
D.Vasumathi, Dr.A.Govardhan & K.Venkateswara Rao

International Journal of Computer Science and Security, (IJCSS) Volume (3): Issue (5) 358

PERFORMANCE IMPROVEMENTS AND EFFICIENT
APPROACH FOR MINING PERIODIC SEQUENTIAL ACCESS

PATTERNS

D. Vasumathi
Associate Professor, Department of Computer Science and Engineering,
JNTU College of Engineering.JNTU,
Kukatpally, Hyderabad-500 085, Vasukumar_devara@yahoo.co.in
Andhra Pradesh, India.

Dr. A. Govardhan

Principal, JNTU College of Engineering
JNTU,Jagityala, Karimnagar(Dist),
Andhra Pradesh, India

K.Venkateswara Rao
Associate Professor, Department of Computer Science and Engineering,
JNTU College of Engineering.JNTU,
 Kukatpally, Hyderabad-500 085,
Andhra Pradesh, India.

Abstract

Surfing the Web has become an important daily activity for many users. Discovering and
understanding web users’ surfing behavior are essential for the development of successful web
monitoring and recommendation systems. To capture users’ web access behavior, one
promising approach is web usage mining which discovers interesting and frequent user access
patterns from web usage logs. Web usage mining discovers interesting and frequent user access
patterns from web logs. Most of the previous works have focused on mining common sequential
access patterns of web access events that occurred within the entire duration of all web access
transactions. However, many useful sequential access patterns occur frequently only during a
particular periodic time interval due to user browsing behaviors and habits. It is therefore
important to mine periodic sequential access patterns with periodic time constraints. In this paper,
we propose an efficient approach, known as TCSMA (Temporal Conditional Sequence Mining
Algorithm), for mining periodic sequential access patterns based on calendar-based periodic time
constraint. The calendar-based periodic time constraints are used for describing real-life periodic
time concepts such as the morning of every weekend. The mined periodic sequential access
patterns can be used for temporal-based personalized web recommendations. The performance
of the proposed TCSMA is evaluated and compared with a modified version of Web Access
Pattern Mine for mining periodic sequential access patterns.

Keywords: Periodic Sequential Access Patterns, Web Access Patterns, Association Rule, Web Log Mining,
 TCSM&WAPM Algorithm

D.Vasumathi, Dr.A.Govardhan & K.Venkateswara Rao

International Journal of Computer Science and Security, (IJCSS) Volume (3): Issue (5) 359

1. INTRODUCTION

With the explosive growth of resources available on the Internet, web surfing for useful
information has become an important daily activity for many users. Web users surf for
different web resources according to their needs, knowledge and interests. The discovery
and understanding of web users’ surfing habits are essential for the development of
successful web monitoring and recommendation systems.

Web usage mining aims to discover interesting and frequent user access patterns from web
usage data. The discovered knowledge is very useful for modeling users’ web access
behavior. Statistical techniques have traditionally been used for extracting statistical
information from web logs. Association rule mining and sequential pattern mining have also
been used to mine association and sequential patterns from web logs for web user access
behavior. We can also visualize association and sequential patterns using WUM. However,
most of these techniques do not consider the temporal aspect of access patterns.

Web usage mining[1], also known as web log mining, aims to discover interesting and
frequent user access patterns from web browsing data that are stored in web server logs,
proxy logs or browser logs. The discovered knowledge can be used for many practical
applications such as web recommendations, adaptive web sites, and personalized web
search and surfing. Many approaches[2-5] have been proposed for discovering sequential
patterns from transaction databases. However, most of the pervious works only focused on
mining common sequential access patterns of web access events, which occurred frequently
within the entire duration of all web access transactions. In practice, many useful sequential
access patterns occur frequently only in particular periodic time interval such as the morning
of every weekend, but not in other time intervals due to user browsing behaviors and habits.
Such sequential access patterns are referred to a periodic sequential access patterns, where
periodic time intervals are real-life time concepts such a year, monthly, week and day. With
periodic sequential access patterns, we can recommend or predict the occurrence of a web
page during a particular time interval.

