
Leila Asadzadeh & Kamran Zamanifar

International Journal of Computer Science and Security (IJCSS), Volume (5) : Issue (2) : 2011 287

Design and Implementation of aDesign and Implementation of aDesign and Implementation of aDesign and Implementation of a MultiMultiMultiMulti----AAAAgentgentgentgent SystemSystemSystemSystem for for for for the the the the JJJJobobobob SSSShop hop hop hop
SSSSchedulingchedulingchedulingcheduling PPPProblemroblemroblemroblem

Leila AsadzadehLeila AsadzadehLeila AsadzadehLeila Asadzadeh leila_asadzadeh_cs@yahoo.com
Information Technology Department
Payame Noor University
Tehran, 19395-4697, I. R. of IRAN

Kamran ZamanifarKamran ZamanifarKamran ZamanifarKamran Zamanifar

 zamanifar@eng.ui.ac.ir

Computer Engineering Department

University of Isfahan

Isfahan, I. R. of IRAN

AbstractAbstractAbstractAbstract

Job shop scheduling is one of the strongly NP-complete combinatorial optimization problems.
Developing effective search methods is always an important and valuable work. Meta-
heuristic methods such as genetic algorithms are widely applied to find optimal or near-
optimal solutions for the job shop scheduling problem. Parallelizing genetic algorithms is one
of the best approaches that can be used to enhance the performance of these algorithms. In
this paper, we propose an agent-based parallel genetic algorithm for the job shop scheduling
problem. In our approach, initial population is created in an agent-based parallel way then an
agent-based method is used to parallelize the genetic algorithm. Experimental results showed
that the proposed approach enhances the performance.

KeywKeywKeywKeywordsordsordsords:::: Job Shop Scheduling Problem, Genetic Algorithms, Parallel Genetic Algorithms,
Agents and Multi Agent Systems.

1111.... INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION
Job shop scheduling problem is one of the most important problems in machine scheduling.
This problem is considered to be a member of a large class of intractable numerical problems
known as NP-hard [1]. High complexity of problem makes it hard and in some cases
impossible to find the optimal solution within reasonable time. Hence, searching for
approximate solutions in polynomial time instead of exact solutions at high cost is preferred
for difficult instances of problem.

Historically job shop scheduling problem has been primarily treated using the branch and
bound [2-4], heuristic rules [5-7] and shifting bottleneck procedure [8]. In recent years, meta-
heuristic methods are widely applied to this problem. These methods, such as taboo search
[9-11], simulated annealing [12-15], genetic algorithms [16-20], neural networks [21] and ant
colony optimization [22-25] are well suited to solving complex problems with high costs. A
survey on job shop scheduling techniques can be found in [1].

Comparing with other meta-heuristic methods, genetic algorithms are widely used to solve
various optimization problems. Many genetic algorithm based approaches are proposed for
the job shop scheduling problem. In [26,27] authors introduce an approach that uses load
balancing of machines as an important parameter in job assignment. An advantage of these
approaches is that maximize machine utilization while minimizing makespan. Ombuki and
Ventresca [28] proposed a local search genetic algorithm that uses an efficient solution
representation strategy in which both checking of the constraints and repair mechanism can
be avoided. In their approach at local search phase a new mutation-like operator is used to
improve the solution quality. They also developed a hybrid strategy using the genetic
algorithm reinforced with a taboo search for problem. Lin et al. [29] introduced a hybrid model
consisting of coarse-grain genetic algorithms connected in a fine- grain style topology. Their
method can avoid premature convergence, and it produced excellent results on standard

Leila Asadzadeh & Kamran Zamanifar

International Journal of Computer Science and Security (IJCSS), Volume (5) : Issue (2) : 2011 288

benchmark job shop scheduling problems. Chen et al. [30] gave a tutorial survey of recent
works on various hybrid approaches of the genetic algorithms proposed so far for the job
shop scheduling problem. Wang and zheng [20] by combining simulated annealing and
genetic algorithms developed a general, parallel and easily implemented hybrid optimization
framework, and applied it to job shop scheduling problem. Based on effective encoding
scheme and some specific optimization operators, some benchmark job shop scheduling
problems are well solved by the hybrid optimization strategy. In [19] a hybrid method is
proposed to obtain a near-optimal solution within a reasonable amount of time. This method
uses a neural network approach to generate initial feasible solutions and then a simulated
annealing algorithm to improve the quality and performance of the initial solutions in order to
produce the optimal/near-optimal solution. Chen et al [31] proposed an agent-based genetic
algorithm that accelerates the creation of initial population. In this approach, the processing of
selection, crossover and mutation can be controlled in an intelligent way.

