
Zakir H. Ahmed

International Journal of Computer Science and Security (IJCSS) Volume (3): Issue (6)

569

A Lexisearch Algorithm for the Bottleneck Traveling Salesman
Problem

Zakir H. Ahmed zhahmed@gmail.com
Department of Computer Science,
Al-Imam Muhammad Ibn Saud Islamic University,
P.O. Box No. 5701, Riyadh-11432
Kingdom of Saudi Arabia

Abstract

The bottleneck traveling salesman problem (BTSP) is a variation of the well-known
traveling salesman problem in which the objective is to minimize the maximum lap
(arc length) in a tour of the salesman. In this paper, a lexisearch algorithm using
adjacency representation for a tour has been developed for obtaining exact optimal
solution to the problem. Then a comparative study has been carried out to show the
efficiency of the algorithm as against an existing exact algorithm for some TSPLIB
and randomly generated instances of different sizes.

Keywords: Bottleneck traveling salesman, Lexisearch, Bound, Alphabet table.

1. INTRODUCTION

The bottleneck traveling salesman problem (BTSP) is a variation of the benchmark traveling salesman
problem (TSP). It can be defined as follows:

A network with n nodes (or cities), with 'node 1' (suppose) as ‘headquarters’ and a cost (or distance, or

time etc.) matrix C=[cij] of order n associated with ordered node pairs (i,j) is given. Let {1=α0, α1,

α2,....,αn-1 , αn=1} ≡ {1→α1→α2→..... →αn-1→1} be a tour, representing irreducible permutations
interpreted as simple cycle. The tour value is defined

as { }1,....,2,1,0:max
1, −=

+
nic

ii αα . The objective is to choose a tour which has

minimum tour value.

Both TSP and BTSP are well known NP-hard problems. Vairaktarakis [1] considered a polynomially
solvable TSP and showed that the corresponding BTSP is strongly NP-complete. The BTSP finds
application in the area of workforce planning. A commonly used objective in workforce leveling (or
range) is to minimize the difference between the maximum and minimum number of workers required
by any worker schedule. The objective leads to level worker schedules that smooth the workforce
fluctuations from one production period to the next. Such schedules are particularly useful in
automobile assembly because they help to preserve overall smoothing of operations [1]. Another
application of the BTSP is in minimizing makespan in a two-machine flowshop with no-wait-in-process
which is a building block for more general no-wait production system [2].

Gilmore and Gomory [3] introduced the BTSP, and discussed a specific case of the problem.
Definitely, the BTSP has not been as well researched as the TSP. There are a few exact algorithms
available in the literature for the BTSP. An algorithm based on branch and bound (BB) is developed by
Garfinkel and Gilbert [4] for solving the general BTSP, and discussed an application of the problem in
the context of machine scheduling. Carpaneto et al. [5] also developed an algorithm based on BB that
uses a heuristic search to find a Hamiltonian circuit containing only arcs whose cost is not greater than

Zakir H. Ahmed

International Journal of Computer Science and Security (IJCSS) Volume (3): Issue (6)

570

the current lower bound. Ramesh [6] reported this problem as min-max TSP, and developed a
lexisearch algorithm, using path representation for a tour of the salesman, to obtain exact optimal
solution to the problem, and computational experiments were reported for the randomly generated
problems of sizes up to 30.

There are some heuristic algorithms in the literature which are reported to be good for the general
BTSP [7, 8, 9, 10]. Also, there are some algorithms in the literature which were developed for some
special case of the problem [2, 11]. In this paper, we are not considering any special case of the
problem, rather the general BTSP. A lexisearch algorithm, using adjacency representation for a tour of
the salesman, is developed to obtain exact optimal solution to the problem. Finally, the efficiency of
our algorithm is compared with the algorithm of Ramesh [6] for some TSPLIB and randomly generated
instances of different sizes.

This paper is organized as follows: Section 2 presents some definitions that are required for the
lexisearch algorithm. A lexisearch algorithm with an illustrative example is presented in Section 3.
Computational experiments for two algorithms have been reported in Section 4. Finally, Section 5
presents comments and concluding remarks.

