
Kamaljit Kaur, Amit Chhabra & Gurvinder Singh 

International Journal of Computer Science and Security (IJCSS), Volume (4): Issue (2)  183

Heuristics Based Genetic Algorithm for Scheduling Static Tasks 
in Homogeneous Parallel System  

 
 

Kamaljit Kaur                                 kamal.aujla86@gmail.com 
Department of Computer Science & Engineering, 
Guru Nanak Dev University, 
Amritsar- 143001, Punjab, India 
 
Amit Chhabra                                    chhabra_amit78@yahoo.com 
Department of Computer Science & Engineering, 
Guru Nanak Dev University, 
Amritsar- 143001, Punjab, India 
 
Gurvinder Singh                 gsbawa71@yahoo.com 
Department of Computer Science & Engineering, 
Guru Nanak Dev University, 
Amritsar- 143001, Punjab, India 

 
 

Abstract 
 
Multiprocessor task scheduling is an important and computationally difficult 
problem. Multiprocessors have emerged as a powerful computing means for 
running real-time applications, especially that a uni-processor system would not 
be sufficient enough to execute all the tasks. That computing environment 
requires an efficient algorithm to determine when and on which processor a given 
task should execute. A task can be partitioned into a group of subtasks and 
represented as a DAG (Directed Acyclic Graph), that problem can be stated as 
finding a schedule for a DAG to be executed in a parallel multiprocessor system. 
The problem of mapping meta-tasks to a machine is shown to be NP-complete. 
The NP-complete problem can be solved only using heuristic approach. The 
execution time requirements of the applications’ tasks are assumed to be 
stochastic. In multiprocessor scheduling problem, a given program is to be 
scheduled in a given multiprocessor system such that the program’s execution 
time should be minimized. The last job must be completed as early as possible. 
Genetic algorithm (GA) is one of the widely used techniques for constrained 
optimization. Performance of genetic algorithm can be improved with the 
introduction of some knowledge about the scheduling problem represented by 
the use of heuristics. In this paper the problem of same execution time or 
completion time and same precedence in the homogeneous parallel system is 
resolved by using concept of Bottom-level (b-level) or Top-level (t-level). This 
combined approach named as heuristics based genetic algorithm (HGA) based 
on MET (Minimum execution time)/Min-Min heuristics and b-level or t-level 
precedence resolution and is compared with a pure genetic algorithm, min-min 
heuristic, MET heuristic and First Come First Serve (FCFS) approach. Results of 
the experiments show that the heuristics based genetic algorithm produces much 



Kamaljit Kaur, Amit Chhabra & Gurvinder Singh 

International Journal of Computer Science and Security (IJCSS), Volume (4): Issue (2)  184

better results in terms of quality of solutions. 
 
Keywords: DAG, multiprocessor scheduling, genetic algorithm, heuristics. 

 
  

1. INTRODUCTION 

The problem of scheduling parallel tasks onto multiprocessors is to simply apportion a set of 
tasks to processors such that the optimal usage of processors and accepted computation time for 
scheduling algorithm are obtained [1,2]. The assumption of this paper is based on the 
deterministic model, that is, the number of processors, the execution time of tasks, the 
relationship among tasks and precedence constraints are known in advance. The precedence 
constraints between tasks are represented by a Directed Acyclic Graph (DAG). In addition, the 
communication cost between two tasks is considered to be non-negligible and the multiprocessor 
system is not diverse and non-preemptive, that is, the processors are homogeneous, and each 
processor completes the current task before the new one starts its execution. 
 
The complexity of the scheduling problem is very depended to the DAG, the number of 
processors, the execution time of tasks and also the performance criteria which would to be 
optimized.  
 
To date, many heuristic methods have been presented to schedule tasks on multiprocessor 
systems [5, 9, 10, 11, 16, 18, 19]. Also, there are many studies have been used for task 
scheduling based on GA [7, 8, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23]. GA is a problem solving 
strategy, based on Darwinian evolution, which has been successfully used for optimization 
problems [3, 4].  
 
The aim of this paper is to present a GA to decrease the computation time for finding a 
suboptimal schedule.  
 
