurrence of the items within the database. The associations between items are commonly 
expressed in the form of association rules. In this setting, attributes which represents items are 
assumed to have only two attributes and thus referred as Boolean attributes. If an item is contained in 
a transaction, the corresponding attribute value will be 1; otherwise the value will be 0. Many 
interesting and efficient algorithms have been proposed for mining association rules for these Boolean 
attributes, for examples, Apriori [3], DHP [6], and partition algorithms [7]. Currently most association 
mining algorithms are dedicated to frequent itemsets mining. These algorithms are defined in such a 
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way that they only find rules with high support and high confidence. A characteristic of frequent 
itemsets mining is that it relies on there being a meaningful minimum support level that is sufficiently 
high to reduce the number of frequent itemsets to a manageable level. A huge calculation and 
complicated transaction process are required during the frequent itemsets generation procedure. 
Therefore, the mining efficiency of the Apriori-like algorithms is very unsatisfactory when transaction 
database is very large particularly spatial gene expression database. 
In this paper, an attempt has been made to propose a novel, fast and memory efficient algorithm for 
discovering of frequent itemsets and for generating meaningful association rules in effective manner 
from spatial gene expression data.  

 

2. MATERIALS AND METHODS 

2.1 SPATIAL GENE EXPRESSION DATA  

The Edinburgh Mouse Atlas gene expression database (EMAGE) is being developed as part of the 
Mouse Gene Expression Information Resource (MGEIR) [1] in collaboration with the Jackson 
Laboratory, USA. EMAGE (http://genex.hgu. mrc.ac.uk/Emage/database) is a freely available, curated 
database of gene expression patterns generated by in situ techniques in the developing mouse 
embryo. The spatial gene expression data are presented as N×N similarity matrix. Each element in 
the matrix is a measure of similarity between the corresponding probe pattern and gene-expression 
region. The similarity is calculated as a fraction of overlap between the two and the total of both areas 
of the images. This measurement is intuitive, and commonly referred to as the Jaccard index [2]. 
When a pattern is compared to itself, the Jaccard value is 1 because the two input spatial regions are 
identical. When it is compared to another pattern, the Jaccard Index will be less than one. If the 
Jaccard Index is 0, the two patterns do not intersect. If a Jaccard Index value is close to 1, then the 
two patterns are more similar.  
However, biologists are more interested in how gene expression changes under different probe 
patterns. Thus, these similarity values are discretized such that similarity measure greater than some 
predetermined thresholds and converted into Boolean matrix. 

2.2 DATA PREPROCESSING 

Preprocessing is often required before applying any data mining algorithms to improve performance 
of the results. The preprocessing procedures are used to scale the data value either 0 or 1. The 
values contained in the spatial gene expression matrix had to be transformed into Boolean values by 
a so-called discretization phase. In our context, each quantitative value has given rise to the effect of 
four different discretization procedures [2]: Max minus x% method, Mid-range-based cutoff method, 
x% cut off and x% of highest value method. 
Max minus x% procedure consists of identifying the highest expression value (HV) in the data matrix, 
and defining a value of 1 for the expression of the gene in the given data when the expression value 
was above HV – x% of HV where x is an integer value. Otherwise, the expression of the gene was 
assigned a value of 0 (Figure 1a).  
Mid-range-based cutoff (Figure 1b) identifies the highest and lowest expression values in the data 
matrix and the mid-range value is defined as being equidistant from these two numbers (their 
arithmetic mean). Then, all expression values below or equal to the mid-range were set to 0, and all 
values strictly above the mid-range were set to 1.  
x% of highest value approach (Figure 1c) identifies data in which its level of expression is  in the 5% 
of highest values. These are assigned the value 1, and the rest were set to 0. 
Value greater than x% approach (Figure 1d) identifies the level of expression and assigns the value 1 
when it is greater than given percentage and the rest are set to 0.  
From these four different procedures resulted in different matrix densities, the first and last procedure 
resulted in the same number of Boolean 1 results for all gene expressions, whereas the second and 
fourth procedure generated same densities of 1, depending on the gene expression pattern 
throughout the various data matrix. 
From the similarity matrix, two different sets of transactions are constructed, which in turn lead to two 
different types of association rules. 

1. The items I are genes from the data set, where a transaction T ⊆ I consists of genes that all have 

an expression pattern intersecting with the same probe pattern. 

2. The items I are the probe patterns, where a transaction T ⊆ I consists of probe patterns all 

intersecting with the expression patterns in the same image. 
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To create the first type of transactions, we take for each probe pattern r, every gene g from which its 
associated gene expression pattern g satisfies the minimum similarity β, i.e., similarity(r, g) > β, to 
form the itemsets. 
The second type of transactions is created in a similar way. For each gene expression pattern g in the 
database we create an itemsets that consists of a set of probe patterns that intersect with the gene 
expression pattern g. Each probe pattern r must satisfy the minimum similarity β, i.e.., similarity(r, g) > 
β, to get included in the itemsets. 
 

