
Bryan Sarazin & Syed Rizvi

International Journal of Computer Science and Security (IJCSS), Volume (4): Issue (3) 316

A Self-Deployment Obstacle Avoidance (SOA) Algorithm for
Mobile Sensor Networks

Bryan Sarazin bsarazin@bridgeport.edu
Department of Computer Science and Engineering
University of Bridgeport
Bridgeport, 06601, USA

Syed S. Rizvi srizvi@bridgeport.edu
Department of Computer Science and Engineering
University of Bridgeport
Bridgeport, 06601, USA

Abstract

A mobile sensor network is a distributed collection of nodes, each of which has
sensing, computing, communicating, and locomotion capabilities. This paper
presents a self-deployment obstacle avoidance (SOA) algorithm for mobile
sensor networks. The proposed SOA algorithm provides full coverage and can
be efficiently used in a complex, unstable, and unknown environment. Moreover,
the SOA algorithm is implemented based on the assumption that nodes are
randomly deployed near the sink where each node knows the location of the
target. In proposed SOA algorithm, the nodes determine a partner node and link
up effectively to form a node pair. A node pair which is closest to the target
searches for the target with all other node pairs following the previous node.
There are number of priority rules on which the mobility of sensor nodes is
based. The SOA algorithm ensures that the nodes determine a path around any
obstacles. Once a connection is established from the sink to the target, the node
pair separates and starts providing the full coverage. The experimental
verifications and simulation results demonstrate that the proposed algorithm
provides three main advantages. First, it reduces the total computation cost.
Second, it increases the stability of the system. Third, it provides greater
coverage to unknown and unstable environment.

Keywords: Mobile nodes, Mobile networks, Self deployment, Sensor networks.

1. INTRODUCTION
The purpose of a mobile sensor network is to provide a reliable connection from sink to target and
perform some form of information gathering. Wireless sensor networks provide different functions
in a variety of applications including environmental monitoring, target tracking, and distributed data
storage. A basic problem faced by the current sensor network is the need of an efficient
deployment of sensor nodes that can provide the required coverage [1], [13]. In some situations,
the tasks put forward higher requirements; they not only need a connection, but also require the
connection to be efficient and secure. If the environment changes or a hostile environment can not
guarantee the security of sensors, resulting in damage to sensors, or loss of contact with sensors,
the entire system still has to ensure the realization of the most basic functions.

Bryan Sarazin & Syed Rizvi

International Journal of Computer Science and Security (IJCSS), Volume (4): Issue (3) 317

For instance, a mobile sensor network used in natural disaster relief such as earthquake, a safe
route through hazardous terrain may need to be determined. The environment is complex and
variable, and may continually change. There may be any number of unknown obstacles within this
environment, with the possibility that they may shift or move. Therefore, in this defined area, we
can not know the state of the environment, all sensors must be able to locate obstacles at run time
and be able to negotiate them. The sensing and computation must be efficient [1] [2] since the
response time is pressing in natural disaster relief. If it takes too long, the value of such a system
is lost. This implies that, for each of the sensors to sense, perform computation, and then
communicate with each other is inefficient [3] [11] [12]. Another case is in military applications
such as target detection. The sensors should provide detection of the enemy in a given area. In
this application, coverage is vital. If coverage criteria cannot be met, the enemy may not be
detected, rendering the network virtually useless.

There are a number of problems associated with current mobile sensor networks. For instance,
how can nodes provide sensing capability, how do we make computation and locomotion efficient,
and how do the sensors create a stable connection while providing coverage? The proposed SOA
algorithm provides solution to these problems. First, we assume that all nodes are randomly
deployed near the sink. Each node has a priority based on its relative position to the sink, the
target, and all other nodes. The nodes interact with each other to construct node pairs based on
priority where each node pair effectively moving as a single node. Only the node pair with the
highest target priority begins moving towards the target. The node pair with the second highest
target priority follows the first pair and so on. Each node pair stays within communication range of
the pair with higher target priority and higher sink priority. Only the node pair with the highest target
priority performs computation to determine movement while the other node pairs simply follow the
pair with higher priority. The proposed SOA algorithm shows a significant reduction in the number
of computations that each sensor node has to perform in order to locate the position – thus it
provides an efficient and faster way to calculate the position.