Recently, temporal association rule mining algorithms[6-8] have been proposed for mining
temporal web access patterns. These works have discussed different ways for defining time
constraints. However, such algorithms are mainly based on association rules that ignore the
sequential characteristics of web access patterns. In addition, these algorithms also
encounter the same problem as most Apriori-based algorithms that require expensive scans
of database in order to determine which of the candidates are actually frequent. Different
from temporal association rule mining, we propose an efficient approach, known as TCSMA
(Temporal Conditional Sequence Mining Algorithm), to mine periodic sequential access
patterns from web access transaction databases. We also define calendar-based periodic
time constraints, which can be used for describing real-life time concept[9].

The rest of this paper is organized as follows. In Section2, we discuss calendar based
periodic time constraints. The proposed TECMA is presented in Section3. the experimental
results are shown in Section4. finally, the conclusions are given in Section5.

D.Vasumathi, Dr.A.Govardhan & K.Venkateswara Rao

International Journal of Computer Science and Security, (IJCSS) Volume (3): Issue (5) 360

2 CALENDAR-BASED PERIODIC TIME CONSTRAINTS

In this section, we define calendar-based periodic time constraints, which can be used for
describing real-life time concepts. The calendar-based periodic time constraints consist of
calendar template and calendar instance.

Definition 2.1

 A calendar template is defined as CBT = (CU1 I1,CU2 I2, …,CUn In).
Each CUi is a calendar unit such as year, month, week, day, etc. and Ii is a closed interval that
contains all valid time values (positive integers) of CUi. A calendar template represents a
hierarchy of calendar units and valid time intervals. For example, a typical calendar template can
be in the form of (year [2007, 2008], month[1, 12], day [1, 31]) or (day-of-week [1, 7], hour [0, 3]).

Definition 2.2

 Given a calendar template CBT = (CU1 I1,CU2 I2, ..., CU n In), a calendar instance is denoted

as (I1’, I2’, ..., In’), where II ’ is an nonempty set of positive integers and II ’⊂I i, or is a wild-card
symbol * that represents all valid time values in Ii. Calendar instances are formed from calendar
template by setting some calendar units to specific values. It can then be used for describing real-
life time concepts. For example,

 Given CBT = (day-of-week [1, 7], hour [0, 23]), we can have
 CI = ({6, 7}, {5, 6, 7, 8}) for the early morning of every weekend or
 CI = (*, {19, 20, 21}) for the evening of everyday.

In practice, some real-life time concepts such as morning or evening may have different
meanings to different people depending on their personal behaviors and habits. For example,
some people consider that morning is from sunrise to noon, while others consider that it is from 5
AM to 9 AM. Therefore, calendar instances can be defined according to actual practical
requirements. We list some special calendar instances based on CBT = (day-of-week [1, 7], hour
[0, 23]) in Table 1.

Time Concept Calendar Instances

Early morning (*,{5.6.7.8})

Morning (*,{9,10,11})

Noon (*,{12})

Afternoon (*,{13,14………17})

Evening (*,{18,19,20,21})

Night (*,{22,23,0…….4})

Weekdays ({1,2,………5}), *)

Weekend ({6,7}), *)

TABLE 1: Some special calendar instances.

Definition 2.3

A calendar-based periodic time constraint denoted as (C) = [CBT, CI] Where CBT = calendar
based template and CI = one calendar instance For example, C = [(day-of-week [1, 7], hour [0,
23]), ({6, 7}, {8, 9})] represents “8:00 AM to 9:59 AM of every weekend”.

D.Vasumathi, Dr.A.Govardhan & K.Venkateswara Rao

International Journal of Computer Science and Security, (IJCSS) Volume (3): Issue (5) 361

 Given C = [CBT, CI], we say time t is covered by C If t belongs to the time interval defined
 by C. For example, t1 = “2007-11-08 08: 22:45 Saturday” and t2 = “2007-11-02 09:45:30 Sunday”

are covered by C. If we denote the calendar-based periodic time constraint Call = [CBT, (*, ..., *)],
Where CBT is any calendar based template, then it will specify all the time intervals.

3 THE TCSMA (TEMPORALCONDITIONALSEQUENCE MINING ALGORITHM)

In this section, we discuss our proposed approach, known as TCSMA (Temporal Conditional
Sequence mining algorithm), for mining common and periodic sequential access patterns from a
given web access transaction database.

3.1 Problem Statement

Generally, web logs can be regarded as a collection of sequences of access events from one
user or session in timestamp ascending order. Preprocessing tasks [9] including data cleaning,
user identification, session identification and transaction identification can be applied to the
original web log files to obtain the web access transactions.