In this paper, we propose an agent-based parallel genetic algorithm for the job shop
scheduling problem. In our approach, initial population is created in an agent-based parallel
way then an agent-based method is used to parallelize genetic algorithm.

The reminder of this paper is organized as follow. In section 2, we describe job shop
scheduling problem. Details of our proposed agent-based architecture and the parallel genetic
algorithm are represented in section 3. In section 4, we discuss implementation and
experimental results of proposed approach. Conclusion is represented in section 5.

2. 2. 2. 2. JOB SHOP SCHEDULING JOB SHOP SCHEDULING JOB SHOP SCHEDULING JOB SHOP SCHEDULING PROBLEMPROBLEMPROBLEMPROBLEM
Job Shop Scheduling Problem can be described as follow. A set of n jobs and a set of m
machines are given. Each job consists of a sequence of operations that must be processed
on a specified order. Each job consists of a chain of operations, each of which needs to be
processed during an uninterrupted time period of a given length on a given machine. Each
machine can process only one job and each job can be processed by only one machine at a
time. Usually we denote the general job shop scheduling problem as nxm, where n is the
number of jobs and m is the number of machines. TABLE 1 shows an example 5×4 job shop
scheduling problem. The duration in which all operations for all jobs are completed is referred
to as the makespan. A schedule determines the execution sequence of all operations for all
jobs on machines. The objective is to find optimal schedule. Optimal schedule is the schedule
that minimizes makespan. Due to factorial explosion of possible solutions, job shop
scheduling problems are considered to be a member of a large class of intractable numerical
problems known as NP-hard [1]. It is hard and in some cases impossible to find the optimal
solution within reasonable time due to High complexity of problem. Hence, searching for
approximate solutions in polynomial time instead of exact solutions at high cost is preferred
for difficult instances of problem.

TABLETABLETABLETABLE 1:1:1:1: An Example 5×4 Job Shop Scheduling Problem

JobJobJobJob Machine, Processing timeMachine, Processing timeMachine, Processing timeMachine, Processing time

PPPP1111 2,4 1,3 3,11 4,10

PPPP2222 4,10 1,8 2,5 3,4

PPPP3333 1,5 3,6 2,4 4,3

PPPP4444 1,7 2,3 3,2 4,12

PPPP5555 3,5 4,8 1,9 2,5

Leila Asadzadeh & Kamran Zamanifar

International Journal of Computer Science and Security (IJCSS), Volume (5) : Issue (2) : 2011 289

3333.... AGENTAGENTAGENTAGENT----BASED BASED BASED BASED PARALLEL MODELPARALLEL MODELPARALLEL MODELPARALLEL MODEL
In [32] we proposed an agent-based parallel approach for the job shop scheduling problem. In
that model, we developed a multi-agent system containing some agents with special actions
that are used to parallelize the genetic algorithm and create its population. We used JADE
middleware [33] to implement our multi-agent system. Agents distributed over various hosts in
network and JADE provides a secure communication channel for them to communicate. In
this model, each agent has been developed for a special purpose. We can describe them as
follow [32]:

• MA (Management Agent):MA (Management Agent):MA (Management Agent):MA (Management Agent): MA and Ai (i=1,2,...,m) agents have the responsibility of
creating the initial population for the genetic algorithm. This agent controls the
behaviors of Ais and coordinates them in creation step.

• Ai (Execute Agent):Ai (Execute Agent):Ai (Execute Agent):Ai (Execute Agent): Each machine has an Ai agent to schedule the operations on it.

• PA (Processor Agent):PA (Processor Agent):PA (Processor Agent):PA (Processor Agent): Each PA locates on a distinct host and executes genetic
algorithm on its sub-population.

• SA (Synchronization AgeSA (Synchronization AgeSA (Synchronization AgeSA (Synchronization Agent):nt):nt):nt): This agent locates on main host and coordinates
migration between sub-populations of PA agents.

