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AbstractAbstractAbstractAbstract    

 

Job shop scheduling is one of the strongly NP-complete combinatorial optimization problems. 
Developing effective search methods is always an important and valuable work. Meta-
heuristic methods such as genetic algorithms are widely applied to find optimal or near-
optimal solutions for the job shop scheduling problem. Parallelizing genetic algorithms is one 
of the best approaches that can be used to enhance the performance of these algorithms. In 
this paper, we propose an agent-based parallel genetic algorithm for the job shop scheduling 
problem. In our approach, initial population is created in an agent-based parallel way then an 
agent-based method is used to parallelize the genetic algorithm. Experimental results showed 
that the proposed approach enhances the performance. 
 

KeywKeywKeywKeywordsordsordsords:::: Job Shop Scheduling Problem, Genetic Algorithms, Parallel Genetic Algorithms, 
Agents and Multi Agent Systems. 

 
 

1111....        INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION    
Job shop scheduling problem is one of the most important problems in machine scheduling. 
This problem is considered to be a member of a large class of intractable numerical problems 
known as NP-hard [1]. High complexity of problem makes it hard and in some cases 
impossible to find the optimal solution within reasonable time. Hence, searching for 
approximate solutions in polynomial time instead of exact solutions at high cost is preferred 
for difficult instances of problem.  
 
Historically job shop scheduling problem has been primarily treated using the branch and 
bound [2-4], heuristic rules [5-7] and shifting bottleneck procedure [8]. In recent years, meta-
heuristic methods are widely applied to this problem. These methods, such as taboo search 
[9-11], simulated annealing [12-15], genetic algorithms [16-20], neural networks [21] and ant 
colony optimization [22-25] are well suited to solving complex problems with high costs. A 
survey on job shop scheduling techniques can be found in [1].  
 
Comparing with other meta-heuristic methods, genetic algorithms are widely used to solve 
various optimization problems. Many genetic algorithm based approaches are proposed for 
the job shop scheduling problem. In [26,27] authors introduce an approach that uses load 
balancing of machines as an important parameter in job assignment. An advantage of these 
approaches is that maximize machine utilization while minimizing makespan. Ombuki and 
Ventresca [28] proposed a local search genetic algorithm that uses an efficient solution 
representation strategy in which both checking of the constraints and repair mechanism can 
be avoided. In their approach at local search phase a new mutation-like operator is used to 
improve the solution quality. They also developed a hybrid strategy using the genetic 
algorithm reinforced with a taboo search for problem. Lin et al. [29] introduced a hybrid model 
consisting of coarse-grain genetic algorithms connected in a fine- grain style topology. Their 
method can avoid premature convergence, and it produced excellent results on standard 
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benchmark job shop scheduling problems. Chen et al. [30] gave a tutorial survey of recent 
works on various hybrid approaches of the genetic algorithms proposed so far for the job 
shop scheduling problem. Wang and zheng [20] by combining simulated annealing and 
genetic algorithms developed a general, parallel and easily implemented hybrid optimization 
framework, and applied it to job shop scheduling problem. Based on effective encoding 
scheme and some specific optimization operators, some benchmark job shop scheduling 
problems are well solved by the hybrid optimization strategy. In [19] a hybrid method is 
proposed to obtain a near-optimal solution within a reasonable amount of time. This method 
uses a neural network approach to generate initial feasible solutions and then a simulated 
annealing algorithm to improve the quality and performance of the initial solutions in order to 
produce the optimal/near-optimal solution. Chen et al [31] proposed an agent-based genetic 
algorithm that accelerates the creation of initial population. In this approach, the processing of 
selection, crossover and mutation can be controlled in an intelligent way. 
 
In this paper, we propose an agent-based parallel genetic algorithm for the job shop 
scheduling problem. In our approach, initial population is created in an agent-based parallel 
way then an agent-based method is used to parallelize genetic algorithm.  
 
The reminder of this paper is organized as follow. In section 2, we describe job shop 
scheduling problem. Details of our proposed agent-based architecture and the parallel genetic 
algorithm are represented in section 3. In section 4, we discuss implementation and 
experimental results of proposed approach. Conclusion is represented in section 5. 
 

