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Abstract 

The bottleneck traveling salesman problem (BTSP) is a variation of the well-known 
traveling salesman problem in which the objective is to minimize the maximum lap 
(arc length) in a tour of the salesman. In this paper, a lexisearch algorithm using 
adjacency representation for a tour has been developed for obtaining exact optimal 
solution to the problem. Then a comparative study has been carried out to show the 
efficiency of the algorithm as against an existing exact algorithm for some TSPLIB 
and randomly generated instances of different sizes. 
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1. INTRODUCTION 

The bottleneck traveling salesman problem (BTSP) is a variation of the benchmark traveling salesman 
problem (TSP). It can be defined as follows: 

A network with n nodes (or cities), with 'node 1' (suppose) as ‘headquarters’ and a cost (or distance, or 

time etc.) matrix C=[cij] of order n associated with ordered node pairs (i,j) is given. Let {1=α0, α1, 

α2,....,αn-1 , αn=1} ≡ {1→α1→α2→..... →αn-1→1} be a tour, representing irreducible permutations 
interpreted as simple cycle. The tour value is defined 

as { }1,....,2,1,0:max
1, −=

+
nic

ii αα . The objective is to choose a tour which has 

minimum tour value. 

Both TSP and BTSP are well known NP-hard problems. Vairaktarakis [1] considered a polynomially 
solvable TSP and showed that the corresponding BTSP is strongly NP-complete. The BTSP finds 
application in the area of workforce planning. A commonly used objective in workforce leveling (or 
range) is to minimize the difference between the maximum and minimum number of workers required 
by any worker schedule. The objective leads to level worker schedules that smooth the workforce 
fluctuations from one production period to the next. Such schedules are particularly useful in 
automobile assembly because they help to preserve overall smoothing of operations [1]. Another 
application of the BTSP is in minimizing makespan in a two-machine flowshop with no-wait-in-process 
which is a building block for more general no-wait production system [2]. 

Gilmore and Gomory [3] introduced the BTSP, and discussed a specific case of the problem. 
Definitely, the BTSP has not been as well researched as the TSP. There are a few exact algorithms 
available in the literature for the BTSP. An algorithm based on branch and bound (BB) is developed by 
Garfinkel and Gilbert [4] for solving the general BTSP, and discussed an application of the problem in 
the context of machine scheduling. Carpaneto et al. [5] also developed an algorithm based on BB that 
uses a heuristic search to find a Hamiltonian circuit containing only arcs whose cost is not greater than 
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the current lower bound. Ramesh [6] reported this problem as min-max TSP, and developed a 
lexisearch algorithm, using path representation for a tour of the salesman, to obtain exact optimal 
solution to the problem, and computational experiments were reported for the randomly generated 
problems of sizes up to 30.  

There are some heuristic algorithms in the literature which are reported to be good for the general 
BTSP [7, 8, 9, 10]. Also, there are some algorithms in the literature which were developed for some 
special case of the problem [2, 11]. In this paper, we are not considering any special case of the 
problem, rather the general BTSP. A lexisearch algorithm, using adjacency representation for a tour of 
the salesman, is developed to obtain exact optimal solution to the problem. Finally, the efficiency of 
our algorithm is compared with the algorithm of Ramesh [6] for some TSPLIB and randomly generated 
instances of different sizes.  

This paper is organized as follows: Section 2 presents some definitions that are required for the 
lexisearch algorithm. A lexisearch algorithm with an illustrative example is presented in Section 3. 
Computational experiments for two algorithms have been reported in Section 4. Finally, Section 5 
presents comments and concluding remarks. 

2. SOME DEFINITIONS 

2.1. Alphabet table 

Alphabet matrix, A=[a(i,j)], is a square matrix of order n formed by the positions of the elements of the 
cost matrix of order n, C=[cij]. The i

th
 row of the matrix A consists of the positions of the elements in 

the i
th
 row of the matrix C when they are arranged in the non-decreasing order of their values. If a(i,p) 

stands for the p
th
 element in the i

th
 row of A, then a(i,1) corresponds to the smallest element in the i

th
 

row of the matrix C. That is, 

.,,.][min ),(,),(,)1,(, qiaipiaiiaiiji ccthenqpifSocc ≤<=  

Thus, the i
th
 row of A is [a(i,1), a(i,2), …., a(i,n)]. Clearly, 

),(,)2,(,)1,(, .......... niaiiaiiai ccc ≤≤≤  

The words can be generated by considering one element in each row as follows: 

}1{}),({.......}),({}),1({1 122211 =→=→→→=→=→ −−− nnnn makaja ααααααα  

where j, k,…, m are some indices in the alphabet matrix. 

