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Abstract 
 
This paper deals with the problem of function approximation from a given set 
of input/output (I/O) data. The problem consists of analyzing training 
examples, so that we can predict the output of a model given new inputs. We 
present a new approach for solving the problem of function approximation of 
I/O data using Radial Basis Function Neural Networks (RBFNNs) and Genetic 
Algorithms (GAs). This approach is based on a new efficient method of 
optimizing RBFNNs parameters using GA, this approach uses GA to optimize 
centres c and radii r of RBFNNs, such that each individual of the population 
represents centres and radii of RBFNNs. Singular value decomposition (SVD) 
is used to optimize weights w of RBFNNs. The GA initial population performed 
by using Enhanced Clustering Algorithm for Function Approximation (ECFA) 
to initialize the RBF centres c and k-nearest neighbor to initialize the radii r. 
The performance of the proposed approach has been evaluated on cases of 
one and two dimensions. The results show that the function approximation 
using GA to optimize RBFNNs parameters can achieve better normalized-
root-mean square-error than those achieved by traditional algorithms. 
 
Keywords: Radial Basis Function Neural Networks, Genetic Algorithms and Function Approximation. 

 
 
1. INTRODUCTION 
Function approximation is the name given to a computational task that is of interest to many 
science and engineering communities [1]. Function Approximation consists of synthesizing a 
complete model from samples of the function and its independent variables [2]. In supervised 
learning, the task is to map from one vector space to another with the learning based on a set 
of instances of such mappings. We assume that a function F does exist and we endeavor to 
synthesize a computational model of that function. As a general mathematical problem, 
function approximation has been studied for centuries. For example, in pattern recognition, a 
function mapping is made whose objective is to assign each pattern in a feature space to a 
specific label in a class space [3, 12].  
 
The idea of combining genetic algorithms and neural networks occurred initially at the end of 
the 1980s. The problem of neural networks is that the number of parameters has to be 
determined before any training begins and there is no clear rule to optimize them, even 
though these parameters determine the success of the training process [23]. Genetic 
algorithms (GAs), on the other hand, are very robust and explore the search space more 
uniformly, since every individual is evaluated independently, which makes GAs very suitable 
to the optimization of Neural Networks [4].  However, the choice of the basic parameters 
(network topology, initial weights) often determines the success of the training process. The 
selection of these parameters is practically determined by accepted rules of thumb, but their 
value is at most arguable. GAs are global search methods, that are based on the principles of 
selection, crossover and mutation [23, 25]. GAs increasingly have been applied to the design 
of neural networks in several ways, such as optimization of the topology of neural networks by 
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optimizing the number of hidden layers and the number of nodes in each hidden layer, and 
the optimization of neural network parameters by optimizing the weights [5, 6].      
 
One type of neural network, called Radial Basis Function Neural Networks (RBFNNs) [24], 
has the property of universal approximation and has received some attention by other 
researchers, but its parameters have, so far, been only partially optimized using GAs [1, 12]. 
RBFNNs are characterized by a transfer function in the hidden unit layer having radial 
symmetry with respect to a centre [7]. The basic architecture of RBFNNs is a 3-layer network 
as in Figure 1. The output of the RBFNNs is given by the following expression:  
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Where { : 1,..., }  i i m is the basis functions set, and wi is the associate weights for 

every RBF. The basis function   can be calculated as a Gaussian function using the 
following expression:  
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Where 

c  is the central point of the function , r is its radius and 
x  is the input vector.  
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Fig.1. Radial Basis Function Network 
 
Topology optimization is a common learning method for RBFNNs, but a big challenge is 
optimization that includes the full parameter sets of centres c, radii r and weights w along with 
the number of neurons per hidden layer. There are several possibilities of using GAs to 
configure RBFNNs. A straightforward approach is to fix a topology and use GA as an 
optimization tool to compute all free-parameters [8]. In [9] the author fixed the number of 
hidden neurons, and used GA to optimize only the location of the RBFNNs centres. The radii 
and output weights were computed by the K-nearest neighbor KNN and the singular value 
decomposition SVD, respectively. In [10] the author also fixed the number of centres, and 
evolved their locations and radii, instead of encoding a network in each individual, the entire 
set of chromosomes cooperates to constitute RBFNNs. Another idea is to hybridize the 
configuration process, using GA as a support tool. Chen et. al. [13] presented a two-level 
learning method for RBFNNs, where a regularized orthogonal least squares (ROLS) algorithm 
was employed to construct the RBFNNs at the inner level, while the two main parameters of 
this algorithm were optimized by a GA process at the outer level. In [14], GA was used to 
optimize the number and initial positions of the centres using the k-means clustering 
algorithm; the RBFNNs first training then proceeded as in [15].  
 