Let UAE = A set of unique access events, (which represents web resources accessed by
 users, i.e. web pages, URLs, or topics) WAS = A web access sequence

 WAS = e1e2…en (ei ∈ UAE for 1 ≤ i ≤ n) is a sequence of access events, and
 |WAS| = n is called the length of WAS. Note that it is not necessary that e i ≠ e j for I ≠ j in
 WAS, that is repeat of items is allowed
 WAT = A web access transaction
 WAT = (t, WAS), consists of a transaction time t and a web access sequence WAS

All the web access transactions in a database can belong to either a single user (for client-
side logs) or multiple users (for server-side and proxy logs). The proposed algorithm does not
depend on the type of web logs that contains the web access transactions. Suppose we have a
set of web access transactions with the access event set, UAE = {a, b, c, d, e, f}. A sample web
access transaction database is given in Table 2.

Transaction Time Web Access Sequence

2007-11-03 20:21 : 10 Saturday abdac
2007-11-04 21:45 : 22 Sunday eaebcac

2007-11-07 18:23 : 24 Wednesday cacbb
2007-11-10 21:10 : 10 Saturday babfae
2007-11-10 21:30 : 20 Saturday afbacfc

TABLE2: A database of web access transactions

WAS = A web access sequence and WAS = e1e2…ek ek+1…en,
WAS prefix = e1e2…ek is called a prefix sequence of WAS, or a prefix sequence of ek+1 in WAS.And
WAS suffix = ek+1ek+2…en is called a suffix sequence of WAS or a suffix sequence of ek in WAS.
Now A web access sequence (WAS) = WAS prefix + WAS suffix.
For example,
WAS = abdac can be denoted as WAS = a+bdac = ab+dac = … = abda+c.

Let S1 and S2 be two suffix sequences of ei in WAS, and S1 is also the suffix sequence of ei in
S2. Then S1 is called the sub-suffix sequence of S2 and S2 is the super-suffix sequence of S1. The
suffix sequence of ei in WAS without any super-suffix sequence is called the long suffix

D.Vasumathi, Dr.A.Govardhan & K.Venkateswara Rao

International Journal of Computer Science and Security, (IJCSS) Volume (3): Issue (5) 362

sequence of ei in WAS. For example, if WAS = abdacb, then S1 = cb is the sub-suffix sequence
of S2 = bdacb and S2 is the super-suffix sequence of S1. S2 is also the long suffix sequence of a in
WAS.
Given

WATDB= A web access transaction database
WATDB = {(t1, S1), (t2, S2), …, (tm, Sm)} in which WASi (1 ≤ i ≤ m) is a web access sequence, and ti
 is a transaction time.
Given a calendar-based periodic time constraint C that is defined in Section 2.
WATDB (C) = {(ti, WASi) | ti is covered by C, 1 ≤ I ≤m} is a subset of WATDB under C.
| WATDB (C)| is called the length of WATDB under C. The support of WAS in WATDB under C is
defined in equation (3.1).

A web access sequence WAS is called a periodic sequential access pattern,
 if sup(WAS, C) ≥MinSup, where MinSup is a given support threshold.
Let’s consider the sample database in Table 2.
Suppose MinSup = 75% and calendar-based periodic time constraint

C =[(day-of-week [1, 7], hour [0, 23]), ({6, 7}, {20, 21})].
It is required to find all web access patterns supported by at least 75% access sequences within
the time interval from 8:00 PM to 9:59 PM of every weekend from the sample database. If we use
Call as the calendar-based periodic time constraint, the mining results should be all common
sequential access patterns satisfying the given support threshold.

3.2 Proposed Approach

As shown in Figure:1, the proposed TCSMA consists of the following steps:

(1) Constraint Preprocessing;
(2) Constructing Event Queues for Conditional Sequence Base;
(3) Single Sequence Testing for Conditional Sequence Base;
(4) Constructing Sub-Conditional Sequence Base; and
(5) Recursive Mining for Sub-Conditional Sequence Base.

