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Abstract 

We discuss the chained randomized linear code and their use in cryptography. 
We show that the adoption of randomized chained codes in the framework of 
McEliece cryptosystem expose the cryptosystem to some new attacks.  
     
Key Words:  Cryptography, Chained Codes, Attack, Complexity 

 
 

1. INTRODUCTION 

In this paper, a new variant of  cryptographic schemes based on error coding is studied.  Random 
based techniques allow to design large families of chained codes. Therefore, in principle, such 
codes can substitute Goppa codes, originally used by McEliece [2].The McEliece cryptosystem is 
a public key cryptosystem based on coding theory that has successfully resisted cryptanalysis [1] 
for thirty years. The original version, based on Goppa codes, is able to guarantee a high level of 
security, and is faster than computing solutions, like RSA. 
 
Despite this, it has not been considered in practical applications, due to the major drawbacks like 
the large size of the public key, the low transmission rate. Moreover, there is no efficient signature 
scheme based on error coding. 
 
Several attempts have been made for overcoming such drawbacks, but the adoption of most 
families of codes has not been possible without compromising the system security [2], [8], [9]. 
Chained codes are a particular class, able to join low complexity decoding techniques. One idea 
consists in adopting this family of codes in some signature schemes. 
 
Recently, however, new attacks have been found that are able to exploit the flaw in the 
transmission from the private key to the public one [10]. Such attack seems to be effectively 
countered by changing some constituent matrices like introducing some random vectors. 
 
 
This works gives an overview of the chained code and weakness related to their structure. A 
recent randomized version can be considered and its ability to counter the currently known 
attacks is discussed. 
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 To counter this weakness, we concatenate random rows to the generator matrix. This new 
structure avoids minimum codewords. However, it does not modify the dual code. Consequently, 
other attacks can be generated. 
 
The details of chained code design are given in section 2.In sections 3 and 4, a digital signature 
scheme using chained code and its security are discussed. In section 5, we introduce a digital 
signature using randomized chained code and before concluding we study its security. 
 

2. CHAINED CODE 

A chained code C is defined as a direct sum of  γ  elementary codes ),( iii knC . This  code is of 

length ∑
=

=
γ
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inN  and of dimension ∑
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To encode an information ),...,( 1 γmmm = , where im is ik bits, we simply multiply it by the 

generator matrix to obtain the codeword ( )γuuGmu ,...,. 1==  with iu is the in bits codeword 

obtained from im  using the elementary code iC . So, G  is a diagonal matrix in blocs and whose 

diagonal is formed by elementary generator matrices iG of the code iC . 

We assume that we have an efficient decoding algorithm for each elementary code iC . To 

decode ( )γuuu ,...,1= , we apply for each codeword iu its correspondent decoding 

algorithm ( )
iCdec . The decoded word is ( )γmmm ,...,1=  with ( )

iCi udecm
i

= . 

We define the support of a non zero word ( )nxxx ,...,1= , denoted )sup(x , as the set of its non 

zero positions. { }{ }0,,..,1)sup( ≠∈= ixnix  and the support of a set { }γyyS ,...,1=  as the 

union of the supports of its words )sup()sup( i

Sy

yS

i

U
∈

= . So the support of a code ),( KNC  is 

the union of its 
k2  codeword supports. 

Two words x and y  are said to be connected if their supports are not disjoints i.e 

Θ=∩ )sup()sup( yx  and two sets I and J  are said to be disjoints if there is no connection 

subset between them. 

A non zero codeword x  of C  is said to be minimal support if there is no codeword Cy ∈ such 

that )sup()sup( xy ⊂ . 

Two codes ),( KNC  and ),(' KNC  are said to be equivalents if there is a permutation σ of 

{ }N,..,1  such as: { }
)()1( ,..,)(' NccCC σσσ == . In other words, C and 'C are equivalents if there 

is a permutation matrix such as for any generator matrix G of C , the matrix PGG .'= is a 

generator matrix of 'C . 
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3. Chained codes and Cryptography 

 
As we mentioned in the introduction, the drawback of the unique digital signature scheme based 
on error coding is the high signature complexity which is due to Goppa decoding algorithm. One 
idea to counter this drawback consists in replacing Goppa code by chained code which have 
faster decoding algorithm. 
 