Alphabet table " ]),([ ),(, jiaicjia − " is the combination of elements of matrix A and their values. For 

example, a cost matrix and its 'alphabet table' are shown in Table 1 and Table 2 respectively. 

Node 1 2 3 4 5 6 7 

1 999 75 99 9 35 63 8 

2 51 999 86 46 88 29 20 

3 100 5 999 16 28 35 28 

4 20 45 11 999 59 53 49 

5 86 63 33 65 999 76 72 

6 36 53 89 31 21 999 52 

7 58 31 43 67 52 60 999 

TABLE 1: The cost matrix. 
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Node N - V            N - V            N - V            N - V            N - V            N - V            N - V            

1 7-8       4-9        5-35     6-63       2-75       3-99      1-999 

2 7-20     6-29      4-46     1-51       3-86       5-88      2-999 

3 2-5       4-16      5-28     7-28       6-35       1-100    3-999 

4 3-11     1-20      2-45     7-49       6-53       5-59      4-999 

5 3-33     2-63      4-65     7-72       6-76      1-86      5-999 

6 5-21     4-31      1-36     7-52       2-53       3-89      6-999 

7 2-31     3-43      5-52     1-58      6-60       4-67      7-999 

TABLE 2: The alphabet table (N is the label of node, and V is the value of the node). 

2.2. Incomplete word and block of words 

,),,.....,,(
210

nmW m <= αααα represents an incomplete word. An incomplete word (partial tour) 

consists of some of the nodes. Incomplete word represents the block of words with this incomplete 
word as the leader of the block. If F(.) is the objective function and W is an incomplete word, then for a 
complete word S whose leader is W, we have F(S) ≥ F(W). 

For the BTSP, each node is considered as a letter in an alphabet and each tour can be represented 
as a word with this alphabet. Thus the entire set of words in this dictionary (namely, the set of 

solutions) is partitioned into blocks. A block B with a leader (α0, α1, α2,) of length three consists of all 

words beginning with (α0, α1, α2,) as string of first three letters. The block A with the leader (α0, α1) of 
length 2 is the immediate superblock of B and includes B as one of its sub-blocks. The block C with 

leader (α0, α1, α2, β) is a sub-block of block B. The block B consists of many sub-blocks (α0, α1, α2, 

βk), one for each βk. The block B is the immediate super-block of block C. 

By structure of the problem it is often possible to get lower bound for the block to the values of all 
words in a block by examining its leader. Hence, by comparing the bound with the 'best solution value' 
found so far, one can 

(i) ‘go' into the sub-block by concatenating the present leader with an appropriate letter; if the block-
bound is less than the 'best solution value', 

(ii) ‘jump over’ to the next block; if no word in the block can be better in value than the 'best solution 
value', or 

(iii) ‘jump out’ to the next super-block, if the current block, which is to be jumped over, is the last block 
of the present superblock. 

Further, if value of the current leader is already greater than or equal to the 'best solution value' found so 
far, then no need for checking subsequent blocks within this super-block, and we 'jump out' to the next 
supper-block. 

Let a, b, c, d be the four nodes in a network. The words starting with ‘a’ constitute a ‘block’ with ‘a’ as 
its leader. In a block, there can be many sub-blocks; for instance ‘ab’, ‘ac’ and ‘ad’ are leaders of the 
sub-blocks of block ‘a’. There could be blocks with only one word; for instance, the block with leader 
‘abd’ has only one word ‘abdc’. All the incomplete words can be used as leaders to define blocks. For 
each of blocks with leader ‘ab’, ‘ac’ and ‘ad’, the block with leader ‘a’ is the immediate super-block. For 
example, 'go' into the sub-block for ‘db’ leads to ‘dba’ as augmented leader, 'jump over' the block for 
‘abc’ is ‘abd’, and 'jump out' to the next higher order block for ‘cdbe’ is ‘cde’. 