│{Si│WAS є Si,(ti,Si) є WATDB(C)} │

 │ WATDB(C) │

 Sup(WAS,C)= 3.1

D.Vasumathi, Dr.A.Govardhan & K.Venkateswara Rao

International Journal of Computer Science and Security, (IJCSS) Volume (3): Issue (5) 363

FIGURE 1: Overview of the proposed TCSMA

3.2.1 Constraint Preprocessing

The first step in the TCSMA is to filter the web access transaction database by discarding all
transactions that do not satisfy the given calendar-based periodic time constraint. The remaining
constraint-satisfied (Sc) transactions are then used to construct the initial conditional sequence
base. The initial conditional sequence base and conditional sequence base are defined as
follows.

Definition 3.1

The initial conditional sequence base, denoted as Ini-CSB, is the set of all constraint-satisfied
transactions in the given web access transaction database, where constraint-satisfied
transactions are web access transactions whose transaction times are covered by the given
calendar-based periodic time constraint.

Definition 3.2

The conditional sequence base of an event ei based on prefix sequence WAS prefix, denoted as
CSB(Sc), where

Sc = WAS prefix + e i, is the set of all long suffix sequences of ei in sequences of a certain
dataset.

If WAS prefix = Ø, the dataset is equal to the initial conditional sequence base of the given web
access transaction database. Otherwise, it is the conditional sequence base CSB(WAS prefix).

We also call CSB (WAS c) the conditional sequence base of conditional prefix Sc. The initial

conditional sequence base can also be denoted as CSB(Ø), with Sc =Ø. The ConsPreprocessing

D.Vasumathi, Dr.A.Govardhan & K.Venkateswara Rao

International Journal of Computer Science and Security, (IJCSS) Volume (3): Issue (5) 364

algorithm for constraint preprocessing of transactions from the web access transaction database
WATDB is given in Figure: 2.

 Algorithm: Cons Preprocessing

Input:
1: C = [CBT, CI] – calendar-based periodic time constraint that consists of calendar based
template CBT and calendar instance CI
2: WATDB = {WATi |WATi = (ti, WASi), 1 ≤ i ≤ n} – web access transaction database, and WATi is
a web access transaction that consists of transaction time ti and web access sequence WASi
Output:
1: Ini-CSB - initial conditional sequence base of WATDB
Method:
1: Initialize Ini-CSB = Ø.

2: For each WATi ∈ WATDB, if ti is covered by C, insert WASi into Ini-CSB.
3: Return Ini-CSB.

 FIGURE 2: The algorithm for constraint preprocessing of transactions.

Example: Given a calendar-based periodic time constraint
C = [(day-of-week [1, 7], hour [0, 23]), ({6, 7}, {20, 21})], as the time of the third transaction in
Table 3.2 is “2007-11-05 18:23:24 Wednesday”, it is not covered by C. So the web access
sequence bbcac is discarded. After preprocessing, the Ini-CSB of the sample database contains
{abdac, eaebcac, babfae, afbacfc}.

3.2.2 Constructing Event Queues for Conditional Sequence Base

The second step of the TCSMA is to construct event queues for CSB(Sc) (for Ini-CSB, Sc = Ø).
The process performs the following four steps:

(1) Finding conditional frequent events from CSB(Sc);
(2) Creating a Header Table;
(3) Constructing event queues; and
(4) Deleting non-frequent events.

The conditional frequent event is defined as follows.
Definition 3.3

The conditional frequent event is the event whose support in the given conditional sequence
base is not less than the support threshold, MinSup. To find conditional frequent events in
CSB(Sc), we need to identify those events with support of greater than or equal to MinSup. This
is given in equation (3.2) below.

In equation (3.2), |{Sj | ei ∈ Sj, Sj ∈ CSB(Sc)}| is the number of sequences which contains the
item labeled ei in CSB(Sc), and |Ini-CSB| is the length of Ini-CSB. Then, all the conditional
frequent events form the entire Header Table of CSB(Sc). A linked-list structure for each
conditional frequent event ei, called ei–queue, is created. Each item of ei–queue is the first item
labeled ei in sequences of CSB(Sc). The head pointer of each event queue is recorded in the

 │{Sj│ ej є Sj,Sj є CSB(Sc)} │

│ Ini-CSB │

Sup(ei)=
3.2

≥ MinSup

D.Vasumathi, Dr.A.Govardhan & K.Venkateswara Rao

International Journal of Computer Science and Security, (IJCSS) Volume (3): Issue (5) 365

Header Table. Finally, as all the items of sequences in CSB(Sc) which are labeled as non-
frequent events are not needed anymore, they are discarded. The ConstructEQ algorithm for
constructing event queues for CSB(Sc) is given in Figure:3

Algorithm: Construct EQ

Input:
1: MinSup - support threshold
2: CSB(Sc) - conditional sequence base of Sc
3: UAE = {ei|1 ≤ i ≤ n} – all access events in CSB(Sc)
Output:
1: CSB(Sc) with Header Table HT and event queues
Method:
1: Create an empty Header Table HT for CSB(Sc).