In that model, the genetic population is created serially by MA and Ai (i=1,2,...,m) agents. The
sub-populations of PA agents are determined and sent to them by MA. One disadvantage of
this model is the lack of load balancing on the network hosts. On the other hand, the main
host that locates the MA, Ai and SA agents is the bottleneck of system and if it crash, the
whole multi-agent system will be stopped working.
To solve this problem and improve the performance of creating the initial population, we can
extend the model to create sub-populations in a parallel manner. An overall architecture of
improved agent-based model has represented in FIGURE 1. In this model, each host has one
MA and m Ai (i=1,2,7,m) agents. These agents have the responsibility of creating the
subpopulation for their host’s PA.
To synchronize the various processor agents in migration phase, synchronization agent (SA)
locates on main host and synchronizes them.
Parallel creation of sub-populations improves the speed and performance. On the other hand,
the division of the population into several sub-populations and sending them to PAs can be
avoided.

Am A2

MA

A1

SA

GA code GA code

PA PA

JADE Middleware

…

MA MA

A1 A1 A2 A2 Am Am

GA code

PA

 Network

FIGUREFIGUREFIGUREFIGURE 1:1:1:1: Improved Agent-based Architecture for the Job Shop Scheduling Problem

JADE Middleware JADE Middleware

….

… …

Host 1 Host N Host 2

Leila Asadzadeh & Kamran Zamanifar

International Journal of Computer Science and Security (IJCSS), Volume (5) : Issue (2) : 2011 290

3.13.13.13.1 Initial Initial Initial Initial PPPPopulation opulation opulation opulation of Genetic Algoof Genetic Algoof Genetic Algoof Genetic Algorithmrithmrithmrithm

Before we describe how initial population can be created by an agent-based method we
define the job shop scheduling problem formally with the following definitions [31].
1. P = {P1, P2, 7, Pn } is the set of n jobs.
2. M = {M1, M2, 7, Mm } is the set of m machines.
3. Job Pi has ki operations. JPi = {JPi (1), JPi (2), JPi (ki) } is the set of operations of job Pi.

JP = {JP1, JP2, 7, JPn } is the matrix of operations of n jobs. The value of JPi (j) is the
machine that operation j of job Pi must be processed on.

4. Let T is the n×m matrix of processing times of each job in m machines. T[i, j] is the
processing time of job Pi on machine j.

Status of each operation is determined by using the following definitions.
5. JMi is the set of all schedulable operations on machine Mi. A schedulable operation is an

operation for which all the foregoing operations have finished. JM = {JM1, JM2,7, JMm } is
the set of schedulable operations on all machines.

6. NJ is the set of un-schedulable operations, i.e. operations for which at least one of the
foregoing operations has not finished.

7. FJ is the set of finished operations.
Chromosomes of the genetic population are created by using method proposed in [31]. In this
method, two kinds of agents are used to create chromosomes of the initial population: the
management agent (MA) and the execute agent Ai (i=1,2,7,m). Each machine in a specified
problem instance has an execute agent. Each Ai schedules the operations of its machine. MA

Initialize FJ, NJ and JM

Startup each Ai with

appropriate command

Receive processed JPi (j)

from Ai

Move JPi (j) from JM to FJ, move

subsequence operation of JPi (j)

from NJ to JM and send it to

appropriate Ai

NJ is empty

Create schedule

sequence

Send End command to

Ais

Receive command

from MA and process

it

End command

Update JMi

JMi is empty

Random select JPi (j)
from JMi, process it

according time in T

JPi (j) finish, Notice

MA

Yes

Yes

Yes

No

No

No

MA

 FIGUREFIGUREFIGUREFIGURE 2:2:2:2: Schedule Process of MA and Ai

End

Ai

Leila Asadzadeh & Kamran Zamanifar

International Journal of Computer Science and Security (IJCSS), Volume (5) : Issue (2) : 2011 291

manages operations of all jobs and controls the execution of Ais. In the first step, MA
initializes JM , FJ and NJ as follow.
 FJ=ɸ

 NJ={JP1, JP2, 7, JPn }

 JM ={ JP1 (1), JP2 (1)7, JPn (1) }

Parallel genetic algorithm in our approach has multiple populations. The whole population is
divided into several subpopulations which are called islands and each island is evolved
independently. To improve the speed we produce various sub-populations concurrently. Each
host in the system has one MA agent and m Ai (i=1,2,7,m) agents and these agents produce
chromosomes for one of sub-populations. The schedule process in FIGURE 2 is used to
create sub-populations. Each execution of this process creates a chromosome indicating a
feasible schedule for a specified problem instance. To create a sub-population with size N we
execute the schedule process N times.