When the first node pair encounters an obstacle, it does three things. First, it calculates the range
to the obstacle. Second, it determines the direction to avoid the obstacle. Third, it negotiates with
the obstacle. Once the target is reached, the node pairs separate to provide coverage and
connection reliability. We assume that the radius of the coverage area that each node provides is r
whereas the amount of sensors in a combination (referred to as a pair) is assumed to be n. Taking
these parameters into account, the whole mobile sensor network can cover an area of a width up
to n*r.

Coverage criteria may be met by defining the number of nodes paired together. We can control the
distance of separation and adjust this distance to meet our requirements. One of the nodes can
keep communicating with all surrounding nodes, ensuring the connection is maintained even
during the separation period (i.e., it shows a strong connection). Otherwise, the node can maintain
a connection with at least two other nodes. The strong connection can make the mobile sensor
network more stable and secure, because if one of the nodes is destroyed, its neighboring nodes
can maintain communication with the other nodes. The strong connection could be used in a
hazardous environment, such as on a battle field or in natural disaster relief. In this environment,
the nodes could be easily damaged, but the mobile sensor network is pivotal, so it must keep
working despite the loss of nodes.

2. PROBLEM FORMULIZATION
The goal of this research work is to develop an algorithm for self-deployment of a mobile sensor
network which has the ability to build an uninterrupted wireless connection between the sink and
the target while at the same time provides coverage to a certain area within an unknown
environment. To achieve this goal, we use the moving algorithm for self-deployment of a mobile
sensor network.

Bryan Sarazin & Syed Rizvi

International Journal of Computer Science and Security (IJCSS), Volume (4): Issue (3) 318

The moving algorithm is based on the connection built between multiple nodes, communication
range, and the direction of movement of each node. Each node finds a suitable position in the
unknown environment to ensure successful deployment. The nodes should have the ability to
determine movement without needing a constant connection with other nodes. If the node has
enough self-direction, it makes node communication more efficient because it does not need to
maintain constant communication. Each node may only communicate with the other nodes within
its communication range since the communication between nodes should be efficient as possible.
However, each node has the ability to communicate with the sink via multi-hop communication.
The nodes use this multi-hop communication system to report obstacle position if known, target
position if known, and its own position.

An obstacle may exist in one of the two possible states. The obstacle may be a safe distance from
the node. In this case, the node broadcasts its location and keeps moving. In the other case, the
obstacle is in the path of the node. The node broadcasts the location of the obstacle and navigates
it. Self-organization allows the following nodes (i.e., nodes immediately behind the higher priority
nodes) to navigate the obstacle without performing any computation (i.e., these nodes simply
follow the path of a higher priority node).

Before we present the proposed SOA algorithm, it is worth mentioning some of our key
assumptions and notations we use in the proposed algorithm.

 Locomotion (i.e., each node has the capability of movement).
 Communication (i.e., each node can communicate with the other nodes within the

communication rage).
 Observation (i.e., each node can detect potential obstacles and the target).
 Position detection (i.e., each node can detect its position such as using a GPS system)
 For the sake of the simulation results, we shall assume that the sink knows its position

and the position of the target. This prevents the nodes from attempting to scan the
entire environment in order to detect the target.

 We shall also assume that the target is detectable by each node and does not have the
capability of movement. Also, we assume that the potential obstacles are present
within the paths (i.e., no obstacle is too large to avoid).

3. MOVING AND PRIORITY RULES FOR SOA ALGORITHM
Mobile sensor networks (MSNs) have received considerable research attention over the last
decade because of their ease of deployment without the need of any fixed infrastructure [14]. Due
to its highly dynamic nature and network topology, one of the fundament challenges in MSN is the
design of self deployment algorithms that can enable the sensor nodes to organize themselves
while at the same time maintain a consistent connection with the other deployed nodes and
provide a coverage, so that the sensor nodes can communicate with each other within their
respective communication range.