This paper is divided as follows: In section 2 an overview of the problem is given along with brief 
description of the solution methodology. Section 3 provides a more detailed heuristics based 
genetic algorithm. Experimental results and performance analysis are provided in section 4 and 
conclusion follow in section 5. 
 

2. PROBLEM STATEMENT 

In this section, more prescribed multiprocessor scheduling problem and the principles of genetic 
algorithms are discussed. 
 
2.1 Task Scheduling Problem 

Parallel Multiprocessor system scheduling can be classified into many different classes based on 
the characteristics of the tasks to be scheduled, the multiprocessor system and the availability of 
information. This paper focus on a deterministic scheduling problem. A deterministic scheduling 
problem [1, 2] is one in which all information about the tasks and the relation to each other such 
as execution time and precedence relation are known to the scheduling algorithm in advance. 
The tasks should be non-preemptive i.e. task execution must be completely done before another 
task takes control of the processor, and the processor environment is homogeneous. 
Homogeneous of processor means that the processors have same speeds or processing 
capabilities. 
 
The main objective is to minimize the total task completion time (execution time + waiting time or 
idle time). 



Kamaljit Kaur, Amit Chhabra & Gurvinder Singh 

International Journal of Computer Science and Security (IJCSS), Volume (4): Issue (2)  185

The multiprocessor computing consists of a set of m homogeneous processor 
P = {pi: i =1, 2, 3…m} 

They are fully connected with each other via identical links. Figure 1 shows a fully connected 
three parallel system with identical link. 

 
 

FIGURE 1:  A fully connected parallel processor 
 

Consider a directed acyclic task graph G = {V,E} of n nodes. Each node V = {T1, T2,...., Tn} in the 
graph represents a task. Aim is to map every task to a set P = {P1,P2, . . . , Pm} of m processors. 
Each task Ti has a weight Wi associated with it, which is the amount of time the task takes to 
execute on any one of the m homogeneous processors. Each directed edge eij indicates 
dependence between the two tasks Ti and Tj that it connects. If there is a path from node Ti to 
node Tj in the graph G, then Ti is the predecessor of Tj and Tj is the successor of Ti. The 
successor task cannot be executed before all its predecessors have been executed and their 
results are available at the processor at which the successor is scheduled to execute. A task is 
“ready” to execute on a processor if all of its predecessors have completed execution and their 
results are available at the processor on which the task is scheduled to execute. If the next task 
to be executed on a processor is not yet ready, the processor remains idle until the task is ready. 
The elements set C are the weights of the edges as C = {ck: k =1, 2, 3…r} It represents the data 
communication between the two tasks, if they are scheduled to different processors. But if both 
tasks are scheduled to the same processor, then the weight associated to the edge becomes null 
[7, 12]. 
 
A DAG which has eleven tasks according to their height and their execution time (the time 
needed for a task to execute) is shown in Figure 2. 
 

 
 

FIGURE  2:  An example of a DAG 

 

Tlevel(Ti) is defined to be the length of the longest path in the task graph from an entry task to Ti, 
excluding the execution cost of Ti. Symmetrically, blevel(Ti) is the length of the longest path from 
Ti to an exit task, including the execution cost of Ti. Formula (2.1) and (2.2) are formal definitions 
of tlevel(Ti) and blevel(Ti). Notice that we consider communication costs while calculating values 
tlevel and blevel [8]. 

 



Kamaljit Kaur, Amit Chhabra & Gurvinder Singh 

International Journal of Computer Science and Security (IJCSS), Volume (4): Issue (2)  186

 
  
2.2 Minimum Execution Time (MET) 

Minimum Execution Time (MET) assigns each task, in arbitrary order, to the machine with the 
best expected execution time for that task, regardless of that machine's availability. The 
motivation behind MET is to give each task to its best machine [5, 11]. 

2.3 Min-min Heuristic  

Min-min heuristic uses minimum completion time (MCT) as a metric, meaning that the task which 
can be completed the earliest is given priority. This heuristic begins with the set U of all 
unmapped tasks. Then the set of minimum completion times, M = {min(completion_ time(Ti ,Mj )) 
for (1 � i � n , 1�  j � m)}, is found. M consists of one entry for each unmapped task. Next, the 
task with the overall minimum completion time from M is selected and assigned to the 
corresponding machine and the workload of the selected machine will be updated. And finally the 
newly mapped task is removed from U and the process repeats until all tasks are mapped (i.e. U 
is empty) [5, 11]. 