3.23.23.23.2 Parallel Parallel Parallel Parallel GGGGenetic enetic enetic enetic AAAAlgoritlgoritlgoritlgorithm hm hm hm

To parallelize our genetic algorithm we use a coarse-grained model. This model has multiple
and smaller populations and exchanges information among the sub-populations. This
exchange is performed by moving some individuals from one population to another and is
known as migration. Communication between sub-populations restricted to migration of
chromosomes.

Select two chromosomes from
sub-population

Combine them with PMX

crossover and mutate each

chromosome

Send chromosomes to

MA for repair

 All chromosomes

selected

Start

End

Receive

chromosomes

from PA

Repair and convert

each chromosome

to legal form

Compute fitness

of each
chromosome

Send repaired
chromosomes and

their fitness values

to PA

Receive repaired

chromosomes and their
fitness values from MA and
update the sub-population

PA

MA

Generation
span satisfied

Next

generation

creation

No

Yes

FIGUREFIGUREFIGUREFIGURE 3:3:3:3: PA and MA Communication in the Execution Phase

Yes

No

Leila Asadzadeh & Kamran Zamanifar

International Journal of Computer Science and Security (IJCSS), Volume (5) : Issue (2) : 2011 292

In our method, various sub-populations are created by MA and Ai (i=1,2,7,m) agents in a
parallel way. Each processor agent (PA) locates on a distinct host and executes genetic
algorithm on its sub-population independently. Different sub-populations communicate with
exchanging of migrants. Parallel genetic algorithm consists of two phases: The execution
phase and the migration phase. In the execution phase, sub-populations are evolved
independently by processor agents and in the migration phase, PAs exchange migrants.
These two phases run repeatedly for predefined times [32]. Detailed communication between
PA and MA in execution phase is showed in FIGURE 3.

3.2.1 Migration Policy3.2.1 Migration Policy3.2.1 Migration Policy3.2.1 Migration Policy
Communication between various sub-populations is carried out by exchanging of migrants. In
our approach we use synchronous migration policy. Each PA executes genetic algorithm on
its sub-population for a predefined number of generations then it sends a message to SA
informing end of its execution. The SA is a synchronization agent, which coordinates
migration between sub-populations of PA agents. After receiving message from all the PAs,
SA broadcasts a message to them notifying start of the migration phase. In the migration
phase, each PA exchanges some of its best chromosomes with its neighbors (see FIGURE
4). Chromosomes with low fitness value in sub-population are replaced with the best
chromosomes of neighbors [32].

4444.... IMPLEMENTATION AND IMPLEMENTATION AND IMPLEMENTATION AND IMPLEMENTATION AND EEEEXPERIMENTAL XPERIMENTAL XPERIMENTAL XPERIMENTAL RRRRESULTSESULTSESULTSESULTS
We showed that the parallel agent-based genetic algorithm for the job shop scheduling
problem enhances the speed and performance [32]. In this paper we evaluate our improved
approach. Firstly, we explain detailed implementation of the genetic algorithm as follow.

a. Chromosome representationChromosome representationChromosome representationChromosome representation: Operation-based method that each job has a distinct
number for indicating its operations.

b. SelectionSelectionSelectionSelection:::: Roulette wheel selection containing the elite retaining model [34].
c. The crossover operator:The crossover operator:The crossover operator:The crossover operator: Partially matched crossover (PMX) [35], two crossover points

is chosen from the chromosomes randomly and equably. Then the genes of two
parents that are in the area between crossover points are exchanged.

d. The mutation operator:The mutation operator:The mutation operator:The mutation operator: Shift mutation, a point from the chromosome is chosen
randomly and the gene that is in this point is exchanged with its subsequent gene.

e. Fitness functionFitness functionFitness functionFitness function: The fitness function is defined as follow [34]:

Fitness(C) =P_Timemax – P_Time (C) (1)

Where P_Time (C) is the maximal processing time of chromosome C and P_Time max
is the maximum value of P_Time (C). In our approach, MA agents compute fitness
value of chromosomes.

