
Surender Kumar, Parveen Kumar & R.K.Chauhan

International Journal of Computer Science and Security (IJCSS), Volume (3), Issue (6) 518

Hierarchical Non-blocking Coordinated Checkpointing
Algorithms for Mobile Distributed Computing

Surender Kumar ssjangra20@rediffmail.com
Deptt. of IT,
H.C.T.M
Kaithal (HRY), 136027, INDIA

Parveen Kumar pk223475@yahoo.com
Deptt. of CSA,
M.I.E.T
Meerut (U.P), INDIA

R.K. Chauhan rkc.dcsa@gmail.com
Deptt. of CSA,
K.U.K
Kurukshetra (HRY), INDIA

Abstract

Mobile system typically uses wireless communication which is based on
electromagnetic waves and utilizes a shared broadcast medium. This has made
possible creating a mobile distributed computing environment and has brought us
several new challenges in distributed protocol design. So many issues such as
range of transmission, limited power supply due to battery capacity and mobility
of processes. These new issue makes traditional recovery algorithm unsuitable.
In this paper, we propose hierarchical non blocking coordinated checkpointing
algorithms suitable for mobile distributed computing. The algorithm is non-
blocking, requires minimum message logging, has minimum stable storage
requirement and produce a consistent set of checkpoints. This algorithm requires
minimum number of processes to take checkpoint.

Keywords: Co-ordinated Checkpointing, fault tolerant, Non-blocking approach, Mobile Computing System.

1. INTRODUCTION

The market of mobile handheld devices and mobile application is growing rapidly. Mobile terminal
are become more capable of running rather complex application due to the rapid process of
hardware and telecommunication technology. Property, such as portability and ability to connect
to network in different places, made mobile computing possible. Mobile computing is the
performance of computing tasks whiles the user in on the move, or visiting place other than their
usual environment. In the case of mobile computing a user who is away from his “home”
environment can still get access to different resources that are too computing or data intensive to
reside on the mobile terminal [4].Mobile distributed systems are based on wireless networks that
are known to suffer from low bandwidth, low reliability, and unexpected disconnection [3].

Surender Kumar, Parveen Kumar & R.K.Chauhan

International Journal of Computer Science and Security (IJCSS), Volume (3), Issue (6) 519

Checkpointing / rollback recovery strategy has been an attractive approach for providing fault
tolerant to distributed applications [1] [16]. Checkpoints are periodically saved on stable storage
and recovery from a processor failure is done by restoring the system to the last saved state. So
the system can avoid the total loss of the computation in case of the failure. In a distributed
system, since the processes in the system do not share memory, a global state of the system is
defined as a set of local states, one from each process. An orphan message is a message whose
receive event is recorded, but its sent event is lost. A global state is said to the “consistent” if it
contains no orphan message and all the in-transit messages are logged. To recover from a
failure, the system restarts its execution from a previous consistent global state saved on the
stable storage during fault-free execution. This saves all the computation done up to the last
checkpoint state and only the computation done thereafter needs to be redone [7], [12], [13].
Synchronous and asynchronous are two fundamental approaches for checkpointing and recovery
[2].

In uncoordinated or independent checkpointing, processes do not coordinate their checkpointing
activity and each process records its local checkpoint independently [8], [14], [15]. After a failure,
a consistent global checkpoint is established by tracking the dependencies. It may require
cascaded rollbacks that may lead to the initial state due to domino-effect [11], [12], [13].

In coordinated of synchronous checkpointing, processes take checkpoints in such a manner that
the resulting global state is consistent. Mostly it follows two-phase commit structure [9], [10], [11].
In the first phase, processes take tentative checkpoints and in the second phase, these are made
permanent. The main advantage is that only one permanent checkpoint and at most one tentative
checkpoint is required to be stored. In case of a fault, processes rollback to last checkpointed
state. A permanent checkpoint can not be undone.