2.4 Genetic Algorithms 

A genetic algorithm starts with an initial population that evolves through generations and to 
reproduce depends on its fitness [3, 4]. In this case, the fitness of an individual is defined as the 
difference between its makespan and the one of the individuals having the largest makespan in 
the population. The best individual corresponds to the one having the smallest makespan and the 
largest fitness.  
 
Next, the operators that compose a genetic algorithm are reviewed. The selection operator allows 
the algorithm to take biased decisions favor good individuals when changing generations. For 
this, some of the good individuals are replicated, while some of the bad individuals are removed. 
As a consequence, after the selection, the population is likely to be dominated by good 
individuals. Starting from a population P1, this transformation is implemented iteratively by 
generating a new population P2 of the same size as P1. 
 
Genetic algorithms are based on the principles that crossing two individuals can result an 
offsprings that are better than both parents and slight mutation of an individual can also generate 
a better individual. The crossover takes two individuals of a population as input and generates 
two new individuals, by crossing the parents' characteristics. The offsprings keep some of the 
characteristics of the parents. 
 
The mutation randomly transforms an individual that was also randomly chosen. It is important to 
notice that the size of the different populations is same.  
 
The structure of the algorithm is a loop composed of a selection followed by a sequence of 
crossovers and a sequence of mutations. After the crossovers, each individual of the new 
population is mutated with some (low) probability. This probability is fixed at the beginning of the 
execution and remains constant. The termination condition may be the number of iterations, 
execution time, results stability, etc [3, 7, 8, 6]. 
 

3. HGA: THE SUGGESTED ALGORITHM 

GAs operates through a simple cycle of stages: creation of population strings, evaluation of each 
string, selection of the best strings and reproduction to create a new population. The number of 
genes and their values in each chromosome depend on the problem specification. In this paper, 



Kamaljit Kaur, Amit Chhabra & Gurvinder Singh 

International Journal of Computer Science and Security (IJCSS), Volume (4): Issue (2)  187

the number of genes of each chromosome is equal to the number of the nodes (tasks) in the DAG 
and the gene values demonstrate the scheduling priority of the related task to the node (each 
chromosome shows a scheduling), where the higher priority means that task must be executed 
early. In the basic genetic algorithm the initial population is generated randomly, which can cause 
to generate more bad results. To avoid the generation of non-optimal results, heuristic approach 
along with precedence resolution can be applied to generate the initial population that gives 
better results in terms of quality of solutions. 
 
3.1 Coding of Solutions 

For multiprocessor scheduling problem, a schedule is one that satisfies following conditions. 
1. The precedence relations among the tasks are satisfied 
2. Every task is present and appears only once in the schedule [7, 8]. 

A schedule can be represented as several lists of computational tasks (fig 3). Each list 
corresponds to computational tasks executed on a processor and order of tasks in the list 
indicates the order of execution. 
 

 
 

FIGURE 3:  List Representation of a schedule 
3.2 Population Initialization 

The next step in the GAs is the creation of the initial population. Number of processors, number of 
tasks and population size are needed to generate initial population. Each individual of the initial 
population is generated through a minimum execution time or min-min heuristic along with b-level 
or t-level precedence resolution to avoid the problem of same execution time or completion time 
and same precedence. The problem of same execution time/completion time and precedence 
can occur in the homogeneous parallel system as all the processors take same execution time to 
execute one task.  
 
The task to be scheduled for each iteration is determined by the following rules: 

i. Sort the tasks according to their execution time/completion time in ascending order 
according to the minimum execution time (MET)/Min-Min heuristic. 

ii. Calculate the bottom-level of each task. 
iii. Sort the tasks with the same execution time/completion time and same precedence 

according to their bottom-level in descending order. 
iv. Assign the tasks to the processors in the order of their bottom-level. 

 
OR 

 
The task to be scheduled for each iteration is determined by the following rules: 

i. Sort the tasks according to their execution time/completion time in ascending order 
according to the minimum execution time (MET)/Min-Min heuristic. 

ii. Calculate the top-level of each task. 
iii. Sort the tasks with the same execution time/completion time and same precedence 

according to their top-level in ascending order. 
iv. Assign the tasks to the processors in the order of their top-level.  