Creating new chromosomes by using crossover operator may be lead to illegal schedules.
Repair mechanism is used by MAs to convert these chromosomes to legal form. When a new
chromosome is created, PA sends it to MA agent of its host. MA replaces repeat operations of
the new chromosome with absent operations to ensure the appearance times of each job Pi is
equal to ki. Repaired chromosome is sent to PA.
We used some benchmark instances for the job shop scheduling problem. These problem
instances are available from the OR library web site [36]. We set parameter values for genetic
algorithm as follow:

• population size =1000

• generation span =1000

• crossover rate = 0.95

• mutation rate = 0.01

The number of PA agents was fixed at eight in our experiments and these agents form a
virtual cube among them. Each PA has three neighbors. Parameters of migration were set as
follow:

Leila Asadzadeh & Kamran Zamanifar

International Journal of Computer Science and Security (IJCSS), Volume (5) : Issue (2) : 2011 293

• Migration Frequency : 100 generations

• Migration Rate : 10 chromosomes

• Migration Topology : cube

To evaluate our proposed parallel agent-based genetic algorithm, we compare it with the
serial case that we have only one genetic population that evolves by a PA agent. We
computed average makespan of best schedules obtained by applying algorithms on some
problem instances during various generations. Results are shown in FIGUREs 5-7. These
figures demonstrate the effect of applying parallel and serial approaches on LA30, ORB09
and FT10 instances. As shown by these figures, convergence to near optimal solution in
parallel method is happen rapidly and the solutions that it finds in various generation numbers
have shorter lengths than those that are found by serial method.

FIGFIGFIGFIGUREUREUREURE 5555:::: Parallel Approach Finds Better Solutions Comparing with Serial Method. Test Problem:
LA30. Results Are Averages of Best Solutions Over 10 Runs.

PA

PA PA

PA

Sub-population

Migrants

FIGURE 4: FIGURE 4: FIGURE 4: FIGURE 4: Migration Between PA Agents

1450

1500

1550

1600

1650

1700

1750

0 100 200 300 400 500 600 700

generationsgenerationsgenerationsgenerations

m
a
k
e
s
p
a
n

m
a
k
e
s
p
a
n

m
a
k
e
s
p
a
n

m
a
k
e
s
p
a
n

Serial
Parallel

Leila Asadzadeh & Kamran Zamanifar

International Journal of Computer Science and Security (IJCSS), Volume (5) : Issue (2) : 2011 294

FIGFIGFIGFIGURE URE URE URE 6666:::: Parallel Approach Finds Better Solutions Comparing With Serial Method. Test Problem:
ORB09. Results Are Averages of Best Solutions Over 10 Runs.

FIGURE FIGURE FIGURE FIGURE 7777:::: Parallel Approach Finds Better Solutions Comparing With Serial Method. Test Problem:
FT10. Results Are Averages of Best Solutions Over 10 Runs.

To compare the parallel method proposed to create genetic population with the serial
approach, we carried out some experiments. The evaluation parameter is the required time
for creation of sub-populations for various problem instances. In serial method we have one
population with 1000 chromosomes that is divided into 8 sub-populations with 125
chromosomes after that it has been created by MA and Ai (i=1,2,...,m) agents. In parallel
method, 8 sub-populations each with 125 chromosomes are created in parallel manner.
Results are shown in TABLE 2. Times are in second. According to experimental results,
parallel creation of sub-populations takes less time comparing with serial method.

950

1000

1050

1100

1150

1200

1250

1300

0 100 200 300 400 500 600 700

generationsgenerationsgenerationsgenerations

m
a
k
e
s
p
a
n

m
a
k
e
s
p
a
n

m
a
k
e
s
p
a
n

m
a
k
e
s
p
a
n

Serial

Parallel

950

1000

1050

1100

1150

1200

0 100 200 300 400 500 600 700

generat ionsgenerat ionsgenerat ionsgenerat ions

m
a
k
e
s
p
a
n

m
a
k
e
s
p
a
n

m
a
k
e
s
p
a
n

m
a
k
e
s
p
a
n

Serial
Parallel

Leila Asadzadeh & Kamran Zamanifar

International Journal of Computer Science and Security (IJCSS), Volume (5) : Issue (2) : 2011 295

5. 5. 5. 5. CONCLUSIONCONCLUSIONCONCLUSIONCONCLUSION
Job shop scheduling problem is one of the most important problems in machine scheduling.
This problem is considered to be a member of a large class of intractable numerical problems
known as NP-hard. In this paper, we proposed an agent-based parallel genetic algorithm for
this problem. To enhance the performance of the creation of the initial population for the
genetic algorithm, we parallelized it using agent-based method. We compared performance of
the parallel approach with the serial method. The results showed that the parallel method
improves the speed of genetic population creation. Future work will concentrate on improving
the performance of our method and applying it to similar problems.

