
Blake W. Ford & Khosrow Kaikhah

International Journal of Computer Science and Security (IJCSS), Volume (5) : Issue (5) : 2011 425

Non-Specialized File Format Extension

Blake W. Ford blake.wford@gmail.com
Department of Computer Science
Texas State University – San Marcos
San Marcos, 78666, USA

Khosrow Kaikhah kk02@txstate.edu
Department of Computer Science
Texas State University – San Marcos
San Marcos, 78666, USA

Abstract

The study expands upon previous work in format extension. The initial research purposed extra
space provided by an unrefined format to store metadata about the file in question. This process
does not negatively impact the original intent of the format and allows for the creation of new
derivative file types with both backwards compatibility and new features. The file format extension
algorithm has been rewritten entirely in C++ and is now being distributed as an open source
C/C++ static library, roughdraftlib. The files from our previous research are essentially binary
compatible though a few extra fields have been added for developer convenience. The new data
represents the current and oldest compatible versions of the binary and values representing the
scaling ratio of the image. These new fields are statically included in every file and take only a
few bytes to encode, so they have a trivial effect on the overall encoding density.

Keywords: Steganography, CAD, Metadata, Compatibility.

1. BACKGROUND
Simple interactions between engineers and their clients can at times be surprisingly difficult,
because most contemporary drafting programs use proprietary technologies to archive data in
application specific formats. When sharing data with clients, source files either need to be
converted to a format in common usage or the client will need to install an application specific
viewing program. In either case, the maintenance associated with keeping the client up to date
can be tedious. To resolve this issue we created a single sourcing steganography library called
roughdraftlib.

This library integrates high-level design data into a standardized file format while maintaining
backwards compatibility. Steganography is used to create an outlet for adding additional hidden
information to the standardized file. Using our software, it is possible to build a single source
format that is convenient for clients and workable for developers.

2. PORTABLE NETWORK GRAPHICS
Language unifying the code and developing a new internal architecture have made it much easier
to expand the usefulness of the product. The software now has a pluggable target interface which
allows for greater target diversity than the previous architecture. The most important improvement
over the previous system to date is the addition of the Portable Network Graphics format as a
possible target made possible by these changes. The PNG files exported by roughdraftlib are of
the same quality as the old 24-bit bitmap targets, but with a much smaller disk footprint. This
format uses the DEFLATE algorithm discussed previously to compress the image data. However,
the effective compression of the DEFLATE algorithm on the raster data for these images is far
greater than it was on the vector data according to our findings. In one test case, the PNG file
produced was 1% the size of the already compressed 256-color bitmap produced by the older

Blake W. Ford & Khosrow Kaikhah

International Journal of Computer Science and Security (IJCSS), Volume (5) : Issue (5) : 2011 426

RoughDraft application. DEFLATE’s underlying LZ77 compression algorithm works well with
repetitive datasets and the wire frames we have been testing are highly repetitive. In addition,
roughdraftlib uses a feature of the PNG file format to hide data within an image without having to
manipulate the visible data.

The information within a PNG file is broken up into small sections known as chunks. Chunks can
either be critical or ancillary. As a rule, all PNG decoders are required to process critical chunks,
but opt in to processing ancillary chunks. If a decoder cannot process an ancillary chunk, it
typically ignores that piece of data. In roughdraftlib, all of the CAD data is stored in an ancillary
chunk instead of in the least significant bits of the image data. Though either method is possible
to implement using the PNG format, this method was chosen because it does not restrict the
amount of data that can be embedded within the image.

For these reasons, PNG is likely to be the most popular target of roughdraftlib. Noting this, we
had to revisit our previous choices regarding the layout and the future roadmap for the
technology. Because the PNG format is more flexible and so different from the bitmap files
studied before, some of our optimizations may no longer make sense when propositioning this
format to outside vendors, while other considerations from our previous research still hold true in
the PNG environment. The goal of this research is to verify the effectiveness of our format design
and reevaluate the old bitmap format specific decisions that may hold back the adoption of vector
bitmaps.

3. FEATURE EVALUATION
One universal feature that adds value to all of our potential targets is secondary format
compression. While this may provide software developers with some additional overhead, the
consumer facing experience is vastly improved in every domain. There is no tradeoff to be made
here in terms of developer efficiency and disk footprint, because ample developer resources exist
to attack and understand the problem of DEFLATE compression. Libraries and documentation on
the algorithm are available for a variety of programming languages. Stylistically, few changes are
foreseen in regards to the basic process by which roughdraftlib processes data, embeds its
payload and targets individual file formats though some areas will require change.