2: For each ei ∈ UAE, if sup(ei) ≥MinSup, insertn ei into HT.

3: For each conditional sequence ∈ CSB(Sc) do

a) For each ei ∈ HT, insert the first item labeled ei in this sequence into ei -queue.

b) Delete all items of events ∉ HT from this sequence.
4: Return CSB(Sc) with HT and event queues.

 FIGURE 3: The algorithm for constructing event queues for CSB.

Example For the Ini-CSB = {abdac, eaebcac, babfae, afbacfc}, the results after constructing the
Header Table and event queues is given in Figure:4 Each access event is denoted as (event:
count), where event is the event name and count is the number of sequences which contains the
item labeled as event in Ini-CSB. To be qualified as a conditional frequent event (with MinSup =
75% and |Ini-CSB| = 4), an event must have a count of at least 3. Therefore, the conditional
frequent events are (a:4), (b:4) and (c:3). The a-queue, b-queue and c-queue are shown by the
dashed lines starting from the Header Table. The items labeled as non-frequent events d, e and f
in each sequence are deleted. Similarly, for any subsequent conditional sequence base, the
Header Table and event queues can also be constructed using the ConstructEQ algorithm.

 FIGURE 4: Ini-CSB with the Header Table and event queues.

3.2.3 Constructing Sub-Conditional Sequence Base

The sub-conditional sequence base is defined as follows.

Definition 3.4

D.Vasumathi, Dr.A.Govardhan & K.Venkateswara Rao

International Journal of Computer Science and Security, (IJCSS) Volume (3): Issue (5) 366

CSB(WAS prefix +e i) is called the sub-conditional sequence base of CSB(WAS prefix), if ei ≠ Ø
for each access event ei in the Header Table of CSB(Sc), the ConstructSubCSB algorithm for
constructing CSB(Sc+ei) based on CSB(Sc) is given in Figure:5

Algorithm: ConstructSubCSB

Input:
1: CSB(Sc) - conditional sequence base of Sc
2: ei - a given event in Header Table of CSB(Sc)
Output:
1: CSB(Sc+ei) - conditional sequence base of ei based on CSB(Sc)
Method:
1: Initialize CSB(Sc+ei) = Ø.
2: For each item in ei-queue of CSB(Sc), insert its suffix sequence into CSB(Sc+ei).
3: Return CSB(Sc+ei).

 FIGURE 5: The algorithm for constructing Sub-CSB.

Example For the Ini-CSB shown in Figure:4, we obtain all suffix sequences of a by following the
a-queue as CSB(a), which is one of the sub-conditional sequence base of Ini-CSB. The result is
shown in Figure:6 CSB(a) contains {bac:1, bcac:1, ba:1, bacc:1}. Note that bac:1 is the
abbreviation of (b:1)(a:1)(c:1).

FIGURE 6: Construction of CSB(a) based on Ini-CSB.

3.2.4 Single Sequence Testing for Conditional Sequence Base

In this step, if all the sequences in CSB(Sc) can be combined into a single sequence, the

mining of CSB(Sc) will be stopped. This single sequence will be used to form a part of the final
periodic sequential access patterns. Otherwise, we construct Sub-CSBs for CSB(Sc) and perform
recursive mining. The TestCSB algorithm for testing whether all the sequences in CSB(Sc) can
be combined into a single sequence is given in Figure:7

Algorithm: TestCSB

D.Vasumathi, Dr.A.Govardhan & K.Venkateswara Rao

International Journal of Computer Science and Security, (IJCSS) Volume (3): Issue (5) 367

Input:
1: CSB(Sc) – conditional sequence base of Sc
2: HT – Header Table of CSB(Sc)
Output:
1: test result - successful or failed flag
2: SingleSeq - single sequence of CSB(Sc)
Method:
1: Initialize SingleSeq = Ø.
2: If CSB(Sc) = Ø, return successful and SingleSeq = Ø.
3: For i = 1 to maximum length of sequences ϵ CSB(Sc) do

a) If all the ith items in each sequence ϵ CSB(Sc) are the same event e. And if total count of
these items ≥ MinSup X |Ini-CSB|, create a new item e with the count and insert it into
SingleSeq.

b) Otherwise, return failed and SingleSeq = Ø.
4: Return successful and SingleSeq
 FIGURE 7: The algorithm for testing conditional sequence base.