2. 2. 2. 2. JOB SHOP SCHEDULING JOB SHOP SCHEDULING JOB SHOP SCHEDULING JOB SHOP SCHEDULING PROBLEMPROBLEMPROBLEMPROBLEM    
Job Shop Scheduling Problem can be described as follow. A set of n jobs and a set of m 
machines are given. Each job consists of a sequence of operations that must be processed 
on a specified order. Each job consists of a chain of operations, each of which needs to be 
processed during an uninterrupted time period of a given length on a given machine. Each 
machine can process only one job and each job can be processed by only one machine at a 
time. Usually we denote the general job shop scheduling problem as nxm, where n is the 
number of jobs and m is the number of machines. TABLE 1 shows an example 5×4 job shop 
scheduling problem. The duration in which all operations for all jobs are completed is referred 
to as the makespan. A schedule determines the execution sequence of all operations for all 
jobs on machines. The objective is to find optimal schedule. Optimal schedule is the schedule 
that minimizes makespan. Due to factorial explosion of possible solutions, job shop 
scheduling problems are considered to be a member of a large class of intractable numerical 
problems known as NP-hard [1]. It is hard and in some cases impossible to find the optimal 
solution within reasonable time due to High complexity of problem. Hence, searching for 
approximate solutions in polynomial time instead of exact solutions at high cost is preferred 
for difficult instances of problem. 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

TABLETABLETABLETABLE    1:1:1:1: An Example 5×4 Job Shop Scheduling Problem 

 
 
 
 

JobJobJobJob    Machine, Processing timeMachine, Processing timeMachine, Processing timeMachine, Processing time    

PPPP1111    2,4 1,3 3,11 4,10 

PPPP2222    4,10 1,8 2,5 3,4 

PPPP3333    1,5 3,6 2,4 4,3 

PPPP4444    1,7 2,3 3,2 4,12 

PPPP5555    3,5 4,8 1,9 2,5 
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3333....        AGENTAGENTAGENTAGENT----BASED BASED BASED BASED PARALLEL MODELPARALLEL MODELPARALLEL MODELPARALLEL MODEL     
In [32] we proposed an agent-based parallel approach for the job shop scheduling problem. In 
that model, we developed a multi-agent system containing some agents with special actions 
that are used to parallelize the genetic algorithm and create its population. We used JADE 
middleware [33] to implement our multi-agent system. Agents distributed over various hosts in 
network and JADE provides a secure communication channel for them to communicate. In 
this model, each agent has been developed for a special purpose. We can describe them as 
follow [32]:  
 

• MA (Management Agent):MA (Management Agent):MA (Management Agent):MA (Management Agent): MA and Ai (i=1,2,...,m) agents have the responsibility of 
creating the initial population for the genetic algorithm. This agent controls the 
behaviors of Ais and coordinates them in creation step. 

• Ai (Execute Agent):Ai (Execute Agent):Ai (Execute Agent):Ai (Execute Agent): Each machine has an Ai agent to schedule the operations on it. 

• PA (Processor Agent):PA (Processor Agent):PA (Processor Agent):PA (Processor Agent): Each PA locates on a distinct host and executes genetic 
algorithm on its sub-population. 

• SA (Synchronization AgeSA (Synchronization AgeSA (Synchronization AgeSA (Synchronization Agent):nt):nt):nt): This agent locates on main host and coordinates 
migration between sub-populations of PA agents. 

 
In that model, the genetic population is created serially by MA and Ai (i=1,2,...,m) agents. The 
sub-populations of PA agents are determined and sent to them by MA. One disadvantage of 
this model is the lack of load balancing on the network hosts. On the other hand, the main 
host that locates the MA, Ai and SA agents is the bottleneck of system and if it crash, the 
whole multi-agent system will be stopped working.  
To    solve this problem and improve the performance of creating the initial population, we can 
extend the model to create sub-populations in a parallel manner. An overall architecture of 
improved agent-based model has represented in FIGURE 1. In this model, each host has one 
MA and m Ai (i=1,2,7,m) agents. These agents have the responsibility of creating the 
subpopulation for their host’s PA. 
To synchronize the various processor agents in migration phase, synchronization agent (SA) 
locates on main host and synchronizes them. 
Parallel creation of sub-populations improves the speed and performance. On the other hand, 
the division of the population into several sub-populations and sending them to PAs can be 
avoided.  
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3.13.13.13.1    Initial Initial Initial Initial PPPPopulation opulation opulation opulation of Genetic Algoof Genetic Algoof Genetic Algoof Genetic Algorithmrithmrithmrithm    

Before we describe how initial population can be created by an agent-based method we 
define the job shop scheduling problem formally with the following definitions [31]. 
1. P = {P1, P2, 7, Pn } is the set of n jobs. 
2. M = {M1, M2, 7, Mm } is the set of m machines. 
3. Job Pi has ki operations. JPi = {JPi (1), JPi (2), JPi (ki) } is the set of operations of job Pi.       