In our initial research, we discounted the use of off the shelf file types due to their comparatively
large size. However, now that a target exists that allows for boundless secondary format size we
have called into question the importance of an extremely small but limited secondary data format.
For instance, in the original research project, we found that embedding a standard DXF file in
place of our custom format limits the maximum number of shapes possible in bitmap targets to
about one tenth their previous value. The importance of this seemly negative statistic can now be
reevaluated, considering that bitmaps will likely not be the most popular target of this library.
Therefore, we are not optimizing this use case and using DXF as the backend format for all
targets in an effort to increase adoption.

4. QCAD INSTRUMENTATION
We extended an open source version of the QCAD drafting application. With these additions to
the code base, it is now possible to export CAD drawings in any of the formats available in
roughdraftlib, PNGs with a compressed DXF chunk, or raw text based DXF files natively
supported by QCAD. Through this exercise, we have been able to gather important size and
integration data from which we will base the future roadmap of roughdraftlib.

QCAD was chosen as the host platform for a variety of reasons. Not only is the QCAD application
industry capable, it is also open source and relatively easy to extend for our purposes. In addition,
the creators of the application have also produced a suite of tools to convert DXF files into
standard image formats. We assume since these tools exist, QCAD users are dealing with the
duplicated source issues we are trying to solve. For this reason, QCAD users may be interested
in converting to our approach. Lastly, QCAD ships with a standard DXF part library. The library

Blake W. Ford & Khosrow Kaikhah

International Journal of Computer Science and Security (IJCSS), Volume (5) : Issue (5) : 2011 427

contains CAD drawings of common blocks used in industry, like doors and appliances. We used
these blocks as our baseline to ensure that our technology supports both the features and
performance expected by CAD designers.

Using our instrumented QCAD program, we were able to produce some convincing size numbers
for migration to either the highly compressed vector bitmap format or the easy to use DXF chunk
derivative. We start each experiment with a standard part from the shipping library. This part is
exported into each possible format discussed above. Then a qualitative assessment is made
regarding the resulting image’s quality followed by some file size comparisons.

For now, because all of the resulting images are lossless, there are only three static buckets of
qualitative assessment. Our DXF chunk images have the highest quality, because they represent
each CAD image verbatim. Vector bitmaps lag behind, because it does not yet support all of the
shapes possible in a given DXF drawing, and pure DXF files are considered last as they cannot
be viewed using standard imaging programs.

There are two primary size comparisons being made from each exported file. The first is raw file
size to compare the disk footprint of the bitmaps, PNGs, and DXF files produced. This gives
developers some indication of how standardizing on the end product would affect their systems.
The second metric is a comparison of the two competing secondary data formats. The size of the
CAD data in the final product determines how useful bitmaps and other steganographically limited
file extensions will be in different applications.

TABLE 1: Raw File Size

The referenced tables were generated using an appliance drawing that ships with QCAD as a
sample DXF file. The numbers represent the real world performance of the different encoding
methods. Table 1 shows how each variation compares in terms of file size. Bitmaps produced
under either the previous or DXF extension mechanisms have identical disk size and are
generally larger than the source DXF file. The PNGs differ in size and the roughdraftlib variant is
significantly smaller. It should be noted that both PNG exports are smaller than the original DXF
source file.

Looking at the data size and capacity statistics helps demonstrate our conflict of interests. Table
2 depicts the size of each secondary format and Table 3 displays the embedding capacity of all
possible targets. Table 4 illustrates the compatibility matrix derived from the previous two tables.

File Type Format Size
Raw DXF 21.00 KB

DXF Chunk 3.00 KB

Roughdraftlib 300 B

TABLE 2: Data Format Size

File Type File Size
24-bit bitmap 921.00 KB

256-color bitmap 307.00 KB

Raw DXF 21.00 KB

DXF Chunk PNG 5.25 KB

Roughdraftlib PNG 2.50 KB

Blake W. Ford & Khosrow Kaikhah

International Journal of Computer Science and Security (IJCSS), Volume (5) : Issue (5) : 2011 428

File Type Capacity
DXF, PNG types Unlimited KB

24-bit bitmap 77 KB

DXF Chunk 256 bmp 1 KB

Roughdraft 256 bmp 960 B

TABLE 3: Data Capacity

File Type Raw DXF DXF Chunk RoughDraft

DXF, PNG types OK OK OK

24-bit bitmaps OK OK OK

DXF Chunk 256 bmp NP NP OK

Roughdraft256 bmp NP NP OK

TABLE 4: Aggregate Data

This support matrix is representative of most files tested from the QCAD sample library. The
roughdraftlib data format is the only option that allows us to support all of the target configurations
currently available for this use case. When using the compressed DXF chunk as the secondary
data backend, the resulting file typically fits into all but the 256-color bitmap target’s available
embedding space. For more complex designs, it should be noted that while the designs tested
worked with our 24-bitmap targets the overall capacity for that format was greatly reduced when
the DXF chunk method was used; approximately one-tenth the capacity of the roughdraftlib
representation in this test.