In our approach we present a different way that depends on optimizing the topology of 
RBFNNs and its parameters centres c, and radii r using GA. Weights w are calculated by 
means of methods of resolution of linear equations. In this proposed approach we use the 
singular values decomposition (SVD) to solve this system of linear equations and assign the 
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weights w for RBFNNs to calculate the output. Each individual is an entire set of 
chromosomes cooperate to constitute a RBFNNs. In our proposed approach we use the 
incremental method to determine the number of RBF (neurons) depending on the data-test-
error that the system produces which means, an increase in each iteration will be only one 
RBF until there is no improvement in test error during several iterations.  
 
The organization of the rest of this paper is as follow: Section 2 presents an overview of the 
proposed approach. In Section 3, we present in detail the proposed approach for the 
determination of the pseudo-optimal RBFNNs parameters. Then, in Section 4 we show some 
results that confirm the performance of the proposed approach. Some final conclusions are 
drawn in Section 5. 
 
2. THE PROPOSED APPROACH 
As mentioned before, the problem of function approximation consists of synthesizing a 
complete model from samples of the function and it is independent variables. Consider a 
function ( )

y F x   where 
x  is a vector (x1,…,xp) in k-dimensional space from which a set of 

input/output data pairs is available.  The process of combining RBFNNs and GA is based on 
the using of GA to optimize the RBFNNs parameters (centres c, and radii r) so that the 
neuron is put in a suitable place in input data space [11]. The form of combining RBFNNs with 
GAs appears in Figure 2. 

 
 
 
 
 
 
  
            Input Data                  GAs/ RBFNN                Output Approximation 

 
Fig.2. Combining GA and RBFNN 

 
The process begins with an initial population generated using three techniques for the 
initialization of centres c, radii r, and weights w. The first technique is a clustering algorithm, 
designed for function approximation (ECFA) [16], which is used for initializing the RBF centres 
c. ECFA calculates the error committed in every cluster using the real output of the RBFNN, 
which is trying to concentrate more in those input regions where the approximation error is 
bigger, thus attempting to homogenize the contribution to the error of every cluster. Due to 
this fact, the cluster locations are located in different places depending on the paradigm used 
to model the internal relation in the I/O data [16]. The second technique is the k-nearest 
neighbors technique (Knn), which is used for the initialization of the radii r of each RBF. The 
Knn technique sets the radius of each RBF to a value equal to the mean of the Euclidean 
distance between the centres of their nearest RBF [1, 20]. The last technique is singular value 
decomposition (SVD), which is used to optimize directly the weights. The SVD technique is 
used to solve the problem of RBF misplacement by using singular matrix activation. If two 
functions are almost identical in the activation matrix, then two columns will be produced with 
equal weight, whereas if a RBF is not activated for any point, zero columns in the matrix will 
be produced [16, 20]. All these techniques are used once for the first configuration.  
 
The fitness function (NRMSE) that is used to evaluate the population will establish the fitness 
for every chromosome depending on its functions in the training set.  The best population will 
be selected for promotion to the next generation, where the genetic operators of crossover 
and mutation produce a new population. The population leads the process of the selection to 
the best value of the fitness (small error). Crossover and mutation lead to exploring the 
unknown regions of the search space. Then, the population converges to the best parameters 
of optimization of weights, centres and radii of RBFNNs. The process repeats until it finds the 
best fitness or until the generation number reaches the maximum with the same genetic 
operators in every generation. 
 