 
The length of all individuals in an initial population is equal to the number of tasks in the DAG.  

 
 



Kamaljit Kaur, Amit Chhabra & Gurvinder Singh 

International Journal of Computer Science and Security (IJCSS), Volume (4): Issue (2)  188

For example: the initial population of fig. 2 is generated as:  
 

 
 

TABLE 1: Priority of execution of tasks based on their execution time, completion time, bottom-level and 
top-level. 

 
 

 
 

FIGURE 4:  Initial Population of figure 1 using b-level resolution 
 

 
 

FIGURE 5:  Initial Population of figure 1 using t-level resolution 
 

 
3.3 Fitness Value  

Several optimization criteria can be considered for this problem, certainly the problem is 
multiobjective in its general formulation [20]. The elementary criterion is that of minimizing the 
makespan, that is, the time when finishes the latest job. A secondary criterion is to minimize the 
flowtime that is, minimizing the sum of finalization times of all the jobs. These two criteria are 
defined as follows:             

 and 

 
 Fj denotes the time when job j finalizes, Schd is the set of all possible schedules and jobs is the 
set of all jobs to be scheduled. 

For example fitness value of the initial population is as follows: 



Kamaljit Kaur, Amit Chhabra & Gurvinder Singh 

International Journal of Computer Science and Security (IJCSS), Volume (4): Issue (2)  189

 
 

FIGURE 6:  Assignment of tasks to processors using b-level resolution 

The fitness value is calculated in terms of Makespan and Flowtime as discussed above as 

Makespan = 24 time units 
Flowtime = 3+2+3+4+5+12+11+22+15+24+19 = 120 time units. 

 
FIGURE 7:  Assignment of tasks to processors using t-level resolution 

Makespan = 24 time units 
Flowtime = 3+2+3+5+7+8+13+22+12+16+24 = 115 time units. 

The * denotes the communication time and # denotes the waiting time. 
 
3.4 Selection Operator 

The design of the fitness function is the basic of selection operation, the design of the fitness 
function will directly affect the performance of genetic algorithm. GAs uses selection operator to 
select the superior and eliminate the inferior. The individuals are selected according to their 
fitness value. Once fitness values have been evaluated for all chromosomes, good chromosomes 
can be selected through rotating roulette wheel strategy. This operator generate next generation 
by selecting best chromosomes from parents and offspring. 
 
3.5 Crossover Operator 

Crossover operator randomly selects two parent chromosomes (chromosomes with higher values 
have more chance to be selected) and randomly chooses their crossover points, and mates them 
to produce two child (offspring) chromosomes. In this paper one and two point crossover 
operators are examined. In one point crossover, the segments to the right of the crossover points 
are exchanged to form two offspring as shown in figure 8 (a) and in two point crossover [3] [8], 
the middle portions of the crossover points are exchanged to form two offspring as shown in 
figure 8 (b). 

 
 
 
 
 
 
 
 
 



Kamaljit Kaur, Amit Chhabra & Gurvinder Singh 

International Journal of Computer Science and Security (IJCSS), Volume (4): Issue (2)  190

Randomly selects Parent 1 & 2, crossover point 2 
 

 
 

 
 

FIGURE 8(a): One Point Crossover 
 
 

Randomly selects parent 1 & 2, crossover points 1 & 3 
 

 



Kamaljit Kaur, Amit Chhabra & Gurvinder Singh 

International Journal of Computer Science and Security (IJCSS), Volume (4): Issue (2)  191

 
                                                                  

FIGURE 8(b): Two Point Crossover 
  
3.6 Mutation 

Mutation ensures that the probability of finding the optimal solution is never zero. It also acts as a 
safety net to recover good genetic material that may be lost through selection and crossover. 
Implementation of two mutation operators is there in HGA. The first one selects two tasks 
randomly and swaps their allocation parts. The second one selects a task and alters its allocation 
part at random. These operators can always generate feasible offspring, too. Figure 9(a), 9(b), 
9(c) & 9(d) demonstrate the mutation operation. 
 

 
 

FIGURE 9(a):  A Gantt chart before mutation operation 
Makespan = 24 time units 
Flowtime = 3+2+3+4+5+12+11+22+15+24+19 = 120 time units. 