5. NEW VALUE EQUATIONS
We established a relationship between this growth in data size and the number of shapes
possible to embed in a file. This helps to clarify our arguments in regards to each of the
secondary formats. In our original research, we used a static equation to determine the size of a
secondary format in bitmap files.

Original Algorithm
File Size < 54(Header) + (Shapes)*72 (1)

Using this equation, we determined that 24-bit bitmap with the dimensions 500x500 should be
able to store around 10,000 shapes. Using compression, we increased this number
conservatively by 30% for a final total of approximately 13,000 shapes when using the
roughdraftlib format.

Compressed Algorithm
File Size < 54(Header)+(Shapes)*50 (2)

Because DXF files scale in a slightly different fashion we need to derive a second equation for
competitive analysis. First, using QCAD we noticed that an empty DXF file defaults to roughly
11KB in size. With each additional shape, the file grows by an average of 130 bytes. When
compressed, we are observing about an 80% decrease in the empty file size plus a 40 byte size
increase per shape. Using this information, we derived the following corresponding equations.

DXF Algorithm

Blake W. Ford & Khosrow Kaikhah

International Journal of Computer Science and Security (IJCSS), Volume (5) : Issue (5) : 2011 429

File Size < 54+88K+(Shapes)*1.2K (3)

Compressed DXF Algorithm
File Size < 54+16.8 K+(Shapes)*320 (4)

Applying our overhead tax and shape penalty rules for the DXF chunk format, we estimate that
designs 2,400 or few shapes will be possible for an equal sized 24-bit bitmap encoded using our
previous research.

For 256-color bitmaps a similar equations can be derived. In our earlier research, we chose not to
noticeably change any of the 256 colors from the bitmaps palette. Since then, we have updated
our approach. In our latest design, the color palette is artificially limited to 16 colors. The
remaining dictionary space is filled with compressed secondary data. This increases the data size
available for embedding shapes from 320 to 960 bytes; this is reflected in the tables [1]-[4]. For
this format, we no longer hide data in the least significant bits of the color palette, so the
overhead for each shape goes down as well. The following equations represent our current
strategy for 256-color bitmaps.

Original Algorithm
960 Bytes < (Shapes)*9(Raw Size) (5)

Compressed Algorithm
960 Bytes < (Shapes)*6(Raw Size) (6)

DXF Algorithm
960 Bytes < 11KB+(Shapes)*130 (7)

Compressed DXF Algorithm
960 Bytes < 2.1KB+(Shapes)*40 (8)

Using these equations, linear placement would yield 105 possible shapes, compression would
increase this number to around 135 and the DXF algorithms would be impossible.

With these results, we either have to consider either dropping the DXF chunk representation for
256-color bitmaps or improving our embedding technique. As there are two other file format
choices, losing this target to gain the flexibility of the DXF chunk type does not seem like an
unreasonable tradeoff, however, we also explored ways to more efficiently embed into 256-color
targets. Our most recent approach involves encoding data into the bit field by duplicating the
restricted color dictionary.

256-color bitmaps allow identical colors to be defined multiple times in their dictionary. Using this
feature, we would expand our current dictionary usage from 16 colors to 32 by redefining the
original set. This would limit free space in the dictionary from 960 bytes to 896, an initial loss of 64
bytes. However, this would allow us to assign logical 0s and 1s to the data in the image’s bit field.
If a color reference in the bit field pointed to a value from the first set of 16 colors, it would
indicate a 0 in the secondary file format. Likewise, a color pointing to a value in the second set
would represent a 1. With this mechanism, we would recover the initial loss of 64 bytes in 512
pixels. If the area of the image is larger than 512 pixels, this method would allow for more
encoding space than the previous version. The new algorithm would yield 32KB worth of
encoding space from an image with our baseline dimensions of 500x500 pixels.

Original Algorithm
File Size < 54+32(Dict.)+(Shapes-100)*72 (9)

Compressed Algorithm
File Size < 54+32(Dict.)+(Shapes-100)*50 (10)

Blake W. Ford & Khosrow Kaikhah

International Journal of Computer Science and Security (IJCSS), Volume (5) : Issue (5) : 2011 430

DXF Algorithm
File Size < 54+32+87K+(Shapes)*1.2K (11)

Compressed DXF Algorithm
File Size < 54+32+15.8K+(Shapes)* 320 (12)

6. SOFTWARE STACK COMPARISON
Taking into consideration all of this information, we intend to push our current software stack in a
slightly new direction. Figure 1 shows the stack as it currently exists with the QCAD application.