  

Original 
Problem  

 



Mohammed Awad 

International Journal of Computer Science and Security (IJCSS), Volume (4): Issue (3)                      298 

3. PARAMETER OPTIMIZATION OF RBFNN USING GAs 
A GA is a search or an optimization algorithm, which is invented based on genetics and 
evolution. The initial population of individuals that have a digit string as the chromosome is 
usually generated randomly. Each element of a chromosome is called a gene.  The fitness, 
which is a measure of improvement of approximation, is calculated for each individual. The 
selection operations choose the best individuals for the next generation depending on the 
fitness value. Then, crossover and mutation are performed on the selected individuals to 
create a new individual that replaces the worst members of the population offspring. These 
procedures are continued until the end-condition is satisfied. This algorithm confirms the 
mechanism of evolution, in which the genetic information changes for every generation, and 
the individuals that better adapt to their environment survives preferentially [17]. 
 
Our new proposed approach use GAs to construct optimal RBFNNs. The approach uses GAs 
evolving to optimize the two RBFNNs parameters (centres c, and radii r) and uses singular 
value decomposition (SVD) to optimize directly the weights w. The general process of our 
proposed approach can be depicted in Figure 3, and the pseudo-code of this algorithm reads: 

Begin 
Initialize population P {c [by ECFA], r [by Knn]};    and w [by SVD]. 
Evaluate each individual on population P by fitness function ( , , )F x w ; 
While not (stop criteria) ([threshold of NRMSE] ||  [number of  Generation β])   do 
            Select individual’s i1 and i2; 
             ip+1 ← Crossover(i1, i2); 
                      Mutation (ip+1); 
                      Evaluate (ip+1); 
                      if matches threshold → stop  
                    else insert(ip+1, Pnew); 
                    End; 
 

 

Fig. 3. General description of the proposed algorithm 

 

 

 
NRMSE  ≤  α 

|| 
G # ≤ β 

 

Generate Initial Population P with Each 
Individual S represent the number of RBF 
using ECFA to initialize the centers, KNN 

for radii and SVD for Weights 

Evaluate the Fitness Function 
for each Individual. (NRMSE) 

Select the Best two Individuals  

Apply Crossover on the two 
selected individuals  

Insert the two Individuals in the 
New Generated Population. 

   

Apply Mutation with Probability 
Pc to create two Offspring. 
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Start Number of RBF     ≥    1 

YES 

NO 

Increased Number RBF by One 
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3.1 Initialization 
 Each gene is constituted by a real vector representing centres, and a real value representing 
radii of RBFs m. Chromosomes have a variable length which defined as follow: 
 

 
(3)  

 
In our approach the chromosome that consists of (centres c, radii r) is generated initially 
depending on classical algorithms so that initial centres will be generated once in the first 
configuration by an efficient method of clustering of the centres c of the RBF Network (ECFA) 
[16]. The K-nearest neighbors technique (Knn) used once in the first configuration for the 
initialization of the radii r of each RBF. The number of parameters in each chromosome 
calculated by [(# of RBF centres × # of dimensions) + # of RBF radii]. Singular value 
decomposition (SVD) is used directly to optimize the weights w. 
 
3.2 The Evaluation Function  
The evaluation function is the function that calculates the value of the fitness in each 
chromosome, in our case, the fitness function is the error between the target output and the 
current output, (Fitness = error). In this paper, the fitness function we are going to use is the 
so-called Normalized-Root-Mean-Squared-Error (NRMSE). This performance-index is defined 
as: 
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Where y is the mean of the target output, and p is the input data number. 
 
3.3 Stop Process  
A GA evolves from generation to generation selecting and reproducing parents until reaching 
the end criterion. The criterion that is most used to stop the algorithm is a stated maximum 
number of generations. With this work we use the maximum number of generation β or the 
value of the fitness (NRMSE) threshold α as the criterion of End. This finishes the process 
when the fitness (NRMSE) value reaches the determined threshold value α or when the 
maximum number of performed generations exceeds the determined number of generations. 
In practice, however, the process of optimization can finish before approaching the 
termination conditions, which can happen when a GA moves from generation to generation 
without resulting in any improvement in the value of the fitness. 
 