 
 

FIGURE 9(b):  A Gantt chart after swap mutation operation. 
Makespan = 20 time units 
Flowtime = 3+2+3+4+5+8+7+19+14+20+15 = 100 time units. 
The mutation operation swaps task t6 on processor p1 to task t7 on processor p3. 



Kamaljit Kaur, Amit Chhabra & Gurvinder Singh 

International Journal of Computer Science and Security (IJCSS), Volume (4): Issue (2)  192

 
 

FIGURE 9(c):  A Gantt chart after swap mutation operation. 
Makespan = 20 time units 
Flowtime = 3+2+3+4+5+8+7+18+12+20+15 = 97 time units. 
The mutation operation swaps task t9 on processor p1 to task t8 on processor p3. 
 

 
 

FIGURE 9(d):  A Gantt chart after swap mutation operation 
Makespan = 14 time units 
Flowtime = 3+2+3+4+5+8+7+9+12+14+12 = 79 time units. 
The mutation operation swaps task t8 on processor p1 to task t11on processor p2 that takes 14 
time units to complete. 

The procedure of the Suggested Heuristics based Genetic Algorithm is: 

Step 1: Setting the parameter 
Set the parameter: Read DAG (number of tasks n, number of processors m and comm. 
cost), population size pop_size, crossover probability pc, mutation probability pm, and 
maximum generation maxgen. 
Let generation gen = 0 

Step 2: Initialization 
Generate pop_ size chromosomes using minimum execution time (MET)/Min-Min 
heuristic and b-level/t-level precedence resolutions. 

Step 3: Evaluate  
Calculate the fitness value of each chromosome 

Step 4: Crossover 
Perform the crossover operation on the chromosomes selected with probability pc. 

Step 5: Mutation 
Perform the swap/move mutation on chromosomes selected with probability pm. 

Step 6: Selection 
Select pop_size chromosomes from the parents and offspring for the next generation. 

Step 7: Stop testing 
If gen = maxgen, then output best solution and stop 
Else gen = gen + 1 and return to step 3 

 
 
4. EXPERIMENTAL RESULTS & PERFORMANCE ANALYSIS 

 
The final best schedule obtained by applying the suggested algorithm to the DAG of figure 2 onto 
the parallel multiprocessor system in figure 1, is shown in figure 10 & 11. The completion time 
obtained by heuristics based method using b-level resolution is 14 time units and with t-level 
resolution is 16 time units. We also compare the results with FCFS scheduling method, min-min 



Kamaljit Kaur, Amit Chhabra & Gurvinder Singh 

International Journal of Computer Science and Security (IJCSS), Volume (4): Issue (2)  193

scheduling method, MET scheduling method and also with the Basic Genetic Algorithm (BGA) [7] 
on parallel systems and execution of the schedule are shown in figure 12, 13, 14 & 15. 

After applying the suggested heuristics based GA, the best schedule found using b-level 
precedence resolution is: 
P1: T2�T4�T7�T11 
P2: T1�T5�T8�T10 
P3: T3�T6�T9 

 
 

FIGURE 10:  A Gantt chart of Suggested Heuristics based Genetic Algorithm using b-level resolution. 
 

Makespan = 14 time units 
Flowtime = 3+2+3+4+5+8+7+9+12+14+12 = 79 time units. 

After applying the suggested heuristics based GA, the best schedule found using t-level 
precedence resolution is: 
P1: T2�T4�T7�T11 
P2: T1�T5�T10�T8 
P3: T3�T6�T9 

 
 

FIGURE 11:  A Gantt chart of Suggested Heuristics based Genetic Algorithm using t-level resolution. 
 

Makespan = 16 time units 
Flowtime = 3+2+3+4+5+8+7+16+12+12+12 = 84 time units. 

Min-min scheduling policy assigns the tasks to processors p1, p2 & p3 as: 
P1: T2�T4�T6�T11 
P2: T1�T5�T8�T10 
P3: T3�T7�T9 

 
 

FIGURE 12:  A Gantt chart of Min-min scheduler 
 
 



Kamaljit Kaur, Amit Chhabra & Gurvinder Singh 

International Journal of Computer Science and Security (IJCSS), Volume (4): Issue (2)  194

Makespan = 20 time units 
Flowtime = 3+2+3+4+5+12+11+9+18+16+20 = 103 time units. 
 