Coordinated checkpointing algorithms can be blocking and non blocking [3]. A primitive is
blocking if control returns to the invoking process after the processing for the primitive completes
but in case of non-blocking control return back to the invoking process immediately after
invocation, even though the operation has not completed [1].

The objective of the present work is to design a checkpoint algorithm that is suitable for mobile
computing environment. Mobile computing environment demands efficient use of the limited
wireless bandwidth and the limited resources of mobile machines, such as battery power,
memory etc. Therefore in the present work we emphasize on eliminating the overhead of taking
temporary checkpoints. To summarize, we have proposed a hierarchical non-blocking
checkpointing algorithm in which processes take permanent checkpoints directly without taking
temporary checkpoints and whenever a process is busy, the process takes a checkpoint after
completing the current procedure.

This paper organized as follows. In section 3 we state the system model considered in this work.
In section 4 we have stated the algorithm. In section 5, we have the suitability of our proposed
algorithm in the mobile computing environment. Finally section 6 shows the extension of the
algorithms.

2. System Model
The system consists of collection of N processes, P1, P2….Pn, that are connected by channels.
There is no globally shared memory and processes communicate solely by passing messages.

There is no physical global clock in the system. Message send and receive is asynchronous.

3. Data Structure
Root is the initiator who starts a new consistent checkpoint by taking a tentative checkpoint. All
child process take their checkpoint after receiving the checkpoint request (chk_req) message
from their parent process, forward request message to its child node and increment to its
checkpoint integer number (cin). Each process counts the number of messages it sent and

Surender Kumar, Parveen Kumar & R.K.Chauhan

International Journal of Computer Science and Security (IJCSS), Volume (3), Issue (6) 520

received in the sr_counter (sent/received counter) variable. Every time a message is sent, the
sr_counter is incremented. When a message is received, sr_counter is decremented. When a
process receives an chk_tkn request, it adds the sr_counter value from that message to its own
sr_counter. When it has received the chk_tkn reply from all its children, it sends the chk_tkn
message to its parents. When the root process receives a chk_tkn reply from all its children, and
its sr_counter is zero, root broadcasts a commit request (commit_req) message to its children.

When root process receives an update message, it increment in its sr_counter value till the
sr_counter value not become zero. When a process receives a commit request it makes its
tentative checkpoint permanent and discards the previous permanent checkpoint and propagates
the message to its children and wait for the commit acknowledge.

4. Hierarchical Non-blocking Checkpoint Algorithms:
At any instant of time one process act as a checkpoint coordinator called the initiator or root
process. Each process maintain one permanent checkpoint, belongs to the most recent
consistent checkpoint. During each run of the protocol, each process takes a tentative
checkpoint, which replaces the permanent one only if the protocol terminates successfully [6]. In
this algorithm if any process is busy with other high priority job, it takes the checkpoint after the
job ends. Otherwise it takes a checkpoint immediately. Each process stores one permanent
checkpoint. In addition each process can have one tentative checkpoint, and are either discarded
or made permanent after some time. Each process maintains a checkpoint integer number (cin),
and it is incremented by one in every checkpoint session. Here we use the word checkpoint for
tentative checkpoint.

Root process Pi:
There is only one checkpoint initiator or root process which initiates a checkpointing session.
When Pj receives a message from processes Pj, Pk…, Pi takes the tentative checkpoint. After
that if it receives any other chk_req it will discard the request.

1. Check direct dependency node ddni [] vector.
2. Sends chk_req message to its entire dependent or child processes.
3. Increment in cini (cini ++).
4. Every time a message is sent, the sr_counter is incremented. When a message is

received, sr_counter is decremented.
5. while (sr_counter != 0)

if receives a chk_tkn response including sr_counter value from all its children it adds the
value of sr_counter in its own sr_counter value.

 5. if sr_counter = 0
 Send commit_req to all processes to make tentative checkpoint
 permanent and wait for commit_ack.