3. A LEXISEARCH ALGORITHM FOR THE BTSP 

The lexicographic search derives its name from lexicography, the science of effective storage and 
retrieval of information. This search (lexisearch, for short) is a systematic branch and bound approach, 
was developed by Pandit [12], which may be summarized as follows: 
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The set of all possible ‘solutions’ to a combinatorial optimization problem is arranged in hierarchy- like 
words in a dictionary, such that each ‘incomplete word’ represents the block of words with this 
incomplete word as the ‘leader’. Bounds are computed for the values of the objective function over 
these blocks of words. These are compared with the ‘best solution value’. If no word in the block can 
be better than the ‘best solution value’, jump over the block to the next one. However, if the bound 
indicates a possibility of better solutions in the block, enter into the sub-block by concatenating the 
present leader with appropriate ‘letter’ and set a bound for the new (sub) block so obtained.  

This procedure is very much like looking for a word in a dictionary; hence the name ‘lexi(cographic) 
search’. The basic difference with the branch and bound approach is that lexisearch approach is one-
pass, implicitly exhaustive, search approach, avoiding the need for book-keeping involved in storing, in 
active memory, the bounds, at various branching nodes at various levels and related backtracking 
procedures, which can be expensive in terms of memory space and computing times. 

There are mainly two ways of representing salesman’s path in the context of lexisearch. For example, 
let {1, 2, 3, 4, 5} be the labels of nodes in a 5 node instance and let path to be represented be 

{1→3→4→2→5→1}. Adjacency representation of this path is usual representation of corresponding 

permutation, namely, 








12453

54321
, indicating that the edges 1→3, 2→5, …., 5→1 constitute the 

tour. The path representation just lists the sequence of the tour as (1, 3, 4, 2, 5). The following 
subsections discuss the lexisearch algorithm by considering adjacency representation for solving the 
BTSP and its illustration through an example.  

3.1. The algorithm 

Ramesh [6] used path representation for a tour to obtain exact optimal solution to the problem. As 
reported, the algorithm shows a large variation in solution times. So, we present another lexisearch 
algorithm using adjacency representation for a tour. A preliminary version of this algorithm is reported 
in Ahmed [8]. The algorithm is presented below: 

Let C=[cij] be the given n x n cost matrix and cij be the cost of visiting of node j from node i, and let 
'node 1’ be the starting node.  

Step 0: - Form the ‘alphabet table’. Initialize the ‘best solution value’ to a large number, and set l = 1. 

Step 1: - With the partial tour of length (l -1) take as leader; consider the first 'legitimate and 
unchecked' node. Compute the lower bound as discussed in section 3.2, and go to step 2. If 
there is no any 'legitimate and unchecked' node, go to step 5. 

Step 2: - If the lower bound is less than the ‘best solution value’, go to step 3, else go to step 5. 

Step 3: - If there is a sub-tour, go to step 1, else go to step 4. 

Step 4: - Go to sub-block, i.e., augment the current leader; concatenate the considered node to it, 
lengthening the leader by one node, and compute the current tour value. If the current tour is a 
complete tour, then replace the 'best solution value' with the current solution value, and go to 
step 5. If the current tour is not a complete tour, then go to step 1. 

Step 5: - Jump this block, i.e., decrement l by 1 (one), rejecting all the subsequent tours from this 
block. If l<1, go to step 6, else go to step 1. 

Step 6: - Current tour gives the optimal tour sequence, with ‘best solution value’ as the optimal cost, 
and stop. 

 

3.2. Lower bound 
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The objective of lower bound is to skip as many subproblems in the search procedure as possible. A 
subproblem is skipped if its lower bound exceeds the 'best solution value' found so far in the process. 
The higher the lower bound the larger the set of subproblems that are skipped. Some algorithms in the 
literature calculate overall lower bound for the BTSP instance and develop algorithms based on 
relaxation and subtour elimination scheme [4, 5, 9]. Our lexisearch algorithms do not follow this way 
for solving the BTSP instances. In our algorithm, we are not setting lower bound for an instance, rather 
setting lower bound for each leader on the value of objective function for the instance as follows: 

Suppose the present permutation for the partial tour is 









321

321

ααα
and the node α4 is selected for 

concatenation. Before concatenation, we check the bound for the leader









4321

4321

αααα
. For that, we 

start our computation from 5
th
 row of the 'alphabet table' and traverse up to the n

th
 row, check the 

value of first 'legitimate' node (the node that is not present in the partial tour) in each row. Maximum 
among the values of first 'legitimate' nodes and the leader value is the lower bound for the 

leader









4321

4321

αααα
.  