FIGURE 1: Stack for QCAD application

We copied and slightly modified the critical source from roughdraftlib in order to test the new
standardized file approach to the single source problem. The resulting code is structured
according to Figure 2. This code base has been name-spaced in order to allow two similar code
paths to exist side by side for comparison. Currently the new DXF based single source utility is
dependent upon the existing applications ability to produce one of the three carrier file types
supported by our research.

FIGURE 2: New Standardized File

Blake W. Ford & Khosrow Kaikhah

International Journal of Computer Science and Security (IJCSS), Volume (5) : Issue (5) : 2011 431

We propose a new independent library derived from the embedding portion of the roughdraftlib
code base. Instead of duplicating this code as we are now, roughdraftlib will become dependent
upon the lower level-embedding library as depicted in Figure 3.

FIGURE 3: New Independent File

By moving the steganography code into a new independent layer, we give developers the option
of using their own image file creation routines and standardized formats while preserving the
integrity of our industry optimized approach. This will provide more flexibility when both adopting
and continuing to add support for new features related to our research. With this software stack,
existing applications can plug in with almost no effort and grow into our optimized format at their
leisure. In addition, other industries can also take advantage of single sourcing immediately
without the overhead of defining a fully optimized single source version.

7. CONCLUSIONS AND FUTURE GOALS
Following the previously mentioned code restructuring, we would like to target additional file
types. The next likely candidate would be the JPEG file format. This format is a popular web
format like PNG and can also be used in steganography. While the JPEG format can out perform
PNG compression on certain images types, it is relatively ineffective when compressing
diagrams, graphs, text, icons, and monochrome images. CAD images exhibit many of these
qualities and we have observed that the size of the JPEG images we could produce through
roughdraftlib would be around 500% larger than the comparable PNG version. Though this
seems like a very large difference, keep in mind a JPEG image produced from roughdraftlib
would still be drastically smaller than either of the bitmap files we currently export.

In this research iteration, we also leverage the work of an open source application to define and
improve the usability of our product. This is a tread that will be repeated in the future of this
product as well. One project of interest is Steghide source integration. Steghide is an open source
steganography application that supports some of the formats targeted by roughdraftlib. Steghide
has many interesting features that roughdraftlib does not like embedding capacity reporting and
encryption and so long as we keep the appropriate licensing terms we can also take advantage of
those features.

8. REFERENCES
[1] B. W. Ford and K, Kaikhah. “File Format Extension Through Steganography,” presented at

the International Conference on Software Engineering, Management & Application,
Kathmandu, Nepal, 2010.

[2] B. W. Ford and K, Kaikhah. “Honing File Format Extension Through Steganography,”

presented at the International Conference on Infocomm Technologies in Competitive
Strategies, Singapore, 2010.

Blake W. Ford & Khosrow Kaikhah

International Journal of Computer Science and Security (IJCSS), Volume (5) : Issue (5) : 2011 432

[3] G. Cantrell and D. D. Dampier. “Experiments in hiding data inside the file structure of

common office documents: a steganography application.” In Proceedings of the
International Symposium on information and Communication Technologies, 2004, pp. 146-
151.

[4] G.A. Francia and T. S. Gomez. “Steganography obliterator: an attack on the least significant

bits.” In Proceedings of the 3rd Annual Conference on Information Security Curriculum
Development, 2006, pp. 85-91.

[5] J. Fridrich. “Minimizing the embedding impact in steganography.” In Proceedings of the 8th

Workshop on Multimedia and Security, 2006, pp. 2-10.

[6] J. Fridrich, T. Pevný, and J. Kodovský. “Statistically undetectable jpeg steganography: dead

ends challenges, and opportunities.” In Proceedings of the 9th Workshop on Multimedia
and Security, 2007, pp. 3-14.

[7] C. M.C. Chen, S. S. Agaian, and C. L. P. Chen. “Generalized collage steganography on

images." In Proceedings of the IEEE International Conference on Systems, Man and
Cybernetics, 2008, pp. 1043-1047.

[8] Z. Oplatkova, J. Holoska, I. Zelinka, and R. Senkerik. “Detection of Steganography Inserted

by OutGuess and Steghide by Means of Neural Networks.” In Proceedings of the Third
Asia International Conference on Modeling and Simulation, 2009, pp. 25-29.