JP = {JP1, JP2, 7, JPn } is the matrix of operations of n jobs. The value of JPi (j) is the 
machine that operation j of job Pi must be processed on. 

4. Let T is the n×m matrix of processing times of each job in m machines. T[i, j] is the 
processing time of job Pi on machine j. 

Status of each operation is determined by using the following definitions. 
5. JMi is the set of all schedulable operations on machine Mi. A schedulable operation is an 

operation for which all the foregoing operations have finished. JM = {JM1, JM2,7, JMm } is 
the set of schedulable operations on all machines. 

6. NJ is the set of un-schedulable operations, i.e. operations for which at least one of the 
foregoing operations has not finished. 

7. FJ is the set of finished operations. 
Chromosomes of the genetic population are created by using method proposed in [31]. In this 
method, two kinds of agents are used to create chromosomes of the initial population: the 
management agent (MA) and the execute agent Ai (i=1,2,7,m). Each machine in a specified 
problem instance has an execute agent. Each Ai schedules the operations of its machine. MA 

Initialize FJ, NJ and JM 
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manages operations of all jobs and controls the execution of Ais. In the first step, MA 
initializes JM , FJ and NJ as follow. 
                    FJ=ɸ 

                    NJ={JP1, JP2, 7, JPn } 

                    JM ={ JP1 (1), JP2 (1)7, JPn (1) } 

Parallel genetic algorithm in our approach has multiple populations. The whole population is 
divided into several subpopulations which are called islands and each island is evolved 
independently. To improve the speed we produce various sub-populations concurrently. Each 
host in the system has one MA agent and m Ai (i=1,2,7,m) agents and these agents produce 
chromosomes for one of sub-populations. The schedule process in FIGURE 2 is used to 
create sub-populations. Each execution of this process creates a chromosome indicating a 
feasible schedule for a specified problem instance. To create a sub-population with size N we 
execute the schedule process N times. 

3.23.23.23.2    Parallel Parallel Parallel Parallel GGGGenetic enetic enetic enetic AAAAlgoritlgoritlgoritlgorithm hm hm hm     

To parallelize our genetic algorithm we use a coarse-grained model. This model has multiple 
and smaller populations and exchanges information among the sub-populations. This 
exchange is performed by moving some individuals from one population to another and is 
known as migration. Communication between sub-populations restricted to migration of 
chromosomes. 
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In our method, various sub-populations are created by MA and Ai (i=1,2,7,m) agents in a 
parallel way. Each processor agent (PA) locates on a distinct host and executes genetic 
algorithm on its sub-population independently. Different sub-populations communicate with 
exchanging of migrants. Parallel genetic algorithm consists of two phases: The execution 
phase and the migration phase. In the execution phase, sub-populations are evolved 
independently by processor agents and in the migration phase, PAs exchange migrants. 
These two phases run repeatedly for predefined times [32]. Detailed communication between 
PA and MA in execution phase is showed in FIGURE 3.  
 
3.2.1 Migration Policy3.2.1 Migration Policy3.2.1 Migration Policy3.2.1 Migration Policy 
Communication between various sub-populations is carried out by exchanging of migrants. In 
our approach we use synchronous migration policy. Each PA executes genetic algorithm on 
its sub-population for a predefined number of generations then it sends a message to SA 
informing end of its execution. The SA is a synchronization agent, which coordinates 
migration between sub-populations of PA agents. After receiving message from all the PAs, 
SA broadcasts a message to them notifying start of the migration phase. In the migration 
phase, each PA exchanges some of its best chromosomes with its neighbors (see FIGURE 
4). Chromosomes with low fitness value in sub-population are replaced with the best 
chromosomes of neighbors [32].  
 