Generally, the secret key of a cryptographic scheme based on error coding is the code itself, for 
which an efficient decoding algorithm is known, and the public key is a transformation of the 
generator or parity check matrices. We consider a digital signature scheme based on chained 
code, and then we develop an algorithm to discover the private key from public key. This attack is 
applicable for each cryptographic scheme since it is a structural attack. 
Secret key: 

− S  is a random )( KK × non singular matrix called the scrambling matrix. 

− G is a )( NK × generator matrix of a chained code 

− P  is a random )( NN ×  permutation matrix  

Public key: 

− PGSG ..'=  is a randomly scrambled et permuted generator matrix. It is a 

generator matrix of an equivalent non structured code to the chained code ∑
i

ic  is 

the completed correction capacities calculated as [3]. 

− ( )h is a hash function. 

Signature: 

The signer, first, calculates 
1).( −= PMhy , where )(Mh is the N bit message, 

1−P  is the 

inverse of P . Then he uses the completed decoding algorithm [3] for the original chained code 

C  to obtain σ.Sx = . Finally, the receiver obtains the signature by computing xS .1−=σ  where 
1−

S is the inverse of S . 

 
Verification: 

The verifier calculates '.' Gσρ =  and )(Mh=ρ  

The signature is valid if  ∑<
i

icd )',( ρρ  

 
To avoid exhaustive attack, we use at least five different elementary codes and to avoid attack by 
information set, we use a chained code with length at least equal to 1500 bits. 
 
After developing  a digital signature scheme, we discovered a weakness in this scheme. This 
weakness is due to the fact that chained codes have an invariant. Code equivalence means that 

one generator matrix is a permutation of the other, because matrix S  does not change the code 

but only performs a modification on the basis of the linear subspace. Canteaut showed that the 

matrix S may be important to hide the systematic structure of the Goppa codes, therefore having 

an important security role [6]. However, Heiman was the first to study this point and states that 

the random matrix  S  used in the original McEliece scheme serves no security purpose 

concerning the protection [7]. We confirm this argument and we show that the random matrix S  

has no security role for cryptographic schemes based on linear codes. We state also that disjoint 
elementary code supports is an invariant by permutation. 
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The attack explores the characteristics of the code transformation in order to identify its building 

blocks. Its input is a generating matrix 'G of a randomly permuted chained code of length N and 

dimension K . Its output is a structured chained code. The algorithm’s steps are: 

- Apply a Gauss elimination to the rows of the matrix 'G to obtain the systematic form 

( )ZIG d ,0 = . 

Sendrier shows that rows of any systematic generator matrix of a code C are minimal support 
codewords of C and that any minimal support codeword of C is a row of a systematic generator 
matrix of C [4]. So, the systematic chained code support is formed by disjoint sets. Each set 
represents the support of an elementary code. The transformation of any randomly permuted 
chained code generator matrix into a systematic matrix by linear algebraic algorithms will allow us 
to find these supports and thus elementary codes. 

- Search the disjoint sets of rows of the systematic matrix 0G . Each set forms the elementary 

code support. Use elementary decoding algorithms to decode every message. As application of 
these codes, regular LDPC codes which represent chained repetition codes. Next sections 
represent the proprieties of these codes. 

The complexity of this attack is less than 
452  even with so long codes (see FIGURE 1). 

 

4. Randomized chained linear codes 

To counter the attack introduced in previous section, one idea consists in concatenating random 
vectors to the generator matrix. In this section, first, we define randomized chained codes then 
we introduce a cryptographic scheme based on these codes. 

 
4.1 Random vectors 

The randomized chained linear code concatenates random vectors of length N  to the chained 

code. Using Information Theory, a N bit random binary vector is of weight closely to 2/N  and 

the distance between two random vectors is of order 4/N .  These approximations are more 

precise when N  is large. 