FCFS scheduling Policy assign the tasks to processors p1, p2 & p3 as: 
P1: T1�T4�T7�T10 
P2: T2�T5�T8�T11 
P3: T3�T6�T9 

 
  

FIGURE 13:  A Gantt chart of FCFS scheduler. 
 
Makespan = 21 time units 
Flowtime = 3+2+3+5+7+8+13+13+12+17+21 = 104 time units. 

Minimum Execution Time (MET) Scheduling Policy assigns the tasks to processors p1, p2 & p3 
as: 
P1: T2�T5�T7�T8 
P2: T4�T3�T10�T11 
P3: T1�T6�T9 

 
 

FIGURE 14:  A Gantt chart of MET scheduler. 
 

Makespan = 24 time units 
Flowtime = 3+2+5+2+7+10+11+17+14+16+24 = 111 time units. 

After applying the Basic GA, the best schedule found is: 
P1: T1�T4�T7�T10 
P2: T2�T5�T8�T11 
P3: T3�T6�T9 

 
 

FIGURE 15:  A Gantt chart of BGA scheduler. 
  
Makespan = 21 time units 
Flowtime = 3+2+3+5+7+8+13+13+12+17+21 = 104 time units. 



Kamaljit Kaur, Amit Chhabra & Gurvinder Singh 

International Journal of Computer Science and Security (IJCSS), Volume (4): Issue (2)  195

In Figure 16 (a) & (b), it is clear that HGA can considerably decreases the scheduling time. 
 

 
(a) 

 

 
(b) 

FIGURE 16:  Experimental results for (a) Makespan (b) Flowtime 
 
Performance Analysis 
1. Suggested Heuristics based GA using b-level resolution: 

Speed up (S): speed up is defined as the completion time on a uniprocessor divided by 
completion time on a multiprocessor system. 

S = 30/14 
   = 2.142 

Efficiency (E): (S * 100)/ m, where m is the number of processors. 
E = (2.142 * 100) / 3 = 71.42 % 

2. Suggested Heuristics based GA using t-level resolution 
 S = 30/16 = 1.875 
 E = (1.875 * 100) / 3 = 62.5 % 
3. Min-min Scheduler:  

S = 30/20 = 1.5 
E = (1.5 * 100) / 3 = 50 % 

4. FCFS Scheduler: 
S = 30/21 = 1.428 
E = (1.428 * 100) / 3 = 47.61 % 

5. MET Scheduler: 



Kamaljit Kaur, Amit Chhabra & Gurvinder Singh 

International Journal of Computer Science and Security (IJCSS), Volume (4): Issue (2)  196

 S = 30/24 = 1.25 
 E = (1.25 * 100) / 3 = 41.66 % 

6. BGA Scheduler:  
S = 30/21 = 1.428 
E = (1.428 * 100) / 3= 47.61 % 

 
The performance analysis of various scheduling schemes is shown in figure 17. 
 

 
 

FIGURE 17: Performance analysis of min-min, FCFS, BGA, MET, HGA algorithms. 
 

5. CONCLUSION 
The task scheduling problem in the distributed systems is known to be NP-hard. The heuristic 
algorithms which obtain near-optimal solution in an acceptable interval time are preferred to the 
back tracking and the dynamic programming. The genetic algorithm is one of the heuristic 
algorithms which have the high capability to solve the complicated problems like the task 
scheduling. 

In this paper, a new genetic algorithm, named Heuristics based Genetic Algorithm for 
Scheduling Static Tasks in Homogeneous parallel System is presented which its population size 
and the number of generations depends on the number of tasks. This algorithm tends to minimize 
the completion time and increase the throughput of the system. The heuristics based method 
found a best solution for assigning the tasks to the homogeneous parallel multiprocessor system. 
Experimental results and performance of the heuristics based GA with different precedence 
resolution methods is compared with Min-min, MET, FCFS and BGA Scheduling method and 
shows the efficiency of 71.42 %. The performance study is based on the best randomly 
generated schedule of the suggested GA. 
 