Several self-deployment algorithms have been suggested for MSNs over the past few years [3]
[9] [11] [15]. The proposed SOA algorithm is the extension of the obstacle avoidance algorithm
proposed by Takahashi et. al [3]. However, our SOA algorithm differs from the algorithm
proposed by [3] since the proposed SOA algorithm not only avoids the obstacles but also
provides coverage to sensor nodes which is a significant improvement over the algorithm
suggested by [3].

The algorithm is based upon a number of priority and moving rules. The priority rules for a node n
establish the priority rules for all objects which include the sink, target, and all other nodes.

These priority rules are as follows:

Bryan Sarazin & Syed Rizvi

International Journal of Computer Science and Security (IJCSS), Volume (4): Issue (3) 319

FIGURE 1: Initial Deployment of Nodes.

 Priority rule I: priority-s is settled to the node which is nearest to node n and closer

to the sink. If there are no nodes closer to the sink than node n, priority-s is settled to
the sink.

 Priority rule II: priority-t is settled to the node which is nearest to node n and closer
to the target. If there are no nodes closer to the target than node n, priorities-t is
settled to the target.

 Priority rule III: It is not permitted that priority-t is settled to an object for which
priority has already been settled.

It should be noted that the stable connection area is defined as the area within which node n can
effectively communicate. Taking this into consideration, the moving rules can be defined as
follows:

 Moving rule I: Node n moves to the stable connection area of priority-s and keeps
this condition. If node n cannot move to that area, it moves to the nearest position in
the area it can reach. In this case, the Moving rule I is not satisfied.

 Moving rule II: Node n moves to the stable connection area of priority-t and keeps
this condition with maintenance of Moving rule I. If node n cannot move to that area,
node n moves to nearest position in the area it can reach. In this case, the Moving
rule II is not satisfied.

 Moving rule III: The higher priority rule preferentially gets executed. Moving rule II is
executed only after the Moving rule I is satisfied.

Also, the obstacle avoidance algorithm used is the Virtual Force Field (VFF) [13] method. Any
obstacle acts as a virtual repulsive force against any node once it has been detected.

4. SELF-DEPLOYMENT OBSTACLE AVOIDANCE (SOA) ALGORITHM
We assume every node is initially deployed near the sink as shown in Fig. 1.

4.1 Determination of Connection Priority
First, the sink receives the position information of all nodes. Then the sink determines the relative
distance between each node and the target, and each node and the sink.

4.2 Determination of Partner Node
Each node determines its partner node based on Priority rule II. For instance, the node with the
highest priority-t partners with the second highest priority-t (Fig. 2), this continues until all nodes
are paired. Once two nodes are partnered, they are closed enough to assume that they can move
as one pair node.

Bryan Sarazin & Syed Rizvi

International Journal of Computer Science and Security (IJCSS), Volume (4): Issue (3) 320

FIGURE 2: Formation of Node Pairs.

Information node n has Relative Distance
node ID number position to node n to target to sink

target (Xt, Yt) D(t, n) - D(t, s)
sink (Xs, Ys) D(s, n) D(s, t) -

Node 1 (X1, Y1) D(1, n) D(1, t) D(1, s)
Node 5 (X5, Y5) D(5, n) D(5, t) D(5, s)
Node 3 (X3, Y3) D(3, n) D(3, t) D(3, s)
Node n (Xn, Yn) - D(n, t) D(n, s)
Node 2 (X2, Y2) D(2, n) D(2, t) D(2, s)
Node 6 (X6, Y6) D(6, n) D(6, t) D(6, s)

Table 1: Node n’s Information about Position and Relative Distance

The distance (d) between two nodes, a and b, is shown using the following expression:

 22
baba yy+xx=ba,d where x and y are the x-axis and y-axis coordinates in the

constellation diagram. The complete information and relative distance for an arbitrarily node n is
shows in Table 1.