3.3. Illustration 

Working of the above algorithm is explained through an example of the seven-node instance given in 
Table-1. Table 3 gives the ‘search table’. The symbols used therein are listed below: 

GS: Go into the sub-block, i.e., attach the first ‘free’ letter to the current leader. 

JB: Jump over the block, i.e., go to the next block of the same order i.e., replace the last letter of the 
current block by the letter next to it in the alphabet table. 

JO: Jump out to the next, higher order block, i.e., drop out the last letter of the current leader and then 
jump the block. 

BS: Best solution value. 

ST: Sub-tour. 

As illustration of the example, we consider BS = 9999 and 'partial tour value (Sol)' = 0. We start from 
1

st
 row of the 'alphabet table'. Here, a(1,1) = 7 with 'present node value (Val)' = c17 = 8. Since Max{Sol, 

Val} = 8 < BS, we go for bound calculation for the present leader









7

1
. The bound will guide us 

whether the node 7 will be accepted or not. 

33}31,21,33,11,5,29,8,0{

},,,,,,8,0{

},,,,,,,{

2,75,63,53,42,36,2

)1,7(,7)1,6(,6)1,5(,5)1,4(,4)1,3(,3)4,2(,2

==

=

=

Max

ccccccMax

ccccccValSolMaxBound aaaaaa

 

Since Bound<BS, we accept the node 7 that leads to the partial permutation 









7

1
with Sol=8. Next we 

go to 2
th
 row of the 'alphabet table'. Since a(2,1) = 7 is repeated, we consider the next element of the 

row, i.e., a(2,2) =6 with Val = c26 = 29. Since Max{Sol,  Val}  = 29 < BS, we go for bound calculation for 

the present leader









67

21
. 

 
Leaders 

1 2 3 4 5 6 7 

Bound Best  Solution 
Value 

Remarks 
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7-8 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4-9 
5-35 

 
6-29 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4-46 
 

 
 
2-5 
 
 
 
 
 
 
 
 
 
 
 
 
 
4-16 
 
 
 
 
 
 
 
5-28 
6-35 
 

 
 
 
3-11 
 
 
 
 
 
1-20 
 
 
 
 
 
5-59 
 
3-11 
1-20 
 
 
 
 
2-45 
 

 
 
 
 
4-65 
 
 
 
 
 
3-33 
 
 
 
 
 
 
 
 
3-33 
 
 
 
 

 
 
 
 
 
5-21 
1-36 
 
 
 
 
5-21 
4-31 
 
 
 
 
 
 
 
5-21 
 
 
 

 
 
 
 
 
 
 
5-52 
 
 
 
 
 
5-52 
 
 
 
 
 
 
 
2-31 
 

33 
33 
33 
65 
65 
65 
65 
65 

BS = 
43 
52 
67 
52 
52 

BS = 
59 
33 
63 
33 
33 
33 
33 

BS = 
45 
33 
35 
46 
33 
35 

9999 
9999 
9999 
9999 
9999 
9999 
9999 
9999 
65 
65 
65 
65 
65 
65 
52 
52 
52 
52 
52 
52 
52 
52 
33 
33 
33 
33 
33 
33 
33 

GS 
GS 
GS 
GS 
GS 
ST  
GS 
GS 

JB, JO 
GS 
GS 
ST 
GS 
GS 

JB, JO 
JO 
GS 
ST 
GS 
GS 
GS 
GS 

JB, JO 
JO 
JB 
JO 
JO 
JB 

STOP 

 
TABLE 3: The search table. 

33}31,21,33,11,5,29,8{

},,,,,29,8{

},,,,,,{

2,75,63,53,42,3

)1,7(,7)1,6(,6)1,5(,5)1,4(,4)1,3(,3

==

=

=

Max

cccccMax

cccccValSolMaxBound aaaaa

 

Since Bound < BS, we accept the node 6 that leads to the partial permutation 









67

21
with Sol=29. 