If Current Generation   ≥    Maximum Generation    β    ||   Fitness (NRMSE)   ≤   
Threshold value   α   →   End the optimization 

 
3.4 Selection 
The selection of the individuals to produce the consecutive generation is an important role in 
genetic algorithms. The probable selection arises the fitness of each individual. This fitness 
presents the error between the objective output and actual output of RBFNN, such that the 
individual that produces the smallest error has higher possibility to be selected. An individual 
in the population can be selected once in conjunction with all the individuals in the population 
who has a possibility of being selected to produce the next generation. There are many 
methods that are used for the process of the selection as: roulette wheel selection, geometric 
ranking method, and rank selection… etc [18, 19]. The most common selection method 
depends on assignment of a probability pj to every individual j based on its value of fitness. A 
series of numbers N is generated and compared against the accumulative 
probability

1

 
i

i j
j

C P , of the population. The appropriate individual j, is selected and copied in 

the new population if 1 (0,1)  i iC U C . In our work we use a Geometric Ranking method; in 
this method the function of the evaluation determines the solution with a partially ordered set. 
By this we guarantee the minimization and the negative reaction of the geometric method of 

     1 1 2 2, , , . . . . ,   m m m m im imc h r o m c r c r c r
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classification. It works by assigning Pi based on the line of the solution i when all solutions are 
classified. In this method the probability Pi of the definite classification is calculated as in the 
following expressions [18, 19]: 
 

 
 
 
 
Where q is the probability of selecting the best individual, s is the line of the individual, where 
one is the best. 
 

Pq
qq

)1(1 
  (6)  

 
Where P is the population size. 
 
3.5 Crossover and Mutation  
Crossover and mutation provide the basic search mechanism of a GA. The operators create 
new solutions based on the previous solutions created in the population. Crossover takes two 
individuals and produces two new recombinant individuals, whereas the mutation changes the 
individual by random alteration in a gene to produce a new solution. The use of these two 
basic types of genetic operators and their derivatives depends on the representation of the 
chromosome. For the real values that we use in our work, we use the arithmetical crossover, 
which produces two linear combinations of the parents (two new individuals) as in the 
following equations: 
 

YrXrX )1(
!
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!

(1 )  Y r X rY  (8)  

 
Where X and Y  are two vectors of k-dimensional that denote to individuals (parents) of the 
population and r is the probability of crossover between (0, 1) in this work probability of 
crossover   r = 0. 5.  From these equations we can present the process of the arithmetic 
crossover as shown in Figure 4. 

 
We can find many methods of mutation in [19], such as uniform mutation, non-uniform 
mutation (odd number - uniform mutation), and multi-non-uniform mutation. In our work we 
use the process of uniform mutation that changes one of the parameters of the parent. The 
uniform mutation selects one j element randomly and makes it equal to a uniform selected 
number inside the interval. The equation that presents the uniform mutation is shown in 
equation (Eq. 9): 
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Fig.4.   The process of the arithmetic crossover of three points in two neurons RBF 
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Where ia  and ib  are down and top level, for every variable i. Figure 5 present the process of 
mutation that appears among the parameters of the RBFNNs. 

 

 
 
4. SIMULATION EXAMPLES 
The objective of this study is to develop and test an efficient approach that use to solve the 
problem of function approximation.  Therefore, we assume different polynomial function to 
test the improvement of the approximation process depending on this approach. We have 
investigated three polynomial function problems, one function in one dimension and other two 
in two dimensions.  The first function in figure 6 tests a case where there are many curves in 
the function structure. The numerical values in the function are created to proof that the 
proposed approach converges and dose not stuck in local minimums.  Experiments have 
been performed to test the proposed approach. The system is simulated in MATLAB 7.0 
under Windows XP with a Pentium IV processor running at 2.4 GHz.  In this section we will 
compare the result of our approach with the results of other algorithms that approximate 
functions using GAs to optimize RBFNNs parameters. Two types of results are presented:  
The results of the validity of the algorithm in approximate functions from samples of I/O data 
of one dimension compared with other algorithms as [21, 22], and the approximation of 
function in two dimensions with the NRMSE and execution time. The results are obtained in 
five executions. NRMSETest is the mean of normalized mean squared error of the test index 
(for 1000 test data). The GA parameters that used are; the population-size = 100, crossover 
rate = 0.5 and mutation rate = 0.05. 
 