 
4.2 Construction of randomized chained codes  

Lets consider a chained linear code generator matrix CLG  as described in section 2. Each 

elementary linear code is of length in  and of size ik . Chained linear code is of length 

∑
=

=
γ

1i

inN  and of dimension ∑
=

=
γ

1i

ikK . 

 

Lets consider a matrix  rG  formed  by K  random rows of length N . 

 

The generator matrix G  of the system using randomized linear chained code has the following 

form: ),( rCL GGG = . 

The weight of a row of the systematic generator matrix is about ipN +2/  where ip  is the 

weight of  i
th
 row of the chained code generator matrix CLG . 

 
4.2.1 Encoding 

 

m is a word of length K  to be encoded. The codeword is obtained by multiplying m  by the 

generator matrix G  of the randomized chained linear code. 

Gmc .=  
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4.2.2 Decoding 
 
 r  is the word to be decoded. 

21 .,. eGmeGmecr rCL ++=+=  

 Note by  ( )CLdec  the chained linear decoding algorithm.   Thus, ).( 1eGmdecm CLCL += . The 

codeword closest to r  is Gmc .= . 

 
 

5. DIGITAL SIGNATURE USING RANDOMIZED CHAINED LINEAR CODES 

 
5.1 Key generation 

− Generate a sequence γ linear codes. Each code is of length in and of dimension 

ik . 

− Build the chained linear code generator matrix CLG . This matrix is of size  

∑∑
==

=×=
γγ

11 i

i

i

i kKnN  

−  Generate K  random vectors iv  of length N . These vectors will be stored in a 

matrix rG of size NK × . 

The obtained code is of length  N2   and size K . It has the following generator 

matrix's form ),( rCL GGG =  

  To hide the code structure, we also generate 

− A random invertible matrix S of size ( )( ) ( )( )KNNN −×− .2.2 . 

− A permutation matrix  P  of size ( ) ( )( )NN .2.2 ×  

− Determine the check parity matrix H  as follows ( ) 0.. =
t

PGH  

Thus, the private key is formed by 
 

− The generator matrix G  of size NK .2×  

−  The random matrix S  of size ( )( ) ( )( )KNNN −×− .2.2 . 

− The permutation matrix P  of size ( ) ( )( )NN .2.2 × . 

 
 

The public key is formed by the hidden and permuted parity check Matrix HSH .' =  of size 

( ) ( )NKN .2.2 ×−  

5.2 Signature algorithm 

 

Let m  be a message to be signed. The signer has the private key formed by G , S  and P  and 

the hash function ( )h    whose result is of length N.2 . 

 

− Compute ( )mh='ρ  of length N.2  

− Compute 
1' . −= Pρρ . 

− Divide ρ  in two parts 1ρ  and 2ρ  , each one is of length N . 



O.Hamdi, A.Bouallegue & S.Harari 

International Journal of Computer Science and Security (IJCSS), Volume (3): Issue (6) 487 

21 ρρρ =  

− Decode 1ρ  using the decoding algorithm of chained linear code to obtain 

information m  of length K  . 

− Compute Gm.=ν  which is a codeword. 

− Compute νρ +='e  the error related to the secret code which is closer to 

2/N .This error has the same syndrome as 
ρ

. 

− Compute the error Pee .'=  and its weight ( )ewp =  . The error e  has the same 

syndrome as ( )mh='ρ relatively to the public code generated by PG.  

 

The signature of  m   is formed by  ( )pe,=σ . 

 

 
5.3 Verification Algorithm 

− The verifier has the matrix H  and the hash function ( )h , the message m  and 

the signature σ .  

−  he checks that ( ) pew =  

− he computes ( )mh='ρ . 

− he computes eHx .'1 =  

− he computes 
''

2 .ρHx =  

The signature is valid if 

21 xx =  

5.4 Soundness 

( ) 2

'''

1 ..... xPHPHeHx ==+== ρνρ  since P.ν  is a codeword of the permuted code 

having PG.  as generator matrix. 