4444....    IMPLEMENTATION AND IMPLEMENTATION AND IMPLEMENTATION AND IMPLEMENTATION AND EEEEXPERIMENTAL XPERIMENTAL XPERIMENTAL XPERIMENTAL RRRRESULTSESULTSESULTSESULTS    
We showed that the parallel agent-based genetic algorithm for the job shop scheduling 
problem enhances the speed and performance [32]. In this paper we evaluate our improved 
approach. Firstly, we explain detailed implementation of the genetic algorithm as follow.   
 

a. Chromosome representationChromosome representationChromosome representationChromosome representation: Operation-based method that each job has a distinct 
number for indicating its operations. 

b. SelectionSelectionSelectionSelection:::: Roulette wheel selection containing the elite retaining model [34]. 
c. The crossover operator:The crossover operator:The crossover operator:The crossover operator: Partially matched crossover (PMX) [35], two crossover points 

is chosen from the chromosomes randomly and equably. Then the genes of two 
parents that are in the area between crossover points are exchanged. 

d. The mutation operator:The mutation operator:The mutation operator:The mutation operator:    Shift mutation, a point from the chromosome is chosen 
randomly and the gene that is in this point is exchanged with its subsequent gene. 

e. Fitness functionFitness functionFitness functionFitness function: The fitness function is defined as follow [34]: 
 

Fitness(C) =P_Timemax – P_Time (C)            (1) 
 

Where P_Time (C) is the maximal processing time of chromosome C and P_Time max 
is the maximum value of P_Time (C). In our approach, MA agents compute fitness 
value of chromosomes. 

 
Creating new chromosomes by using crossover operator may be lead to illegal schedules. 
Repair mechanism is used by MAs to convert these chromosomes to legal form. When a new 
chromosome is created, PA sends it to MA agent of its host. MA replaces repeat operations of 
the new chromosome with absent operations to ensure the appearance times of each job Pi is 
equal to ki. Repaired chromosome is sent to PA. 
We used some benchmark instances for the job shop scheduling problem. These problem 
instances are available from the OR library web site [36]. We set parameter values for genetic 
algorithm as follow: 
 

• population size =1000 

• generation span =1000  

• crossover rate = 0.95  

• mutation rate = 0.01  
 

The number of PA agents was fixed at eight in our experiments and these agents form a 
virtual cube among them. Each PA has three neighbors. Parameters of migration were set as 
follow: 
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• Migration Frequency : 100 generations 

• Migration Rate : 10 chromosomes 

• Migration Topology : cube 
 
To evaluate our proposed parallel agent-based genetic algorithm, we compare it with the 
serial case that we have only one genetic population that evolves by a PA agent. We 
computed average makespan of best schedules obtained by applying algorithms on some 
problem instances during various generations. Results are shown in FIGUREs 5-7. These 
figures demonstrate the effect of applying parallel and serial approaches on LA30, ORB09 
and FT10 instances. As shown by these figures, convergence to near optimal solution in 
parallel method is happen rapidly and the solutions that it finds in various generation numbers 
have shorter lengths than those that are found by serial method. 

 
FIGFIGFIGFIGUREUREUREURE    5555:::: Parallel Approach Finds Better Solutions Comparing with Serial Method. Test Problem: 
LA30. Results Are Averages of Best Solutions Over 10 Runs.    
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FIGFIGFIGFIGURE URE URE URE 6666:::: Parallel Approach Finds Better Solutions Comparing With Serial Method. Test Problem: 
ORB09. Results Are Averages of Best Solutions Over 10 Runs. 

 
FIGURE FIGURE FIGURE FIGURE 7777:::: Parallel Approach Finds Better Solutions Comparing With Serial Method. Test Problem: 
FT10. Results Are Averages of Best Solutions Over 10 Runs. 
 
 
To compare the parallel method proposed to create genetic population with the serial 
approach, we carried out some experiments. The evaluation parameter is the required time 
for creation of sub-populations for various problem instances. In serial method we have one 
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chromosomes after that it has been created by MA and Ai (i=1,2,...,m) agents. In parallel 
method, 8 sub-populations each with 125 chromosomes are created in parallel manner. 
Results are shown in TABLE 2. Times are in second. According to experimental results, 
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5.  5.  5.  5.  CONCLUSIONCONCLUSIONCONCLUSIONCONCLUSION    
Job shop scheduling problem is one of the most important problems in machine scheduling. 
This problem is considered to be a member of a large class of intractable numerical problems 
known as NP-hard. In this paper, we proposed an agent-based parallel genetic algorithm for 
this problem. To enhance the performance of the creation of the initial population for the 
genetic algorithm, we parallelized it using agent-based method. We compared performance of 
the parallel approach with the serial method. The results showed that the parallel method 
improves the speed of genetic population creation. Future work will concentrate on improving 
the performance of our method and applying it to similar problems. 
 

 
 
 
 
 
 
 
 
 
 
 

 
TABLETABLETABLETABLE    2222:::: Comparisons Between Serial and Parallel Methods for Creating the Genetic Population on LA 

Instances 
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