Proceeding in this way, we obtain the 1
st
 complete permutation










5143267

7654321
 for the tour 

{1→7→5→4→3→2→6→1} with Sol= 65. Since Sol<BS, so we replace BS = 65. Now, we jump out to 

the next higher order block, i.e., 









267

321
with Sol = 29, and try to compute another complete tour 

with lesser tour value. Proceeding in this way, we obtain the optimal tour {1→7→2→6→5→3→4→1} 

that is given by the permutation 









2531467

7654321
 with optimal solution value = 33. 

4. COMPUTATIONAL EXPERIMENT 

Our lexisearch algorithm (LSA) has been encoded in Visual C++ on a Pentium 4 personal computer 
with speed 3 GHz and 448 MB RAM under MS Windows XP. Also, for the comparison lexisearch 
algorithm by Ramesh [6], named as RA, is encoded and run in the same environment. Both the 
algorithms (RA and LSA) are tested for some TSPLIB instances and randomly generated instances of 
different sizes drawn from different uniform distribution of integers. 

Table 4 gives the results for nine asymmetric TSPLIB instances of size from 17 to 70. We report 
optimal solution values and solution times (in second) for solving the instances by both RA and LSA. 
To the best of our knowledge, no literature presents experimental solutions to the asymmetric TSPLIB 
instances. The instance br17 of size 17 could be solved within only 1.59 seconds by RA, which could 
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be solved by LSA within 185.99 seconds. For the remaining instances, reported in the table, LSA is 
found to be better. We do not report the solution of other asymmetric TSPLIB instances, because we 
could not solve them by any algorithm within one hour. Table 4 also reports the computational time 
when the optimal solution is seen for the first time. In fact, a lexisearch algorithm first finds an optimal 
solution and then proves the optimality of that solution, i.e., all the remaining subproblems are 
discarded. Table 4 shows that, on average solution time, RA found optimal solution within 41% of the 
total solution time, whereas LSA found the optimal solution within only 6% of the total solution time. 
That is, RA spent 59% and LSA spent 94% of total time on proving optimality of the solutions. 
Therefore, for these asymmetric TSPLIB instances, RA spends a relatively large amount of time on 
finding an optimal solution compared to our LSA, and hence, a small number of subproblems are 
thrown by RA. 