 
5.5 Parameters  

Forging a signature consists in determining the signature ( )pe,=σ  message from m  or 

retrieving the secret key. An attacker who has the parity check matrix of size ( ) NNK .2.2 × ,  

may proceed as follows: 

− he transforms 
'H  a systematic matrix ( ) ( )( )

KNKN

t
IRH −−= .2,.20 ,  

− he guess the corresponding matrix 0G  of  size NK .2×  : 

( )RIG K ,0 =
 

− he computes ( ) ( )21 , ρρρ == Mh  with K=1ρ  and KN −= 22ρ  

− he search the closest codeword ( )21 ,ccc =  of length N.2  to ρ  . 

 
So, he will obtain 

− ( ) 0, 11 =ρCd  

− ( ) ( ) 2/.2, 22 KNCd −=ρ  

 

To build a secure algorithm, the difference k  between p  
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and ( ) 2/.2 NK  should be large enough.  The table 1 shows parameters for a signature scheme 

based on randomized chained code.  From Table 1, we show that is necessary that used code 

must have a length N.2  greater than 1350. 

 

 

N 990 1080 1170 1260 1350 1440 1530 1520 1710 1800 1890 1980 

K 253 276 299 322 345 368 391 414 437 460 483 506 

K 44 48 52 56 60 64 68 72 76 80 84 88 

 

Table 1: Signature parameters 

 
 
Table  2 shows performances of  randomized chained code in terms of execution complexity and 
public key size. 

 

 

Signature Signature with randomized code 

Public key size (ko) 123 

Signature complexity 2
20 

Verification Complexity 2
13

 

 

Table 2: Performance of signature based on randomized chained codes 

 
5.6 Solidity 

 
The strength of the scheme depends on the choice of parameters. There are two types of attacks 
on asymmetric systems. 
 
The starting point was to hide the structure of the chained codes. Possible attack of the new 

structure consists in enumerating all matrices of size ( ) NKN .2.2 ×−  and test their 

equivalences with 
'H . The code is formed by  γ  elementary codes and K  random vectors. So, 

the number of randomized chained code is  
( )( ) ν2

!

!!2//!
2

K

NN
 which is very large considering 

chosen parameters in section 5. The concatenation of random vectors avoid minimal codewords 

attack since a codeword is at least of weight 2/N  . Moreover, the new structure avoids support 
disjunction since the distance between two codewords is in order of N/4. 
 
However, this new structure hides a weakness related to the dual code. In fact, concatenated 
vectors do not modify the dual code. Consequently, an attacker may proceed as follows: 
 

− Transform 
'H   in a systematic matrix ( )., .20 KN

t
IRH −=  

 

− Search minimal codewords of elementary linear codes which have weight smaller 
than those of random vectors. 

 

− Use the algorithm introduced in section 3 to recover dual code. 
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FIGURE 1: Attack Complexity 

 
The security of cryptographic schemes based on error coding is highly dependent on the class of 
used codes. Some class of codes reveal their characteristics even when they go through the 
permutation used to construct the public code. It is the case with chained codes and randomized 
chained codes. The starting point was the observation that any systematic matrix of a chained 
code is formed by small weight codeword and that the code contains so many minimal support 
codewords. These two properties lead to a structural attack of digital signature scheme based on 
chained code. 
We have tried to counter this attack by concatenating some random vectors to the generator 
matrix. However, the added vectors avoid this attack but they do not modify the dual code. 
Consequently, we discover another structural weakness related to this kind of codes. 
 Figure 1 shows the complexity of the attacks of some cryptosystems using chained codes and 

randomized chained code. The complexity is always less than 
452  even with so long codes 

( )3000=N . This complexity prohibits using chained code in cryptography. 

 

6. Conclusion 

 In this paper, we discussed the structure of a randomly permuted chained code. We explored 
potential threats from systematic generator matrices that have particular structure. Chained code 
generator matrices have the properties of disconnected elementary code supports. We have tried 
to hide this property by concatenating some random vectors to the generator matrix. 
Unfortunately, these vectors avoid attack by minimum codeword in the code itself. However, they 
do not modify the dual code which makes weakness on cryptographic scheme based on chained 
codes. This property is invariant by permutation, which make this kind of code useless in 
cryptography. 
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