For Any child processes Pj j! =i and 1<=j<= (n-1)

On receipt of checkpoint request:
if Pj receives a checkpoint request
 if Pj has not already participated in checkpoint process
 Take a tentative checkpoint
 Do chkpt_process ()
 else
 If (received cin) > (current cin) /*Compare both received cin and current cin.*/
 Take a new tentative checkpoint in place of old one.
 Do chkpt_process ();
 else
 Discard the chk_req and continue normal operation.

Surender Kumar, Parveen Kumar & R.K.Chauhan

International Journal of Computer Science and Security (IJCSS), Volume (3), Issue (6) 521

On receipt of piggyback application message:
If Pj receives a piggyback application message
 If (received cin > (current cin) /* Compare both received cin and current cin */
 Take tentative checkpoint before processing the message.
 Do chkpt
 else
 Ignore the request and continue normal operation.

Procedure chkpt_process ()

If ddnj[] = = Null /* for leaf node */
Increment in cinj
Sends chk_tkn response including sr_counter value to its parent process.

 else
 /* If ddnj[] ≠ Null */
 Check ddnj[] vector.
 Send chk_req to its entire dependent or child node.
 Increment cinj.
 sr_counter= own sr_counter value + received sr_counter value. /*When Receives
 chk_tkn response including sr_counter value from its child node*/

 If receives any update message
 Update sr_counter value and sends this updated message to its
 Parent process Pi.
 If Pj receives chk_tkn response from all its children processes
 Send chk_tkn response including sr_counter to its parent process Pi .

 End procedure

An example
The basic idea of the algorithm is illustrated by the example shown in figure 1. We assume that
process P1 initiates the algorithm. It is also called the root, coordinator or initiator process. First
process P1 takes the tentative checkpoint Ck1,2. After that it check its direct dependency node
ddn1[] vector which is { P1,P2, P3}. This means that process P1 has receive at least one message
from P2, P3, and P4. After that P1 send chk_req to P2, P3, P4 and increment its checkpoint integer
number cin 1 to 2 and work as usual. Each time it sends a message, it increase sr_counter and
decrease when it receives the message. So in given example sr_counter= -3 which shows that it
has received three messages. If sr_counter =0 it meant that it received chk_tkn message from all
the processes. Then it sends the commit messages to all its coordinator to convert the tentative
checkpoint in to permanent. When it receives the sr_counter from its dependent or child process,
it adds this in to its own sr_counter. If it receives any updated message from coordinated or child
process it will decrease the sr_counter value and continue this process until or unless the
sr_counter ≠ 0. On receiving the chk_req from P1, process P2 first take tentative checkpoint Ck2,2.
After that it check its direct dependent node ddn2[] vector which is null. It indicates that is a leaf
node. So it will take tentative checkpoint and increment in its cin2 from 1 to 2.

After receiving the chk_req from P1 process P3 first takes a tentative checkpoint Ck3,2 and check
its direct dependency node ddn3[] vector which is {P1, P5}. Here we are assuming that message
M6,2 are the late message and process P3 does not receive this message till now. So first
process P3 send chk_req message to P1 and P5 and after that it increase its checkpoint integer
number cin3 from 1 to 2. Similarly process P4 first take checkpoint Ck4,2 and check its ddn4[]
which is {P6} . Hence P4 sends a chk_req message to P6 and increment its cin4 from 1 to 2.
Same process is repeated by the processes P1 and P5.