4.1 One Dimension Examples   F1(x) 
To test the effects caused by the proposed approach on initialization and avoiding local 
minimum of RBFs placement,  Training set of 2000 samples of the function was generated by 
evaluating inputs taken uniformly from the interval [0, 1], from which we have removed 1000 
points for test. This function is defined by the following expression: 
 

 3
1( ) (10 ), 0,1xF x e sin x x   (10)  

 
We can note from figure 6 (a) that the error produces before the training process distributed in 
unhomogenized form along with the input data space. In figure 6 (b) the training process that 
depends on optimizing RBFNN parameters (centres and radii) by GA produce error 
distribution is homogenized form for each RBF along with the input data space 
 
 

 
 

In Table 1, it can be seen that the proposed approach converge. This implies that RBFNN 
optimize not fall into local optimum solution. The NRMSETest predicted by the proposed 

X   1Xc  1Xr  1Xw  2Xc  2 Xr  2 Xw   !
X   1Yc  1Yr  1Yw  2Xc  2 Xr  2 Xw  

           *                               *                                             *                               * 
 

Fig.5.  The uniform mutation of two points in two neurons RBF 

  
Fig. 6.  (a) Error of each RBF in the input 
space Before the Training.  

(b)  Error of each RBF in the input space 
After the Training. 
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approach shown that the proposed approach minimizes the approximation error with much 
accuracy than other algorithms. 
 

 

Method # RBF NRMSETest 
5 0.1771 
6 0.1516 
8 0.0674 

González  [22] 

10 0.0882 
4 ± 7 0.7 ± 0.2              Generation = 10 

5 ± 6 0.7 ± 0.2              Generation = 25 
8 ± 9 0.6 ± 0.3              Generation = 50 

23 ± 7 0.2 ± 0.3              Generation = 75 

Rivas [21] 

22 ± 11 0.4 ± 0.3              Generation = 100 
2 0.059                    Generation = 50 

4 0.0485                  Generation = 50 

6 0.0274                  Generation = 50 

8 0.0205                  Generation = 50 

Our Approach 

10 0.0223                  Generation = 50 

 
TABLE1: Comparison Result of NRMSETest Error of different approach 

 
It’s clear in figure 7 that the distribution of RBFs in the case of approximation with 8 RBF is 
not affected in the right part of the function, but when we increased the number of RBF as in 
approximation with 10 RBF, the approximation process is efficient, which is clear in the 
improvement of the fitness value with the increased number of generations.  These results 
indicate that using GA to optimize RBFNN centres and radii give optimal performance. 
 

 
A comparison between three approaches applied is shown in figure 8. We can see that the 
training precision of the algorithm presented in this paper is higher than other algorithms. The 

  
Optimization with 8 RBF Fitness Improvement with Generations 

  
Optimization with 10 RBF Fitness Improvement with Generations 

 
Fig. 7. Approximation of the function and Improvement of fitness with  Generations 
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NRMSETest becomes smaller and the fitness becomes larger accompanying the increase of 
the generation; the fitness changes slowly when the generation number is between 20 and 
50; we can judge that the convergence condition is satisfied when the generation number 
reaches 20, because the fitness does not increase any more. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.2 Two Dimension Examples   F1(x1,x2) 
In this part we used functions of two-dimensions (see Figure 9, Figure 11). These functions of 
two-dimension use a set of training data formed by 441 points distributed as 21 x 21 cells in 
the input space.  These examples of two dimensions are used to demonstrate the ability of 
the proposed approach in approximating two dimension examples. In this example we use 
number of Generations =250.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10 presents different result of approximation of the function 1 1 2( , )F x x , and the 
improvement of fitness function (NRMSETest) with the increased generation numbers.   
 

 

 
 
 
 

                                       TABLE3. Result of NRMSETest and Execution Time of 
  the proposed approach applied on 2D Function F1(x1,x2) 
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Fig. 8. Comparison the NRMSETest with the increase of 

RBF numbers between different approaches. 

 

Fig. 9. Objective function  F1(x1,x2) 

NRMSE Execution Time (sec)  
Nº RBF 

Mean Max Min Mean 

2 0.224 130 122 127 

4 0.176 164 144 156 

6 0.124 169 147 157 

8 0.115 192 181 186 

10 0.27 203 184 192 
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Table 3 shows two results, the mean of NRMSETest after 5 executions and the time of the 
approximation in seconds. The NRMSETest of the RBFNN trained by GA is lower which means 
that the proposed approach converges and dose not stuck in local minimum.  Although the 
RBFNN optimized by GA gives a lower NRMSETest and higher approximation accuracy on the 
training data, it requires small computation time to converge. 