4.3 Decision of Moving Direction
Each node pair moves toward its target based on the priority order. Based on the relative distance
between the center point to the target, the node which is nearest to target gets the highest
priority-t where as the node nearest to the sink gets the highest priority-s. The node determines
its movement based on the location of the node-pair with higher priority-t. This location is
determined as follows (see Fig. 3).

aab

ac

d
d=

xx
xx

 (1)

 and

d
d=

yy
yy a

ba

ca

 (2)

 where

2 a
rd = d = v (3)

All node pairs begin moving toward the target following the established moving and priority rules.
The node pair with the highest priority-t moves directly toward target. The node pair with the
second highest priority-t directly follows the highest priority-t node pair and so on (see Fig. 4).

Bryan Sarazin & Syed Rizvi

International Journal of Computer Science and Security (IJCSS), Volume (4): Issue (3) 321

FIGURE 3: Determination of Movement Direction.

FIGURE 4: Setup of a Node Pair

FIGURE 5: Navigation of an Obstacle by a Node Pair

Fig.5 shows the navigation method that will be discussed later in detail. After each time interval,
each node pair communicates its location, and each node pair recalculates its destination based
on the calculations in (3) (4) and (5).

The node pair with the highest priority-s can not break the link with the sink. When it reaches the
stable connection edge, it moves to the nearest position in the area that it can reach without
breaking the connection with the sink.

Bryan Sarazin & Syed Rizvi

International Journal of Computer Science and Security (IJCSS), Volume (4): Issue (3) 322

FIGURE 6b: Node Pair A has Negotiated Obstacle. Node Pair B has Simply Followed A.

FIGURE 6a: Highest Priority-t Node Pair (A) Encounters Obstacle. The Next Node Pair (B) Simply Follows
Node Pair A.

When a node pair reaches the stable connection edge, it ceases movement in order to maintain
its connection with the higher priority-t node pair, or the higher priority-s node pair, or both. When
the highest priority-t node pair reaches the target the connection is built.

4.4 Obstacle Violation
We shall assume the obstacle is rectangular in shape. When the node pair detects the obstacle it
calculates the edge position. If the obstacle does not impede the path to the target, it broadcasts
the obstacle’s location and continues moving. If the obstacle does block the path, the node pair
attempts to move around it (Fig. 5). The node pair's direction of movement is parallel to the
surface of obstacle while still close enough to detect the obstacle. The node pair continues to
move this direction until it determines it can move safely in the direction of the target. The worst-
case scenario occurs when obstacle runs perpendicular to the node pair's path to the target. The
node pair moves around the obstacle in a predetermined direction.

When the highest priority-t node pair changes its direction of movement, the path of the next node
pair automatically updates. This occurs because each node pair follows the higher priority-t node
pair (Fig. 6a and 6b).

4.5 Partner Separation
The algorithm to determine separation is essential in order to ensure the full coverage and the
ability to communicate with as many neighboring nodes as possible. After a connection between

Bryan Sarazin & Syed Rizvi

International Journal of Computer Science and Security (IJCSS), Volume (4): Issue (3) 323

FIGURE 7a: The Maximum Distance between Nodes is r. Node A can Communicate with Node B and Node C

but not Node D.

FIGURE 7b: Node A may Communicate with Node D.

the target and the sink is built, the node pairs separate to cover more area and also create a
more reliable connection. The maximum allowable separation distance r is defined by the
communication range of the nodes. In Fig. 7a, node A can communicate with nodes B and C but
not node D because its distance is greater than r. We can ensure node A may communicate with
node D by reducing the distance between node A and node B and also node B and node D (see
Fig. 7b for complete illustration). System parameters along with their definitions are presented in
Table 2. Specifically, the distance between nodes A and B can be defined in (4)

 rd cb, (4)

In order to achieve this, the distance from A to B must be:

 2,
r=d cb (5)

Using by the Pythagorean Theorem:

Bryan Sarazin & Syed Rizvi

International Journal of Computer Science and Security (IJCSS), Volume (4): Issue (3) 324

Parameters Definitions

a Distance from aP to bP
c Distance from cP to bP

aP Position of Node a defined by ,a ax y

bP Position of Node b defined by ,b bx y

cP Position of Node c defined by ,c cx y

ar
Broadcast range of Node a

cr
Broadcast range of Node c

TABLE 2: Definition of Parameters to Determine Separation

22

22

 r+r=r (6)

Equation (6) gives ideal location of the separation node. It is calculated based on the location of
node A and node C. The distance between node A and node B is displayed in (7) and the
distance between node B and C should be no greater than r. In order to determine the location to
which the separation node moves, a number of calculations are performed as follows:

2
a

2 r=h+a2
 (7)

2

c
2 r=h+c2

 (8)

22 2

2
a cr r + a+c

a =
a+c

 (9)

c+a
PPa+P=P ac

acenter

 (10)

 c a

b center

h y y
x = x

a+c

 (11)

 c a

b center

h x x
y = y

a+c

 (12)

and

 c a

b center

h y y
x = x

a+c

 (13)

Bryan Sarazin & Syed Rizvi

International Journal of Computer Science and Security (IJCSS), Volume (4): Issue (3) 325

FIGURE 8: Determination of Location which Separating Node should move.

 c a
b center

h x x
y = y

a+c

 (14)

Finally, the direction of separation is based on the location of the obstacle. Equations (11) and
(12) give two points for which the separation node may move. This movement of nodes is shown
in Fig. 8. We can determine which point is based on their distance from the obstacle. The
separation node moves to the point whose distance to the obstacle is less. Once the separation
has taken place, this system has satisfied the requirements of the mobile sensor network. It has
determined a safe path from the sink to the target, detected any obstacle in its path, and provided
coverage of the environment.

5. EXPERIMENTAL VERIFICATIONS AND PERFORMANCE ANALYSIS
This section presents the performance analysis of the proposed SOA algorithm. Before we
present our simulation results, it is worth mentioning some of our key assumptions and simulation
environment.

5.1 Simulation Environment
The unknown environment is defined to be a square with sides equaling 800m. The origin point
(0, 0) is located in the uppermost left corner. Each node is represented as a black square and
both the sink and the target are represented by a larger square. The sink is designated by a blue
square and the target is represented by a green square. A large obstacle is placed within the
field, which is represented by a red square. Each node is capable of sensing and communicating
within its communication range designated by r (in meters). Nodes may communicate with nodes
outside of its range via a multi-hop communication system. For the simulation, the range is 80m.
Each node also has the capability of movement which is designated by v (in meters). Simulation
will capture data after each 1 m/s (i.e., time is simulated in 1 second intervals). The initial state of
the environment is shown in Fig. 9 and Table 3.

Bryan Sarazin & Syed Rizvi

International Journal of Computer Science and Security (IJCSS), Volume (4): Issue (3) 326

Parameters Definitions Values

n Number of mobile nodes 16
V Speed of mobile node 1.0(m/s)
S Sink position (700,375)
T Target position (10,375)

D(S,T) Distance between sink and target 690m
R Communication range 114m

TABLE 3: Initial State of the Simulation Environment with Simulation Parameters

FIGURE 9: Initial State of the Simulation Environment.

5.2 Symbols Definition
A node is denoted by n. The sink is represented by S, the target T, and the obstacle O. Within the
environment shown in Fig. 9, all objects are represented by an (x, y) grid coordinates.

Coverage is the quality of service by which the wireless mobile sensor network is measured. The
nodes must be placed as efficiently as possible within the environment so they may communicate
with neighboring nodes and also provide maximum coverage. For the sake of simulation, the
distance between nodes is the metric by which the system is evaluated. We examine the distance
between a sample node and the node it follows during the deployment. We also examine the
distance to the node following it. If this distance becomes greater than r at any point, the nodes
have lost communication.