TABLETABLETABLETABLE 2222:::: Comparisons Between Serial and Parallel Methods for Creating the Genetic Population on LA

Instances

6666. . . . REFERENCESREFERENCESREFERENCESREFERENCES
[1] A. S. Jain and S. Meeran. “Deterministic job-shop scheduling: past, present and future,”

Department of Applied Physics and Electronic and Mechanical Engineering, University of
Dundee, Dundee, Scotland, UK, 1998.

[2] J. Carlier and E. Pinson. “An algorithm for solving the job shop problem.” Management
Science, vol. 35, no. 29, pp. 164-176, 1989.

[3] B. J. Lageweg, J. K. Lenstra, and A. H. G. Rinnooy Kan. “Job shop scheduling by implicit

enumeration.” Management Science, vol. 24, pp. 441-450, 1977.

[4] P. Brucker, B. Jurisch, and B. Sievers. “A branch and bound algorithm for job-shop

scheduling problem.” Discrete Applied Mathematics, vol. 49, pp. 105-127, 1994.

[5] V. R. Kannan and S. Ghosh. “Evaluation of the interaction between dispatching rules and

truncation procedures in job-shop scheduling.” International journal of production
research, vol. 31, pp. 1637-1654, 1993.

[6] R. Vancheeswaran and M. A. Townsend. “A two-stage heuristic procedure for scheduling

job shops.” Journal of Manufacturing Systems, vol. 12, pp. 315-325, 1993.

[7] Z. He, T. Yang, and D. E. Deal. “Multiple-pass heuristic rule for job scheduling with due

dates.” International journal of production research, vol. 31, pp. 2677-2692, 1993.

[8] J. adams, E. Balas, and D. Zawack. “The shifting bottleneck procedure for job shop

scheduling.” Management Science, vol. 34, pp. 391–401, 1988.

[9] E. Nowicki and C. Smutnicki. “A fast taboo search algorithm for the job-shop problem.”

Management Science, vol. 42, no. 6, pp. 797-813, June 1996.

[10] S. G. Ponnambalam, P. Aravindan, and S. V. Rajesh. “A tabu search algorithm for job

shop scheduling.” International Journal of Advanced Manufacturing Technology, vol. 16,
pp. 765-771, 2000.

Time/s

Parallel

Time/s

Serial

Machines

Jobs

Problem

6 20 5 10 LA04

6 25 5 15 LA06

5 36 5 20 LA11

9 130 10 10 LA16

15 125 10 15 LA21

17 156 10 20 LA26

25 328 10 30 LA31

Leila Asadzadeh & Kamran Zamanifar

International Journal of Computer Science and Security (IJCSS), Volume (5) : Issue (2) : 2011 296

[11] P. V. Laarhoven, E. Aarts, and J. K. Lenstra. “Job shop scheduling by simulated
annealing.” Operations Research, vol. 40, pp. 113-125, 1992.

[12] J. B. Chambers. “Classical and flexible job shop scheduling by tabu search,” Ph.D.
dissertation, University of Texas at Austin, Austin, TX, 1996.

[13] M. E. Aydin and T. C. Fogarty. “Simulated annealing with evolutionary processes in job

shop scheduling,” in Evolutionary Methods for Design, Optimization and Control,
(Proceeding Of EUROGEN 2001), Barcelona, 2002.

[14] M. Kolonko. “Some new results on simulated annealing applied to job shop scheduling

problem.” European Journal of Operational Research, vol. 113, pp. 123-136, 1999.

[15] T. Satake, K. Morikawa, K. Takahashi, and N. Nakamura. “Simulated annealing

approach for minimizing the makespan of the general job-shop.” International Journal of
Production Economics, vol. 60-61, pp. 515-522, 1999.

[16] F. D. Croce, R. Tadei, and G. Volta. “A genetic algorithm for the job shop problem.”

Computers and Operations Research, vol. 22, pp. 15-24, 1995.

[17] J. F. Goncalves, J. J. d. M. Mendes, and M. G. C. Resende. “A hybrid genetic algorithm

for the job shop scheduling problem.” European Journal of Operational Research, vol.
167, pp. 77-95, 2005.