 

 FIGURE 1a: Results of Max minus 25% method  FIGURE 1b: Results of Mid-range-based cutoff 
 

 

 

 
 
 
 
 
 
 
 
 
 
 

FIGURE 1c: Results of x% of highest value approach                FIGURE1d: Results of Value greater than x% approach 

 
FIGURE 1: Schematic description of the discretization protocols used 

2.3 ASSOCIATION RULE MINING  

The Apriori-like algorithms adopt an iterative method to discover frequent itemsets. The process of 
discovering frequent itemsets need multiple passes over the data. .The algorithm starts from frequent 
1-itemsets until all maximum frequent itemsets are discovered. The Apriori-like algorithms consist of 
two major procedures: the join procedure and the prune procedure. The join procedure combines two 
frequent k-itemsets, which have the same (k-1)-prefix, to generate a (k+1)-itemset as a new 
preliminary candidate. Following the join procedure, the prune procedure is used to remove from the 
preliminary candidate set all itemsets whose k-subset is not a frequent itemsets [3]. 
From every frequent itemset of k>=2, two subsets A and C, are constructed in such a way that one 
subset C, contains exactly one item in it and remaining k-1 items will go to the other subset A. By the 
downward closure properties of the frequent itemsets these two subsets are also frequent and their 
support is already calculated. Now these two subsets may generate a rule A →C, if the confidence of 
the rule is greater than or equal to the specified minimum confidence. 

2.4 ALGORITHM DETAILS 

[1] Let I={i1, i2, …, in} be a set of items, where each item ij corresponds to a value of an attribute and 
is a member of some attribute domain Dh={d1, d2, …, ds}, i.e. ij Є Dh. If I is a binary attribute, then 
the Dom (I)={0,1}. A transaction database is a database containing transactions in the form of (d, 
E), where d Є Dom(D) and E Є I. 

[2] Let D be a transaction database, n be the number of transactions in D, and minsup be the 
minimum support of D. The new_support is defined as new_support = minsup × n. 
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[3] Proposition 1: By Boolean vector with AND operation, if the sum of ‘1’ in a row vector Bi is 
smaller than k, it is not necessary for Bi to involve in the calculation of the k- supports. 

[4] Proposition 2: According to [5], Suppose Itemsets X is a k-itemsets; |FK-1(j)| presents the 
number of items ‘j’ in the frequent set FK-1. There is an item j in X. If | FK-1(j)| is smaller than k-1, 
itemset X is not a frequent itemsets. 

[5] Proposition 3: |FK| presents the number of k-itemsets in the frequent set FK. If |FK| is smaller than 
k+1, the maximum length frequent itemsets is k. 

[6] Lemma 1: If there exists two rules A→B and A→ {B U X}, where X Є AUB, then the confidence of 
the second cannot be larger than first one. 

The proposed algorithm for finding the association rules in terms of spatial gene expression data in 
the form of similarity matrix consists of five phases as follows: 
1. Transforming the similarity matrix into the Boolean matrix 
2. Generating the set of frequent 1-itemsets F1 
3. Pruning the Boolean matrix 
4. Generating the set of frequent k-itemsets Fk(k>1) 
5. Generating association rules from the generated frequent itemsets with confidence value greater 
than a predefined threshold (minconfidence). 
A detailed description of the proposed algorithm is described as follows:  
 
Part 1: Algorithm for generating frequent itemsets 
Input: Spatial Gene Expression data in similarity matrix (M), the minimum support. 
Output: Set of frequent itemsets F.  
1. Normalize the data matrix M and transformed into Boolean    
    Matrix B; 
   // Frequent  1-itemset generation  
2.  For each column Ci of B 
3.    If sum(Ci) >= new_support   
4.       F1 =  { Ii}; 
5.    Else delete Ci from B; 
  // By Proposition 1 
6.  For  each row Rj of B 
7.    If sum(Rj) < 2 
8.     Delete  Rj from B; 
    // By Proposition 2  and 3 
9.  For (k=2; | Fk-1| > k-1; k++) 
10.  {  
      // Join procedure 
11.     Produce k-vectors combination for all columns of B; 
12.     For each k-vectors combination { Bi1, Bi2,…Bik} 
13.      {  E=  Bi1 ∩ Bi2  ∩.…∩Bik 
 14.         If sum(E) >= new_support 
15.         Fk = { Ii1, Ii2,…Iik} 
16.      } 
      // Prune procedure 
 17.  For each item Ii in Fk  
 18.      If  |Fk(Ii)| < k 
 19.         Delete the column Bi according to item Ii from B; 
 20.   For each row Rj of  B 
 21.      If sum(Bj) < k+1 
 22.          Delete Bj from B; 
 23.        k=k+1 
 24.     } 
 25. Return F = F1UF2….UFk 
 

This algorithm is capable of discovering all possible set of frequent itemsets subject to a user 
specified minimum confidence. 
 