Surender Kumar, Parveen Kumar & R.K.Chauhan

International Journal of Computer Science and Security (IJCSS), Volume (3), Issue (6) 522

Figure 1: An example of checkpointing approach

Process P6 receives chk_req from process P4 first. So it will take checkpoint Ck6,2. It is a
non blocking checkpointing algorithms. Processes are not blocked after taking checkpoint and
free to communicate to other process. Suppose that process P3 sends an application message
M3,1 to process P7. As we know that it is the first application message send by process P3 after
taking its checkpoint Ck3,2 . So process P3 send piggyback application message to process P7
which contain cin value with the message. Now process P7 compare received cin with current cin
which is 1. It finds that received cin 2 is grater than the current cin. So process P7 takes the
checkpoint Ck7,2 before processing the message M3,1. and increments its cin number from 1 to 2.
After that process P6 receives the message from process P7. So process P6 sends a chk_req to
process P7 and increments its cin6 to 2. It is the second chk_req for process P7 because it has
already taken a checkpoint. In such case process P7 first compare its current cin7 with the
received cin6 which is 1. It finds that current cin is greater than the received cin. So it ignores the
new checkpoint request.

A leaf process sends chk_tkn message including sr_counter to its parent process after that parent
process adds sr_counter in its own sr_counter and when it receives chk_tkn message from all its
children it sends to its parent process. This process will be continued until the root process does
not receive all messages.

In figure 2 dependency tree sr_counter are shows in brackets. Firstly process P2 sends its
chk_tkn message and sr_counter which is 1 to the root process directly. So the sr_counter of root
become -2. Now process P1, P5 sends the same to its parent process P3 receives the same and
adds the sr_counter of these processes in its own sr_counter. Now the sr_counter value of the
P3 become 1. As it receive the chk_tkn message and sr_counter value from all its dependent
processes. So it sends the chk_tkn message including sr_counter to the initiator process P1 and
P1 adds the sr_counter in its own sr _counter. Now the sr_counter of initiator process become -1.
Then process P7 sends chk_tkn message including sr_counter which is 1 to its parents process
P6 and after that sr_counter value of P6 become 2 and then sends the chk_tkn message to
process P4 and after that sr_counter value of process P4 become 2 and P4 forward this to the
initiator process. Now the sr_counter value of initiator process becomes 1. So root process

M2,1

Late msg

Ck 0,2

Ck6,1

M3,1

M7,1

Ck3,1

cCk6,1 M6,1 M6,2

M5,1

M4,1

M3,1

M2,1

Ck7,2

Ck6,2

Ck3,2

 Ck4,2

Ck2,2

Ck5,2

P0

P1

P2

P3

P4

P6

P5

P7

Ck0,1

Ck7,1

Ck5,1

Ck4,1

Ck2,1

Ck1,1
Ck 1,2

 Application msg

Accepted chk request

Discarded chk request

Piggyback msg

Late msg

Permanent chkpt

Tentative chkpt

Surender Kumar, Parveen Kumar & R.K.Chauhan

International Journal of Computer Science and Security (IJCSS), Volume (3), Issue (6) 523

 Figure2: Dependency Tree of all processes with sr_counter value before receiving late
 message send by the process P6.

receives the chk_tkn message from all the process and its sr_counter value is 1. It shows the
inconsistent global state and wait for update message and when the process P3 receive a
message sent by process P6 its sr_counter value will become -2 and it will send this update
message to the root process.

Root process receives the update message from the process P3 and decrement its sr_counter by
1. So now the sr_counter value of root process become 0(zero) .Root process send the
commit_req to the entire child node. When a process receives a commit_req message, it makes
its tentative checkpoint permanent and discards the previous permanent checkpoint.
On the other side when the process P6 receive the chk_req sent by process P3 it compare its
current checkpoint integer number cin5 with the received checkpoint integer number cin3. It finds
that current cin6 2 is greater than the received cin3 which is 1. So it discards the request.

5. Suitability for Mobile Computing Environment
Consider a distributed mobile computing environment. In such an environment, only limited
wireless bandwidth for communication among the computing processes. Besides, the mobile
hosts have limited battery power and limited memory. Therefore, it is required that, any
distributed application running. It is required that, any mobile distributed application running in
such an environment must make efficient use of the limited wireless bandwidth, and mobile hosts’
limited battery power and memory. Below we show that the proposed algorithm satisfies all the
above three requirements.

a) This algorithm, processes neither take any useless and unnecessary checkpoints which help in
better utilization of the mobile host limited memory.
b) This algorithm uses the minimum number of control messages. It definitely offers much better
bandwidth utilization.