6. REFERENCES 

[1] Ishfaq Ahmad, Yu-Kwong Kwok, Min-You Wu, “Analysis, Evaluation, and Comparison of 
Algorithms for Scheduling Task Graphs on Parallel Processors”, Proceedings of the 1996 
International Symposium on Parallel Architectures, Algorithms and Networks, Page: 207, 
1996, ISBN: 0-8186-7460-1, IEEE Computer Society Washington, DC, USA. 

[2] Yu-Kwong Kwok and Ishfaq Ahmad, “Static Scheduling Algorithms for Allocating Directed 
Task Graphs to Multiprocessors”, ACM Computing Surveys, vol. 31, Issue. 4, December 
1999, ISSN: 0360-0300, ACM New York, NY, USA. 

[3] D. E. Goldberg, “Genetic algorithms in search, optimization & machine learning”, Addison 
Wesley, 1990. 



Kamaljit Kaur, Amit Chhabra & Gurvinder Singh 

International Journal of Computer Science and Security (IJCSS), Volume (4): Issue (2)  197

[4] Melanie Mitchell, “An Introduction to Genetic algorithms”, The MIT Press, February 1998. 
[5]  Tracy D. Braunt, Howard Jay Siegel, Noah Beck, Bin Yao, Richard F. Freund, “A Comparison 

Study of Eleven Static Heuristics for Mapping a Class of Independent Tasks onto 
Heterogeneous Distributed Computing Systems”, Journal of Parallel and Distributed 
Computing, Volume 61, Issue 6, June 2001, Pages: 810-837, ISSN: 0743-7315, Academic 
Press, Inc. Orlando, FL, USA. 

[6] Ricardo C. Correa, Afonso Ferreira, Pascal Rebreyend, “Scheduling Multiprocessor Tasks 
With Genetic Algorithms”, IEEE Transactions on Parallel and Distributed Systems, Vol. 10, 
Issue. 8, August 1999, Pages: 825-837, ISSN: 1045-9219, IEEE Press Piscataway, NJ, USA. 

[7] Edwin S. H. Hou, Nirwan Ansari, Hong   Ren, “A Genetic Algorithm for Multiprocessor 
Scheduling”,  IEEE Transactions on Parallel and Distributed Systems, vol. 5, Issue. 2, 
February2003, Pages: 113-120, ISSN: 1045-9219, IEEE Press Piscataway, NJ, USA. 

[8] Amir Masoud Rahmani, Mohammad Ali Vahedi, “A novel Task Scheduling in Multiprocessor 
Systems with Genetic Algorithm by using Elitism stepping method”, Science and Research 
branch, Tehran, Iran, May 26, 2008. 

[9] Martin Grajcar, “Genetic List Scheduling Algorithm for Scheduling and Allocating on a 
Loosely Coupled Heterogeneous Multiprocessor System”, Proceedings of the 36th annual 
ACM/IEEE Design  Automation Conference, New Orleans, Louisiana, United States, Pages: 
280 – 285, 1999, ISBN: 1-58133-109-7, ACM New York, NY, USA. 

[10] Martin Grajcar, “Strengths and Weaknesses of Genetic List Scheduling for Heterogeneous 
Systems”, IEEE Computer Society, Proceedings of the Second International Conference on 
Application of Concurrency to System Design, Page: 123, ISBN: 0-7695-1071-X, IEEE 
Computer Society Washington, DC, USA, 2001. 

[11] Hesam Izakian, Ajith Abraham, Vaclav Snasel, “Comparison of Heuristics for scheduling 
Independent Tasks on Heterogeneous Distributed Environments”, Proceedings of the 2009 
International Joint Conference on Computational Sciences and Optimization, Volume 01, 
Pages: 8-12, 2009, ISBN:978-0-7695-3605-7, IEEE Computer Society  Washington, DC, 
USA. 

[12] Yi-Hsuan Lee and Cheng Chen, “A Modified Genetic Algorithm for Task Scheduling in 
Multiprocessor Systems”, Proc. of 6th International Conference Systems and Applications, 
pp. 382-387, 1999. 

[13] Amir Masoud Rahmani and Mojtaba Rezvani, “A Novel Genetic Algorithm for Static Task 
Scheduling in Distributed Systems”, International Journal of Computer Theory and 
Engineering, Vol. 1, No. 1, April 2009, 1793-8201. 