Part 2: Algorithm for generating association rules. 
Input: Set of Frequent (F) with descending order of new_support count and minimum confidence. 
Output: Set of Association rules 

1. For all fk, fk Є F, k=1 to max_size-1  do  
2. { 
3. req_support= new_support(fk) X minconfidence   
4. total=0 
5. for all Fm , FmЄ F, m=k+1 to max_size do  
6.     { 
7.     if new_support(Fm) >= req_support then  
8.         {  
9. // By lemma 1 
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10.           If (Fk ⊆⊆⊆⊆ Fm) then  

11.                {  
12.                   total =totoal+1 
13.                   conf= new_support( Fm)/new_support(Fk) 

14.                    Generate the rule Fk → (Fm-Fk) &=conf and new_support=new_support(Fm) 
15.                } 
16.            else 
17.              If ( total < 2) continue step1 with next k 
18.             else  
19.                 total=0 
20.            } 
21.         } 
22. } 

    

This algorithm is capable of finding all association rules with a fixed antecedent and with different 
consequents from the frequent itemsets subject to a user specified minimum confidence very quickly. 
The proposed algorithm is avoiding the unnecessary checking for the rules based on the above 
lemma 1.The algorithm generate the rules with a fixed antecedent part. When all the rules with that 
antecedent are generated it will go to the next antecedent. For a given antecedent if all rules in the 
level, where k is the number of items in the consequent, have confidence less than the threshold, i.e.  
no rules are generated, and then the confidence of any rule in k+1 level also cannot be more than 
threshold. So checking for rules from this level onward can be avoided without missing any rules. Now 
the maximum possible confidence of the rule in the k+1 level will be minimum confidence of the two 
itemsets from which this is constructed. Since the confidence of only one of them is larger than the 
threshold, others must be less than the threshold. So the confidence of the rule in k+1 will be less 
than threshold. So, it is not necessary to check for the rules in the next level without missing any valid 
rule. So it can be concluded that the proposed algorithm is complete. 

 

3. RESULTS AND DISCUSSION 
The proposed algorithm was implemented in Java and tested on Linux platform. Comprehensive 
experiments on spatial gene expression data has been conducted to study the impact of 
normalization and to compare the effect of proposed algorithm with Apriori algorithm. Figure 2 and 3 
gives the experimental results for execution time (generating frequent itemsets and finding rules) vs. 
user specified minimum supports and shows that response time of the proposed algorithm is much 
better than that of the Apriori algorithm. In this case, confidence value is set 100% for the rule 
generation, which means that all the rules generated are true in 100% of the cases. 

 
FIGURE 2: Performance on Stage 14 of EMAGE Spatial Gene expression data (Minsupport vs. Execution time) 

 

 
FIGURE 3: Performance on Stage 17 of EMAGE Spatial Gene expression data (Minsupport vs. Execution time) 

 

Figure 4 and 5 gives the experimental results for memory usage vs. user specified minimum supports 
and results show that proposed algorithm uses less memory than that of Apriori algorithm because of 
the Boolean and relational AND bit operations.  
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FIGURE 4: Performance on Stage 14 of EMAGE Spatial Gene expression data (Minsupport vs. Memory usage) 

 

 
 

FIGURE 5: Performance on Stage 17 of EMAGE Spatial Gene expression data (Minsupport vs. Memory usage) 

 

 
 

FIGURE 6: Association rules and Minsup in Apriori algorithm Stage 14 of EMAGE Spatial Gene expression 

 

 
 

FIGURE 7: Association rules and Minsup in Proposed algorithm Stage 14 of EMAGE Spatial Gene expression 

 

The number of association rules decreases along with an increase in minimum support under a given 
specific minimum confidence, which shows an appropriate Minsupport (or Minconfidence) can 
constraint the number of association rules and avoid the occurrence of some association rules so that 
it cannot yield a decision. These results have shown in Figures 6-7 for the Stage 14 of EMAGE spatial 
gene expression data. The results are as expected and quite consistent with our intuition. 
 

4. CONCLUSION 
In this paper, a novel method of mining frequent itemsets and strong association rules from the spatial 
gene expression data has been proposed to generate frequently occur genes very quickly. The 
proposed algorithm does not produce candidate itemsets, it spends less time for calculating k-
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supports of the itemsets with the Boolean matrix pruned, and it scans the database only once and 
needs less memory space when compared with Apriori algorithm. The proposed algorithm is good 
enough for generating association rules from spatial gene expression data and it is very fast and 
memory efficient. Finally, the large and rapidly increasing compendium of data demands data mining 
approaches, particularly association rule mining ensures that genomic data mining will continue to be 
a necessary and highly productive field for the foreseeable future. 
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