Ideally, the distance between the nodes can be calculated using (5) as described earlier. Also, as
the nodes separate, the distance of the separation node and its partner is important. The distance
to neighboring node is equally important. If this distance exceeds r, communication between
nodes is lost.

5.3 Simulation Results
Our mathematical model was simulated using Java. We sampled the information from node 2 in
10 second intervals. In order to maintain communication with nodes 0 and 4, the distance cannot
at any point be greater than 114 m. As shown in Appendix 1, the distance between nodes 0 and
node 4 never exceeds that distance. From this, we can identify that node 2 has maintained
communication with both nodes 0 and node 4 during the entire simulation. The distance
information is illustrated in Fig. 10b and also presented in Table 4 (see Appendix 1).

Also the distance between neighboring nodes should not exceed 114 m in order to maintain
communication. In the final state of the simulation, this is achieved as shown in Appendix 1. A

Bryan Sarazin & Syed Rizvi

International Journal of Computer Science and Security (IJCSS), Volume (4): Issue (3) 327

FIGURE 10a: Simulation during Nodes Movement.

FIGURE 10b: Distance Information for Node 2 during the Entire Simulation

state of the simulation is shown in Fig. 10a. The state of the simulation before node separation is
shown in Fig. 11. Finally, the final state of the simulation is shown in Figure 12.

6. CONCLUSION & FUTURE WORK
This paper presented a new algorithm that can effectively deploy the sensor nodes by avoiding
obstacles (if any) between the source and target. The simulation results demonstrated that the
self-deployment algorithm is successful. Moreover, the system is able to negotiate an unknown
environment, an obstacle, detect a target, and deploy to provide maximum coverage of the
environment. It ensures the connection between the nodes is not lost by maintaining the distance
between the nodes. The proposed SOA algorithm is an improvement over current algorithms. By
pairing the nodes at the beginning of the deployment, this allows the most efficient deployment
time from the sink to the target. While other algorithms provide efficient deployment with regards
to time, SOA algorithm provides this, and also increases the amount of coverage of the
environment. Also, SOA algorithm ensures that a greater area of coverage can be achieved when
the nodes separate. While other algorithms provide effective coverage of an environment, our

Bryan Sarazin & Syed Rizvi

International Journal of Computer Science and Security (IJCSS), Volume (4): Issue (3) 328

FIGURE 11: State of Simulation before Node Pair Separation.

FIGURE 12: Final State of Wireless Sensor Network.

proposed algorithm ensures the ability to provide coverage quickly, by initially pairing nodes. It
may be possible, in the future, to show that the mobile sensor network is more efficient when
more nodes are added into the network. If more nodes are added to a node pair, it takes less of
the networks resources to deploy the nodes. Only one node in the node pair must communicate
and perform computation during the deployment of the network. Moreover, the proposed SOA
algorithm provides fast deployment of nodes to targets since the priority after the pairing of nodes
is to reach the target as efficiently as possible.

7. REFERENCES

[1] Y. Liang, C. Weidong, X. Yugeng. “A review of control and localization for mobile sensor

networks”. In Proceedings of the Sixth World Congress on Intelligent Control and Automation
(WCICA 2006), pp. 9164-9168, Dalian, China, 2006.

[2] T. Jindong, X. Ning. “Integration of sensing, computation, communication and cooperation for
distributed mobile sensor networks”. In Proceedings of the IEEE International Conference on
Robotics, Intelligent Systems and Signal Processing, pp. 54- 59, 2003.

[3] J. Takahashi, K. Sekiyama, T. Fukuda. "Self-Deployment algorithm of mobile sensor network
based on connection priority criteria". Proceedings of 2007 International Symposium on
Micro-Nano Mechatronics and Human Science (MHS2007), pp. 564-569, 2007.

[4] M. Singh, M. Gore. “A solution to sensor network coverage problem”. In Proceedings of the
2005 IEEE International Conference on Personal Wireless Communications, (ICPWC), pp.
77-80, January, 2005.