2. SOME DEFINITIONS

2.1. Alphabet table

Alphabet matrix, A=[a(i,j)], is a square matrix of order n formed by the positions of the elements of the
cost matrix of order n, C=[cij]. The i

th
 row of the matrix A consists of the positions of the elements in

the i
th
 row of the matrix C when they are arranged in the non-decreasing order of their values. If a(i,p)

stands for the p
th
 element in the i

th
 row of A, then a(i,1) corresponds to the smallest element in the i

th

row of the matrix C. That is,

.,,.][min),(,),(,)1,(, qiaipiaiiaiiji ccthenqpifSocc ≤<=

Thus, the i
th
 row of A is [a(i,1), a(i,2), …., a(i,n)]. Clearly,

),(,)2,(,)1,(, niaiiaiiai ccc ≤≤≤

The words can be generated by considering one element in each row as follows:

}1{}),({.......}),({}),1({1 122211 =→=→→→=→=→ −−− nnnn makaja ααααααα

where j, k,…, m are some indices in the alphabet matrix.

Alphabet table "]),([),(, jiaicjia − " is the combination of elements of matrix A and their values. For

example, a cost matrix and its 'alphabet table' are shown in Table 1 and Table 2 respectively.

Node 1 2 3 4 5 6 7

1 999 75 99 9 35 63 8

2 51 999 86 46 88 29 20

3 100 5 999 16 28 35 28

4 20 45 11 999 59 53 49

5 86 63 33 65 999 76 72

6 36 53 89 31 21 999 52

7 58 31 43 67 52 60 999

TABLE 1: The cost matrix.

Zakir H. Ahmed

International Journal of Computer Science and Security (IJCSS) Volume (3): Issue (6)

571

Node N - V N - V N - V N - V N - V N - V N - V

1 7-8 4-9 5-35 6-63 2-75 3-99 1-999

2 7-20 6-29 4-46 1-51 3-86 5-88 2-999

3 2-5 4-16 5-28 7-28 6-35 1-100 3-999

4 3-11 1-20 2-45 7-49 6-53 5-59 4-999

5 3-33 2-63 4-65 7-72 6-76 1-86 5-999

6 5-21 4-31 1-36 7-52 2-53 3-89 6-999

7 2-31 3-43 5-52 1-58 6-60 4-67 7-999

TABLE 2: The alphabet table (N is the label of node, and V is the value of the node).

2.2. Incomplete word and block of words

,),,.....,,(
210

nmW m <= αααα represents an incomplete word. An incomplete word (partial tour)

consists of some of the nodes. Incomplete word represents the block of words with this incomplete
word as the leader of the block. If F(.) is the objective function and W is an incomplete word, then for a
complete word S whose leader is W, we have F(S) ≥ F(W).

For the BTSP, each node is considered as a letter in an alphabet and each tour can be represented
as a word with this alphabet. Thus the entire set of words in this dictionary (namely, the set of

solutions) is partitioned into blocks. A block B with a leader (α0, α1, α2,) of length three consists of all

words beginning with (α0, α1, α2,) as string of first three letters. The block A with the leader (α0, α1) of
length 2 is the immediate superblock of B and includes B as one of its sub-blocks. The block C with

leader (α0, α1, α2, β) is a sub-block of block B. The block B consists of many sub-blocks (α0, α1, α2,

βk), one for each βk. The block B is the immediate super-block of block C.

By structure of the problem it is often possible to get lower bound for the block to the values of all
words in a block by examining its leader. Hence, by comparing the bound with the 'best solution value'
found so far, one can

(i) ‘go' into the sub-block by concatenating the present leader with an appropriate letter; if the block-
bound is less than the 'best solution value',

(ii) ‘jump over’ to the next block; if no word in the block can be better in value than the 'best solution
value', or

(iii) ‘jump out’ to the next super-block, if the current block, which is to be jumped over, is the last block
of the present superblock.