 

 
The NRMSETest becomes smaller and the fitness becomes larger accompanying the increase 
of the generation; the fitness changes slowly when the generation number is between 175 
and 250; we can judge that the convergence condition is satisfied in this study case of 2 
dimensions when the generation number reaches 175, because the fitness does not increase 
any more. 
 
4.3 Two Dimension Example   F2(x1,x2) 
 

 
 

Fig. 11. Objective function  F2(x1,x2) 

  
Optimization with 8 RBF Fitness Improvement with Generations 

 

  
Optimization with 10 RBF Fitness Improvement with Generations 

 
Fig. 10. Approximation of the function F1(x1,x2)   and   Improvement of fitness with  Generations 
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Figure 12 presents different result of approximation of the function 2 1 2( , )F x x  and the 
improvement of Fitness function (NRMSETest) with the increased generation numbers. 
 
 

NRMSE Execution Time (sec)  
Nº RBF 

Mean Max Min Mean 

2 0.53 122 112 117 

4 0.37 132 121 127 

6 0.28 169 147 158 

8 0.22 188 175 178 

 
TABLE4.  Result of NRMSETest and Execution Time of  

the proposed approach applied on 2D Function F2(x1,x2) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
5. CONCLUSION

In our paper an efficient way of applying GA to RBFNNs configuration has been presented. 
The approach optimizes centres c and Radii r parameters of RBFNN using GAs. The weights 
w are optimized by using singular value decomposition SVD. The initialization of the centres 
depends on an efficient algorithm of clustering (ECFA) [16] which means less   complexity of 
calculation to optimize each parameter alone. This approach was compared to two 
approaches to optimize RBFNNs. The proposed approach is accurate as the best of the 
others approaches and with significantly less number of RBFs in all experiments.   
Simulations have demonstrated that the approach can produce more accurate prediction. 
This approach is easy to implement and is superior in both performance and computation 
time compared to other algorithms. Normally, GAs took a long training time to achieve results, 

 
 

Optimization with 6 RBF Fitness Improvement with Generations 
 

 
 

Optimization with 8 RBF Fitness Improvement with Generations 
 

 
Fig. 12. Approximation of the function F2(x1,x2)  and   Improvement of fitness with  Generations 
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but in the proposed approach the time taken is suitable and that because of using algorithms 
for the initialization of the RBFNN parameters. We have also shown that it is possible to use 
this approach to find the minimal number of RBF (Neurones) that satisfy a certain error target 
for a given function approximation problem. 
 
 
6. REFERENCES 

 
[1] M. J. D. Powell. “The Theory of Radial Basis Functions Approximation, in Advances of 

Numerical Analysis”. pp. 105–210, Oxford: Clarendon    Press, 1992. 
[2] Z. Zainuddin  O. Pauline.  “Function approximation using artificial neural networks”. 12th 

WSEAS International Conference on Applied Mathematics, 2007 Cairo, Egypt pp: 140-
145.   

[3] Gen .M, Cheng .R. “Genetic algorithms and Engineering Optimization”. A Wiley-
Interscience Publication, Johan Wiley and Sons, Inc. 2000. 

[4] B. Carse, A.G. Pipe, T.C. Forgarty and T. Hill, "Evolving radial basis function neural 
networks using a genetic algorithm", IEEE International Conference on Evolutionary 
Computation, Vol. 1, page 300 (1995) 

[5] D. Schaffer, D. Whitley and L.J. Eshelman, “Combinations of genetic algorithms and 
neural networks”. A survey of the state of the art, in Combinations of Genetic Algorithms 
and Neural Networks, pp. 1-37, IEEE Computer Society Press, 1992. 

[6] D. Prados. “A fast supervised learning algorithm for large multilayered neural networks”. 
in Proceedings of 1993 IEEE International Conference on Neural Networks, San 
Francisco, v.2, pp.778-782, 1993. 

[7] A. Topchy, O. Lebedko, V. Miagkikh, “Fast Learning in Multilayered Neural Networks by 
Means of Hybrid Evolutionary and Gradient Algorithm”. in Proc. of the First Int. Conf. on 
Evolutionary Computations and Its Applications, ed. E. D. Goodman et al., (RAN, 
Moscow), pp.390–399, 1996. 