[18] L. Wang and D. Z. Zheng. “A Modified Genetic Algorithm for Job Shop Scheduling.”

International journal of advanced manufacturing technology, pp. 72-76, 2002.

[19] R. T. Mogaddam, F. Jolai, F. Vaziri, P. K. Ahmed, and A. Azaron. “A hybrid method for

solving stochastic job shop scheduling problems.” Applied Mathematics and
Computation, vol. 170, pp. 185-206, 2005.

[20] L. Wang and D. Z. Zheng. “An effective hybrid optimization strategy for job-shop

scheduling problems.” Computers & Operations Research, vol. 28, pp. 585-596, 2001.

[21] S. Y. Foo, Y. Takefuji, and H. Szu. “Scaling properties of neural networks for job shop

scheduling.” Neurocomputing, vol. 8, no.1, pp. 79-91, 1995.

[22] J. Zhang, X. Hu, X. Tan, J. H. Zhong, and Q. Huang. “Implementation of an Ant Colony

Optimization technique for job shop scheduling problem.” Transactions of the Institute of
Measurement and Control, vol. 28, pp. 93-108, 2006.

[23] K. L. Huang and C. J. Liao. “Ant colony optimization combined with taboo search for the

job shop scheduling problem.” Computers & Operations Research, vol. 35, pp. 1030-
1046, 2008.

[24] J. Montgomery, C. Fayad, and S. Petrovic. “Solution representation for job shop

scheduling problems in ant colony optimization,” Faculty of Information & Communication
Technologies, Swinburne University of Technology, 2006.

[25] M. Ventresca and B. Ombuki. “Ant Colony Optimization for Job Shop Scheduling

Problem,” in Proceedings of 8th IASTED International Conference On Artificial
Intelligence and Soft Computing, 2004, pp. 451-152.

[26] S. Petrovic, and C. Fayad. “A genetic algorithm for job shop scheduling with load

balancing,” School of Computer Science and Information Technology, University of
Nottingham, Nottingham, 2005.

[27] S. Rajakumar, V. P. Arunachalam, and V. Selladurai. “Workflow balancing in parallel

machine scheduling with precedence constraints using genetic algorithm.” Journal of
Manufacturing Technology Management, vol. 17, pp. 239-254, 2006.

Leila Asadzadeh & Kamran Zamanifar

International Journal of Computer Science and Security (IJCSS), Volume (5) : Issue (2) : 2011 297

[28] B. M. Ombuki, and M. Ventresca. “Local search genetic algorithms for the job shop
scheduling problem.” Applied Intelligence, vol. 21, pp. 99-109, 2004.

[29] S. C. Lin, E. D. Goodman, and W. F. Punch. “Investigating parallel genetic algorithms on
job shop scheduling problems,” Genetic algorithm research and applications group, State
university of Michigan, Michigan, 1995.

[30] R. Cheng, M. Gen, and Y. Tsujimura. “A tutorial survey of job-shop scheduling problems

using genetic algorithms, part II: Hybrid genetic search strategies.” Computers &
Industrial Engineering, vol. 36, pp. 343–364, 1999.

[31] Y. Chen, Z. Z. Li, and Z. W. Wang. “Multi-agent-based genetic algorithm for JSSP,” in

Proceedings of the third international conference on Machine Learning and Cybernetics,
2004, pp. 267-270.

[32] L. Asadzadeh, K. Zamanifar. “An Agent-based Parallel Approach for the Job Shop

Scheduling Problem with Genetic Algorithms.” Mathematical and Computer Modeling,
Vol. 52, pp. 1957-1965, 2010.

[33] F. Bellifemine, A. Poggi, and G. Rimassa. “Developing multi-agent systems with a FIPA-

compliant agent framework.” Software: Practice and Experience, vol. 31, pp. 103-128,
2001.

[34] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning. MA:

Addison-Wesley, 1989.

[35] D. E. Goldberg and R. Lingle. “Alleles, loci, and the TSP,” in Proceeding of 1st

International Conference on Genetic Algorithms, 1985, pp. 154-159.

[36] D. C. Mattfeld and R. J. M. Vaessens. “Job shop scheduling benchmarks.” Internet: www

mscmga.ms.ic.ac.uk, [Jul. 10, 2008].