Further, if value of the current leader is already greater than or equal to the 'best solution value' found so
far, then no need for checking subsequent blocks within this super-block, and we 'jump out' to the next
supper-block.

Let a, b, c, d be the four nodes in a network. The words starting with ‘a’ constitute a ‘block’ with ‘a’ as
its leader. In a block, there can be many sub-blocks; for instance ‘ab’, ‘ac’ and ‘ad’ are leaders of the
sub-blocks of block ‘a’. There could be blocks with only one word; for instance, the block with leader
‘abd’ has only one word ‘abdc’. All the incomplete words can be used as leaders to define blocks. For
each of blocks with leader ‘ab’, ‘ac’ and ‘ad’, the block with leader ‘a’ is the immediate super-block. For
example, 'go' into the sub-block for ‘db’ leads to ‘dba’ as augmented leader, 'jump over' the block for
‘abc’ is ‘abd’, and 'jump out' to the next higher order block for ‘cdbe’ is ‘cde’.

3. A LEXISEARCH ALGORITHM FOR THE BTSP

The lexicographic search derives its name from lexicography, the science of effective storage and
retrieval of information. This search (lexisearch, for short) is a systematic branch and bound approach,
was developed by Pandit [12], which may be summarized as follows:

Zakir H. Ahmed

International Journal of Computer Science and Security (IJCSS) Volume (3): Issue (6)

572

The set of all possible ‘solutions’ to a combinatorial optimization problem is arranged in hierarchy- like
words in a dictionary, such that each ‘incomplete word’ represents the block of words with this
incomplete word as the ‘leader’. Bounds are computed for the values of the objective function over
these blocks of words. These are compared with the ‘best solution value’. If no word in the block can
be better than the ‘best solution value’, jump over the block to the next one. However, if the bound
indicates a possibility of better solutions in the block, enter into the sub-block by concatenating the
present leader with appropriate ‘letter’ and set a bound for the new (sub) block so obtained.

This procedure is very much like looking for a word in a dictionary; hence the name ‘lexi(cographic)
search’. The basic difference with the branch and bound approach is that lexisearch approach is one-
pass, implicitly exhaustive, search approach, avoiding the need for book-keeping involved in storing, in
active memory, the bounds, at various branching nodes at various levels and related backtracking
procedures, which can be expensive in terms of memory space and computing times.

There are mainly two ways of representing salesman’s path in the context of lexisearch. For example,
let {1, 2, 3, 4, 5} be the labels of nodes in a 5 node instance and let path to be represented be

{1→3→4→2→5→1}. Adjacency representation of this path is usual representation of corresponding

permutation, namely, 








12453

54321
, indicating that the edges 1→3, 2→5, …., 5→1 constitute the

tour. The path representation just lists the sequence of the tour as (1, 3, 4, 2, 5). The following
subsections discuss the lexisearch algorithm by considering adjacency representation for solving the
BTSP and its illustration through an example.

3.1. The algorithm

Ramesh [6] used path representation for a tour to obtain exact optimal solution to the problem. As
reported, the algorithm shows a large variation in solution times. So, we present another lexisearch
algorithm using adjacency representation for a tour. A preliminary version of this algorithm is reported
in Ahmed [8]. The algorithm is presented below:

Let C=[cij] be the given n x n cost matrix and cij be the cost of visiting of node j from node i, and let
'node 1’ be the starting node.

Step 0: - Form the ‘alphabet table’. Initialize the ‘best solution value’ to a large number, and set l = 1.

Step 1: - With the partial tour of length (l -1) take as leader; consider the first 'legitimate and
unchecked' node. Compute the lower bound as discussed in section 3.2, and go to step 2. If
there is no any 'legitimate and unchecked' node, go to step 5.

Step 2: - If the lower bound is less than the ‘best solution value’, go to step 3, else go to step 5.

Step 3: - If there is a sub-tour, go to step 1, else go to step 4.