Example For CSB(a) = {bac:1, bcac:1, ba:1, bacc:1}, the first item of each sequence
can be combined into one item (b:4), but the second item cannot. The combination is stopped
and returns the failed flag. For CSB(aa) = {c:2, cc:1}, the sequences can be combined into a
single sequence c:3 and the successful flag is returned.

3.2.5 TCS-mine for Mining Periodic Sequential Access Patterns

The complete TCSM algorithm is shown in Figure:8

Algorithm: TCSM

Input:
1: C = [CBT, CI] – calendar-based periodic time constraint that consists of calendar
template CBT and calendar instance CI
2: MinSup - support threshold
3: WATDB = {WATi |WATi = (ti, WASi), 1 ≤ i ≤ n} – web access transaction database,
and WATi is a web access transaction that consists of transaction time ti and web access
sequence WASi
4: E = {ei|1 ≤ i ≤ n} – all access events in WATDB
Output:
1: PSAP - the set of periodic sequential access patterns
Method:
1: Initialize PSAP = Ø.
2: Use ConsPreprocessing to construct Ini-CSB (CSB(Sc), Sc = Ø).
3: Use ConstructEQ to construct event queues for CSB(Sc).

4: Use TestCSB to test single sequence for CSB(Sc).
 a) If test is successful, insert all ordered combinations of items in
 frequent sequence FS = Sc+SingleSeq into PSAP.
 b) Otherwise, for each ej in Header Table of CSB(Sc), use ConstructSubCSB to construct

CSB(Sc+ej). Set Sc = Sc+ej and recursively mine CSB(Sc) from step3.
5: Return PSAP.

FIGURE 8:The algorithm for mining periodic sequential access patterns.

D.Vasumathi, Dr.A.Govardhan & K.Venkateswara Rao

International Journal of Computer Science and Security, (IJCSS) Volume (3): Issue (5) 368

Length of
Patterns

Periodic Sequential Access Patterns

1 a:4, b:4, c:3

2 aa:4, ab:4, ac:3, ba:4, bc:3

3 aac:3, aba:4, abc:3, bac:3

4 abac:3

 TABLE 3: The periodic sequential access patterns of the sample database.

Example The complete periodic sequential access patterns with C = [(day-of-week
[1, 7], hour [0, 23]), ({6, 7}, {20, 21})] and MinSup = 75% is shown in Table 3.

4 PERFORMANCE EVALUATION

In this section, we present the performance of TCSM and compare it with the temporal version
of the Web Access Pattern mine (or TWAPM) algorithm for mining periodic sequential access
patterns. Web Access Pattern mine is one of the most efficient algorithms that mine common
sequential access patterns from a highly compressed data structure known as Web Access
Pattern- tree. As evaluated in the performance of the Web Access Pattern mine algorithm is an
order of magnitude faster than other Apriori-based algorithms. Therefore, we only compare the
TCSM algorithm with the TWAPM algorithm here.

 In order to deal with calendar-based periodic time constraints, the step on Constraint
Preprocessing discussed in Section 3.2.1 is applied to TWAPM for extracting all the constraint-
satisfied transactions from the original web access transaction database. The Web Access
Pattern-tree is then constructed from the constraint-satisfied transactions, and the Web Access
Pattern mine algorithm is used to mine the periodic sequential access patterns.

The two algorithms, TCSM and TWAPM, are implemented in Java. All experiments are
performed on a 3.00 GHz Intel Pentium 4 PC machine with 512 MB memory, running on
Microsoft Windows XP Professional. The Microsoft Anonymous Web Data is used to test the two
algorithms. This dataset contains logs on which areas of www.microsoft.com each user has
visited and has a total of 32,711 transactions, with each transaction containing from 1 up to 35
page references from a total of 294 pages. We set the calendar-based periodic time constraint C
= [(day-of-week [1, 7], hour [0, 23]), ({1, 2, …, 5}, *)], which means every hour of every weekday.
As a result, 22,717 constraint-satisfied transactions are used for the measurement.