Solution time  Solution is seen first 
Instances n 

Optimal 
Solution RA LSA  RA LSA 

br17 17 8 1.59 185.99  0.39 0.00 

ftv33 34 113 0.16 1.32  0.16 0.55 

ftv35 36 113 0.34 0.48  0.34 0.42 

ftv38 39 113 0.02 0.05  0.02 0.05 

p43 43 5008 0.02 0.02  0.05 0.02 

ftv44 45 113 57.88 49.13  57.88 40.23 

ft53 53 977 2960.56 1970.3  0.00 0.00 

ftv64 65 104 812.03 0.00  789.23 0.00 

ft70 70 1398 1452.36 156.45  1278.93 94.32 

Mean   587.22 262.64  236.33 15.07 

TABLE 4: Solution times for asymmetric TSPLIB instances 

Solution time  Solution is seen first 
Instances n 

Optimal 
Solution RA LSA  RA LSA 

burma14 14 418 0.08 0.03  0.01 0.00 

ulysses16 16 1504 15.21 0.03  0.00 0.00 

gr17 17 282 105.36 75.98  0.00 0.02 

gr21 21 355 293.21 315.06  0.00 0.02 

ulysses22 22 1504 325.09 270.13  0.00 0.00 

gr24 24 108 121.56 29.08  78.88 0.03 

fri26 26 93 87.98 70.32  14.05 8.94 

bayg29 29 111 2972.05 108.06  2089.32 0.01 

bays29 29 154 2145.32 75.32  0.00 0.00 

swiss42 42 67 ---- 2148.5  ----- 40.17 

bier127 127 7486 ---- 3541.2  0.03 0.01 

Mean   673.98 603.06  218.23 4.47 

TABLE 5: Solution times for symmetric TSPLIB instances 

Table 5 gives the results for eleven symmetric TSPLIB instances of size from 14 to 127. Recently, 
Ramakrishnan et al. [9] developed a very good heuristic algorithm for the general BTSP and reported 
results for some symmetric TSPLIB instances only. Since, the nature of our algorithm is not same as 
their algorithm; we do not to carry out comparison with the algorithm in terms of solution times. 
However, solutions reported there are found to be same as our solutions. Out of eleven instances two 
instances could not be solved within one hour by RA. Of course, we saw the optimal solution for one of 
them within 0.03 seconds. On the basis of average solution times, the table concludes that LSA is 
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better than RA. It is to be noted that while we calculate average solution time, we do not consider the 
instances which were not solved optimally within one hour. For these symmetric TSPLIB instances 
also, RA spends a relatively large amount of time on finding an optimal solution compared to LSA. For 
these case also, we do not report the instances which could not be solved by any algorithm within one 
hour. 

Randomly generated asymmetric and symmetric instances of different sizes are drawn from uniform 
distribution of integers in the intervals [1, 100] and [1, 10000]. Fifteen different instances were 
generated for each size. Table 6 reports mean and standard deviation of solution times by RA and 
LSA for asymmetric instances. On the basis of the average solution times and standard deviation, 
Table 6 shows that LSA is better than RA for both intervals. Of course, instances generated from the 
interval [1, 10000] are found to be more difficult than the instances generated from [1, 100]. 

We report mean and standard deviation of solution times by RA and LSA for symmetric instances in 
the Table 7. For these instances also, LSA is found to be better than RA. Also, the instances 
generated from [1, 10000] are found to be more difficult than the instances generated from [1, 100]. It 
is also observed that symmetric instances are more difficult than the asymmetric instances. 

1 ≤ cij ≤ 100  1 ≤cij ≤ 10000 

RA  LSA  RA  LSA n 

Mean Std dev  Mean Std dev  Mean Std dev  Mean Std dev 

30 24.58 39.33  10.12 25.85  27.18 40.32  13.25 29.18 

35 141.93 198.96  65.06 119.38  158.21 201.15  75.06 146.16 

40 457.95 578.08  163.28 319.3  495.92 518.15  196.86 347.01 

45 735.14 952.32  275.03 502.32  802.21 1103.87  289.50 562.23 

50 959.21 1014.23  317.92 516.39  967.32 1201.14  321.15 596.27 

TABLE 6:  Solution times for random asymmetric instances. 

1 ≤ cij ≤ 100  1 ≤cij ≤ 10000 
n 

RA  LSA  RA  LSA 

 Mean Std dev  Mean Std dev  Mean Std dev  Mean Std dev 

30 29.58 43.12  15.22 20.15  32.16 47.52  14.99 21.35 

35 189.21 209.56  76.98 101.76  190.46 229.13  79.32 98.21 

40 507.19 618.54  182.35 357.97  535.78 761.76  166.28 375.21 

45 805.98 987.32  352.67 547.12  854.36 1087.25  398.52 601.24 

50 1020.01 1321.45  573.87 602.95   1223.01 1532.78  1052.32 1524.21 

TABLE 7:  Solution times for random symmetric instances. 

5. CONCLUSION & FUTURE WORK 

We presented a lexisearch algorithm using adjacency representation method for a tour for the 
bottleneck traveling salesman problem to obtain exact optimal solution to the problem. The 
performance of our algorithm is compared with the lexisearch algorithm of Ramesh [6] for some 
TSPLIB instances and two types of randomly generated instances of different sizes. The 
computational experiment shows that our lexisearch algorithm is better. Between asymmetric and 
symmetric TSPLIB as well as random instances, symmetric instances are found to be hard. 

In this present study, it is very difficult to say that what moderate sized instance is unsolvable by our 
lexisearch algorithm, because, for example, br17 of size 17 could be solved within 185.99 seconds 



Zakir H. Ahmed 

 

International Journal of Computer Science and Security (IJCSS) Volume (3): Issue (6) 

 
577 

and dantzig42 of size 42 could not be solved within one hour, whereas, ftv64 of size 65 could be 
solved within only 0.00 seconds by our algorithm. It certainly depends upon the structure of the 
instance. So a closer look at the structure of the instances and then developing a data-guided module 
may further reduce the solution time. Also, it is seen that the optimal solution is seen for the first time 
very quickly, which suggests that applying a tight lower bound method may reduce the solution time 
drastically, which are under our investigations. 
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