Step 4: - Go to sub-block, i.e., augment the current leader; concatenate the considered node to it,
lengthening the leader by one node, and compute the current tour value. If the current tour is a
complete tour, then replace the 'best solution value' with the current solution value, and go to
step 5. If the current tour is not a complete tour, then go to step 1.

Step 5: - Jump this block, i.e., decrement l by 1 (one), rejecting all the subsequent tours from this
block. If l<1, go to step 6, else go to step 1.

Step 6: - Current tour gives the optimal tour sequence, with ‘best solution value’ as the optimal cost,
and stop.

3.2. Lower bound

Zakir H. Ahmed

International Journal of Computer Science and Security (IJCSS) Volume (3): Issue (6)

573

The objective of lower bound is to skip as many subproblems in the search procedure as possible. A
subproblem is skipped if its lower bound exceeds the 'best solution value' found so far in the process.
The higher the lower bound the larger the set of subproblems that are skipped. Some algorithms in the
literature calculate overall lower bound for the BTSP instance and develop algorithms based on
relaxation and subtour elimination scheme [4, 5, 9]. Our lexisearch algorithms do not follow this way
for solving the BTSP instances. In our algorithm, we are not setting lower bound for an instance, rather
setting lower bound for each leader on the value of objective function for the instance as follows:

Suppose the present permutation for the partial tour is









321

321

ααα
and the node α4 is selected for

concatenation. Before concatenation, we check the bound for the leader









4321

4321

αααα
. For that, we

start our computation from 5
th
 row of the 'alphabet table' and traverse up to the n

th
 row, check the

value of first 'legitimate' node (the node that is not present in the partial tour) in each row. Maximum
among the values of first 'legitimate' nodes and the leader value is the lower bound for the

leader









4321

4321

αααα
.

3.3. Illustration

Working of the above algorithm is explained through an example of the seven-node instance given in
Table-1. Table 3 gives the ‘search table’. The symbols used therein are listed below:

GS: Go into the sub-block, i.e., attach the first ‘free’ letter to the current leader.

JB: Jump over the block, i.e., go to the next block of the same order i.e., replace the last letter of the
current block by the letter next to it in the alphabet table.

JO: Jump out to the next, higher order block, i.e., drop out the last letter of the current leader and then
jump the block.

BS: Best solution value.

ST: Sub-tour.

As illustration of the example, we consider BS = 9999 and 'partial tour value (Sol)' = 0. We start from
1

st
 row of the 'alphabet table'. Here, a(1,1) = 7 with 'present node value (Val)' = c17 = 8. Since Max{Sol,

Val} = 8 < BS, we go for bound calculation for the present leader









7

1
. The bound will guide us

whether the node 7 will be accepted or not.

33}31,21,33,11,5,29,8,0{

},,,,,,8,0{

},,,,,,,{

2,75,63,53,42,36,2

)1,7(,7)1,6(,6)1,5(,5)1,4(,4)1,3(,3)4,2(,2

==

=

=

Max

ccccccMax

ccccccValSolMaxBound aaaaaa

Since Bound<BS, we accept the node 7 that leads to the partial permutation









7

1
with Sol=8. Next we

go to 2
th
 row of the 'alphabet table'. Since a(2,1) = 7 is repeated, we consider the next element of the

row, i.e., a(2,2) =6 with Val = c26 = 29. Since Max{Sol, Val} = 29 < BS, we go for bound calculation for

the present leader









67

21
.

Leaders

1 2 3 4 5 6 7

Bound Best Solution
Value

Remarks

Zakir H. Ahmed

International Journal of Computer Science and Security (IJCSS) Volume (3): Issue (6)

574

7-8

4-9
5-35

6-29

4-46

2-5

4-16

5-28
6-35

3-11

1-20

5-59

3-11
1-20

2-45

4-65

3-33

3-33

5-21
1-36

5-21
4-31

5-21

5-52

5-52

2-31

33
33
33
65
65
65
65
65

BS =
43
52
67
52
52

BS =
59
33
63
33
33
33
33

BS =
45
33
35
46
33
35

9999
9999
9999
9999
9999
9999
9999
9999
65
65
65
65
65
65
52
52
52
52
52
52
52
52
33
33
33
33
33
33
33

GS
GS
GS
GS
GS
ST
GS
GS

JB, JO
GS
GS
ST
GS
GS

JB, JO
JO
GS
ST
GS
GS
GS
GS

JB, JO
JO
JB
JO
JO
JB

STOP

TABLE 3: The search table.