[14] Michael Rinehart, Vida Kianzad and Shuvra S. Bhattacharyya, “A modular Genetic Algorithm 
for Scheduling Task Graphs”, Technical Report UMIACS-TR-2003-66, Institute for Advanced 
Computer Studies University of Maryland at College Park, June 2003. 

[15] Pai-Chou Wang, W. Korfhage, “Process Scheduling with Genetic Algorithms”, Proceedings of 
the 7th IEEE Symposium on Parallel and Distributed Processing, Page: 638, ISBN: 0-8186-
7195-5, October 2005, IEEE Computer Society Washington, DC, USA. 

[16] Prof. Sanjay R Sutar, Jyoti P. Sawant, Jyoti R. Jadhav, “Task Scheduling For Multiprocessor 
Systems Using Memetic Algorithms”, http://www.comp.brad.ac.uk/het-net/tutorials/P27.pdf 

[17] Andrew J. Page and Thomas J. Naughton, “Framework for Task scheduling in 
heterogeneous distributed computing using genetic algorithms”, 15th Artificial Intelligence 
and Cognitive Science Conference, 2004, Castlebar, Co. Mayo, Ireland, isbn = 1-902277-89-
9 pages = 137-146. 

[18] Clayton S. Ferner and Robert G. Babb, “Automatic Choice of Scheduling Heuristics for 
Parallel/Distributed Computing”, IOS Press Amsterdam, The Netherlands, Volume 7, Issue 1, 
Pages: 47 – 65, January 1999, ISSN:1058-9244. 

[19] C.L. McCreary, A.A. Khan, J. Thompson, M.E. McArdle, “A Comparison of Heuristics for 
Scheduling DAGs on Multiprocessors”, Eighth International Proceedings on Parallel 
Processing Symposium, pages: 446-451, Location: Cancun, ISBN: 0-8186-5602-6, DOI: 
10.1109/IPPS.2002.288264, 06 August 2002. 

[20] Javier Carretero, Fatos Xhafa,  Ajith Abraham, “Genetic Algorithm Based Schedulers for Grid 
Computing Systems”, International Journal of Innovative Computing, Information and Control, 
ICIC International, Vol.3, No. 6, ISSN 1349-4198, pp. 1053-1071, December 2007. 



Kamaljit Kaur, Amit Chhabra & Gurvinder Singh 

International Journal of Computer Science and Security (IJCSS), Volume (4): Issue (2)  198

[21] Annie s. Wu, Han Yu, Shiyuan Jin, Kuo-Chi Lin, and Guy Schiavone, “An Incremental 
Genetic Algorithm Approach to Multiprocessor Scheduling”, IEEE Transactions on Parallel 
and Distributed Systems, Vol.15, No. 9, On page(s): 824 – 834,  ISSN: 1045-9219, INSPEC 
Accession Number:8094176, Digital Object Identifier: 10.1109/TPDS.2004.38, 13 September 
2004. 

[22] Michael Bohler, Frank Moore, Yi Pan, “Improved Multiprocessor Task Scheduling Using 
Genetic Algorithms”, Proceedings of the Twelfth International FLAIRS Conference, WPAFB, 
OH 45433,  American Association for Artificial Intelligence, 1999. 

[23] Marin Golub, Suad Kasapovic, “Scheduling Multiprocessor Tasks with Genetic Algorithms”, 
OACTA Press, from proceeding (351) Applied Informatics, 2002. 

[24] M. Nikravan and M. H. Kashani, “A Genetic Algorithm for Process Scheduling in Distributed 
Operating Systems considering Load Balancing”, Proceedings 21st European Conference on 
Modelling and Simulation Ivan Zelinka, Zuzana Oplatkova, Alessandra Orsoni, ECMS 2007, 
ISBN 978-0-9553018-2-7, ISBN 978-0-9553018-3-4 (CD). 

[25] Shuang E Zhou, Yong Liu, Di Jiang, “A Genetic-Annealing Algorithm for Task Scheduling 
Based on Precedence Task Duplication”, CIT, Proceedings of the Sixth IEEE International 
Conference on Computer and Information Technology, Page: 117, 2006, ISBN: 0-7695-2687-
X, IEEE Computer Society Washington, DC, USA. 