To measure the performance, two experiments have been conducted. In the first experiment, we
have measured the scalability of the two algorithms with respect to different support thresholds.
This experiment uses the 22,717 constraint-satisfied web access sequences with different
support thresholds (from 0.2% to 2.4%). The experimental results in Figure:9 (a) have shown that
the run time of the TWAPM increases sharply, when the support threshold decreases, and the
TCSM always costs less time than the TWAP-mine. In the second experiment, we have
measured the scalability of the two algorithms with respect to different sizes of the constraint-
satisfied web access sequences. The experiment uses a fixed support threshold (0.2%) with
different databases (with sizes vary from 4,000 to 22,717 constraint-satisfied web access
sequences). The experimental results in Figure:9 (b) have shown that the TCSM has better
scalability than the TWAPM while the size of input database becomes larger.

D.Vasumathi, Dr.A.Govardhan & K.Venkateswara Rao

International Journal of Computer Science and Security, (IJCSS) Volume (3): Issue (5) 369

0

2

4

6

8

10

12

14

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Support Threshold (%)

R
u
n
 T

im
e
 (
s
e
c
)

TCSM

TWAPM

(a)

0

2

4

6

8

10

12

14

4 8 12 16 20 23

Number of Sequences (k)

R
u
n
 T

im
e
 (
s
e
c
)

TCSM

TWAPM

(b)

FIGURE 9(a&b): Scalability with different (a) support thresholds (b) number of sequences.

5. CONCLUSIONS

In this paper, we have proposed an efficient approach, known as TCSMA for mining periodic
sequential access patterns based on calendar-based periodic time constraints that can be
used for describing real-life time concepts. The performance of the TCSMA has been
evaluated and compared with a temporal version of the Web Access Pattern – mine
algorithm. Experimental results have shown that the TCSMA performs much more efficient
than the TWAPMA,especially when the support threshold becomes small and the number of
web access sequences gets larger.

D.Vasumathi, Dr.A.Govardhan & K.Venkateswara Rao

International Journal of Computer Science and Security, (IJCSS) Volume (3): Issue (5) 370

REFERENCES

FOR JOURNALS:

[1] Kosala R., and Blockeel H., (2000). Web Mining Research: A Survey. In ACM SIGKDD
Explorations, Vol. 2, pp. 1-15.

[2] Ganter B., and Wille R., (1999). Formal Concept Analysis: Mathematical Foundations.
Springer, Heidelberg, 1999.

[3] Cooley R., Mobasher B., and Srivastava J. (1999). Data Preparation for Mining World Wide
Web Browsing Patterns. In Journal of Knowledge and Information Systems, Vol. 1, No. 1.

FOR CONFERENCES:

[4] Agrawal R., and Srikant R. (1995). Mining Sequential Patterns. In Proceedings of the 11th
International Conference on Data Engineering, Taipei, Taiwan, pp. 3-14.

[5] Srikant R., and Agrawal R. (1996). Mining Sequential Patterns: Generalizations and
Performance Improvements. In Proceedings of the 5th International Conference on Extending
Database Technology (EDBT), Avignon, France, pp. 3-17.

[6] Pei J., Han J., Mortazavi-asl B., and Zhu H. (2000). Mining Access Patterns Efficiently from
Web Logs. In Proceedings of the 4th Pacific-Asia Conference on Knowledge Discovery and Data
Mining (PAKDD ‘00), Kyoto, Japan, pp. 396-407.

[7] Lu H., Luo Q., Shun Y.K., (2003). Extending a Web Browser with Client-Side Mining. In
Proceedings of the 5th Asia Pacific Web Conference (APWeb), pp. 166-177.

[8] Ozden B., Ramaswamy S., and Silberschatz A. (1998). Cyclic Association Rules. In
Proceedings of the 14th International Conference on Data Engineering, pp. 412-421.

[9] Ramaswamy S., Mahajan S., and Silberschatz A. (1998). On the Discovery of Interesting
Patterns in Association Rules. In Proceedings of the 24th International Conference on. on Very
Large Data Bases, New York, USA, pp. 368-379.