33}31,21,33,11,5,29,8{

},,,,,29,8{

},,,,,,{

2,75,63,53,42,3

)1,7(,7)1,6(,6)1,5(,5)1,4(,4)1,3(,3

==

=

=

Max

cccccMax

cccccValSolMaxBound aaaaa

Since Bound < BS, we accept the node 6 that leads to the partial permutation









67

21
with Sol=29.

Proceeding in this way, we obtain the 1
st
 complete permutation










5143267

7654321
 for the tour

{1→7→5→4→3→2→6→1} with Sol= 65. Since Sol<BS, so we replace BS = 65. Now, we jump out to

the next higher order block, i.e.,









267

321
with Sol = 29, and try to compute another complete tour

with lesser tour value. Proceeding in this way, we obtain the optimal tour {1→7→2→6→5→3→4→1}

that is given by the permutation









2531467

7654321
 with optimal solution value = 33.

4. COMPUTATIONAL EXPERIMENT

Our lexisearch algorithm (LSA) has been encoded in Visual C++ on a Pentium 4 personal computer
with speed 3 GHz and 448 MB RAM under MS Windows XP. Also, for the comparison lexisearch
algorithm by Ramesh [6], named as RA, is encoded and run in the same environment. Both the
algorithms (RA and LSA) are tested for some TSPLIB instances and randomly generated instances of
different sizes drawn from different uniform distribution of integers.

Table 4 gives the results for nine asymmetric TSPLIB instances of size from 17 to 70. We report
optimal solution values and solution times (in second) for solving the instances by both RA and LSA.
To the best of our knowledge, no literature presents experimental solutions to the asymmetric TSPLIB
instances. The instance br17 of size 17 could be solved within only 1.59 seconds by RA, which could

Zakir H. Ahmed

International Journal of Computer Science and Security (IJCSS) Volume (3): Issue (6)

575

be solved by LSA within 185.99 seconds. For the remaining instances, reported in the table, LSA is
found to be better. We do not report the solution of other asymmetric TSPLIB instances, because we
could not solve them by any algorithm within one hour. Table 4 also reports the computational time
when the optimal solution is seen for the first time. In fact, a lexisearch algorithm first finds an optimal
solution and then proves the optimality of that solution, i.e., all the remaining subproblems are
discarded. Table 4 shows that, on average solution time, RA found optimal solution within 41% of the
total solution time, whereas LSA found the optimal solution within only 6% of the total solution time.
That is, RA spent 59% and LSA spent 94% of total time on proving optimality of the solutions.
Therefore, for these asymmetric TSPLIB instances, RA spends a relatively large amount of time on
finding an optimal solution compared to our LSA, and hence, a small number of subproblems are
thrown by RA.