6. Extension of the Algorithms
The algorithms so far discussed, considers that there is only one checkpoint initiator. In case
there are multiple concurrent initiators, each process has to handle multiple checkpoint sessions
concurrently, and also maintain synchronization among them. A comparative study can also be

done with other existing algorithms.

 Reference:

[1] Kshemkalyanl Ajay D, Singhal, M.: Distributed Computing Principals, Algorithms, and
System

P1(-3)

P2(1) P4(0) P3(-1)

P5(1) P6(1)

P7(1)

Surender Kumar, Parveen Kumar & R.K.Chauhan

International Journal of Computer Science and Security (IJCSS), Volume (3), Issue (6) 524

[2] Singhal, M. , Shivaratri, N.-G.: Advanced Concept in Operating System. McGraw Hill,(1994)

[3] Cao, G. and, Singhal, M “Mutable checkpoints: a new checkpointing approach for mobile

computing systems,”IEEE Transactions on Parallel and Distributed Systems, vol. 12, Issue
2,pp. 157-172, Feb 2001.

[4] Coulouris, G., Dollimore, J., Kindberg, T., Distributed System Concepts and Design, 3rd
 edition, Addison- Weslely,(2001), 772p

[5] Elnozahy,E.N, Johnson, D.B. and Zwaenepoel, W. “The Performance of Consistent”

Proceedings of 11th Symp. On Reliable Distributed Systems, pp. 86-95, October 1992,
Houston.

[6] Koo R. and Toueg. S, “Checkpointing and Rollback-Recovery for distributed System,” IEEE

Trans. Software Eng., SE-13(1):23-31, January 1987.

[7] Ziv Avi and Bruck Jehoshua ”Checkpointing in Parallel and Distributed Systems”, Book

Chapter from Parallel and Distributed Computing Handbook edited by Albert Z. H. Zomaya,
pp. 274-320, Mc Graw Hill, 1996.

[8] Bhargava B. and Lian S.R., “Independent Checkpointing and Concurrent Rollback for

Recovery in Distributed System -An Optimistic Approach,” Proceeding of 17th IEEE
Symposium on Reliable Distributed System, p. 3-12, 1988.

[9] Chandy K.M. and Lamport L., “Distributed Snapshots: Determining Global State of

Distirbuted Systems,”ACM Transaction on Computing Systems, vol. 3 No. 1, pp. 63-75, Feb.
1985.

[10] Elnozahy E.N., Alvisi L., wang Y.M. and Johnson D.B., “The Performance of Consistent

Checkpointing,” Proceedings of the 11th Symposium on Reliable Distributed Systems, pp.
39-47, October 1992.

[11] Koo R. and Toueg S., “Checkpointing and Roll-Back Recovery for Distributed System,”

IEEE Trans.on Software Engineering, vol. 13, no. 1, pp. 23-31, January 1987.

[12] Randall, B, “ System structure for Software Fault Tolerance”, IEEE Trans.on Software

Engineering, Vol.1,No.2,pp220-232, 1975.

[13] Russell, D.L., “State Restoration in System of Communication Processes”, IEEE Trans.

Software Engineering, Vol.6,No.2pp 183-194, 1992.

[14] Sistla,A.P. and Welch,J.L., “Optimistic Recovery in Distributed Systems”, ACM Trans.

Computer System, Aug, 1985, pp. 204-226.

[15] Wood, W.G., “ A Decentralized recovery Control Protocol”, IEEE Symposium on Fault

Tolerant Computing. 1981.

[16] Gupta Bidyut .el “A low-Overhead Non block Checkpointing Algorithm for Mobile Computing

Environment” springer-Verlag Berlin Heidelberg 2006 pp. 597-608.