Bryan Sarazin & Syed Rizvi

International Journal of Computer Science and Security (IJCSS), Volume (4): Issue (3) 329

[5] R. Tynan, G. DavidMarsh, D. O'Kane. “Interpolation for wireless sensor network coverage”.
In Proceedings of the Second IEEE Workshop on Embedded Networked Sensors, pp. 123-
131, 2005.

[6] M. Cheng, L. Ruan, W. Wu. “Achieving minimum coverage breach under bandwidth
constraints in wireless sensor networks”. In Proceedings of the 24th Annual Joint Conference
of the IEEE Computer and Communications Societies, pp. 2638- 2645, 2005.

[7] S. Ram, D. Majunath, S. Iyer, D. Yogeshwaran. “On the path coverage properties of random
sensor networks”, IEEE Transaction on Mobile Computing, 6(5): 494-506, 2007.

[8] P. Pennesi, C. Paschalidis. “Solving sensor network coverage problems by distributed
asynchronous actor-critic methods”. In Proceedings of the 46th IEEE Conference on Decision
and Control, pp. 5300-5305, 2007.

[9] N. Aziz, A. Mohemmed, D. Sagar. “Particle swarm pptimization and voronoi diagram for
wireless sensor networks coverage optimization” In Proceedings of the International
Conference on Intelligent and Advanced Systems, pp. 961-965, 2007.

[10] J. Kanno, J. Buchart, R. Selmic, V. Phoha, “Detecting coverage holes in wireless sensor
networks”. In Proceedings of the 2009 17th Mediterranean Conference on Control and
Automation, pp.452-457, Thessaloniki, Greece June 2009.

[11] Y. Li and Y. Liu, "Energy saving target tracking using mobile sensor networks". In
Proceedings of the IEEE International Conference on Robotics and Automation, pp. 674-679,
April 2007.

[12] S. Zhang, J. Cao, L. Chen, D. Chen. "Locating nodes in mobile sensor networks more
accurately and faster". In Proceedings of the 5th Annual IEEE Communications Society
Conference on Sensor, Mesh and Ad Hoc Communications and Networks, (SECON '08), pp.
37-45, San Francisco, CA, 2008.

[13] J. Lu, T. Suda. "Differentiated surveillance for static and random mobile sensor networks.
IEEE transactions on wireless communications, 7(11): 4411-4423, 2008.

[14] A. Rai, S. Ale, S. Rizvi, A. Riasat. ”New methodology for self localization in wireless sensor
networks”. Journal of Communication and Computer, 6(11): 37-44, 2009.

[15] S. Rizvi and A. Riasat, “Use of self-adaptive methodology in wireless sensor networks for
reducing energy consumption,” IEEE International Conference on Information and Emerging
Technologies (IEEE ICIET-2007), pp. 1 – 7, July 06-07, 2007.

Bryan Sarazin & Syed Rizvi

International Journal of Computer Science and Security (IJCSS), Volume (4): Issue (3) 330

Appendix 1: TABLE 4: Distance Information for Node 2

Time Distance to Node O Distance to Node 4
25 78.47 40.8
50 78.89 33.82
75 79.63 32.47

100 78.86 44.56
125 79.37 61.21
150 79.3 74.44
175 79.21 79.19
200 79.19 79.33
225 79.68 78.13
250 78.9 79.46
275 79.35 79.24
300 79.61 78.99
325 81.64 78.82
350 83.74 78.64
375 84 79.52
400 81.53 80.25
425 79.04 83.79
450 80.7 88.21
475 82.77 91.7
500 87.42 88.38
525 89.85 85.87
550 89.85 87.68
575 89.85 90.96
600 89.85 94.48
625 89.85 96.9
650 89.85 96.9
675 89.85 96.9
700 89.85 96.9
725 78.85 91.9
750 78.85 78.9
775 78.85 78.9
800 78.85 78.9
825 78.85 78.9
850 78.85 78.9
875 78.85 78.9
900 78.85 78.9
925 78.85 78.9
950 78.85 78.9
975 78.85 78.9
1000 78.85 78.9