Solution time Solution is seen first
Instances n

Optimal
Solution RA LSA RA LSA

br17 17 8 1.59 185.99 0.39 0.00

ftv33 34 113 0.16 1.32 0.16 0.55

ftv35 36 113 0.34 0.48 0.34 0.42

ftv38 39 113 0.02 0.05 0.02 0.05

p43 43 5008 0.02 0.02 0.05 0.02

ftv44 45 113 57.88 49.13 57.88 40.23

ft53 53 977 2960.56 1970.3 0.00 0.00

ftv64 65 104 812.03 0.00 789.23 0.00

ft70 70 1398 1452.36 156.45 1278.93 94.32

Mean 587.22 262.64 236.33 15.07

TABLE 4: Solution times for asymmetric TSPLIB instances

Solution time Solution is seen first
Instances n

Optimal
Solution RA LSA RA LSA

burma14 14 418 0.08 0.03 0.01 0.00

ulysses16 16 1504 15.21 0.03 0.00 0.00

gr17 17 282 105.36 75.98 0.00 0.02

gr21 21 355 293.21 315.06 0.00 0.02

ulysses22 22 1504 325.09 270.13 0.00 0.00

gr24 24 108 121.56 29.08 78.88 0.03

fri26 26 93 87.98 70.32 14.05 8.94

bayg29 29 111 2972.05 108.06 2089.32 0.01

bays29 29 154 2145.32 75.32 0.00 0.00

swiss42 42 67 ---- 2148.5 ----- 40.17

bier127 127 7486 ---- 3541.2 0.03 0.01

Mean 673.98 603.06 218.23 4.47

TABLE 5: Solution times for symmetric TSPLIB instances

Table 5 gives the results for eleven symmetric TSPLIB instances of size from 14 to 127. Recently,
Ramakrishnan et al. [9] developed a very good heuristic algorithm for the general BTSP and reported
results for some symmetric TSPLIB instances only. Since, the nature of our algorithm is not same as
their algorithm; we do not to carry out comparison with the algorithm in terms of solution times.
However, solutions reported there are found to be same as our solutions. Out of eleven instances two
instances could not be solved within one hour by RA. Of course, we saw the optimal solution for one of
them within 0.03 seconds. On the basis of average solution times, the table concludes that LSA is

Zakir H. Ahmed

International Journal of Computer Science and Security (IJCSS) Volume (3): Issue (6)

576

better than RA. It is to be noted that while we calculate average solution time, we do not consider the
instances which were not solved optimally within one hour. For these symmetric TSPLIB instances
also, RA spends a relatively large amount of time on finding an optimal solution compared to LSA. For
these case also, we do not report the instances which could not be solved by any algorithm within one
hour.

Randomly generated asymmetric and symmetric instances of different sizes are drawn from uniform
distribution of integers in the intervals [1, 100] and [1, 10000]. Fifteen different instances were
generated for each size. Table 6 reports mean and standard deviation of solution times by RA and
LSA for asymmetric instances. On the basis of the average solution times and standard deviation,
Table 6 shows that LSA is better than RA for both intervals. Of course, instances generated from the
interval [1, 10000] are found to be more difficult than the instances generated from [1, 100].

We report mean and standard deviation of solution times by RA and LSA for symmetric instances in
the Table 7. For these instances also, LSA is found to be better than RA. Also, the instances
generated from [1, 10000] are found to be more difficult than the instances generated from [1, 100]. It
is also observed that symmetric instances are more difficult than the asymmetric instances.

1 ≤ cij ≤ 100 1 ≤cij ≤ 10000

RA LSA RA LSA n

Mean Std dev Mean Std dev Mean Std dev Mean Std dev

30 24.58 39.33 10.12 25.85 27.18 40.32 13.25 29.18

35 141.93 198.96 65.06 119.38 158.21 201.15 75.06 146.16

40 457.95 578.08 163.28 319.3 495.92 518.15 196.86 347.01

45 735.14 952.32 275.03 502.32 802.21 1103.87 289.50 562.23

50 959.21 1014.23 317.92 516.39 967.32 1201.14 321.15 596.27

TABLE 6: Solution times for random asymmetric instances.

1 ≤ cij ≤ 100 1 ≤cij ≤ 10000
n

RA LSA RA LSA

 Mean Std dev Mean Std dev Mean Std dev Mean Std dev

30 29.58 43.12 15.22 20.15 32.16 47.52 14.99 21.35

35 189.21 209.56 76.98 101.76 190.46 229.13 79.32 98.21

40 507.19 618.54 182.35 357.97 535.78 761.76 166.28 375.21

45 805.98 987.32 352.67 547.12 854.36 1087.25 398.52 601.24

50 1020.01 1321.45 573.87 602.95 1223.01 1532.78 1052.32 1524.21

TABLE 7: Solution times for random symmetric instances.