[8] B. A. Whitehead and T.D. Choate. “Cooperative - Competitive Genetic Evolution of Radial 
Basis Function Centers and Widths for Time Series Predictio”. IEEE Transactions on 
Neural Networks, vol. 7, no. 8, pp.869-880, 1996. 

[9] Fogel L.J., Owens A.J. and Walsh M.J. “Artificial Intelligence through Simulated 
Evolution”. John Wiley & Sons, 1966. 

[10] M. W. Mak and K. W. Cho. “Genetic evolution of radial basis function centers for pattern 
classification”. In Proc. Of The 1998 IEEE International Joint Conference on Neural  
Networks,  pages 669 – 673, 1998. Volume 1. 

[11] A. F. Sheta and K. D. Jong. “Time-series forecasting using GA-tuned radial basis 
functions”.  Information Sciences, Special issue, 2001. 

[12] M. Awad, H. Pomares, F. Rojas, L.J. Herrera, J. González, A. Guillén. “Approximating I/O 
data using Radial Basis Functions:A new clustering-based approach”. IWANN 2005, 
LNCS 3512, pp. 289– 296, 2005.© Springer-Verlag Berlin Heidelberg 2005. 

[13] S. Chen, Y. Wu, and B. L. Luk. “Combined genetic algorithm optimization and regularized 
orthogonal least squares learning for radial basis function networks”. IEEE-NN, 
10(5):1239,     September 1999. 

[14] B. Burdsall and C. Giraud-Carrier. “GA-RBF: A selfoptimising RBF network”. In Proc. of 
the Third International Conference on Artificial Neural Networks and Genetic Algorithms,  
pages 348–351. Springer-Verlag, 1997. 

[15] Y. Hwang and S. Bang. “An efficient method to construct a radial basis function neural 
network classifier”. Neural Networks, 10(8):1495–1503, 1997. 

[16] M. Awad, H. Pomares, I. Rojas, Member, IEEE. “Enhanced Clustering Technique in RBF  
Neural Network for Function Approximation”. INFOS2007, Fifth International 
Conference 24-26 March 2007, Cairo University Post Office, Giza, Egypt. 

[17] T. Hatanaka, N. Kondo and K. Uosaki. “Multi–Objective Structure Selection for Radial 
Basis Function Networks Based on Genetic Algorithm”. Department of Information and 
Physical Science Graduate School of Information Science and Technology, Osaka 
University 2–1 YamadaOka, Suita, 565–0871, Japan. 

 



Mohammed Awad 

International Journal of Computer Science and Security (IJCSS), Volume (4): Issue (3)                      307 

[18] P. T. Rodríguez-Piñero. “Introducción a los algoritmos genéticos y sus aplicaciones”.  
Universidad Rey Juan Carlos, España, Madrid. (2003) 

 
[19] Z. Michalewickz. Univ. of North Carolina, Charlotte “Genetic Algorithms + Data Structures = 

Evolution Programs”. Springer-Verlag London, UK (1999). 
[20] Gonzalez, J.; Rojas, H.; Ortega, J.; Prieto, A. “A new clustering technique for function 

approximation”. Neural Networks, IEEE .Transactions on, Volume: 13 Issue: 1, Jan. 2002. 
Page(s): 132 -142. “Conditional fuzzy C-means,” Pattern Recognition Lett., vol. 17, pp. 625–
632, 1996 

[21] Rivas. A. “Diseño y optimización de redes de funciones de base radial mediante técnicas 
bioinspiradas”. .PhD Thesis. University of Granada. 2003.  

[22] González. J, “Identificación y optimización de redes de funciones de base radiales para 
aproximación funcional”. PhD Thesis. University of Granada. 2001.  

[23] Ph. Koehn. “Combining Genetic Algorithms and Neural Networks”.  Master Thesis 
University of Tennessee, Knoxville, December 1994. 

[24] Sambasiva, R. Baragada, S. Ramakrishna, M.S. Rao, S. P. “Implementation of Radial Basis 
Function Neural Network for Image Steganalysis”, International Journal of Computer 
Science and Security, Vol. 2, Issue 1, pp. 12 – 22, March 2008 

[25] Sufal D. Banani Saha, “Data Quality Mining using Genetic Algorithm”, International Journal 
of Computer Science and Security, ISSN: 1985-1553, 3(2): pp 105-112, 2009. 

 