5. CONCLUSION & FUTURE WORK

We presented a lexisearch algorithm using adjacency representation method for a tour for the
bottleneck traveling salesman problem to obtain exact optimal solution to the problem. The
performance of our algorithm is compared with the lexisearch algorithm of Ramesh [6] for some
TSPLIB instances and two types of randomly generated instances of different sizes. The
computational experiment shows that our lexisearch algorithm is better. Between asymmetric and
symmetric TSPLIB as well as random instances, symmetric instances are found to be hard.

In this present study, it is very difficult to say that what moderate sized instance is unsolvable by our
lexisearch algorithm, because, for example, br17 of size 17 could be solved within 185.99 seconds

Zakir H. Ahmed

International Journal of Computer Science and Security (IJCSS) Volume (3): Issue (6)

577

and dantzig42 of size 42 could not be solved within one hour, whereas, ftv64 of size 65 could be
solved within only 0.00 seconds by our algorithm. It certainly depends upon the structure of the
instance. So a closer look at the structure of the instances and then developing a data-guided module
may further reduce the solution time. Also, it is seen that the optimal solution is seen for the first time
very quickly, which suggests that applying a tight lower bound method may reduce the solution time
drastically, which are under our investigations.

Acknowledgements

The author wishes to acknowledge Prof. S.N. Narahari Pandit, Hyderabad, India for his valuable
suggestions and moral support. The author also thanks the reviewer for his constructive suggestions.

6. REFERENCES

[1] G.L. Vairaktarakis. "On Gilmore-Gomory’s open question for the bottleneck TSP". Operations
Research Letters 31, pp. 483–491, 2003.

[2] M.-Y. Kao and M. Sanghi. "An approximation algorithm for a bottleneck traveling salesman
problem". Journal of Discrete Algorithms, doi: 10.1016/j.jda.2008.11.007 (2009)

[3] P.C. Gilmore and R.E. Gomory. "Sequencing a one state-variable machine: a solvable case of
the traveling salesman problem". Operations Research 12, pp. 655–679, 1964.

[4] R.S. Garfinkel and K.C. Gilbert. "The bottleneck traveling salesman problem: Algorithms and
probabilistic analysis". Journal of ACM 25, pp. 435-448, 1978.

[5] G. Carpaneto, S. Martello and P. Toth. "An algorithm for the bottleneck traveling salesman
problems". Operations Research 2, pp. 380-389, 1984.

[6] M. Ramesh. "A lexisearch approach to some combinatorial programming problems”. PhD
Thesis, University of Hyderabad, India, 1997.

[7] Z.H. Ahmed, S.N.N. Pandit, and M. Borah. "Genetic Algorithms for the Min-Max Travelling
Salesman Problem". Proceedings of the Annual Technical Session, Assam Science Society,
India, pp. 64-71, 1999.

[8] Z.H. Ahmed. "A sequential constructive sampling and related approaches to combinatorial
optimization". PhD Thesis, Tezpur University, India, 2000.

[9] R. Ramakrishnan, P. Sharma and A.P. Punnen. "An efficient heuristic algorithm for the
bottleneck traveling salesman problem". Opsearch 46(3), pp.275-288, 2009.

[10] J. Larusic, A.P. Punnen and E. Aubanel. "Experimental analysis of heuristics for the bottleneck
traveling salesman problem". Technical report, Simon Fraster University, Canada, 2010.

[11] J.M. Phillips, A.P. Punnen and S.N. Kabadi. "A linear time algorithm for the bottleneck traveling
salesman problem on a Halin graph". Information Processing Letters 67, pp. 105-110, 1998.

[12] S.N.N. Pandit. “Some quantitative combinatorial search problems”. PhD Thesis, Indian Institute
of Technology, Kharagpur, India, 1963.

[13] TSPLIB, http://www.iwr.uni-heidelberg.de/iwr/comopt/software/TSPLIB95/

